1
|
Elmaci DN, Hopping G, Hoffmann W, Muttenthaler M, Stein M. The structural integrity of human TFF1 under reducing conditions. Redox Biol 2025; 81:103534. [PMID: 39978303 PMCID: PMC11889601 DOI: 10.1016/j.redox.2025.103534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/22/2025] Open
Abstract
The trefoil factor family (TFF) comprises three secretory peptides (TFF1, TFF2, TFF3) that regulate diverse physiological processes to maintain gastrointestinal mucosal integrity and homeostasis. The TFF domain is stabilized by six conserved cysteine residues forming three intramolecular disulfide bonds. In this work, we investigated human TFF1 domain stability against increasing concentrations of the reducing agent tris(2-carboxyethyl)phosphine (TCEP). Experiments revealed high resistance of the disulfide bonds within the TFF1 domain to reduction compared to two reference peptides with similar three-disulfide frameworks, namely the bovine pancreatic trypsin inhibitor (BPTI) and the peptide drug linaclotide. Full reduction of TFF1 was only achieved with a large excess of TCEP (150-fold), and no partially reduced intermediates were observed, supporting a compact TFF1 domain. This TFF1 domain stability was supported by extensive all-atom molecular dynamics simulations for a total of 24 μs of all possible combinatorial states of disulfide bond reduction. Despite minor structural and conformational changes observed upon reduction, the domain substantially retained its overall compactness and solvent exposure when only one or two disulfide bonds were removed. The reduced cysteine residues did not undergo large structural rearrangements and remained buried. The loss of covalent disulfide bonds upon reduction was counterbalanced through persistent non-covalent interactions. These molecular simulations explained why TFF1 could not be partially reduced and alkylated during the experiments despite titrating different TCEP concentrations in the presence of alkylating agents. Our findings provide the first insights into the remarkable stability of the human TFF domain under reducing conditions, supporting its functional resilience upon expression and secretion throughout the human body.
Collapse
Affiliation(s)
- Dilsah Nur Elmaci
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - Gene Hopping
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Werner Hoffmann
- Institute for Molecular Biology and Medicinal Chemistry, Medical Faculty Otto von Guericke University, 39120 Magdeburg, Germany
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia; Institute of Biological Chemistry, University of Vienna, 1090 Vienna, Austria.
| | - Matthias Stein
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany.
| |
Collapse
|
2
|
Erman A, Dragin Jerman U, Peskar D, Šešelja K, Bazina I, Baus Lončar M. Trefoil Factor Protein 3 (TFF3) as a Guardian of the Urinary Bladder Epithelium. J Histochem Cytochem 2024; 72:693-709. [PMID: 39579021 PMCID: PMC11585002 DOI: 10.1369/00221554241299863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024] Open
Abstract
Trefoil factor family (TFF) peptides have been examined primarily in the gastrointestinal tract, where they play an important role in the epithelial regeneration. The therapeutic effects of TFFs, particularly the TFF3 protein, have been well studied in humans and in animal models of gastrointestinal injury, whereas little is known about their occurrence and function in the urinary bladder. In this study, we investigated the presence, location, and function of Tff3 in the urinary bladders of wild-type mice (Tff3WT) and compared them with Tff3 knockout mice (Tff3KO) using molecular and microscopic methods at the light and electron microscopic level. Our results show that Tff3 is expressed in the superficial cells of the urothelium, where it colocalizes with the uroplakin UP1b as one of the fundamental structural components of the apical plasma membrane, which is an important component of the blood-urine permeability barrier. Analysis of the urothelium with experimentally induced injury revealed that injury is more severe in Tff3KO mice and urothelial regeneration is attenuated compared with Tff3WT mice, suggesting that Tff3 plays a fine-tuned role in homeostasis and protection of the urothelium. This study provides the first data on the precise location and function of Tff3 in the bladder epithelium. (J Histochem Cytochem XX. XXX-XXX, XXXX).
Collapse
Affiliation(s)
- Andreja Erman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Dragin Jerman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Dominika Peskar
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Kate Šešelja
- Laboratory for Neurodegenerative Research, Department of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Iva Bazina
- Laboratory for Neurodegenerative Research, Department of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Mirela Baus Lončar
- Laboratory for Neurodegenerative Research, Department of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
3
|
Abdullayeva G, Liu H, Liu TC, Simmons A, Novelli M, Huseynova I, Lastun VL, Bodmer W. Goblet cell differentiation subgroups in colorectal cancer. Proc Natl Acad Sci U S A 2024; 121:e2414213121. [PMID: 39401352 PMCID: PMC11513979 DOI: 10.1073/pnas.2414213121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/28/2024] [Indexed: 10/30/2024] Open
Abstract
The poor prognosis of relatively undifferentiated cancers has long been recognized, suggesting that selection against differentiation and in favor of uncontrolled growth is one of the most powerful drivers of cancer progression. Goblet cells provide the mucous surface of the gut, and when present in colorectal cancers (CRC), the cancers are called mucinous. We have used the presence of MUC2, the main mucous product of goblet cells, and an associated gene product, TFF3, to classify a large panel of nearly 80 CRC-derived cell lines into five categories based on their levels of MUC2 and TFF3 expression. We have then shown that these five patterns of expression can be easily identified in the direct analysis of tumor specimens allowing a much finer characterization of CRCs with respect to the presence of goblet cell differentiation. In particular, about 30% of all CRCs fall into the category of expressing TFF3 but not MUC2, which has not previously been acknowledged. Using the cell line data, we suggest that there are up to 12 genes (MUC2, TFF3, ATOH1, SPDEF, CDX1, CDX2, GATA6, HES1, ETS2, OLFM4, TOX3, and LGR5) that may be involved in selection against goblet cell differentiation in CRC by changes in methylation rather than mutations. Of these, LGR5, which is particularly associated with lack of goblet cell features, may function in the control of differentiation rather than direct control of cell growth, as has so far mostly been assumed. These results emphasize the importance of methylation changes in driving cancer progression.
Collapse
Affiliation(s)
- Gulnar Abdullayeva
- Department of Oncology, University of Oxford, OxfordOX3 7DQ, United Kingdom
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education of the Republic of Azerbaijan, BakuAZ1073, Azerbaijan
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, OX3 7TY, United Kingdom
| | - Haoyu Liu
- Tencent Technology (Shenzhen) Co. Ltd., Shenzhen City518000, China
| | - Ta-Chun Liu
- Hayawaka Building, OxfordOX4 4GA, United Kingdom
| | - Alison Simmons
- Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, OxfordOX3 9DS, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Marco Novelli
- University College London Department of Pathology, LondonWC1E 6HX, United Kingdom
| | - Irada Huseynova
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education of the Republic of Azerbaijan, BakuAZ1073, Azerbaijan
| | - Viorica L. Lastun
- Department of Oncology, University of Oxford, OxfordOX3 7DQ, United Kingdom
| | - Walter Bodmer
- Department of Oncology, University of Oxford, OxfordOX3 7DQ, United Kingdom
| |
Collapse
|
4
|
Peiffer AL, Dugan AE, Kiessling LL. Soluble Human Lectins at the Host-Microbe Interface. Annu Rev Biochem 2024; 93:565-601. [PMID: 38640018 PMCID: PMC11296910 DOI: 10.1146/annurev-biochem-062917-012322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Human lectins are integral to maintaining microbial homeostasis on the skin, in the blood, and at mucosal barriers. These proteins can recognize microbial glycans and inform the host about its microbial status. In accordance with their roles, their production can vary with tissue type. They also can have unique structural and biochemical properties, and they can influence microbial colonization at sites proximal and distal to their tissue of origin. In line with their classification as innate immune proteins, soluble lectins have long been studied in the context of acute infectious disease, but only recently have we begun to appreciate their roles in maintaining commensal microbial communities (i.e., the human microbiota). This review provides an overview of soluble lectins that operate at host-microbe interfaces, their glycan recognition properties, and their roles in physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Amanda L Peiffer
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - A E Dugan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - L L Kiessling
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
5
|
Kern-Lunbery RJ, Rathert-Williams AR, Foote AP, Cunningham-Hollinger HC, Kuehn LA, Meyer AM, Lindholm-Perry AK. Genes involved in the cholecystokinin receptor signaling map were differentially expressed in the jejunum of steers with variation in residual feed intake. Vet Anim Sci 2024; 24:100357. [PMID: 38812584 PMCID: PMC11133974 DOI: 10.1016/j.vas.2024.100357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
The jejunum is a critical site for nutrient digestion and absorption, and variation in its ability to take up nutrients within the jejunum is likely to affect feed efficiency. The purpose of this study was to determine differences in gene expression in the jejunum of beef steers divergent for residual feed intake (RFI) in one cohort of steers (Year 1), and to validate those genes in animals from a second study (Year 2). Steers from Year 1 (n = 16) were selected for high and low RFI. Jejunum mucosal tissue was obtained for RNA-seq. Thirty-two genes were differentially expressed (PFDR≤0.15), and five were over-represented in pathways including inflammatory mediator, cholecystokinin receptor (CCKR) signaling, and p38 MAPK pathways. Several differentially expressed genes (ALOX12, ALPI, FABP6, FABP7, FLT1, GSTA2, MEF2B, PDK4, SPP1, and TTF2) have been previously associated with RFI in other studies. Real-time qPCR was used to validate nine differentially expressed genes in the Year 1 steers used for RNA-seq, and in the Year 2 validation cohort. Six genes were validated as differentially expressed (P < 0.1) using RT-qPCR in the Year 1 population. In the Year 2 population, five genes displayed the same direction of expression as the Year 1 population and 3 were differentially expressed (P < 0.1). The CCKR pathway is involved in digestion, appetite control, and regulation of body weight making it a compelling candidate for feed efficiency in cattle, and the validation of these genes in a second population of cattle is suggestive of a role in feed efficiency.
Collapse
Affiliation(s)
- Rebecca J. Kern-Lunbery
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
- Ward Laboratories, Inc., Kearney, NE 68848, USA
| | - Abigail R. Rathert-Williams
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
- University of Missouri, Division of Animal Sciences, Columbia, MO 65211, USA
| | - Andrew P. Foote
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
- Oklahoma State University, Department of Animal & Food Sciences, Stillwater, OK 74078, USA
| | | | - Larry A. Kuehn
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Allison M. Meyer
- University of Missouri, Division of Animal Sciences, Columbia, MO 65211, USA
- University of Wyoming, Department of Animal Science, Laramie, WY 82071, USA
| | | |
Collapse
|
6
|
Masumoto Y, Matsuo S, Kinjou N, Narieda Y, Wada M, Fujimoto K. The expression of trefoil factor family member 2 in increased at an acidic pH. Oncol Lett 2024; 27:212. [PMID: 38572063 PMCID: PMC10988190 DOI: 10.3892/ol.2024.14345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/13/2024] [Indexed: 04/05/2024] Open
Abstract
Trefoil factor family member 2 (Tff2) is significantly involved in intestinal tumor growth in ApcMin/+ mice, which can be used as a human colon cancer model. TFF2, which encodes TFF2 (spasmolytic protein 1) is highly expressed in human cancer tissues, including the pancreas, colon and bile ducts, as well as in normal gastric and duodenum tissues. By contrast, TFF2 exhibits low expression levels in other normal tissues, including the small and large intestine. Furthermore, TFF2 expression has not been detected in DLD-1 cells, a cell line derived from human colon cancer. What induces TFF2 expression in normal and tumor cells is still unknown. Highly malignant tumor tissues are characterized by higher temperatures and lower pH (6.2-6.9) than in normal tissues, where normal pH ranges from 7.2 to 7.4. This microenvironment exacerbates malignancy by promoting the acquisition of cell death resistance, drug resistance and immune escape. Therefore, the present study examined how TFF2 expression is affected in cultured cells that imitate the tumor tissue microenvironment. The incubation temperature was increased from 37 to 40°C, but no expression of TFF2 was induced. Subsequently, a culture solution with an acidic pH was prepared to simulate the Warburg effect in tumors. TFF2 expression was increased by 42.8- and 5.8-fold in cells cultured in acidic medium at pH 6.5 and 6.8 compared with at pH 7.4, respectively, as determined using the relative quantification method following quantitative polymerase chain reaction. The present study also analyzed fluctuations in the expression levels of genes other than TFF2, under acidic conditions. Acidic conditions upregulated the expression of genes related to cell membranes and glycoproteins, based on the Database for Annotation, Visualization, and Integrated Discovery. In conclusion, TFF2 was highly expressed under acidic conditions, implying that it may have an important function in protecting the plasma membrane from acidic environments in both normal and cancer cells. These findings warrant further investigation of TFF2 as a target of cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Yui Masumoto
- Division of Biochemistry, Department of Pharmacy, Nagasaki International University, Sasebo, Nagasaki 859 3298, Japan
| | - Suzuka Matsuo
- Division of Biochemistry, Department of Pharmacy, Nagasaki International University, Sasebo, Nagasaki 859 3298, Japan
| | - Natsuno Kinjou
- Division of Biochemistry, Department of Pharmacy, Nagasaki International University, Sasebo, Nagasaki 859 3298, Japan
| | - Yuka Narieda
- Division of Biochemistry, Department of Pharmacy, Nagasaki International University, Sasebo, Nagasaki 859 3298, Japan
| | - Morimasa Wada
- Division of Molecular Biology, Department of Pharmacy, Nagasaki International University, Sasebo, Nagasaki 859 3298, Japan
| | - Kyoko Fujimoto
- Division of Biochemistry, Department of Pharmacy, Nagasaki International University, Sasebo, Nagasaki 859 3298, Japan
| |
Collapse
|
7
|
Nishio S, Emori C, Wiseman B, Fahrenkamp D, Dioguardi E, Zamora-Caballero S, Bokhove M, Han L, Stsiapanava A, Algarra B, Lu Y, Kodani M, Bainbridge RE, Komondor KM, Carlson AE, Landreh M, de Sanctis D, Yasumasu S, Ikawa M, Jovine L. ZP2 cleavage blocks polyspermy by modulating the architecture of the egg coat. Cell 2024; 187:1440-1459.e24. [PMID: 38490181 DOI: 10.1016/j.cell.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/07/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024]
Abstract
Following the fertilization of an egg by a single sperm, the egg coat or zona pellucida (ZP) hardens and polyspermy is irreversibly blocked. These events are associated with the cleavage of the N-terminal region (NTR) of glycoprotein ZP2, a major subunit of ZP filaments. ZP2 processing is thought to inactivate sperm binding to the ZP, but its molecular consequences and connection with ZP hardening are unknown. Biochemical and structural studies show that cleavage of ZP2 triggers its oligomerization. Moreover, the structure of a native vertebrate egg coat filament, combined with AlphaFold predictions of human ZP polymers, reveals that two protofilaments consisting of type I (ZP3) and type II (ZP1/ZP2/ZP4) components interlock into a left-handed double helix from which the NTRs of type II subunits protrude. Together, these data suggest that oligomerization of cleaved ZP2 NTRs extensively cross-links ZP filaments, rigidifying the egg coat and making it physically impenetrable to sperm.
Collapse
Affiliation(s)
- Shunsuke Nishio
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Chihiro Emori
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Benjamin Wiseman
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Dirk Fahrenkamp
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Elisa Dioguardi
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Marcel Bokhove
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ling Han
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Alena Stsiapanava
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Blanca Algarra
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Yonggang Lu
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Mayo Kodani
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Rachel E Bainbridge
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kayla M Komondor
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anne E Carlson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
| | | | - Shigeki Yasumasu
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
| | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
8
|
Cox RM, Wolf JD, Lieberman NA, Lieber CM, Kang HJ, Sticher ZM, Yoon JJ, Andrews MK, Govindarajan M, Krueger RE, Sobolik EB, Natchus MG, Gewirtz AT, deSwart RL, Kolykhalov AA, Hekmatyar K, Sakamoto K, Greninger AL, Plemper RK. Therapeutic mitigation of measles-like immune amnesia and exacerbated disease after prior respiratory virus infections in ferrets. Nat Commun 2024; 15:1189. [PMID: 38331906 PMCID: PMC10853234 DOI: 10.1038/s41467-024-45418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Measles cases have surged pre-COVID-19 and the pandemic has aggravated the problem. Most measles-associated morbidity and mortality arises from destruction of pre-existing immune memory by measles virus (MeV), a paramyxovirus of the morbillivirus genus. Therapeutic measles vaccination lacks efficacy, but little is known about preserving immune memory through antivirals and the effect of respiratory disease history on measles severity. We use a canine distemper virus (CDV)-ferret model as surrogate for measles and employ an orally efficacious paramyxovirus polymerase inhibitor to address these questions. A receptor tropism-intact recombinant CDV with low lethality reveals an 8-day advantage of antiviral treatment versus therapeutic vaccination in maintaining immune memory. Infection of female ferrets with influenza A virus (IAV) A/CA/07/2009 (H1N1) or respiratory syncytial virus (RSV) four weeks pre-CDV causes fatal hemorrhagic pneumonia with lung onslaught by commensal bacteria. RNAseq identifies CDV-induced overexpression of trefoil factor (TFF) peptides in the respiratory tract, which is absent in animals pre-infected with IAV. Severe outcomes of consecutive IAV/CDV infections are mitigated by oral antivirals even when initiated late. These findings validate the morbillivirus immune amnesia hypothesis, define measles treatment paradigms, and identify priming of the TFF axis through prior respiratory infections as risk factor for exacerbated morbillivirus disease.
Collapse
Affiliation(s)
- Robert M Cox
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Josef D Wolf
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Nicole A Lieberman
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Carolin M Lieber
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Hae-Ji Kang
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Zachary M Sticher
- Emory Institute for Drug Development, Emory University, Atlanta, GA, 30322, USA
| | - Jeong-Joong Yoon
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Meghan K Andrews
- Emory Institute for Drug Development, Emory University, Atlanta, GA, 30322, USA
| | | | - Rebecca E Krueger
- Emory Institute for Drug Development, Emory University, Atlanta, GA, 30322, USA
| | - Elizabeth B Sobolik
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Michael G Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, GA, 30322, USA
| | - Andrew T Gewirtz
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Rik L deSwart
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Khan Hekmatyar
- Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, 30303, USA
| | - Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Alexander L Greninger
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Richard K Plemper
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, 30303, USA.
| |
Collapse
|
9
|
Zhang L, Muirhead KJ, Syed ZA, Dimitriadis EK, Ten Hagen KG. A novel cysteine-rich adaptor protein is required for mucin packaging and secretory granule stability in vivo. Proc Natl Acad Sci U S A 2024; 121:e2314309121. [PMID: 38285943 PMCID: PMC10861859 DOI: 10.1073/pnas.2314309121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
Mucins are large, highly glycosylated extracellular matrix proteins that line and protect epithelia of the respiratory, digestive, and urogenital tracts. Previous work has shown that mucins form large, interconnected polymeric networks that mediate their biological functions once secreted. However, how these large matrix molecules are compacted and packaged into much smaller secretory granules within cells prior to secretion is largely unknown. Here, we demonstrate that a small cysteine-rich adaptor protein is essential for proper packaging of a secretory mucin in vivo. This adaptor acts via cysteine bonding between itself and the cysteine-rich domain of the mucin. Loss of this adaptor protein disrupts mucin packaging in secretory granules, alters the mobile fraction within granules, and results in granules that are larger, more circular, and more fragile. Understanding the factors and mechanisms by which mucins and other highly glycosylated matrix proteins are properly packaged and secreted may provide insight into diseases characterized by aberrant mucin secretion.
Collapse
Affiliation(s)
- Liping Zhang
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892-4370
| | - Kayla J. Muirhead
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892-4370
- Ambry Genetics, Aliso Viejo, CA92656
| | - Zulfeqhar A. Syed
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892-4370
- Electron Microscopy Core Facility, National Heart, Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Emilios K. Dimitriadis
- Trans-NIH Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
| | - Kelly G. Ten Hagen
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892-4370
| |
Collapse
|
10
|
Zlatar L, Timm T, Lochnit G, Bilyy R, Bäuerle T, Munoz-Becerra M, Schett G, Knopf J, Heichel J, Ali MJ, Schapher M, Paulsen F, Herrmann M. Neutrophil Extracellular Traps Drive Dacryolithiasis. Cells 2023; 12:1857. [PMID: 37508521 PMCID: PMC10377949 DOI: 10.3390/cells12141857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Mucopeptide concretions, previously called dacryoliths, are macroscopic stones that commonly obstruct the lacrimal sac. The mechanism behind dacryolithiasis remains unclear; however, the involvement of various immune cells, including neutrophils, has been confirmed. These findings remain limited, and no information on neutrophil extracellular traps (NETs), essentially involved in the pathogenesis of other lithiases, is available yet. Here, we employ microcomputed tomography, magnetic resonance tomography, histochemistry, mass spectrometry, and enzyme activity analyses to investigate the role of neutrophils and NETs in dacryolithiasis. We classify mucopeptide concretions into three types, with respect to the quantity of cellular and acellular material, polysaccharides, and mucosubstances. We propose the role of neutrophils and NETs within the existing model of gradual formation and growth of mucopeptide concretions, with neutrophils contributing to the initial stages of dacryolithiasis, as they localized on the inner (older) parts of the tissue. As NETs localized on the outer (newer) parts of the tissue, we link their role to the late stages of dacryolithiasis, presumably maintaining the proinflammatory environment and preventing efficient clearance. An abundance of IgG on the surface indicates the involvement of the adaptive immune system later as well. These findings bring new perspectives on dacryolithiasis, in which the innate and adaptive immune system are essentially involved.
Collapse
Affiliation(s)
- Leticija Zlatar
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Thomas Timm
- Institute of Biochemistry, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Günter Lochnit
- Institute of Biochemistry, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Rostyslav Bilyy
- Department of Histology, Cytology, Embryology, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Tobias Bäuerle
- Institute of Radiology, Preclinical Imaging Platform Erlangen (PIPE), Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Marco Munoz-Becerra
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Jens Heichel
- Department and Policlinic of Ophthalmology, Martin Luther University of Halle-Wittenberg, 06108 Halle, Germany
| | - Mohammad Javed Ali
- Govindram Seksaria Institute of Dacryology, L.V. Prasad Eye Institute, Road No 2, Banjara Hills, Hyderabad 500034, India
- Institute of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Mirco Schapher
- Department of Otorhinolaryngology, Head and Neck Surgery, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus University, 90419 Nürnberg, Germany
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
11
|
Jia X, He Y, Li L, Xu D. Pharmacological targeting of gastric mucosal barrier with traditional Chinese medications for repairing gastric mucosal injury. Front Pharmacol 2023; 14:1091530. [PMID: 37361204 PMCID: PMC10285076 DOI: 10.3389/fphar.2023.1091530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: The gastric mucosa (GM) is the first barrier and vital interface in the stomach that protects the host from hydrochloric acid in gastric juice and defends against exogenous insults to gastric tissues. The use of traditional Chinese medications (TCMs) for the treatment of gastric mucosal injury (GMI) has long-standing history and a good curative effect. Whereas there are poor overall reports on the intrinsic mechanisms of these TCM preparations that pharmacology uses to protect body from GMI, which is crucial to treating this disease. These existing reviews have deficiencies that limit the clinical application and development of both customary prescriptions and new drugs. Methods: Further basic and translational studies must be done to elucidate the intrinsic mechanisms of influence of these TCM preparations. Moreover, well-designed and well-conducted experiences and clinical trials are necessary to ascertain the efficacy and mechanisms of these agents. Therefore, this paper presents a focused overview of currently published literature to assess how TCMs action that facilitates the cures for GMI. It offers a whole train of current state of pharmacological evidence, identifies the pharmacological mechanisms of TCMs on GM, and highlights that remarkable capacity of TCMs to restore GM after damage. Results: These TCMs preparations promote the repair of multicomponent targets such as the gastric mucus, epithelial layer, blood flow (GMBF) and lamina propria barrier. Summary: Overall, this study has summarized the essential regulatory mechanisms and pharmacological efficacy of TCMs on new and productive therapeutic targets. Discussion: This review provides an avenue for studying various drugs with potentially promising effects on mucosal integrity, as well as subsequent pharmacological studies, clinical applications, and new drug development.
Collapse
Affiliation(s)
- Xueyan Jia
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, China
| | - Yihuai He
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lin Li
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Delin Xu
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, China
| |
Collapse
|
12
|
Abstract
Type 2 immunity mediates protective responses to helminths and pathological responses to allergens, but it also has broad roles in the maintenance of tissue integrity, including wound repair. Type 2 cytokines are known to promote fibrosis, an overzealous repair response, but their contribution to healthy wound repair is less well understood. This review discusses the evidence that the canonical type 2 cytokines, IL-4 and IL-13, are integral to the tissue repair process through two main pathways. First, essential for the progression of effective tissue repair, IL-4 and IL-13 suppress the initial inflammatory response to injury. Second, these cytokines regulate how the extracellular matrix is modified, broken down, and rebuilt for effective repair. IL-4 and/or IL-13 amplifies multiple aspects of the tissue repair response, but many of these pathways are highly redundant and can be induced by other signals. Therefore, the exact contribution of IL-4Rα signaling remains difficult to unravel.
Collapse
Affiliation(s)
- Judith E Allen
- Lydia Becker Institute for Immunology and Inflammation and Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom;
| |
Collapse
|
13
|
Bian X, Si Z, Wang Q, Liu L, Shi Z, Tian C, Lee W, Zhang Y. IgG Fc-binding protein positively regulates the assembly of pore-forming protein complex βγ-CAT evolved to drive cell vesicular delivery and transport. J Biol Chem 2023; 299:104717. [PMID: 37068610 DOI: 10.1016/j.jbc.2023.104717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
Cell membranes form barriers for molecule exchange between the cytosol and the extracellular environments. βγ-CAT, a complex of pore-forming protein (PFP) BmALP1 (two βγ-crystallin domains with an aerolysin pore-forming domain) and the trefoil factor BmTFF3, has been identified in toad Bombina maxima. It plays pivotal roles, via inducing channel formation in various intra- or extra- cellular vesicles, as well as in nutrient acquisition, maintaining water balance, and antigen presentation. Thus, such a protein machine should be tightly regulated. Indeed, BmALP3 (a paralog of BmALP1) oxidizes BmALP1 to form a water-soluble polymer, leading to dissociation of the βγ-CAT complex and loss of biological activity. Here, we found that the B. maxima IgG Fc-binding protein (FCGBP), a well-conserved vertebrate mucin-like protein with unknown functions, acted as a positive regulator for βγ-CAT complex assembly. The interactions among FCGBP, BmALP1, and BmTFF3 were revealed by co-immunoprecipitation assays. Interestingly, FCGBP reversed the inhibitory effect of BmALP3 on the βγ-CAT complex. Furthermore, FCGBP reduced BmALP1 polymers and facilitated the assembly of βγ-CAT with the biological pore-forming activity in the presence of BmTFF3. Our findings define the role of FCGBP in mediating the assembly of a PFP machine evolved to drive cell vesicular delivery and transport.
Collapse
Affiliation(s)
- Xianling Bian
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ziru Si
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Qiquan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Human Aging Research Institute (HARI) and School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Lingzhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhihong Shi
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Changlin Tian
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Wenhui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
14
|
Fass D, Thornton DJ. Mucin networks: Dynamic structural assemblies controlling mucus function. Curr Opin Struct Biol 2023; 79:102524. [PMID: 36753925 DOI: 10.1016/j.sbi.2022.102524] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 02/08/2023]
Abstract
Contrary to first appearances, mucus structural biology is not an oxymoron. Though mucus hydrogels derive their characteristics largely from intrinsically disordered, heavily glycosylated polypeptide segments, the secreted mucin glycoproteins that constitute mucus undergo an orderly assembly process controlled by folded domains at their termini. Recent structural studies revealed how mucin complexes promote disulphide-mediated polymerization to produce the mucus gel scaffold. Additional protein-protein and protein-glycan interactions likely tune the mesoscale properties, stability, and activities of mucins. Evidence is emerging that even intrinsically disordered glycosylated segments have specific structural roles in the production and properties of mucus. Though soft-matter biophysical approaches to understanding mucus remain highly relevant, high-resolution structural studies of mucins and other mucus components are providing new perspectives on these vital, protective hydrogels.
Collapse
Affiliation(s)
- Deborah Fass
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David J Thornton
- Wellcome Centre for Cell-Matrix Research and the Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
15
|
Weste J, Houben T, Harder S, Schlüter H, Lücke E, Schreiber J, Hoffmann W. Different Molecular Forms of TFF3 in the Human Respiratory Tract: Heterodimerization with IgG Fc Binding Protein (FCGBP) and Proteolytic Cleavage in Bronchial Secretions. Int J Mol Sci 2022; 23:ijms232315359. [PMID: 36499686 PMCID: PMC9737082 DOI: 10.3390/ijms232315359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
The polypeptide TFF3 belongs to the trefoil factor family (TFF) of lectins. TFF3 is typically secreted from mucous epithelia together with mucins. Both intestinal and salivary TFF3 mainly exist as disulfide-linked heterodimers with IgG Fc binding protein (FCGBP). Here, we investigated bronchial tissue specimens, bronchial secretions, and bronchoalveolar lavage (BAL) fluid from patients with a chronic obstructive pulmonary disease (COPD) background by fast protein liquid chromatography and proteomics. For the first time, we identified different molecular forms of TFF3 in the lung. The high-molecular mass form represents TFF3-FCGBP oligomers, whereas the low-molecular mass forms are homodimeric and monomeric TFF3 with possibly anti-apoptotic activities. In addition, disulfide-linked TFF3 heterodimers with an Mr of about 60k and 30k were detected in both bronchial secretions and BAL fluid. In these liquids, TFF3 is partly N-terminally truncated probably by neutrophil elastase cleavage. TFF3-FCGBP is likely involved in the mucosal innate immune defense against microbial infections. We discuss a hypothetical model how TFF3 might control FCGBP oligomerization. Furthermore, we did not find indications for interactions of TFF3-FCGBP with DMBT1gp340 or the mucin MUC5AC, glycoproteins involved in mucosal innate immunity. Surprisingly, bronchial MUC5AC appeared to be degraded when compared with gastric MUC5AC.
Collapse
Affiliation(s)
- Jens Weste
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Till Houben
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Sönke Harder
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Eva Lücke
- Department of Pneumology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Jens Schreiber
- Department of Pneumology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
16
|
Valdes J, Gagné-Sansfaçon J, Reyes V, Armas A, Marrero G, Moyo-Muamba M, Ramanathan S, Perreault N, Ilangumaran S, Rivard N, Fortier LC, Menendez A. Defects in the expression of colonic host defense factors associate with barrier dysfunction induced by a high-fat/high-cholesterol diet. Anat Rec (Hoboken) 2022; 306:1165-1183. [PMID: 36196983 DOI: 10.1002/ar.25083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/25/2022] [Accepted: 09/11/2022] [Indexed: 11/07/2022]
Abstract
The effect of Western diets in the gastrointestinal system is largely mediated by their ability to promote alterations in the immunity and physiology of the intestinal epithelium, and to affect the composition of the commensal microbiota. To investigate the response of the colonic epithelium to high-fat/high-cholesterol diets (HFHCDs), we evaluated the synthesis of host defense factors involved in the maintenance of the colonic homeostasis. C57BL/6 mice were fed an HFHCD for 3 weeks and their colons were evaluated for histopathology, gene expression, and microbiota composition. In addition, intestinal permeability and susceptibility to Citrobacter rodentium were also studied. HFHCD caused colonic hyperplasia, loss of goblet cells, thinning of the mucus layer, moderate changes in the composition of the intestinal microbiota, and an increase in intestinal permeability. Gene expression analyses revealed significant drops in the transcript levels of Muc1, Muc2, Agr2, Atoh1, Spdef, Ang4, Camp, Tff3, Dmbt1, Fcgbp, Saa3, and Retnlb. The goblet cell granules of HFHCD-fed mice were devoid of Relmβ and Tff3, indicating defective production of those two factors critical for intestinal epithelial defense and homeostasis. In correspondence with these defects, colonic bacteria were in close contact with, and invading the epithelium. Fecal shedding of C. rodentium showed an increased bacterial burden in HFHCD-fed animals accompanied by increased epithelial damage. Collectively, our results show that HFHCD perturbs the synthesis of colonic host defense factors, which associate with alterations in the commensal microbiota, the integrity of the intestinal barrier, and the host's susceptibility to enteric infections.
Collapse
Affiliation(s)
- Jennifer Valdes
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jessica Gagné-Sansfaçon
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Vilcy Reyes
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Anny Armas
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gisela Marrero
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mitterrand Moyo-Muamba
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nathalie Perreault
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nathalie Rivard
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Alfredo Menendez
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
17
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
18
|
Oncel S, Basson MD. Gut homeostasis, injury, and healing: New therapeutic targets. World J Gastroenterol 2022; 28:1725-1750. [PMID: 35633906 PMCID: PMC9099196 DOI: 10.3748/wjg.v28.i17.1725] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/12/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
The integrity of the gastrointestinal mucosa plays a crucial role in gut homeostasis, which depends upon the balance between mucosal injury by destructive factors and healing via protective factors. The persistence of noxious agents such as acid, pepsin, nonsteroidal anti-inflammatory drugs, or Helicobacter pylori breaks down the mucosal barrier and injury occurs. Depending upon the size and site of the wound, it is healed by complex and overlapping processes involving membrane resealing, cell spreading, purse-string contraction, restitution, differentiation, angiogenesis, and vasculogenesis, each modulated by extracellular regulators. Unfortunately, the gut does not always heal, leading to such pathology as peptic ulcers or inflammatory bowel disease. Currently available therapeutics such as proton pump inhibitors, histamine-2 receptor antagonists, sucralfate, 5-aminosalicylate, antibiotics, corticosteroids, and immunosuppressants all attempt to minimize or reduce injury to the gastrointestinal tract. More recent studies have focused on improving mucosal defense or directly promoting mucosal repair. Many investigations have sought to enhance mucosal defense by stimulating mucus secretion, mucosal blood flow, or tight junction function. Conversely, new attempts to directly promote mucosal repair target proteins that modulate cytoskeleton dynamics such as tubulin, talin, Ehm2, filamin-a, gelsolin, and flightless I or that proteins regulate focal adhesions dynamics such as focal adhesion kinase. This article summarizes the pathobiology of gastrointestinal mucosal healing and reviews potential new therapeutic targets.
Collapse
Affiliation(s)
- Sema Oncel
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| | - Marc D Basson
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
- Department of Surgery, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| |
Collapse
|
19
|
Wardman JF, Bains RK, Rahfeld P, Withers SG. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nat Rev Microbiol 2022; 20:542-556. [PMID: 35347288 DOI: 10.1038/s41579-022-00712-1] [Citation(s) in RCA: 235] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/13/2022]
Abstract
The 1013-1014 microorganisms present in the human gut (collectively known as the human gut microbiota) dedicate substantial percentages of their genomes to the degradation and uptake of carbohydrates, indicating the importance of this class of molecules. Carbohydrates function not only as a carbon source for these bacteria but also as a means of attachment to the host, and a barrier to infection of the host. In this Review, we focus on the diversity of carbohydrate-active enzymes (CAZymes), how gut microorganisms use them for carbohydrate degradation, the different chemical mechanisms of these CAZymes and the roles that these microorganisms and their CAZymes have in human health and disease. We also highlight examples of how enzymes from this treasure trove have been used in manipulation of the microbiota for improved health and treatment of disease, in remodelling the glycans on biopharmaceuticals and in the potential production of universal O-type donor blood.
Collapse
Affiliation(s)
- Jacob F Wardman
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rajneesh K Bains
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Rahfeld
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen G Withers
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada. .,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada. .,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
20
|
Rossi HL, Ortiz-Carpena JF, Tucker D, Vaughan AE, Mangalmurti NS, Cohen NA, Herbert DR. Trefoil Factor Family: A Troika for Lung Repair and Regeneration. Am J Respir Cell Mol Biol 2022; 66:252-259. [PMID: 34784491 PMCID: PMC8937240 DOI: 10.1165/rcmb.2021-0373tr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022] Open
Abstract
Tissue damage in the upper and lower airways caused by mechanical abrasion, noxious chemicals, or pathogenic organisms must be followed by rapid restorative processes; otherwise, persistent immunopathology and disease may ensue. This review will discuss evidence for the important role served by trefoil factor (TFF) family members in healthy and diseased airways of humans and rodents. Collectively, these peptides serve to both maintain and restore homeostasis through their regulation of the mucous layer and their control of cell motility, cell differentiation, and immune function in the upper and lower airways. We will also discuss important differences in which trefoil member tracks with homeostasis and disease between humans and mice, which poses a challenge for research in this area. Moreover, we discuss new evidence supporting newly identified receptor binding partners in the leucine-rich repeat and immunoglobulin-like domain-containing NoGo (LINGO) family in mediating the biological effects of TFF proteins in mouse models of epithelial repair and infection. Recent advances in our knowledge regarding TFF peptides suggest that they may be reasonable therapeutic targets in the treatment of upper and lower airway diseases of diverse etiologies. Further work understanding their role in airway homeostasis, repair, and inflammation will benefit from these newly uncovered receptor-ligand interactions.
Collapse
Affiliation(s)
| | | | | | - Andrew E. Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania; and
| | | | - Noam A. Cohen
- Department of Otorhinolaryngology: Head and Neck Surgery, Hospital of the University of Philadelphia, Philadelphia, Pennsylvania
| | | |
Collapse
|
21
|
Wassarman PM, Litscher ES. Female fertility and the zona pellucida. eLife 2022; 11:76106. [PMID: 35076396 PMCID: PMC8789258 DOI: 10.7554/elife.76106] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/07/2022] [Indexed: 12/29/2022] Open
Abstract
Fertility in female mammals, including mice and humans, is dependent on the presence of a zona pellucida (ZP) around growing oocytes and unfertilized eggs. A ZP is required to stabilize contacts between oocyte microvilli and follicle cell projections that traverse the ZP to form gap junctions that support the health of growing oocytes and developing follicles. In the absence of a ZP, due to inactivation or mutation of genes encoding ZP proteins, there is a loss of contacts between growing oocytes and neighboring follicle cells and a concomitant reduction in the production of ovulated eggs that results in female infertility.
Collapse
Affiliation(s)
- Paul M Wassarman
- Department Cell, Developmental, and Regenerative Biology Icahn School of Medicine at Mount Sinai One Gustave L. Levy Place
| | - Eveline S Litscher
- Department Cell, Developmental, and Regenerative Biology Icahn School of Medicine at Mount Sinai One Gustave L. Levy Place
| |
Collapse
|
22
|
Sugiyama M, Machida N, Yasunaga A, Terai N, Fukasawa H, Ono HK, Kobayashi R, Nishiyama K, Hashimoto O, Kurusu S, Yoshioka K. Vaginal mucus in mice: developmental and gene expression features of epithelial mucous cells during pregnancy†. Biol Reprod 2021; 105:1272-1282. [PMID: 34416757 DOI: 10.1093/biolre/ioab157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/12/2021] [Accepted: 08/16/2021] [Indexed: 01/18/2023] Open
Abstract
The vagina is the site of copulation and serves as the birth canal. It also provides protection against external pathogens. In mice, due to the absence of cervical glands, the vaginal epithelium is the main producer of vaginal mucus. The development and differentiation of vaginal epithelium-constituting cells and the molecular characteristics of vaginal mucus have not been thoroughly examined. Here, we characterized vaginal mucous cell development and the expression of mucus-related factors in pregnant mice. The vaginal mucous epithelium layer thickened and became multilayered after Day 12 of pregnancy and secreted increasing amounts of mucus until early postpartum. Using histochemistry and transmission electron microscopy, we found supra-basal mucous cells as probable candidates for precursor cells. In vaginal mucous cells, the expression of TFF1, a stabilizer of mucus, was high, and some members of mucins and antimicrobial peptides (MUC5B and DEFB1) were expressed in a stage-dependent manner. In summary, this study presents the partial characterization of vaginal epithelial mucous cell lineage and expression of genes encoding several peptide substances that may affect vaginal tissue homeostasis and mucosal immunity during pregnancy and parturition.
Collapse
Affiliation(s)
- Makoto Sugiyama
- Faculty of Veterinary Medicine, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Nao Machida
- Faculty of Veterinary Medicine, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Arata Yasunaga
- Faculty of Veterinary Medicine, Kitasato University School of Veterinary Medicine, Towada, Japan.,Department of Animal Science, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Nanako Terai
- Faculty of Veterinary Medicine, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Hanae Fukasawa
- Faculty of Veterinary Medicine, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Hisaya K Ono
- Faculty of Veterinary Medicine, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Ryosuke Kobayashi
- Laboratory of Genome Science, Biological Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Keita Nishiyama
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Osamu Hashimoto
- Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Shiro Kurusu
- Faculty of Veterinary Medicine, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Kazuki Yoshioka
- Faculty of Veterinary Medicine, Kitasato University School of Veterinary Medicine, Towada, Japan
| |
Collapse
|
23
|
Abstract
Mucin-domain glycoproteins comprise a class of proteins whose densely O-glycosylated mucin domains adopt a secondary structure with unique biophysical and biochemical properties. The canonical family of mucins is well-known to be involved in various diseases, especially cancer. Despite this, very little is known about the site-specific molecular structures and biological activities of mucins, in part because they are extremely challenging to study by mass spectrometry (MS). Here, we summarize recent advancements toward this goal, with a particular focus on mucin-domain glycoproteins as opposed to general O-glycoproteins. We summarize proteolytic digestion techniques, enrichment strategies, MS fragmentation, and intact analysis, as well as new bioinformatic platforms. In particular, we highlight mucin directed technologies such as mucin-selective proteases, tunable mucin platforms, and a mucinomics strategy to enrich mucin-domain glycoproteins from complex samples. Finally, we provide examples of targeted mucin-domain glycoproteomics that combine these techniques in comprehensive site-specific analyses of proteins. Overall, this Review summarizes the methods, challenges, and new opportunities associated with studying enigmatic mucin domains.
Collapse
Affiliation(s)
- Valentina Rangel-Angarita
- Department of Chemistry, Yale University, 275 Prospect Street, New Haven, Connecticut 06511, United States
| | - Stacy A. Malaker
- Department of Chemistry, Yale University, 275 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
24
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
25
|
Characterisation of Gel-Forming Mucins Produced In Vivo and In Ex Vivo Conjunctival Explant Cultures. Int J Mol Sci 2021; 22:ijms221910528. [PMID: 34638869 PMCID: PMC8508887 DOI: 10.3390/ijms221910528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
One key element to the health of the ocular surface encompasses the presence of gel-forming mucins in the pre-ocular tear film. Conjunctival goblet cells are specialized epithelial cells that secrete mucins necessary for tear film stability and general homeostasis. Their dysfunction can be linked to a range of ocular surface inflammation disorders and chronic injuries. To obtain new perspectives and angles to tackle mucin deficiency, the need for an accurate evaluation of their presence and corresponding mucin secretion in ex vivo conjunctival cultures has become a requisite. In vitro, goblet cells show a significant decrease in the production and secretion of gel-forming mucins, accompanied by signs of dedifferentiation or transdifferentiation. Explant cultures on laminin-treated CLP-PEG hydrogels can, however, support the production of gel-forming mucins. Together, we challenge the current paradigm to evaluate the presence of cultured goblet cells solely based on their general mucin (MUC) content through imaging analyses, showing the need for additional techniques to assess the functionality of goblet cells. In addition, we broadened the gel-forming mucin profile of in vivo goblet cells with MUC5B and MUC6, while MUC2 and MUC6 is added to the profile of cultured goblet cells.
Collapse
|
26
|
Hoffmann W. Trefoil Factor Family (TFF) Peptides and Their Links to Inflammation: A Re-evaluation and New Medical Perspectives. Int J Mol Sci 2021; 22:ijms22094909. [PMID: 34066339 PMCID: PMC8125380 DOI: 10.3390/ijms22094909] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Trefoil factor family peptides (TFF1, TFF2, TFF3), together with mucins, are typical exocrine products of mucous epithelia. Here, they act as a gastric tumor suppressor (TFF1) or they play different roles in mucosal innate immune defense (TFF2, TFF3). Minute amounts are also secreted as endocrine, e.g., by the immune and central nervous systems. As a hallmark, TFF peptides have different lectin activities, best characterized for TFF2, but also TFF1. Pathologically, ectopic expression occurs during inflammation and in various tumors. In this review, the role of TFF peptides during inflammation is discussed on two levels. On the one hand, the expression of TFF1-3 is regulated by inflammatory signals in different ways (upstream links). On the other hand, TFF peptides influence inflammatory processes (downstream links). The latter are recognized best in various Tff-deficient mice, which have completely different phenotypes. In particular, TFF2 is secreted by myeloid cells (e.g., macrophages) and lymphocytes (e.g., memory T cells), where it modulates immune reactions triggering inflammation. As a new concept, in addition to lectin-triggered activation, a hypothetical lectin-triggered inhibition of glycosylated transmembrane receptors by TFF peptides is discussed. Thus, TFFs are promising players in the field of glycoimmunology, such as galectins and C-type lectins.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
27
|
Iftekhar A, Sigal M. Defence and adaptation mechanisms of the intestinal epithelium upon infection. Int J Med Microbiol 2021; 311:151486. [PMID: 33684844 DOI: 10.1016/j.ijmm.2021.151486] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/15/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium is a monolayer of polarized columnar cells that act as a border between the host and its environment and are the first line of defence against the luminal microbes. In addition to providing a physical barrier, the epithelium possesses a multitude of active mechanisms to fight invading pathogens and regulate the composition and spatial distribution of commensals. The different epithelial cell types have unique functions in this context, and crosstalk with the immune system further modulates their intricate antimicrobial responses. The epithelium is organized into clonal crypt units with a high cellular turnover that is driven by stem cells located at the base. There is increasing evidence that this anatomical organization, the stem cell turnover, and the lineage determination processes are essential for barrier maintenance. These processes can be modulated by microbes directly or by the immune responses to enteric pathogens, resulting in a rapid and efficient adaptation of the epithelium to environmental perturbations, injuries, and infections. Here we discuss the complex host-microbial interactions that shape the mucosa and how the epithelium maintains and re-establishes homeostasis after infection.
Collapse
Affiliation(s)
- Amina Iftekhar
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Michael Sigal
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany; Department of Internal Medicine, Gastroenterology and Hepatology, Charité University Medicine, Berlin, Germany; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
28
|
Kifer D, Bugada D, Villar-Garcia J, Gudelj I, Menni C, Sudre C, Vučković F, Ugrina I, Lorini LF, Posso M, Bettinelli S, Ughi N, Maloberti A, Epis O, Giannattasio C, Rossetti C, Kalogjera L, Peršec J, Ollivere L, Ollivere BJ, Yan H, Cai T, Aithal GP, Steves CJ, Kantele A, Kajova M, Vapalahti O, Sajantila A, Wojtowicz R, Wierzba W, Krol Z, Zaczynski A, Zycinska K, Postula M, Lukšić I, Čivljak R, Markotić A, Brachmann J, Markl A, Mahnkopf C, Murray B, Ourselin S, Valdes AM, Horcajada JP, Castells X, Pascual J, Allegri M, Primorac D, Spector TD, Barrios C, Lauc G. Effects of Environmental Factors on Severity and Mortality of COVID-19. Front Med (Lausanne) 2021; 7:607786. [PMID: 33553204 PMCID: PMC7855590 DOI: 10.3389/fmed.2020.607786] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Most respiratory viruses show pronounced seasonality, but for SARS-CoV-2, this still needs to be documented. Methods: We examined the disease progression of COVID-19 in 6,914 patients admitted to hospitals in Europe and China. In addition, we evaluated progress of disease symptoms in 37,187 individuals reporting symptoms into the COVID Symptom Study application. Findings: Meta-analysis of the mortality risk in seven European hospitals estimated odds ratios per 1-day increase in the admission date to be 0.981 (0.973-0.988, p < 0.001) and per increase in ambient temperature of 1°C to be 0.854 (0.773-0.944, p = 0.007). Statistically significant decreases of comparable magnitude in median hospital stay, probability of transfer to the intensive care unit, and need for mechanical ventilation were also observed in most, but not all hospitals. The analysis of individually reported symptoms of 37,187 individuals in the UK also showed the decrease in symptom duration and disease severity with time. Interpretation: Severity of COVID-19 in Europe decreased significantly between March and May and the seasonality of COVID-19 is the most likely explanation.
Collapse
Affiliation(s)
- Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Dario Bugada
- Emergency and Intensive Care Department, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Judit Villar-Garcia
- Hospital del Mar-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Ivan Gudelj
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Carole Sudre
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | | | - Ivo Ugrina
- Faculty of Science, University of Split, Split, Croatia
| | - Luca F. Lorini
- Emergency and Intensive Care Department, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Margarita Posso
- Hospital del Mar-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Silvia Bettinelli
- Emergency and Intensive Care Department, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Nicola Ughi
- Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alessandro Maloberti
- Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
- School of Medicine and Surgery, Milano-Bicocca University, Milan, Italy
| | - Oscar Epis
- Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Cristina Giannattasio
- Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
- School of Medicine and Surgery, Milano-Bicocca University, Milan, Italy
| | - Claudio Rossetti
- Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Livije Kalogjera
- Department of Otolaryngology-Head and Neck Surgery, Zagreb School of Medicine, University Hospital Centre “Sestre milosrdnice”, Zagreb, Croatia
| | - Jasminka Peršec
- Clinical Department of Anesthesiology, Reanimatology and Intensive Care Medicine, University Hospital Dubrava Zagreb, Zagreb, Croatia
- University of Zagreb School of Dental Medicine, Zagreb, Croatia
| | - Luke Ollivere
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust and the University of Nottingham, Nottingham, United Kingdom
| | - Benjamin J. Ollivere
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust and the University of Nottingham, Nottingham, United Kingdom
| | - Huadong Yan
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Department of Infectious Diseases, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Ting Cai
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Department of Infectious Diseases, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Guruprasad P. Aithal
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust and the University of Nottingham, Nottingham, United Kingdom
| | - Claire J. Steves
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Anu Kantele
- Inflammation Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Mikael Kajova
- Inflammation Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, Helsingin ja Uudenmaan Sairaanhoitopiiri Diagnostic Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Antti Sajantila
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Rafal Wojtowicz
- Central Clinical Hospital of Ministry of the Interior and Administration, Warsaw, Poland
| | - Waldemar Wierzba
- Central Clinical Hospital of Ministry of the Interior and Administration, Warsaw, Poland
| | - Zbigniew Krol
- Central Clinical Hospital of Ministry of the Interior and Administration, Warsaw, Poland
| | - Artur Zaczynski
- Central Clinical Hospital of Ministry of the Interior and Administration, Warsaw, Poland
| | - Katarina Zycinska
- Central Clinical Hospital of Ministry of the Interior and Administration, Warsaw, Poland
- Medical University of Warsaw, Warsaw, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Warsaw, Poland
| | - Ivica Lukšić
- University of Zagreb School of Medicine, University Hospital Dubrava, Zagreb, Croatia
| | - Rok Čivljak
- University Hospital for Infectious Diseases “Fran Mihaljević”, University of Zagreb School of Medicine, Zagreb, Croatia
- University Hospital for Infectious Diseases “Fran Mihaljević”, Catholic University of Croatia, Zagreb, Croatia
- Medical School, University of Rijeka, Rijeka, Croatia
| | - Alemka Markotić
- University Hospital for Infectious Diseases “Fran Mihaljević”, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Johannes Brachmann
- REGIOMED Kliniken, Coburg, Germany
- University of Split School of Medicine, Split, Croatia
| | | | | | - Benjamin Murray
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Ana M. Valdes
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust and the University of Nottingham, Nottingham, United Kingdom
| | - Juan P. Horcajada
- Hospital del Mar-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Xavier Castells
- Hospital del Mar-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Julio Pascual
- Hospital del Mar-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Massimo Allegri
- Pain Therapy Service Policlinico of Monza Hospital, Monza, Italy
| | - Dragan Primorac
- REGIOMED Kliniken, Coburg, Germany
- University of Split School of Medicine, Split, Croatia
- St. Catharine Hospital, Zagreb, Croatia
- Eberly College of Science, Penn State University, University Park, PA, United States
- University of Osijek School of Medicine, Osijek, Croatia
- Faculty of Dental Medicine and Health, University of Rijeka School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Clara Barrios
- Hospital del Mar-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| |
Collapse
|
29
|
Huang Y, Wang MM, Yang ZZ, Ren Y, Zhang W, Sun ZR, Nie SN. Pretreatment with intestinal trefoil factor alleviates stress-induced gastric mucosal damage via Akt signaling. World J Gastroenterol 2020; 26:7619-7632. [PMID: 33505140 PMCID: PMC7789054 DOI: 10.3748/wjg.v26.i48.7619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/19/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Stress-related gastric mucosal damage or ulcer remains an unsolved issue for critically ill patients. Stress ulcer prophylaxis has been part of routine intensive care, but uncertainty and controversy still exist. Co-secreted with mucins, intestinal trefoil factor (ITF) is reported to promote restitution and regeneration of intestinal mucosal epithelium, although the mechanism remains unknown.
AIM To elucidate the protective effects of ITF on gastric mucosa and explore the possible mechanisms.
METHODS We used a rat model of gastric mucosal damage induced by water immersion restraint stress and lipopolysaccharide-treated human gastric epithelial cell line to investigate the potential effects of ITF on damaged gastric mucosa both in vivo and in vitro.
RESULTS ITF promoted the proliferation and migration and inhibited necrosis of gastric mucosal epithelia in vitro. It also preserved the integrity of gastric mucosa by upregulating expressions of occludin and zonula occludens-1. In the rat model, pretreatment with ITF ameliorated the gastric mucosal epithelial damage and facilitated mucosal repair. The protective effects of ITF were confirmed to be exerted via activation of Akt signaling, and the specific inhibitor of Akt signaling LY249002 reversed the protective effects.
CONCLUSION ITF might be a promising candidate for prevention and treatment of stress-induced gastric mucosal damage, and further studies should be undertaken to verify its clinical feasibility.
Collapse
Affiliation(s)
- Yun Huang
- Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong 226001, Jiangsu Province, China
| | - Meng-Meng Wang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Zhi-Zhou Yang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Yi Ren
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Zhao-Rui Sun
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Shi-Nan Nie
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
- Department of Emergency Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
30
|
Genomic and transcriptomic landscapes and evolutionary dynamics of molluscan glycoside hydrolase families with implications for algae-feeding biology. Comput Struct Biotechnol J 2020; 18:2744-2756. [PMID: 33101612 PMCID: PMC7560691 DOI: 10.1016/j.csbj.2020.09.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 01/03/2023] Open
Abstract
Genome-wide characterization of GH families is conducted for Mollusca. GH9, GH10, GH18 and GH20 families are remarkably expanded in molluscs. The wide adoption of CBMs likely facilitates the hydrolysis of polysaccharides. Hepatopancreas is the main organ for the prominent expression of GH families. Functional divergence of GH families possibly contributes to their adaptive roles.
The hydrolysis of sugar-containing compounds by glycoside hydrolases (GHs) plays essential roles in many major biological processes, but to date our systematic understanding of the functional diversity and evolution of GH families remains largely limited to a few well-studied terrestrial animals. Molluscs represent the largest marine phylum in the animal kingdom, and many of them are herbivorous that utilize algae as a main nutritional source, making them good subjects for studying the functional diversity and adaptive evolution of GH families. In the present study, we conducted genome-wide identification and functional and evolutionary analysis of all GH families across major molluscan lineages. We revealed that the remarkable expansion of the GH9, GH10, GH18 and GH20 families and the wide adoption of carbohydrate-binding modules in molluscan expanded GH families likely contributed to the efficient hydrolysis of marine algal polysaccharides and were involved in the consolidation of molluscan algae-feeding habits. Gene expression and network analysis revealed the hepatopancreas as the main organ for the prominent expression of approximately half of the GH families (well corresponding to the digestive roles of the hepatopancreas) and key or hub GHs in the coexpression gene network with potentially diverse functionalities. We also revealed the evolutionary signs of differential expansion and functional divergence of the GH family, which possibly contributed to lineage-specific adaptation. Systematic analysis of GH families at both genomic and transcriptomic levels provides important clues for understanding the functional divergence and evolution of GH gene families in molluscs in relation to their algae-feeding biology.
Collapse
|