1
|
Duddu AS, Andreas E, Bv H, Grover K, Singh VR, Hari K, Jhunjhunwala S, Cummins B, Gedeon T, Jolly MK. Multistability and predominant hybrid phenotypes in a four node mutually repressive network of Th1/Th2/Th17/Treg differentiation. NPJ Syst Biol Appl 2024; 10:123. [PMID: 39448615 PMCID: PMC11502801 DOI: 10.1038/s41540-024-00433-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/01/2024] [Indexed: 10/26/2024] Open
Abstract
Elucidating the emergent dynamics of cellular differentiation networks is crucial to understanding cell-fate decisions. Toggle switch - a network of mutually repressive lineage-specific transcription factors A and B - enables two phenotypes from a common progenitor: (high A, low B) and (low A, high B). However, the dynamics of networks enabling differentiation of more than two phenotypes from a progenitor cell has not been well-studied. Here, we investigate the dynamics of a four-node network A, B, C, and D inhibiting each other, forming a toggle tetrahedron. Our simulations show that this network is multistable and predominantly allows for the co-existence of six hybrid phenotypes where two of the nodes are expressed relatively high as compared to the remaining two, for instance (high A, high B, low C, low D). Finally, we apply our results to understand naïve CD4+ T cell differentiation into Th1, Th2, Th17 and Treg subsets, suggesting Th1/Th2/Th17/Treg decision-making to be a two-step process.
Collapse
Affiliation(s)
| | - Elizabeth Andreas
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Harshavardhan Bv
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
- IISc Mathematics Initiative, Indian Institute of Science, 560012, Bangalore, India
| | - Kaushal Grover
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vivek Raj Singh
- Undergraduate Program, Indian Institute of Science, Bangalore, 560012, India
| | - Kishore Hari
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
- Department of Physics, Northeastern University, MA, 02115, Boston, USA
- Center for Theoretical Biological Physics, Northeastern University, MA, 02115, Boston, USA
| | | | - Breschine Cummins
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, 59717, USA.
| | - Tomas Gedeon
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, 59717, USA.
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
2
|
Miah R, Johannessen M, Kjos M, Lentz CS. Development of an inducer-free, virulence gene promoter-controlled, and fluorescent reporter-labeled CRISPR interference system in Staphylococcus aureus. Microbiol Spectr 2024; 12:e0060224. [PMID: 39162514 PMCID: PMC11448056 DOI: 10.1128/spectrum.00602-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024] Open
Abstract
The dCas9-based Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) interference (CRISPRi) gene regulation technique requires two components: a catalytically inactive Cas9 protein (dCas9) and a single-guide RNA that targets the gene of interest. This system is commonly activated by expressing dCas9 through an inducible gene promoter, but these inducers may affect cellular physiology, and accessibility and permeability of the inducer are limited in relevant model systems. Here, we have developed an alternative approach for CRISPRi activation in the clinical isolate Staphylococcus aureus USA300 LAC, where dCas9 was expressed through endogenous virulence gene promoters (vgp); coagulase, autolysin, or fibronectin-binding protein A. Additionally, we integrated a fluorescent reporter gene into the vgp-CRISPRi system to monitor the activity of the dcas9-controlling promoter. Testing the efficacy of vgp-CRISPRi by inducing growth arrest (when targeting penicillin-binding protein 1), downregulating target gene expression, or blocking coagulase-dependent coagulation of blood plasma, we provide a proof-of-concept demonstration that the virulence gene promoter-driven CRISPRi system is functional in S. aureus.IMPORTANCEThe presented inducer-free, endogenous virulence gene promoter-induced, dCas9-based Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) interference (CRISPRi system addresses several shortcomings related to the use of inducer-dependent systems such as effects on cell physiology or limitations in permeability, and it avoids the high, putatively toxic levels of dCas9 in CRISPRi systems controlled by strong, constitutive promoters.
Collapse
Affiliation(s)
- Roni Miah
- Department of Medical Biology and Center for New Antibacterial Strategies (CANS), UT- The Arctic University of Norway, Tromsø, Norway
| | - Mona Johannessen
- Department of Medical Biology and Center for New Antibacterial Strategies (CANS), UT- The Arctic University of Norway, Tromsø, Norway
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Christian S Lentz
- Department of Medical Biology and Center for New Antibacterial Strategies (CANS), UT- The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Park JH, Holló G, Schaerli Y. From resonance to chaos by modulating spatiotemporal patterns through a synthetic optogenetic oscillator. Nat Commun 2024; 15:7284. [PMID: 39179558 PMCID: PMC11343849 DOI: 10.1038/s41467-024-51626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Oscillations are a recurrent phenomenon in biological systems across scales, but deciphering their fundamental principles is very challenging. Here, we tackle this challenge by redesigning the wellcharacterised synthetic oscillator known as "repressilator" in Escherichia coli and controlling it using optogenetics, creating the "optoscillator". Bacterial colonies manifest oscillations as spatial ring patterns. When we apply periodic light pulses, the optoscillator behaves as a forced oscillator and we systematically investigate the properties of the rings under various light conditions. Combining experiments with mathematical modeling, we demonstrate that this simple oscillatory circuit can generate complex dynamics that are transformed into distinct spatial patterns. We report the observation of synchronisation, resonance, subharmonic resonance and period doubling. Furthermore, we present evidence of a chaotic regime. This work highlights the intricate spatiotemporal patterns accessible by synthetic oscillators and underscores the potential of our approach in revealing fundamental principles of biological oscillations.
Collapse
Affiliation(s)
- Jung Hun Park
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Gábor Holló
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
4
|
Burbano DA, Kiattisewee C, Karanjia AV, Cardiff RAL, Faulkner ID, Sugianto W, Carothers JM. CRISPR Tools for Engineering Prokaryotic Systems: Recent Advances and New Applications. Annu Rev Chem Biomol Eng 2024; 15:389-430. [PMID: 38598861 DOI: 10.1146/annurev-chembioeng-100522-114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In the past decades, the broad selection of CRISPR-Cas systems has revolutionized biotechnology by enabling multimodal genetic manipulation in diverse organisms. Rooted in a molecular engineering perspective, we recapitulate the different CRISPR components and how they can be designed for specific genetic engineering applications. We first introduce the repertoire of Cas proteins and tethered effectors used to program new biological functions through gene editing and gene regulation. We review current guide RNA (gRNA) design strategies and computational tools and how CRISPR-based genetic circuits can be constructed through regulated gRNA expression. Then, we present recent advances in CRISPR-based biosensing, bioproduction, and biotherapeutics across in vitro and in vivo prokaryotic systems. Finally, we discuss forthcoming applications in prokaryotic CRISPR technology that will transform synthetic biology principles in the near future.
Collapse
Affiliation(s)
- Diego Alba Burbano
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Cholpisit Kiattisewee
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ava V Karanjia
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ryan A L Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ian D Faulkner
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Widianti Sugianto
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - James M Carothers
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
5
|
Khan MA, Herring G, Zhu JY, Oliva M, Fourie E, Johnston B, Zhang Z, Potter J, Pineda L, Pflueger J, Swain T, Pflueger C, Lloyd JPB, Secco D, Small I, Kidd BN, Lister R. CRISPRi-based circuits to control gene expression in plants. Nat Biotechnol 2024:10.1038/s41587-024-02236-w. [PMID: 38769424 DOI: 10.1038/s41587-024-02236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
The construction of synthetic gene circuits in plants has been limited by a lack of orthogonal and modular parts. Here, we implement a CRISPR (clustered regularly interspaced short palindromic repeats) interference (CRISPRi)-based reversible gene circuit platform in plants. We create a toolkit of engineered repressible promoters of different strengths and construct NOT and NOR gates in Arabidopsis thaliana protoplasts. We determine the optimal processing system to express single guide RNAs from RNA Pol II promoters to introduce NOR gate programmability for interfacing with host regulatory sequences. The performance of a NOR gate in stably transformed Arabidopsis plants demonstrates the system's programmability and reversibility in a complex multicellular organism. Furthermore, cross-species activity of CRISPRi-based logic gates is shown in Physcomitrium patens, Triticum aestivum and Brassica napus protoplasts. Layering multiple NOR gates together creates OR, NIMPLY and AND logic functions, highlighting the modularity of our system. Our CRISPRi circuits are orthogonal, compact, reversible, programmable and modular and provide a platform for sophisticated spatiotemporal control of gene expression in plants.
Collapse
Affiliation(s)
- Muhammad Adil Khan
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Gabrielle Herring
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jia Yuan Zhu
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marina Oliva
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Elliott Fourie
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Benjamin Johnston
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Zhining Zhang
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jarred Potter
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Luke Pineda
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jahnvi Pflueger
- Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Tessa Swain
- Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Christian Pflueger
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - James P B Lloyd
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - David Secco
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Brendan N Kidd
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
- CSIRO Synthetic Biology Future Science Platform, Brisbane, Queensland, Australia.
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
- Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
6
|
Buson F, Gao Y, Wang B. Genetic Parts and Enabling Tools for Biocircuit Design. ACS Synth Biol 2024; 13:697-713. [PMID: 38427821 DOI: 10.1021/acssynbio.3c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Synthetic biology aims to engineer biological systems for customized tasks through the bottom-up assembly of fundamental building blocks, which requires high-quality libraries of reliable, modular, and standardized genetic parts. To establish sets of parts that work well together, synthetic biologists created standardized part libraries in which every component is analyzed in the same metrics and context. Here we present a state-of-the-art review of the currently available part libraries for designing biocircuits and their gene expression regulation paradigms at transcriptional, translational, and post-translational levels in Escherichia coli. We discuss the necessary facets to integrate these parts into complex devices and systems along with the current efforts to catalogue and standardize measurement data. To better display the range of available parts and to facilitate part selection in synthetic biology workflows, we established biopartsDB, a curated database of well-characterized and useful genetic part and device libraries with detailed quantitative data validated by the published literature.
Collapse
Affiliation(s)
- Felipe Buson
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K
| | - Yuanli Gao
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K
| | - Baojun Wang
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
De Marchi D, Shaposhnikov R, Gobaa S, Pastorelli D, Batt G, Magni P, Pasotti L. Design and Model-Driven Analysis of Synthetic Circuits with the Staphylococcus aureus Dead-Cas9 (sadCas9) as a Programmable Transcriptional Regulator in Bacteria. ACS Synth Biol 2024; 13:763-780. [PMID: 38374729 DOI: 10.1021/acssynbio.3c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Synthetic circuit design is crucial for engineering microbes that process environmental cues and provide biologically relevant outputs. To reliably scale-up circuit complexity, the availability of parts toolkits is central. Streptococcus pyogenes (sp)-derived CRISPR interference/dead-Cas9 (CRISPRi/spdCas9) is widely adopted for implementing programmable regulations in synthetic circuits, and alternative CRISPRi systems will further expand our toolkits of orthogonal components. Here, we showcase the potential of CRISPRi using the engineered dCas9 from Staphylococcus aureus (sadCas9), not previously used in bacterial circuits, that is attractive for its low size and high specificity. We designed a collection of ∼20 increasingly complex circuits and variants in Escherichia coli, including circuits with static function like one-/two-input logic gates (NOT, NAND), circuits with dynamic behavior like incoherent feedforward loops (iFFLs), and applied sadCas9 to fix a T7 polymerase-based cascade. Data demonstrated specific and efficient target repression (100-fold) and qualitatively successful functioning for all circuits. Other advantageous features included low sadCas9-borne cell load and orthogonality with spdCas9. However, different circuit variants showed quantitatively unexpected and previously unreported steady-state responses: the dynamic range, switch point, and slope of NOT/NAND gates changed for different output promoters, and a multiphasic behavior was observed in iFFLs, differing from the expected bell-shaped or sigmoidal curves. Model analysis explained the observed curves by complex interplays among components, due to reporter gene-borne cell load and regulator competition. Overall, CRISPRi/sadCas9 successfully expanded the available toolkit for bacterial engineering. Analysis of our circuit collection depicted the impact of generally neglected effects modulating the shape of component dose-response curves, to avoid drawing wrong conclusions on circuit functioning.
Collapse
Affiliation(s)
- Davide De Marchi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| | - Roman Shaposhnikov
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| | - Samy Gobaa
- Institut Pasteur, Université Paris Cité, Biomaterials and Microfluidics Core Facility, 28 Rue du Docteur Roux, 75015 Paris, France
| | - Daniele Pastorelli
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| | - Gregory Batt
- Institut Pasteur, Inria, Université Paris Cité, 28 rue du Docteur Roux, 75015 Paris, France
| | - Paolo Magni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| | - Lorenzo Pasotti
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
- Institut Pasteur, Inria, Université Paris Cité, 28 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
8
|
Chhun A, Moriano-Gutierrez S, Zoppi F, Cabirol A, Engel P, Schaerli Y. An engineered bacterial symbiont allows noninvasive biosensing of the honey bee gut environment. PLoS Biol 2024; 22:e3002523. [PMID: 38442124 PMCID: PMC10914260 DOI: 10.1371/journal.pbio.3002523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024] Open
Abstract
The honey bee is a powerful model system to probe host-gut microbiota interactions, and an important pollinator species for natural ecosystems and for agriculture. While bacterial biosensors can provide critical insight into the complex interplay occurring between a host and its associated microbiota, the lack of methods to noninvasively sample the gut content, and the limited genetic tools to engineer symbionts, have so far hindered their development in honey bees. Here, we built a versatile molecular tool kit to genetically modify symbionts and reported for the first time in the honey bee a technique to sample their feces. We reprogrammed the native bee gut bacterium Snodgrassella alvi as a biosensor for IPTG, with engineered cells that stably colonize the gut of honey bees and report exposure to the molecules in a dose-dependent manner through the expression of a fluorescent protein. We showed that fluorescence readout can be measured in the gut tissues or noninvasively in the feces. These tools and techniques will enable rapid building of engineered bacteria to answer fundamental questions in host-gut microbiota research.
Collapse
Affiliation(s)
- Audam Chhun
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Florian Zoppi
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Amélie Cabirol
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Vockenhuber MP, Hoetzel J, Maurer LM, Fröhlich P, Weiler S, Muller YA, Koeppl H, Suess B. A Novel RNA Aptamer as Synthetic Inducer of DasR Controlled Transcription. ACS Synth Biol 2024; 13:319-327. [PMID: 38127784 DOI: 10.1021/acssynbio.3c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Progress in the synthetic biology field is driven by the development of new tools for synthetic circuit engineering. Traditionally, the focus has relied on protein-based designs. In recent years, the use of RNA-based tools has tremendously increased, due to their versatile functionality and applicability. A promising class of molecules is RNA aptamers, small, single-stranded RNA molecules that bind to a target molecule with high affinity and specificity. When targeting bacterial repressors, RNA aptamers allow one to add a new layer to an established protein-based regulation. In the present study, we selected an RNA aptamer binding the bacterial repressor DasR, preventing its binding to its operator sequence and activating DasR-controlled transcription in vivo. This was made possible only by the combination of an in vitro selection and subsequent in vivo screening. Next-generation sequencing of the selection process proved the importance of the in vivo screening for the discovery of aptamers functioning in the cell. Mutational and biochemical studies led to the identification of the minimal necessary binding motif. Taken together, the resulting combination of bacterial repressor and RNA aptamer enlarges the synthetic biology toolbox by adding a new level of regulation.
Collapse
Affiliation(s)
- Michael-Paul Vockenhuber
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Karl-von-Frisch-Strasse 14, 35043 Marburg, Germany
| | - Janis Hoetzel
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Lisa-Marie Maurer
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Philipp Fröhlich
- Department of Electrical Engineering and Information Technology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Sigrid Weiler
- Lehrstuhl für Biotechnik, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Henkestr. 91, 91052 Erlangen, Germany
| | - Yves A Muller
- Lehrstuhl für Biotechnik, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Henkestr. 91, 91052 Erlangen, Germany
| | - Heinz Koeppl
- Department of Electrical Engineering and Information Technology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Beatrix Suess
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
10
|
Bales MK, Vergara MM, Eckert CA. Application of functional genomics for domestication of novel non-model microbes. J Ind Microbiol Biotechnol 2024; 51:kuae022. [PMID: 38925657 PMCID: PMC11247347 DOI: 10.1093/jimb/kuae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
With the expansion of domesticated microbes producing biomaterials and chemicals to support a growing circular bioeconomy, the variety of waste and sustainable substrates that can support microbial growth and production will also continue to expand. The diversity of these microbes also requires a range of compatible genetic tools to engineer improved robustness and economic viability. As we still do not fully understand the function of many genes in even highly studied model microbes, engineering improved microbial performance requires introducing genome-scale genetic modifications followed by screening or selecting mutants that enhance growth under prohibitive conditions encountered during production. These approaches include adaptive laboratory evolution, random or directed mutagenesis, transposon-mediated gene disruption, or CRISPR interference (CRISPRi). Although any of these approaches may be applicable for identifying engineering targets, here we focus on using CRISPRi to reduce the time required to engineer more robust microbes for industrial applications. ONE-SENTENCE SUMMARY The development of genome scale CRISPR-based libraries in new microbes enables discovery of genetic factors linked to desired traits for engineering more robust microbial systems.
Collapse
Affiliation(s)
- Margaret K Bales
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Michael Melesse Vergara
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Carrie A Eckert
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
11
|
Bello AJ, Popoola A, Okpuzor J, Ihekwaba-Ndibe AE, Olorunniji FJ. A Genetic Circuit Design for Targeted Viral RNA Degradation. Bioengineering (Basel) 2023; 11:22. [PMID: 38247899 PMCID: PMC10813695 DOI: 10.3390/bioengineering11010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Advances in synthetic biology have led to the design of biological parts that can be assembled in different ways to perform specific functions. For example, genetic circuits can be designed to execute specific therapeutic functions, including gene therapy or targeted detection and the destruction of invading viruses. Viral infections are difficult to manage through drug treatment. Due to their high mutation rates and their ability to hijack the host's ribosomes to make viral proteins, very few therapeutic options are available. One approach to addressing this problem is to disrupt the process of converting viral RNA into proteins, thereby disrupting the mechanism for assembling new viral particles that could infect other cells. This can be done by ensuring precise control over the abundance of viral RNA (vRNA) inside host cells by designing biological circuits to target vRNA for degradation. RNA-binding proteins (RBPs) have become important biological devices in regulating RNA processing. Incorporating naturally upregulated RBPs into a gene circuit could be advantageous because such a circuit could mimic the natural pathway for RNA degradation. This review highlights the process of viral RNA degradation and different approaches to designing genetic circuits. We also provide a customizable template for designing genetic circuits that utilize RBPs as transcription activators for viral RNA degradation, with the overall goal of taking advantage of the natural functions of RBPs in host cells to activate targeted viral RNA degradation.
Collapse
Affiliation(s)
- Adebayo J. Bello
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.J.B.); (A.P.)
- Department of Biological Sciences, Redeemer’s University, Ede 232101, Osun State, Nigeria
| | - Abdulgafar Popoola
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.J.B.); (A.P.)
- Department of Medical Laboratory Science, Kwara State University, Malete, Ilorin 241102, Kwara State, Nigeria
| | - Joy Okpuzor
- Department of Cell Biology & Genetics, University of Lagos, Akoka, Lagos 101017, Lagos State, Nigeria;
| | | | - Femi J. Olorunniji
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.J.B.); (A.P.)
| |
Collapse
|
12
|
Gao Y, Wang L, Wang B. Customizing cellular signal processing by synthetic multi-level regulatory circuits. Nat Commun 2023; 14:8415. [PMID: 38110405 PMCID: PMC10728147 DOI: 10.1038/s41467-023-44256-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
As synthetic biology permeates society, the signal processing circuits in engineered living systems must be customized to meet practical demands. Towards this mission, novel regulatory mechanisms and genetic circuits with unprecedented complexity have been implemented over the past decade. These regulatory mechanisms, such as transcription and translation control, could be integrated into hybrid circuits termed "multi-level circuits". The multi-level circuit design will tremendously benefit the current genetic circuit design paradigm, from modifying basic circuit dynamics to facilitating real-world applications, unleashing our capabilities to customize cellular signal processing and address global challenges through synthetic biology.
Collapse
Affiliation(s)
- Yuanli Gao
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Lei Wang
- Center of Synthetic Biology and Integrated Bioengineering & School of Engineering, Westlake University, Hangzhou, 310030, China.
| | - Baojun Wang
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China.
- Research Center for Biological Computation, Zhejiang Lab, Hangzhou, 311100, China.
| |
Collapse
|
13
|
Chiang AJ, Hasty J. Design of synthetic bacterial biosensors. Curr Opin Microbiol 2023; 76:102380. [PMID: 37703812 DOI: 10.1016/j.mib.2023.102380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/19/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023]
Abstract
Novel whole-cell bacterial biosensor designs require an emphasis on moving toward field deployment. Many current sensors are characterized under specified laboratory conditions, which frequently do not represent actual deployment conditions. To this end, recent developments such as toolkits for probing new host chassis that are more robust to environments of interest, have paved the way for improved designs. Strategies for rational tuning of genetic components or tools such as genetic amplifiers or designs that allow post hoc tuning are essential in optimizing existing biosensors for practical application. Furthermore, recent work has seen a rise in directed evolution techniques, which can be immensely valuable in both tuning existing sensors and developing sensors for new analytes that lack characterized sensors. Combined with advancements in bioinformatics and capabilities in rewiring two-component systems, many new sensors can be established, broadening biosensor use cases. Last, recent work in CRISPR-based dynamic regulation and memory mechanisms, as well as kill-switches for biosafety and innovative output integration concepts, represents promising steps toward designing bacterial biosensors for deployment in dynamic and heterogeneous conditions.
Collapse
Affiliation(s)
- Alyssa J Chiang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| | - Jeff Hasty
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA; Molecular Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA; Synthetic Biology Institute, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
14
|
Rueff AS, van Raaphorst R, Aggarwal SD, Santos-Moreno J, Laloux G, Schaerli Y, Weiser JN, Veening JW. Synthetic genetic oscillators demonstrate the functional importance of phenotypic variation in pneumococcal-host interactions. Nat Commun 2023; 14:7454. [PMID: 37978173 PMCID: PMC10656556 DOI: 10.1038/s41467-023-43241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Phenotypic variation is the phenomenon in which clonal cells display different traits even under identical environmental conditions. This plasticity is thought to be important for processes including bacterial virulence, but direct evidence for its relevance is often lacking. For instance, variation in capsule production in the human pathogen Streptococcus pneumoniae has been linked to different clinical outcomes, but the exact relationship between variation and pathogenesis is not well understood due to complex natural regulation. In this study, we use synthetic oscillatory gene regulatory networks (GRNs) based on CRISPR interference (CRISPRi) together with live cell imaging and cell tracking within microfluidics devices to mimic and test the biological function of bacterial phenotypic variation. We provide a universally applicable approach for engineering intricate GRNs using only two components: dCas9 and extended sgRNAs (ext-sgRNAs). Our findings demonstrate that variation in capsule production is beneficial for pneumococcal fitness in traits associated with pathogenesis providing conclusive evidence for this longstanding question.
Collapse
Affiliation(s)
- Anne-Stéphanie Rueff
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Renske van Raaphorst
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200, Brussels, Belgium
| | - Surya D Aggarwal
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Javier Santos-Moreno
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
- Pompeu Fabra University, Barcelona, Spain
| | - Géraldine Laloux
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200, Brussels, Belgium
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
15
|
Liu Y, Zhu Z, Jiang L. Programming therapeutic probiotics by self-tunable sense-and-respond genetic circuits. Trends Microbiol 2023; 31:1099-1101. [PMID: 37620240 DOI: 10.1016/j.tim.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Probiotics can be programmed to sense and respond to intracellular disease signals to deliver the desired therapeutic effectors. The sense-and-respond genetic circuits, especially self-tunable ones, hold promise in improving the precision, effectiveness, and intelligence of therapeutic activities. Here, we present notable advances in the creation of engineered probiotics that harbour sense-and-respond genetic circuits.
Collapse
Affiliation(s)
- Yuxin Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zhengming Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
16
|
Barbier I, Kusumawardhani H, Chauhan L, Harlapur PV, Jolly MK, Schaerli Y. Synthetic Gene Circuits Combining CRISPR Interference and CRISPR Activation in E. coli: Importance of Equal Guide RNA Binding Affinities to Avoid Context-Dependent Effects. ACS Synth Biol 2023; 12:3064-3071. [PMID: 37813387 PMCID: PMC10594877 DOI: 10.1021/acssynbio.3c00375] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Indexed: 10/11/2023]
Abstract
Gene expression control based on clustered regularly interspaced short palindromic repeats (CRISPR) has emerged as a powerful approach for constructing synthetic gene circuits. While the use of CRISPR interference (CRISPRi) is already well-established in prokaryotic circuits, CRISPR activation (CRISPRa) is less mature, and a combination of the two in the same circuits is only just emerging. Here, we report that combining CRISPRi with SoxS-based CRISPRa in Escherichia coli can lead to context-dependent effects due to different affinities in the formation of CRISPRa and CRISPRi complexes, resulting in loss of predictable behavior. We show that this effect can be avoided by using the same scaffold guide RNA structure for both complexes.
Collapse
Affiliation(s)
- Içvara Barbier
- Department
of Fundamental Microbiology, University
of Lausanne, 1015 Lausanne, Switzerland
| | | | - Lakshya Chauhan
- Department
of Fundamental Microbiology, University
of Lausanne, 1015 Lausanne, Switzerland
- Department
of Bioengineering, Indian Institute of Science, 560012 Bengaluru, India
| | | | - Mohit Kumar Jolly
- Department
of Bioengineering, Indian Institute of Science, 560012 Bengaluru, India
| | - Yolanda Schaerli
- Department
of Fundamental Microbiology, University
of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Schramm T, Lubrano P, Pahl V, Stadelmann A, Verhülsdonk A, Link H. Mapping temperature-sensitive mutations at a genome scale to engineer growth switches in Escherichia coli. Mol Syst Biol 2023; 19:e11596. [PMID: 37642940 PMCID: PMC10568205 DOI: 10.15252/msb.202311596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Temperature-sensitive (TS) mutants are a unique tool to perturb and engineer cellular systems. Here, we constructed a CRISPR library with 15,120 Escherichia coli mutants, each with a single amino acid change in one of 346 essential proteins. 1,269 of these mutants showed temperature-sensitive growth in a time-resolved competition assay. We reconstructed 94 TS mutants and measured their metabolism under growth arrest at 42°C using metabolomics. Metabolome changes were strong and mutant-specific, showing that metabolism of nongrowing E. coli is perturbation-dependent. For example, 24 TS mutants of metabolic enzymes overproduced the direct substrate metabolite due to a bottleneck in their associated pathway. A strain with TS homoserine kinase (ThrBF267D ) produced homoserine for 24 h, and production was tunable by temperature. Finally, we used a TS subunit of DNA polymerase III (DnaXL289Q ) to decouple growth from arginine overproduction in engineered E. coli. These results provide a strategy to identify TS mutants en masse and demonstrate their large potential to produce bacterial metabolites with nongrowing cells.
Collapse
Affiliation(s)
- Thorben Schramm
- Interfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenTübingenGermany
- Cluster of Excellence “Controlling Microbes to Fight Infections”University of TübingenTübingenGermany
- Present address:
Department of Biology, Institute of Molecular Systems BiologyETH ZurichZürichSwitzerland
| | - Paul Lubrano
- Interfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenTübingenGermany
- Cluster of Excellence “Controlling Microbes to Fight Infections”University of TübingenTübingenGermany
| | - Vanessa Pahl
- Interfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenTübingenGermany
- Cluster of Excellence “Controlling Microbes to Fight Infections”University of TübingenTübingenGermany
| | - Amelie Stadelmann
- Interfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenTübingenGermany
- Cluster of Excellence “Controlling Microbes to Fight Infections”University of TübingenTübingenGermany
| | - Andreas Verhülsdonk
- Interfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenTübingenGermany
- Cluster of Excellence “Controlling Microbes to Fight Infections”University of TübingenTübingenGermany
| | - Hannes Link
- Interfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenTübingenGermany
- Cluster of Excellence “Controlling Microbes to Fight Infections”University of TübingenTübingenGermany
| |
Collapse
|
18
|
Lebovich M, Zeng M, Andrews LB. Algorithmic Programming of Sequential Logic and Genetic Circuits for Recording Biochemical Concentration in a Probiotic Bacterium. ACS Synth Biol 2023; 12:2632-2649. [PMID: 37581922 PMCID: PMC10510703 DOI: 10.1021/acssynbio.3c00232] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Indexed: 08/16/2023]
Abstract
Through the implementation of designable genetic circuits, engineered probiotic microorganisms could be used as noninvasive diagnostic tools for the gastrointestinal tract. For these living cells to report detected biomarkers or signals after exiting the gut, the genetic circuits must be able to record these signals by using genetically encoded memory. Complex memory register circuits could enable multiplex interrogation of biomarkers and signals. A theory-based approach to create genetic circuits containing memory, known as sequential logic circuits, was previously established for a model laboratory strain of Escherichia coli, yet how circuit component performance varies for nonmodel and clinically relevant bacterial strains is poorly understood. Here, we develop a scalable computational approach to design robust sequential logic circuits in probiotic strain Escherichia coli Nissle 1917 (EcN). In this work, we used TetR-family transcriptional repressors to build genetic logic gates that can be composed into sequential logic circuits, along with a set of engineered sensors relevant for use in the gut environment. Using standard methods, 16 genetic NOT gates and nine sensors were experimentally characterized in EcN. These data were used to design and predict the performance of circuit designs. We present a set of genetic circuits encoding both combinational logic and sequential logic and show that the circuit outputs are in close agreement with our quantitative predictions from the design algorithm. Furthermore, we demonstrate an analog-like concentration recording circuit that detects and reports three input concentration ranges of a biochemical signal using sequential logic.
Collapse
Affiliation(s)
- Matthew Lebovich
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Biotechnology
Training Program, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Min Zeng
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Lauren B. Andrews
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Biotechnology
Training Program, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Molecular
and Cellular Biology Graduate Program, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
19
|
Auradkar A, Guichard A, Kaduwal S, Sneider M, Bier E. tgCRISPRi: efficient gene knock-down using truncated gRNAs and catalytically active Cas9. Nat Commun 2023; 14:5587. [PMID: 37696787 PMCID: PMC10495392 DOI: 10.1038/s41467-023-40836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023] Open
Abstract
CRISPR-interference (CRISPRi), a highly effective method for silencing genes in mammalian cells, employs an enzymatically dead form of Cas9 (dCas9) complexed with one or more guide RNAs (gRNAs) with 20 nucleotides (nt) of complementarity to transcription initiation sites of target genes. Such gRNA/dCas9 complexes bind to DNA, impeding transcription of the targeted locus. Here, we present an alternative gene-suppression strategy using active Cas9 complexed with truncated gRNAs (tgRNAs). Cas9/tgRNA complexes bind to specific target sites without triggering DNA cleavage. When targeted near transcriptional start sites, these short 14-15 nts tgRNAs efficiently repress expression of several target genes throughout somatic tissues in Drosophila melanogaster without generating any detectable target site mutations. tgRNAs also can activate target gene expression when complexed with a Cas9-VPR fusion protein or modulate enhancer activity, and can be incorporated into a gene-drive, wherein a traditional gRNA sustains drive while a tgRNA inhibits target gene expression.
Collapse
Affiliation(s)
- Ankush Auradkar
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Annabel Guichard
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Saluja Kaduwal
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Marketta Sneider
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Ethan Bier
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA.
- Tata Institute for Genetics and Society - UCSD, La Jolla, USA.
| |
Collapse
|
20
|
Wang L, Zhao J, Xiong X, Li L, Zhu T, Pei H. Enzyme-Free Nucleic Acid Circuits for Fold-Change Detection. Chempluschem 2023; 88:e202300083. [PMID: 37005227 DOI: 10.1002/cplu.202300083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
Fold-change detection is widespread in sensory systems of various organisms. Dynamic DNA nanotechnology provides an important toolbox for reproducing structures and responses of cellular circuits. In this work, we construct an enzyme-free nucleic acid circuit based on the incoherent feed-forward loop using toehold-mediated DNA strand displacement reactions and explore its dynamic behaviors. The mathematical model based on ordinary differential equations is used to evaluate the parameter regime required for fold-change detection. After selecting appropriate parameters, the constructed synthetic circuit exhibits approximate fold-change detection for multiple rounds of inputs with different initial concentrations. This work is anticipated to shed new light on the design of DNA dynamic circuits in the enzyme-free environment.
Collapse
Affiliation(s)
- Likun Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241 (P. R., China
| | - Jiayan Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241 (P. R., China
| | - Xiewei Xiong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241 (P. R., China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241 (P. R., China
| | - Tong Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241 (P. R., China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241 (P. R., China
| |
Collapse
|
21
|
Rueff AS, van Raaphorst R, Aggarwal S, Santos-Moreno J, Laloux G, Schaerli Y, Weiser JN, Veening JW. Rewiring capsule production by CRISPRi-based genetic oscillators demonstrates a functional role of phenotypic variation in pneumococcal-host interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.03.543575. [PMID: 37398107 PMCID: PMC10312626 DOI: 10.1101/2023.06.03.543575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Phenotypic variation is the phenomenon in which clonal cells display different traits even under identical environmental conditions. This plasticity is thought to be important for processes including bacterial virulence1-8, but direct evidence for its relevance is often lacking. For instance, variation in capsule production in the human pathogen Streptococcus pneumoniae has been linked to different clinical outcomes9-14, but the exact relationship between variation and pathogenesis is not well understood due to complex natural regulation15-20. In this study, we used synthetic oscillatory gene regulatory networks (GRNs) based on CRISPR interference together with live cell microscopy and cell tracking within microfluidics devices to mimic and test the biological function of bacterial phenotypic variation. We provide a universally applicable approach for engineering intricate GRNs using only two components: dCas9 and extended sgRNAs (ext-sgRNAs). Our findings demonstrate that variation in capsule production is beneficial for pneumococcal fitness in traits associated with pathogenesis providing conclusive evidence for this longstanding question.
Collapse
Affiliation(s)
- Anne-Stéphanie Rueff
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Renske van Raaphorst
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Surya Aggarwal
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Javier Santos-Moreno
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
- Present address: Pompeu Fabra University, Barcelona, Spain
| | - Géraldine Laloux
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Jeffrey N. Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
22
|
Gu F, Jiang W, Kang F, Su T, Yang X, Qi Q, Liang Q. A synthetic population-level oscillator in non-microfluidic environments. Commun Biol 2023; 6:515. [PMID: 37179427 PMCID: PMC10183009 DOI: 10.1038/s42003-023-04904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Synthetic oscillators have become a research hotspot because of their complexity and importance. The construction and stable operation of oscillators in large-scale environments are important and challenging. Here, we introduce a synthetic population-level oscillator in Escherichia coli that operates stably during continuous culture in non-microfluidic environments without the addition of inducers or frequent dilution. Specifically, quorum-sensing components and protease regulating elements are employed, which form delayed negative feedback to trigger oscillation and accomplish the reset of signals through transcriptional and post-translational regulation. We test the circuit in devices with 1 mL, 50 mL, 400 mL of medium, and demonstrate that the circuit could maintain stable population-level oscillations. Finally, we explore potential applications of the circuit in regulating cellular morphology and metabolism. Our work contributes to the design and testing of synthetic biological clocks that function in large populations.
Collapse
Affiliation(s)
- Fei Gu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, 266237, Qingdao, China
| | - Wei Jiang
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fangbing Kang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, 266237, Qingdao, China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, 266237, Qingdao, China
| | - Xiaoya Yang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, 266237, Qingdao, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, 266237, Qingdao, China.
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, 266237, Qingdao, China.
| |
Collapse
|
23
|
Gyorgy A, Menezes A, Arcak M. A blueprint for a synthetic genetic feedback optimizer. Nat Commun 2023; 14:2554. [PMID: 37137895 PMCID: PMC10156725 DOI: 10.1038/s41467-023-37903-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/05/2023] [Indexed: 05/05/2023] Open
Abstract
Biomolecular control enables leveraging cells as biomanufacturing factories. Despite recent advancements, we currently lack genetically encoded modules that can be deployed to dynamically fine-tune and optimize cellular performance. Here, we address this shortcoming by presenting the blueprint of a genetic feedback module to optimize a broadly defined performance metric by adjusting the production and decay rate of a (set of) regulator species. We demonstrate that the optimizer can be implemented by combining available synthetic biology parts and components, and that it can be readily integrated with existing pathways and genetically encoded biosensors to ensure its successful deployment in a variety of settings. We further illustrate that the optimizer successfully locates and tracks the optimum in diverse contexts when relying on mass action kinetics-based dynamics and parameter values typical in Escherichia coli.
Collapse
Affiliation(s)
- Andras Gyorgy
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE.
| | - Amor Menezes
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | - Murat Arcak
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| |
Collapse
|
24
|
Koukara J, Papadopoulou KK. Advances in plant synthetic biology approaches to control expression of gene circuits. Biochem Biophys Res Commun 2023; 654:55-61. [PMID: 36889035 DOI: 10.1016/j.bbrc.2023.02.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023]
Abstract
The applications of synthetic biology range from creating simple circuits to monitor an organism's state to complex circuits capable of reconstructing aspects of life. The latter has the potential to be used in plant synthetic biology to address current societal issues by reforming agriculture and enhancing production of molecules of increased demand. For this reason, development of efficient tools to precisely control gene expression of circuits must be prioritized. In this review, we report the latest efforts towards characterization, standardization and assembly of genetic parts into higher-order constructs, as well as available types of inducible systems to modulate their transcription in plant systems. Subsequently, we discuss recent developments in the orthogonal control of gene expression, Boolean logic gates and synthetic genetic toggle-like switches. Finally, we conclude that by combining different means of controlling gene expression, we can create complex circuits capable of reshaping plant life.
Collapse
Affiliation(s)
- Jenny Koukara
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Kalliope K Papadopoulou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece.
| |
Collapse
|
25
|
Santos-Moreno J, Tasiudi E, Kusumawardhani H, Stelling J, Schaerli Y. Robustness and innovation in synthetic genotype networks. Nat Commun 2023; 14:2454. [PMID: 37117168 PMCID: PMC10147661 DOI: 10.1038/s41467-023-38033-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/13/2023] [Indexed: 04/30/2023] Open
Abstract
Genotype networks are sets of genotypes connected by small mutational changes that share the same phenotype. They facilitate evolutionary innovation by enabling the exploration of different neighborhoods in genotype space. Genotype networks, first suggested by theoretical models, have been empirically confirmed for proteins and RNAs. Comparative studies also support their existence for gene regulatory networks (GRNs), but direct experimental evidence is lacking. Here, we report the construction of three interconnected genotype networks of synthetic GRNs producing three distinct phenotypes in Escherichia coli. Our synthetic GRNs contain three nodes regulating each other by CRISPR interference and governing the expression of fluorescent reporters. The genotype networks, composed of over twenty different synthetic GRNs, provide robustness in face of mutations while enabling transitions to innovative phenotypes. Through realistic mathematical modeling, we quantify robustness and evolvability for the complete genotype-phenotype map and link these features mechanistically to GRN motifs. Our work thereby exemplifies how GRN evolution along genotype networks might be driving evolutionary innovation.
Collapse
Affiliation(s)
- Javier Santos-Moreno
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
- Department of Medicine and Life Sciences, Pompeu Fabra University, 00803, Barcelona, Spain
| | - Eve Tasiudi
- Department of Biosystems Science and Engineering, ETH Zurich and SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Hadiastri Kusumawardhani
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Joerg Stelling
- Department of Biosystems Science and Engineering, ETH Zurich and SIB Swiss Institute of Bioinformatics, Basel, Switzerland.
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland.
| |
Collapse
|
26
|
Hernandez BS, Lubenia PVN, Johnston MD, Kim JK. A framework for deriving analytic steady states of biochemical reaction networks. PLoS Comput Biol 2023; 19:e1011039. [PMID: 37053305 PMCID: PMC10129002 DOI: 10.1371/journal.pcbi.1011039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/25/2023] [Accepted: 03/20/2023] [Indexed: 04/15/2023] Open
Abstract
The long-term behaviors of biochemical systems are often described by their steady states. Deriving these states directly for complex networks arising from real-world applications, however, is often challenging. Recent work has consequently focused on network-based approaches. Specifically, biochemical reaction networks are transformed into weakly reversible and deficiency zero generalized networks, which allows the derivation of their analytic steady states. Identifying this transformation, however, can be challenging for large and complex networks. In this paper, we address this difficulty by breaking the complex network into smaller independent subnetworks and then transforming the subnetworks to derive the analytic steady states of each subnetwork. We show that stitching these solutions together leads to the the analytic steady states of the original network. To facilitate this process, we develop a user-friendly and publicly available package, COMPILES (COMPutIng anaLytic stEady States). With COMPILES, we can easily test the presence of bistability of a CRISPRi toggle switch model, which was previously investigated via tremendous number of numerical simulations and within a limited range of parameters. Furthermore, COMPILES can be used to identify absolute concentration robustness (ACR), the property of a system that maintains the concentration of particular species at a steady state regardless of any initial concentrations. Specifically, our approach completely identifies all the species with and without ACR in a complex insulin model. Our method provides an effective approach to analyzing and understanding complex biochemical systems.
Collapse
Affiliation(s)
- Bryan S Hernandez
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
- Institute of Mathematics, University of the Philippines Diliman, Quezon City, Philippines
| | - Patrick Vincent N Lubenia
- Systems and Computational Biology Research Unit, Center for Natural Sciences and Environmental Research, Manila, Philippines
| | - Matthew D Johnston
- Department of Mathematics and Computer Science, Lawrence Technological University, Southfield, Michigan, United States of America
| | - Jae Kyoung Kim
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Mathematical Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
27
|
Aggarwal N, Kitano S, Puah GRY, Kittelmann S, Hwang IY, Chang MW. Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chem Rev 2023; 123:31-72. [PMID: 36317983 PMCID: PMC9837825 DOI: 10.1021/acs.chemrev.2c00431] [Citation(s) in RCA: 87] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/12/2023]
Abstract
The human microbiome is composed of a collection of dynamic microbial communities that inhabit various anatomical locations in the body. Accordingly, the coevolution of the microbiome with the host has resulted in these communities playing a profound role in promoting human health. Consequently, perturbations in the human microbiome can cause or exacerbate several diseases. In this Review, we present our current understanding of the relationship between human health and disease development, focusing on the microbiomes found across the digestive, respiratory, urinary, and reproductive systems as well as the skin. We further discuss various strategies by which the composition and function of the human microbiome can be modulated to exert a therapeutic effect on the host. Finally, we examine technologies such as multiomics approaches and cellular reprogramming of microbes that can enable significant advancements in microbiome research and engineering.
Collapse
Affiliation(s)
- Nikhil Aggarwal
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Shohei Kitano
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Ginette Ru Ying Puah
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - Sandra Kittelmann
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - In Young Hwang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Singapore
Institute of Technology, Singapore 138683, Singapore
| | - Matthew Wook Chang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
28
|
Wang J, Teng Y, Gong X, Zhang J, Wu Y, Lou L, Li M, Xie ZR, Yan Y. Exploring and engineering PAM-diverse Streptococci Cas9 for PAM-directed bifunctional and titratable gene control in bacteria. Metab Eng 2023; 75:68-77. [PMID: 36404524 PMCID: PMC10947553 DOI: 10.1016/j.ymben.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/05/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022]
Abstract
The RNA-guided Cas9s serve as powerful tools for programmable gene editing and regulation; their targeting scopes and efficacies, however, are always constrained by the PAM sequence stringency. Most Streptococci Cas9s, including the prototype SpCas9 from S. pyogenes, specifically recognize a canonical NGG PAM via a conserved RxR PAM-binding motif within the PAM-interaction (PI) domain. Here, SpCas9-based mining unveils three distinct and rarely presented PAM-binding motifs (QxxxR, QxQ and RxQ) among Streptococci Cas9 orthologs. With the catalytically-dead QxxxR-containing SedCas9 from S. equinus, we dissect its NAG PAM specificity and elucidate its underlying recognition mechanism via computational prediction and mutagenesis analysis. Replacing the SedCas9 PI domain with alternate PAM-binding motifs rewires its PAM specificity to NGG or NAA. Moreover, a semi-rational design with minimal mutation creates a SedCas9-NQ variant showing robust activity towards expanded NNG and NAA PAMs, based upon which we engineered a compact ω-SedCas9-NQ transcriptional regulator for PAM-directed bifunctional and titratable gene control. The ω-SedCas9-NQ mediated metabolic reprogramming of endogenous genes in Escherichia coli affords a 2.6-fold increase of 4-hydroxycoumarin production. This work reveals new Cas9 scaffolds with distinct PAM-binding motifs for PAM relaxation and creates a new PAM-diverse Cas9 variant for versatile gene control in bacteria.
Collapse
Affiliation(s)
- Jian Wang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Yuxi Teng
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Xinyu Gong
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Jianli Zhang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Yifei Wu
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Lei Lou
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Michelle Li
- North Oconee High School, Bogart, GA, 30622, USA
| | - Zhong-Ru Xie
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
29
|
Shaytan AK, Novikov RV, Vinnikov RS, Gribkova AK, Glukhov GS. From DNA-protein interactions to the genetic circuit design using CRISPR-dCas systems. Front Mol Biosci 2022; 9:1070526. [PMID: 36589238 PMCID: PMC9795063 DOI: 10.3389/fmolb.2022.1070526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/05/2022] [Indexed: 01/03/2023] Open
Abstract
In the last decade, the CRISPR-Cas technology has gained widespread popularity in different fields from genome editing and detecting specific DNA/RNA sequences to gene expression control. At the heart of this technology is the ability of CRISPR-Cas complexes to be programmed for targeting particular DNA loci, even when using catalytically inactive dCas-proteins. The repertoire of naturally derived and engineered dCas-proteins including fusion proteins presents a promising toolbox that can be used to construct functional synthetic genetic circuits. Rational genetic circuit design, apart from having practical relevance, is an important step towards a deeper quantitative understanding of the basic principles governing gene expression regulation and functioning of living organisms. In this minireview, we provide a succinct overview of the application of CRISPR-dCas-based systems in the emerging field of synthetic genetic circuit design. We discuss the diversity of dCas-based tools, their properties, and their application in different types of genetic circuits and outline challenges and further research directions in the field.
Collapse
Affiliation(s)
- A. K. Shaytan
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia,Department of Computer Science, HSE University, Moscow, Russia,*Correspondence: A. K. Shaytan,
| | - R. V. Novikov
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - R. S. Vinnikov
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - A. K. Gribkova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - G. S. Glukhov
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia,Faculty of Biology, MSU-BIT Shenzhen University, Shenzhen, China
| |
Collapse
|
30
|
Harlapur P, Duddu AS, Hari K, Kulkarni P, Jolly MK. Functional Resilience of Mutually Repressing Motifs Embedded in Larger Networks. Biomolecules 2022; 12:1842. [PMID: 36551270 PMCID: PMC9775907 DOI: 10.3390/biom12121842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Elucidating the design principles of regulatory networks driving cellular decision-making has important implications for understanding cell differentiation and guiding the design of synthetic circuits. Mutually repressing feedback loops between 'master regulators' of cell fates can exhibit multistable dynamics enabling "single-positive" phenotypes: (high A, low B) and (low A, high B) for a toggle switch, and (high A, low B, low C), (low A, high B, low C) and (low A, low B, high C) for a toggle triad. However, the dynamics of these two motifs have been interrogated in isolation in silico, but in vitro and in vivo, they often operate while embedded in larger regulatory networks. Here, we embed these motifs in complex larger networks of varying sizes and connectivity to identify hallmarks under which these motifs maintain their canonical dynamical behavior. We show that an increased number of incoming edges onto a motif leads to a decay in their canonical stand-alone behaviors. We also show that this decay can be exacerbated by adding self-inhibition but not self-activation loops on the 'master regulators'. These observations offer insights into the design principles of biological networks containing these motifs and can help devise optimal strategies for the integration of these motifs into larger synthetic networks.
Collapse
Affiliation(s)
- Pradyumna Harlapur
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Atchuta Srinivas Duddu
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Kishore Hari
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Prakash Kulkarni
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
31
|
Landau J, Cuba Samaniego C, Giordano G, Franco E. Computational characterization of recombinase circuits for periodic behaviors. iScience 2022; 26:105624. [PMID: 36619981 PMCID: PMC9812718 DOI: 10.1016/j.isci.2022.105624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/17/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Recombinases are site-specific proteins found in nature that are capable of rearranging DNA. This function has made them promising gene editing tools in synthetic biology, as well as key elements in complex artificial gene circuits implementing Boolean logic. However, since DNA rearrangement is irreversible, it is still unclear how to use recombinases to build dynamic circuits like oscillators. In addition, this goal is challenging because a few molecules of recombinase are enough for promoter inversion, generating inherent stochasticity at low copy number. Here, we propose six different circuit designs for recombinase-based oscillators operating at a single copy number. We model them in a stochastic setting, leveraging the Gillespie algorithm for extensive simulations, and show that they can yield coherent periodic behaviors. Our results support the experimental realization of recombinase-based oscillators and, more generally, the use of recombinases to generate dynamic behaviors in synthetic biology.
Collapse
Affiliation(s)
- Judith Landau
- California State University, Los Angeles, Los Angeles, CA, USA
| | | | - Giulia Giordano
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Elisa Franco
- University of California, Los Angeles, Los Angeles, CA, USA
- Corresponding author
| |
Collapse
|
32
|
Brown G. Hematopoietic and Chronic Myeloid Leukemia Stem Cells: Multi-Stability versus Lineage Restriction. Int J Mol Sci 2022; 23:13570. [PMID: 36362357 PMCID: PMC9655164 DOI: 10.3390/ijms232113570] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 07/30/2023] Open
Abstract
There is compelling evidence to support the view that the cell-of-origin for chronic myeloid leukemia is a hematopoietic stem cell. Unlike normal hematopoietic stem cells, the progeny of the leukemia stem cells are predominantly neutrophils during the disease chronic phase and there is a mild anemia. The hallmark oncogene for chronic myeloid leukemia is the BCR-ABLp210 fusion gene. Various studies have excluded a role for BCR-ABLp210 expression in maintaining the population of leukemia stem cells. Studies of BCR-ABLp210 expression in embryonal stem cells that were differentiated into hematopoietic stem cells and of the expression in transgenic mice have revealed that BCR-ABLp210 is able to veer hematopoietic stem and progenitor cells towards a myeloid fate. For the transgenic mice, global changes to the epigenetic landscape were observed. In chronic myeloid leukemia, the ability of the leukemia stem cells to choose from the many fates that are available to normal hematopoietic stem cells appears to be deregulated by BCR-ABLp210 and changes to the epigenome are also important. Even so, we still do not have a precise picture as to why neutrophils are abundantly produced in chronic myeloid leukemia.
Collapse
MESH Headings
- Mice
- Animals
- Fusion Proteins, bcr-abl/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Hematopoietic Stem Cells/metabolism
- Mice, Transgenic
- Leukemia, Myeloid, Acute/metabolism
Collapse
Affiliation(s)
- Geoffrey Brown
- Institute of Clinical Sciences, School of Biomedical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
33
|
Specht DA, Cortes LB, Lambert G. Overcoming Leak Sensitivity in CRISPRi Circuits Using Antisense RNA Sequestration and Regulatory Feedback. ACS Synth Biol 2022; 11:2927-2937. [PMID: 36017994 PMCID: PMC9486968 DOI: 10.1021/acssynbio.2c00155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 01/24/2023]
Abstract
The controlled binding of the catalytically dead CRISPR nuclease (dCas) to DNA can be used to create complex, programmable transcriptional genetic circuits, a fundamental goal of synthetic biology. This approach, called CRISPR interference (CRISPRi), is advantageous over existing methods because the programmable nature of CRISPR proteins in principle enables the simultaneous regulation of many different targets without crosstalk. However, the performance of dCas-based genetic circuits is limited by both the sensitivity to leaky repression within CRISPRi logic gates and retroactive effects due to a shared pool of dCas proteins. By utilizing antisense RNAs (asRNAs) to sequester gRNA transcripts as well as CRISPRi feedback to self-regulate asRNA production, we demonstrate a mechanism that suppresses unwanted repression by CRISPRi and improves logical gene circuit function in Escherichia coli. This improvement is particularly pronounced during stationary expression when CRISPRi circuits do not achieve the expected regulatory dynamics. Furthermore, the use of dual CRISPRi/asRNA inverters restores the logical performance of layered circuits such as a double inverter. By studying circuit induction at the single-cell level in microfluidic channels, we provide insight into the dynamics of antisense sequestration of gRNA and regulatory feedback on dCas-based repression and derepression. These results demonstrate how CRISPRi inverters can be improved for use in more complex genetic circuitry without sacrificing the programmability and orthogonality of dCas proteins.
Collapse
Affiliation(s)
- David A. Specht
- Applied Physics, Cornell University, Ithaca, New York 14853, United States
| | - Louis B. Cortes
- Applied Physics, Cornell University, Ithaca, New York 14853, United States
| | - Guillaume Lambert
- Applied Physics, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
34
|
Zhao M, Li Y, Wang F, Ren Y, Wei D. A CRISPRi mediated self-inducible system for dynamic regulation of TCA cycle and improvement of itaconic acid production in Escherichia coli. Synth Syst Biotechnol 2022; 7:982-988. [PMID: 35782485 PMCID: PMC9213231 DOI: 10.1016/j.synbio.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Itaconic acid (ITA), an effective alternative fossil fuel, derives from the bypass pathway of the tricarboxylic acid (TCA) cycle. Therefore, the imbalance of metabolic flux between TCA cycle and ITA biosynthetic pathway seriously limits the production of ITA. The optimization of flux distribution between biomass and production has the potential to the productivity of ITA. Based on the previously constructed strain Escherichia coli MG1655 Δ1-SAS-3 (ITA titer: 1.87 g/L), a CRISPRi-mediated self-inducible system (CiMS), which contained a responsive module based on the ITA biosensor YpItcR/P ccl and a regulative CRISPRi-mediated interferential module, was developed to regulate the flux of the TCA cycle and to enhance the capacity of the strain to produce ITA. First, a higher ITA-yielding strain, Δ4-P rmd -SAS-3 (ITA titer: 3.20 g/L), derived from Δ1-SAS-3, was constructed by replacing the promoter P J23100 , for the expression of ITA synthesis genes, with P rmd and knocking out the three bypass genes poxB, pflB, and ldhA. Subsequently, the CiMS was used to inhibit the expression of key genes icd, pykA, and sucCD to dynamically balance the metabolic flux between TCA cycle and ITA biosynthetic pathway during the ITA production stage. The constructed strain Δ4-P rmd -SAS-3 under the dynamic regulation of the CiMS, showed a 23% increase in the ITA titer, which reached 3.93 g/L. This study indicated that CiMS was a practical strategy to dynamically and precisely regulated the metabolic flux in microbial cell factories.
Collapse
Affiliation(s)
- Ming Zhao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Yuting Li
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Fengqing Wang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuhong Ren
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
35
|
Shaw WM, Studená L, Roy K, Hapeta P, McCarty NS, Graham AE, Ellis T, Ledesma-Amaro R. Inducible expression of large gRNA arrays for multiplexed CRISPRai applications. Nat Commun 2022; 13:4984. [PMID: 36008396 PMCID: PMC9411621 DOI: 10.1038/s41467-022-32603-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 08/09/2022] [Indexed: 01/12/2023] Open
Abstract
CRISPR gene activation and inhibition (CRISPRai) has become a powerful synthetic tool for influencing the expression of native genes for foundational studies, cellular reprograming, and metabolic engineering. Here we develop a method for near leak-free, inducible expression of a polycistronic array containing up to 24 gRNAs from two orthogonal CRISPR/Cas systems to increase CRISPRai multiplexing capacity and target gene flexibility. To achieve strong inducibility, we create a technology to silence gRNA expression within the array in the absence of the inducer, since we found that long gRNA arrays for CRISPRai can express themselves even without promoter. Using this method, we create a highly tuned and easy-to-use CRISPRai toolkit in the industrially relevant yeast, Saccharomyces cerevisiae, establishing the first system to combine simultaneous activation and repression, large multiplexing capacity, and inducibility. We demonstrate this toolkit by targeting 11 genes in central metabolism in a single transformation, achieving a 45-fold increase in succinic acid, which could be precisely controlled in an inducible manner. Our method offers a highly effective way to regulate genes and rewire metabolism in yeast, with principles of gRNA array construction and inducibility that should extend to other chassis organisms.
Collapse
Affiliation(s)
- William M Shaw
- Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Lucie Studená
- Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Kyler Roy
- Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Piotr Hapeta
- Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Nicholas S McCarty
- Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Alicia E Graham
- Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
36
|
Wang Y, Liu Y, Li J, Chen Y, Liu S, Zhong C. Engineered living materials (ELMs) design: From function allocation to dynamic behavior modulation. Curr Opin Chem Biol 2022; 70:102188. [PMID: 35970133 DOI: 10.1016/j.cbpa.2022.102188] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/14/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Natural materials possess many distinctive "living" attributes, such as self-growth, self-healing, environmental responsiveness, and evolvability, that are beyond the reach of many existing synthetic materials. The emerging field of engineered living materials (ELMs) takes inspiration from nature and harnesses engineered living systems to produce dynamic and responsive materials with genetically programmable functionalities. Here, we identify and review two main directions for the rational design of ELMs: first, engineering of living materials with enhanced performances by incorporating functional material modules, including engineered biological building blocks (proteins, polysaccharides, and nucleic acids) or well-defined artificial materials; second, engineering of smart ELMs that can sense and respond to their surroundings by programming dynamic cellular behaviors regulated via cell-cell or cell-environment interactions. We next discuss the strengths and challenges of current ELMs and conclude by providing a perspective of future directions in this promising area.
Collapse
Affiliation(s)
- Yanyi Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Cas Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yi Liu
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Cas Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jing Li
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Cas Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yue Chen
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Cas Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Sizhe Liu
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Cas Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Chao Zhong
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Cas Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
37
|
Abstract
Bacterial proteases are a promising post-translational regulation strategy in synthetic circuits because they recognize specific amino acid degradation tags (degrons) that can be fine-tuned to modulate the degradation levels of tagged proteins. For this reason, recent efforts have been made in the search for new degrons. Here we review the up-to-date applications of degradation tags for circuit engineering in bacteria. In particular, we pay special attention to the effects of degradation bottlenecks in synthetic oscillators and introduce mathematical approaches to study queueing that enable the quantitative modelling of proteolytic queues.
Collapse
Affiliation(s)
- Prajakta Jadhav
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Yanyan Chen
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Javier Buceta
- Institute for Integrative Systems Biology (I2SysBio, CSIC-UV), Paterna, Valencia 46980, Spain
| | - Arantxa Urchueguía
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA.,Institute for Integrative Systems Biology (I2SysBio, CSIC-UV), Paterna, Valencia 46980, Spain
| |
Collapse
|
38
|
Yu W, Jin K, Wu Y, Zhang Q, Liu Y, Li J, Du G, Chen J, Lv X, Ledesma-Amaro R, Liu L. A pathway independent multi-modular ordered control system based on thermosensors and CRISPRi improves bioproduction in Bacillus subtilis. Nucleic Acids Res 2022; 50:6587-6600. [PMID: 35670665 PMCID: PMC9226513 DOI: 10.1093/nar/gkac476] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 11/25/2022] Open
Abstract
Dynamic regulation is an effective strategy for control of gene expression in microbial cell factories. In some pathway contexts, several metabolic modules must be controlled in a time dependent or ordered manner to maximize production, while the creation of genetic circuits with ordered regulation capacity still remains a great challenge. In this work, we develop a pathway independent and programmable system that enables multi-modular ordered control of metabolism in Bacillus subtilis. First, a series of thermosensors were created and engineered to expand their thresholds. Then we designed single-input-multi-output circuits for ordered control based on the use of thermosensors with different transition points. Meanwhile, a repression circuit was constructed by combining CRISPRi-based NOT gates. As a proof-of-concept, these genetic circuits were applied for multi-modular ordered control of 2′-fucosyllactose (2′-FL) biosynthesis, resulting in a production of 1839.7 mg/l in shake flask, which is 5.16-times that of the parental strain. In a 5-l bioreactor, the 2′-FL titer reached 28.2 g/l with down-regulation of autolysis. Taken together, this work provides programmable and versatile thermosensitive genetic toolkits for dynamic regulation in B. subtilis and a multi-modular ordered control framework that can be used to improve metabolic modules in other chassis cells and for other compounds.
Collapse
Affiliation(s)
- Wenwen Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Ke Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Quanwei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
39
|
Barbier I, Kusumawardhani H, Schaerli Y. Engineering synthetic spatial patterns in microbial populations and communities. Curr Opin Microbiol 2022; 67:102149. [DOI: 10.1016/j.mib.2022.102149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 02/03/2023]
|
40
|
Omer R, Mohsin MZ, Mohsin A, Mushtaq BS, Huang X, Guo M, Zhuang Y, Huang J. Engineered Bacteria-Based Living Materials for Biotherapeutic Applications. Front Bioeng Biotechnol 2022; 10:870675. [PMID: 35573236 PMCID: PMC9096031 DOI: 10.3389/fbioe.2022.870675] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/11/2022] [Indexed: 11/10/2022] Open
Abstract
Future advances in therapeutics demand the development of dynamic and intelligent living materials. The past static monofunctional materials shall be unable to meet the requirements of future medical development. Also, the demand for precision medicine has increased with the progressively developing human society. Therefore, engineered living materials (ELMs) are vitally important for biotherapeutic applications. These ELMs can be cells, microbes, biofilms, and spores, representing a new platform for treating intractable diseases. Synthetic biology plays a crucial role in the engineering of these living entities. Hence, in this review, the role of synthetic biology in designing and creating genetically engineered novel living materials, particularly bacteria, has been briefly summarized for diagnostic and targeted delivery. The main focus is to provide knowledge about the recent advances in engineered bacterial-based therapies, especially in the treatment of cancer, inflammatory bowel diseases, and infection. Microorganisms, particularly probiotics, have been engineered for synthetic living therapies. Furthermore, these programmable bacteria are designed to sense input signals and respond to disease-changing environments with multipronged therapeutic outputs. These ELMs will open a new path for the synthesis of regenerative medicines as they release therapeutics that provide in situ drug delivery with lower systemic effects. In last, the challenges being faced in this field and the future directions requiring breakthroughs have been discussed. Conclusively, the intent is to present the recent advances in research and biomedical applications of engineered bacteria-based therapies during the last 5 years, as a novel treatment for uncontrollable diseases.
Collapse
Affiliation(s)
- Rabia Omer
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Muhammad Zubair Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bilal Sajid Mushtaq
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Xumeng Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiaofang Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China,*Correspondence: Jiaofang Huang,
| |
Collapse
|
41
|
Lv X, Hueso-Gil A, Bi X, Wu Y, Liu Y, Liu L, Ledesma-Amaro R. New synthetic biology tools for metabolic control. Curr Opin Biotechnol 2022; 76:102724. [PMID: 35489308 DOI: 10.1016/j.copbio.2022.102724] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 11/29/2022]
Abstract
In industrial bioprocesses, microbial metabolism dictates the product yields, and therefore, our capacity to control it has an enormous potential to help us move towards a bio-based economy. The rapid development of multiomics data has accelerated our systematic understanding of complex metabolic regulatory mechanisms, which allow us to develop tools to manipulate them. In the last few years, machine learning-based metabolic modeling, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) derived synthetic biology tools, and synthetic genetic circuits have been widely used to control the metabolism of microorganisms, manipulate gene expression, and build synthetic pathways for bioproduction. This review describes the latest developments for metabolic control, and focuses on the trends and challenges of metabolic engineering strategies.
Collapse
Affiliation(s)
- Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Angeles Hueso-Gil
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW72AZ, UK
| | - Xinyu Bi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW72AZ, UK.
| |
Collapse
|
42
|
Müller J, Jäkel AC, Richter J, Eder M, Falgenhauer E, Simmel FC. Bacterial Growth, Communication, and Guided Chemotaxis in 3D-Bioprinted Hydrogel Environments. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15871-15880. [PMID: 35349260 PMCID: PMC9012179 DOI: 10.1021/acsami.1c20836] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/14/2022] [Indexed: 06/06/2023]
Abstract
Bioprinting of engineered bacteria is of great interest for applications of synthetic biology in the context of living biomaterials, but so far, only a few viable approaches are available for the printing of gels hosting live Escherichia coli bacteria. Here, we develop a gentle extrusion-based bioprinting method based on an inexpensive alginate/agarose ink mixture that enables printing of E. coli into three-dimensional hydrogel structures up to 10 mm in height. We first characterize the rheological properties of the gel ink and then study the growth of the bacteria inside printed structures. We show that the maturation of fluorescent proteins deep within the printed structures can be facilitated by the addition of a calcium peroxide-based oxygen generation system. We then utilize the bioprinter to control different types of interactions between bacteria that depend on their spatial position. We next show quorum-sensing-based chemical communication between the engineered sender and receiver bacteria placed at different positions inside the bioprinted structure and finally demonstrate the fabrication of barrier structures defined by nonmotile bacteria that can guide the movement of chemotactic bacteria inside a gel. We anticipate that a combination of 3D bioprinting and synthetic biological approaches will lead to the development of living biomaterials containing engineered bacteria as dynamic functional units.
Collapse
|
43
|
Duddu AS, Majumdar SS, Sahoo S, Jhunjhunwala S, Jolly MK. Emergent dynamics of a three-node regulatory network explain phenotypic switching and heterogeneity: a case study of Th1/Th2/Th17 cell differentiation. Mol Biol Cell 2022; 33:ar46. [PMID: 35353012 PMCID: PMC9265159 DOI: 10.1091/mbc.e21-10-0521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Naïve helper (CD4+) T-cells can differentiate into distinct functional subsets including Th1, Th2, and Th17 phenotypes. Each of these phenotypes has a 'master regulator' - T-bet (Th1), GATA3 (Th2) and RORγT (Th17) - that inhibits the other two master regulators. Such mutual repression among them at a transcriptional level can enable multistability, giving rise to six experimentally observed phenotypes - Th1, Th2, Th17, hybrid Th/Th2, hybrid Th2/Th17 and hybrid Th1/Th17. However, the dynamics of switching among these phenotypes, particularly in the case of epigenetic influence, remains unclear. Here, through mathematical modeling, we investigated the coupled transcription-epigenetic dynamics in a three-node mutually repressing network to elucidate how epigenetic changes mediated by any 'master regulator' can influence the transition rates among different cellular phenotypes. We show that the degree of plasticity exhibited by one phenotype depends on relative strength and duration of mutual epigenetic repression mediated among the master regulators in a three-node network. Further, our model predictions can offer putative mechanisms underlying relatively higher plasticity of Th17 phenotype as observed in vitro and in vivo. Together, our modeling framework characterizes phenotypic plasticity and heterogeneity as an outcome of emergent dynamics of a three-node regulatory network, such as the one mediated by T-bet/GATA3/RORγT.
Collapse
Affiliation(s)
- Atchuta Srinivas Duddu
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sauma Suvra Majumdar
- epartment of Biotechnology, National Institute of Technology, Durgapur 713216, India
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Siddharth Jhunjhunwala
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
44
|
Wu S, Zhou T, Tian T. A robust method for designing multistable systems by embedding bistable subsystems. NPJ Syst Biol Appl 2022; 8:10. [PMID: 35338169 PMCID: PMC8956579 DOI: 10.1038/s41540-022-00220-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/15/2022] [Indexed: 12/21/2022] Open
Abstract
Although multistability is an important dynamic property of a wide range of complex systems, it is still a challenge to develop mathematical models for realising high order multistability using realistic regulatory mechanisms. To address this issue, we propose a robust method to develop multistable mathematical models by embedding bistable models together. Using the GATA1-GATA2-PU.1 module in hematopoiesis as the test system, we first develop a tristable model based on two bistable models without any high cooperative coefficients, and then modify the tristable model based on experimentally determined mechanisms. The modified model successfully realises four stable steady states and accurately reflects a recent experimental observation showing four transcriptional states. In addition, we develop a stochastic model, and stochastic simulations successfully realise the experimental observations in single cells. These results suggest that the proposed method is a general approach to develop mathematical models for realising multistability and heterogeneity in complex systems.
Collapse
Affiliation(s)
- Siyuan Wu
- School of Mathematics, Monash University, Melbourne, VIC, Australia
| | - Tianshou Zhou
- School of Mathematics and Statistics, Sun Yet-Sen University, Guangzhou, China
| | - Tianhai Tian
- School of Mathematics, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
45
|
Liu B, Cuba Samaniego C, Bennett M, Chappell J, Franco E. RNA Compensation: A Positive Feedback Insulation Strategy for RNA-Based Transcription Networks. ACS Synth Biol 2022; 11:1240-1250. [PMID: 35244392 DOI: 10.1021/acssynbio.1c00540] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lack of signaling modularity of biomolecular systems poses major challenges toward engineering complex networks. Directional signaling between an upstream and a downstream circuit requires the presence of binding events, which result in the consumption of regulatory molecules and can compromise the operation of the upstream circuit. This issue has been previously addressed by introducing insulation strategies that include high-gain negative feedback and activation-deactivation reaction cycles. In this paper, we focus on RNA-based circuits and propose a new positive-feedback strategy to mitigate signal consumption that we propose occurs for each regulatory event due to irreversible binding of the RNA input to the RNA target. To mitigate this, an extra RNA input is added in tandem with transcription output to compensate the RNA consumption, leading to concentration robustness of the input RNA molecule regardless of the amount of downstream modules. We term this strategy RNA compensation, and it can be applied to systems that have a stringent input-output gain, such as Small Transcription Activating RNAs (STARs). Our theoretical analysis shows that RNA compensation not only eliminates the signaling consumption in individual STAR-based regulators, but also improves the composability of STAR cascades and the modularity of RNA bistable systems.
Collapse
Affiliation(s)
- Baiyang Liu
- Graduate Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas 77005, United States
| | - Christian Cuba Samaniego
- Department of Mechanical and Aerospace Engineering, Bioengineering, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Matthew Bennett
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - James Chappell
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Elisa Franco
- Department of Mechanical and Aerospace Engineering, Bioengineering, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
46
|
Tickman BI, Burbano DA, Chavali VP, Kiattisewee C, Fontana J, Khakimzhan A, Noireaux V, Zalatan JG, Carothers JM. Multi-layer CRISPRa/i circuits for dynamic genetic programs in cell-free and bacterial systems. Cell Syst 2022; 13:215-229.e8. [PMID: 34800362 DOI: 10.1016/j.cels.2021.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/24/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
CRISPR-Cas transcriptional circuits hold great promise as platforms for engineering metabolic networks and information processing circuits. Historically, prokaryotic CRISPR control systems have been limited to CRISPRi. Creating approaches to integrate CRISPRa for transcriptional activation with existing CRISPRi-based systems would greatly expand CRISPR circuit design space. Here, we develop design principles for engineering prokaryotic CRISPRa/i genetic circuits with network topologies specified by guide RNAs. We demonstrate that multi-layer CRISPRa/i cascades and feedforward loops can operate through the regulated expression of guide RNAs in cell-free expression systems and E. coli. We show that CRISPRa/i circuits can program complex functions by designing type 1 incoherent feedforward loops acting as fold-change detectors and tunable pulse-generators. By investigating how component characteristics relate to network properties such as depth, width, and speed, this work establishes a framework for building scalable CRISPRa/i circuits as regulatory programs in cell-free expression systems and bacterial hosts. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Benjamin I Tickman
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA
| | - Diego Alba Burbano
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA; Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Venkata P Chavali
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA
| | - Cholpisit Kiattisewee
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA
| | - Jason Fontana
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA
| | - Aset Khakimzhan
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jesse G Zalatan
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA; Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - James M Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA; Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
47
|
Bellato M, Frusteri Chiacchiera A, Salibi E, Casanova M, De Marchi D, Castagliuolo I, Cusella De Angelis MG, Magni P, Pasotti L. CRISPR Interference Modules as Low-Burden Logic Inverters in Synthetic Circuits. Front Bioeng Biotechnol 2022; 9:743950. [PMID: 35155399 PMCID: PMC8831695 DOI: 10.3389/fbioe.2021.743950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
CRISPR and CRISPRi systems have revolutionized our biological engineering capabilities by enabling the editing and regulation of virtually any gene, via customization of single guide RNA (sgRNA) sequences. CRISPRi modules can work as programmable logic inverters, in which the dCas9-sgRNA complex represses a target transcriptional unit. They have been successfully used in bacterial synthetic biology to engineer information processing tasks, as an alternative to the traditionally adopted transcriptional regulators. In this work, we investigated and modulated the transfer function of several model systems with specific focus on the cell load caused by the CRISPRi logic inverters. First, an optimal expression cassette for dCas9 was rationally designed to meet the low-burden high-repression trade-off. Then, a circuit collection was studied at varying levels of dCas9 and sgRNAs targeting three different promoters from the popular tet, lac and lux systems, placed at different DNA copy numbers. The CRISPRi NOT gates showed low-burden properties that were exploited to fix a high resource-consuming circuit previously exhibiting a non-functional input-output characteristic, and were also adopted to upgrade a transcriptional regulator-based NOT gate into a 2-input NOR gate. The obtained data demonstrate that CRISPRi-based modules can effectively act as low-burden components in different synthetic circuits for information processing.
Collapse
Affiliation(s)
- Massimo Bellato
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Pavia, Italy
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Angelica Frusteri Chiacchiera
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Pavia, Italy
| | - Elia Salibi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Pavia, Italy
| | - Michela Casanova
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Pavia, Italy
| | - Davide De Marchi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Pavia, Italy
| | | | - Maria Gabriella Cusella De Angelis
- Centre for Health Technologies, University of Pavia, Pavia, Italy
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Paolo Magni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Pavia, Italy
| | - Lorenzo Pasotti
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Pavia, Italy
- *Correspondence: Lorenzo Pasotti,
| |
Collapse
|
48
|
Zhu R, Del Rio-Salgado JM, Garcia-Ojalvo J, Elowitz MB. Synthetic multistability in mammalian cells. Science 2022; 375:eabg9765. [PMID: 35050677 DOI: 10.1126/science.abg9765] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In multicellular organisms, gene regulatory circuits generate thousands of molecularly distinct, mitotically heritable states through the property of multistability. Designing synthetic multistable circuits would provide insight into natural cell fate control circuit architectures and would allow engineering of multicellular programs that require interactions among distinct cell types. We created MultiFate, a naturally inspired, synthetic circuit that supports long-term, controllable, and expandable multistability in mammalian cells. MultiFate uses engineered zinc finger transcription factors that transcriptionally self-activate as homodimers and mutually inhibit one another through heterodimerization. Using a model-based design, we engineered MultiFate circuits that generate as many as seven states, each stable for at least 18 days. MultiFate permits controlled state switching and modulation of state stability through external inputs and can be expanded with additional transcription factors. These results provide a foundation for engineering multicellular behaviors in mammalian cells.
Collapse
Affiliation(s)
- Ronghui Zhu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jesus M Del Rio-Salgado
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
49
|
Kunze C, Khalil AS. One cell, many fates. Science 2022; 375:262-263. [PMID: 35050646 DOI: 10.1126/science.abn6548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Colin Kunze
- Biological Design Center, Boston University, Boston, MA, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
50
|
Tarnowski MJ, Gorochowski TE. Massively parallel characterization of engineered transcript isoforms using direct RNA sequencing. Nat Commun 2022; 13:434. [PMID: 35064117 PMCID: PMC8783025 DOI: 10.1038/s41467-022-28074-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
Transcriptional terminators signal where transcribing RNA polymerases (RNAPs) should halt and disassociate from DNA. However, because termination is stochastic, two different forms of transcript could be produced: one ending at the terminator and the other reading through. An ability to control the abundance of these transcript isoforms would offer bioengineers a mechanism to regulate multi-gene constructs at the level of transcription. Here, we explore this possibility by repurposing terminators as 'transcriptional valves' that can tune the proportion of RNAP read-through. Using one-pot combinatorial DNA assembly, we iteratively construct 1780 transcriptional valves for T7 RNAP and show how nanopore-based direct RNA sequencing (dRNA-seq) can be used to characterize entire libraries of valves simultaneously at a nucleotide resolution in vitro and unravel genetic design principles to tune and insulate termination. Finally, we engineer valves for multiplexed regulation of CRISPR guide RNAs. This work provides new avenues for controlling transcription and demonstrates the benefits of long-read sequencing for exploring complex sequence-function landscapes.
Collapse
Affiliation(s)
- Matthew J Tarnowski
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Thomas E Gorochowski
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK.
- BrisSynBio, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK.
| |
Collapse
|