1
|
Liu M, Ge W, Zhong G, Yang Y, Xun L, Xia Y. Dual-Plasmid Mini-Tn5 System to Stably Integrate Multicopy of Target Genes in Escherichia coli. ACS Synth Biol 2024. [PMID: 39418641 DOI: 10.1021/acssynbio.4c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The efficiency of valuable metabolite production by engineered microorganisms underscores the importance of stable and controllable gene expression. While plasmid-based methods offer flexibility, integrating genes into host chromosomes can establish stability without selection pressure. However, achieving site-directed multicopy integration presents challenges, including site selection and stability. We introduced a stable multicopy integration method by using a novel dual-plasmid mini-Tn5 system to insert genes into Escherichia coli's genome. The gene of interest was combined with a removable antibiotic resistance gene. After the selection of bacteria with inserted genes, the antibiotic resistance gene was removed. Optimizations yielded an integration efficiency of approximately 5.5 × 10-3 per recipient cell in a single round. Six rounds of integration resulted in 19 and 5 copies of the egfp gene in the RecA+ strain MG1655 and the RecA- strain XL1-Blue MRF', respectively. Additionally, we integrated a polyhydroxybutyrate (PHB) synthesis gene cluster into E. coli MG1655, yielding an 8-copy integration strain producing more PHB than strains with the cluster on a high-copy plasmid. The method was efficient in generating gene insertions in various E. coli strains, and the inserted genes were stable after extended culture. This stable, high-copy integration tool offers potential for diverse applications in synthetic biology.
Collapse
Affiliation(s)
- Menghui Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Wei Ge
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
- Clinical Laboratory, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong 266024, People's Republic of China
| | - Guomei Zhong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Yuqing Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520, United States
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| |
Collapse
|
2
|
Cheng P, Mao C, Tang J, Yang S, Cheng Y, Wang W, Gu Q, Han W, Chen H, Li S, Chen Y, Zhou J, Li W, Pan A, Zhao S, Huang X, Zhu S, Zhang J, Shu W, Wang S. Zero-shot prediction of mutation effects with multimodal deep representation learning guides protein engineering. Cell Res 2024; 34:630-647. [PMID: 38969803 PMCID: PMC11369238 DOI: 10.1038/s41422-024-00989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024] Open
Abstract
Mutations in amino acid sequences can provoke changes in protein function. Accurate and unsupervised prediction of mutation effects is critical in biotechnology and biomedicine, but remains a fundamental challenge. To resolve this challenge, here we present Protein Mutational Effect Predictor (ProMEP), a general and multiple sequence alignment-free method that enables zero-shot prediction of mutation effects. A multimodal deep representation learning model embedded in ProMEP was developed to comprehensively learn both sequence and structure contexts from ~160 million proteins. ProMEP achieves state-of-the-art performance in mutational effect prediction and accomplishes a tremendous improvement in speed, enabling efficient and intelligent protein engineering. Specifically, ProMEP accurately forecasts mutational consequences on the gene-editing enzymes TnpB and TadA, and successfully guides the development of high-performance gene-editing tools with their engineered variants. The gene-editing efficiency of a 5-site mutant of TnpB reaches up to 74.04% (vs 24.66% for the wild type); and the base editing tool developed on the basis of a TadA 15-site mutant (in addition to the A106V/D108N double mutation that renders deoxyadenosine deaminase activity to TadA) exhibits an A-to-G conversion frequency of up to 77.27% (vs 69.80% for ABE8e, a previous TadA-based adenine base editor) with significantly reduced bystander and off-target effects compared to ABE8e. ProMEP not only showcases superior performance in predicting mutational effects on proteins but also demonstrates a great capability to guide protein engineering. Therefore, ProMEP enables efficient exploration of the gigantic protein space and facilitates practical design of proteins, thereby advancing studies in biomedicine and synthetic biology.
Collapse
Affiliation(s)
- Peng Cheng
- Bioinformatics Center of AMMS, Beijing, China
| | - Cong Mao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin Tang
- Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Sen Yang
- Bioinformatics Center of AMMS, Beijing, China
| | - Yu Cheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wuke Wang
- Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Qiuxi Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Han
- Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Hao Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sihan Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | - Wuju Li
- Bioinformatics Center of AMMS, Beijing, China
| | - Aimin Pan
- Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xingxu Huang
- Zhejiang Lab, Hangzhou, Zhejiang, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | | | - Jun Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Wenjie Shu
- Bioinformatics Center of AMMS, Beijing, China.
| | | |
Collapse
|
3
|
Albayati SH, Nezhad NG, Taki AG, Rahman RNZRA. Efficient and easible biocatalysts: Strategies for enzyme improvement. A review. Int J Biol Macromol 2024; 276:133978. [PMID: 39038570 DOI: 10.1016/j.ijbiomac.2024.133978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Owing to the environmental friendliness and vast advantages that enzymes offer in the biotechnology and industry fields, biocatalysts are a prolific investigation field. However, the low catalytic activity, stability, and specific selectivity of the enzyme limit the range of the reaction enzymes involved in. A comprehensive understanding of the protein structure and dynamics in terms of molecular details enables us to tackle these limitations effectively and enhance the catalytic activity by enzyme engineering or modifying the supports and solvents. Along with different strategies including computational, enzyme engineering based on DNA recombination, enzyme immobilization, additives, chemical modification, and physicochemical modification approaches can be promising for the wide spread of industrial enzyme usage. This is attributed to the successful application of biocatalysts in industrial and synthetic processes requires a system that exhibits stability, activity, and reusability in a continuous flow process, thereby reducing the production cost. The main goal of this review is to display relevant approaches for improving enzyme characteristics to overcome their industrial application.
Collapse
Affiliation(s)
- Samah Hashim Albayati
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Anmar Ghanim Taki
- Department of Radiology Techniques, Health and Medical Techniques College, Alnoor University, Mosul, Iraq
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Institute Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
4
|
Iturralde AB, Weller CA, Sadhu MJ. Comprehensive deletion scan of anti-CRISPR AcrIIA4 reveals essential and dispensable domains for Cas9 inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602757. [PMID: 39372796 PMCID: PMC11451618 DOI: 10.1101/2024.07.09.602757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Delineating a protein's essential and dispensable domains provides critical insight into how it carries out its function. Here, we developed a high-throughput method to synthesize and test the functionality of all possible in-frame and continuous deletions in a gene of interest, enabling rapid and unbiased determination of protein domain importance. Our approach generates precise deletions using a CRISPR library framework that is free from constraints of gRNA target site availability and efficacy. We applied our method to AcrIIA4, a phage-encoded anti-CRISPR protein that robustly inhibits SpCas9. Extensive structural characterization has shown that AcrIIA4 physically occupies the DNA-binding interfaces of several SpCas9 domains; nonetheless, the importance of each AcrIIA4 interaction for SpCas9 inhibition is unknown. We used our approach to determine the essential and dispensable regions of AcrIIA4. Surprisingly, not all contacts with SpCas9 were required, and in particular, we found that the AcrIIA4 loop that inserts into SpCas9's RuvC catalytic domain can be deleted. Our results show that AcrIIA4 inhibits SpCas9 primarily by blocking PAM binding, and that its interaction with the SpCas9 catalytic domain is inessential.
Collapse
Affiliation(s)
- Annette B Iturralde
- Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Present address: Biomedical Sciences Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Cory A Weller
- Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Present address: Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Meru J Sadhu
- Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Guan A, He Z, Wang X, Jia ZJ, Qin J. Engineering the next-generation synthetic cell factory driven by protein engineering. Biotechnol Adv 2024; 73:108366. [PMID: 38663492 DOI: 10.1016/j.biotechadv.2024.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/21/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024]
Abstract
Synthetic cell factory offers substantial advantages in economically efficient production of biofuels, chemicals, and pharmaceutical compounds. However, to create a high-performance synthetic cell factory, precise regulation of cellular material and energy flux is essential. In this context, protein components including enzymes, transcription factor-based biosensors and transporters play pivotal roles. Protein engineering aims to create novel protein variants with desired properties by modifying or designing protein sequences. This review focuses on summarizing the latest advancements of protein engineering in optimizing various aspects of synthetic cell factory, including: enhancing enzyme activity to eliminate production bottlenecks, altering enzyme selectivity to steer metabolic pathways towards desired products, modifying enzyme promiscuity to explore innovative routes, and improving the efficiency of transporters. Furthermore, the utilization of protein engineering to modify protein-based biosensors accelerates evolutionary process and optimizes the regulation of metabolic pathways. The remaining challenges and future opportunities in this field are also discussed.
Collapse
Affiliation(s)
- Ailin Guan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zixi He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xin Wang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi-Jun Jia
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiufu Qin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Chisholm LO, Orlandi KN, Phillips SR, Shavlik MJ, Harms MJ. Ancestral Reconstruction and the Evolution of Protein Energy Landscapes. Annu Rev Biophys 2024; 53:127-146. [PMID: 38134334 PMCID: PMC11192866 DOI: 10.1146/annurev-biophys-030722-125440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
A protein's sequence determines its conformational energy landscape. This, in turn, determines the protein's function. Understanding the evolution of new protein functions therefore requires understanding how mutations alter the protein energy landscape. Ancestral sequence reconstruction (ASR) has proven a valuable tool for tackling this problem. In ASR, one phylogenetically infers the sequences of ancient proteins, allowing characterization of their properties. When coupled to biophysical, biochemical, and functional characterization, ASR can reveal how historical mutations altered the energy landscape of ancient proteins, allowing the evolution of enzyme activity, altered conformations, binding specificity, oligomerization, and many other protein features. In this article, we review how ASR studies have been used to dissect the evolution of energy landscapes. We also discuss ASR studies that reveal how energy landscapes have shaped protein evolution. Finally, we propose that thinking about evolution from the perspective of an energy landscape can improve how we approach and interpret ASR studies.
Collapse
Affiliation(s)
- Lauren O Chisholm
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA;
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Kona N Orlandi
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Department of Biology, University of Oregon, Eugene, Oregon, USA
| | - Sophia R Phillips
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA;
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Michael J Shavlik
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Department of Biology, University of Oregon, Eugene, Oregon, USA
| | - Michael J Harms
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA;
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
7
|
Schnettler JD, Wang MS, Gantz M, Bunzel HA, Karas C, Hollfelder F, Hecht MH. Selection of a promiscuous minimalist cAMP phosphodiesterase from a library of de novo designed proteins. Nat Chem 2024; 16:1200-1208. [PMID: 38702405 PMCID: PMC11230910 DOI: 10.1038/s41557-024-01490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/27/2024] [Indexed: 05/06/2024]
Abstract
The ability of unevolved amino acid sequences to become biological catalysts was key to the emergence of life on Earth. However, billions of years of evolution separate complex modern enzymes from their simpler early ancestors. To probe how unevolved sequences can develop new functions, we use ultrahigh-throughput droplet microfluidics to screen for phosphoesterase activity amidst a library of more than one million sequences based on a de novo designed 4-helix bundle. Characterization of hits revealed that acquisition of function involved a large jump in sequence space enriching for truncations that removed >40% of the protein chain. Biophysical characterization of a catalytically active truncated protein revealed that it dimerizes into an α-helical structure, with the gain of function accompanied by increased structural dynamics. The identified phosphodiesterase is a manganese-dependent metalloenzyme that hydrolyses a range of phosphodiesters. It is most active towards cyclic AMP, with a rate acceleration of ~109 and a catalytic proficiency of >1014 M-1, comparable to larger enzymes shaped by billions of years of evolution.
Collapse
Affiliation(s)
| | - Michael S Wang
- Department of Chemistry, Princeton University, Princeton, USA
| | - Maximilian Gantz
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - H Adrian Bunzel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Christina Karas
- Department of Molecular Biology, Princeton University, Princeton, USA
| | | | - Michael H Hecht
- Department of Chemistry, Princeton University, Princeton, USA.
| |
Collapse
|
8
|
Tenthorey JL, del Banco S, Ramzan I, Klingenberg H, Liu C, Emerman M, Malik HS. Indels allow antiviral proteins to evolve functional novelty inaccessible by missense mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592993. [PMID: 38765965 PMCID: PMC11100679 DOI: 10.1101/2024.05.07.592993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Antiviral proteins often evolve rapidly at virus-binding interfaces to defend against new viruses. We investigated whether antiviral adaptation via missense mutations might face limits, which insertion or deletion mutations (indels) could overcome. We report one such case of a nearly insurmountable evolutionary challenge: the human anti-retroviral protein TRIM5α requires more than five missense mutations in its specificity-determining v1 loop to restrict a divergent simian immunodeficiency virus (SIV). However, duplicating just one amino acid in v1 enables human TRIM5α to potently restrict SIV in a single evolutionary step. Moreover, natural primate TRIM5α v1 loops have evolved indels that confer novel antiviral specificities. Thus, indels enable antiviral proteins to overcome viral challenges inaccessible by missense mutations, revealing the potential of these often-overlooked mutations in driving protein innovation.
Collapse
Affiliation(s)
- Jeannette L. Tenthorey
- Cellular and Molecular Pharmacology Department, University of California, San Francisco; San Francisco, 94158, USA
| | - Serena del Banco
- Division of Basic Sciences, Fred Hutchinson Cancer Center; Seattle, USA
| | - Ishrak Ramzan
- Cellular and Molecular Pharmacology Department, University of California, San Francisco; San Francisco, 94158, USA
| | - Hayley Klingenberg
- Cellular and Molecular Pharmacology Department, University of California, San Francisco; San Francisco, 94158, USA
| | - Chang Liu
- Cellular and Molecular Pharmacology Department, University of California, San Francisco; San Francisco, 94158, USA
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Center; Seattle, USA
- Division of Human Biology, Fred Hutchinson Cancer Center; Seattle, USA
| | - Harmit S. Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Center; Seattle, USA
- Howard Hughes Medical Investigator, Fred Hutchinson Cancer Center; Seattle, USA
| |
Collapse
|
9
|
Kozome D, Sljoka A, Laurino P. Remote loop evolution reveals a complex biological function for chitinase enzymes beyond the active site. Nat Commun 2024; 15:3227. [PMID: 38622119 PMCID: PMC11018821 DOI: 10.1038/s41467-024-47588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024] Open
Abstract
Loops are small secondary structural elements that play a crucial role in the emergence of new enzyme functions. However, the evolutionary molecular mechanisms how proteins acquire these loop elements and obtain new function is poorly understood. To address this question, we study glycoside hydrolase family 19 (GH19) chitinase-an essential enzyme family for pathogen degradation in plants. By revealing the evolutionary history and loops appearance of GH19 chitinase, we discover that one loop which is remote from the catalytic site, is necessary to acquire the new antifungal activity. We demonstrate that this remote loop directly accesses the fungal cell wall, and surprisingly, it needs to adopt a defined structure supported by long-range intramolecular interactions to perform its function. Our findings prove that nature applies this strategy at the molecular level to achieve a complex biological function while maintaining the original activity in the catalytic pocket, suggesting an alternative way to design new enzyme function.
Collapse
Affiliation(s)
- Dan Kozome
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, 904-0495, Japan
| | - Adnan Sljoka
- Center for Advanced Intelligence Project, RIKEN, Tokyo, 103-0027, Japan
- Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada
| | - Paola Laurino
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, 904-0495, Japan.
- Institute for Protein Research, Osaka University, Suita, Japan.
| |
Collapse
|
10
|
Liu G, Wang J, Chu J, Jiang T, Qin S, Gao Z, He B. Engineering Substrate Promiscuity of Nucleoside Phosphorylase Via an Insertions-Deletions Strategy. JACS AU 2024; 4:454-464. [PMID: 38425912 PMCID: PMC10900210 DOI: 10.1021/jacsau.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 03/02/2024]
Abstract
Nucleoside phosphorylases (NPs) are the key enzymes in the nucleoside metabolism pathway and are widely employed for the synthesis of nucleoside analogs, which are difficult to access via conventional synthetic methods. NPs are generally classified as purine nucleoside phosphorylase (PNP) and pyrimidine or uridine nucleoside phosphorylase (PyNP/UP), based on their substrate preference. Here, based on the evolutionary information on the NP-I family, we adopted an insertions-deletions (InDels) strategy to engineer the substrate promiscuity of nucleoside phosphorylase AmPNPΔS2V102 K, which exhibits both PNP and UP activities from a trimeric PNP (AmPNP) of Aneurinibacillus migulanus. Furthermore, the AmPNPΔS2V102 K exerted phosphorylation activities toward arabinose nucleoside, fluorosyl nucleoside, and dideoxyribose, thereby broadening the unnatural-ribose nucleoside substrate spectrum of AmPNP. Finally, six purine nucleoside analogues were successfully synthesized, using the engineered AmPNPΔS2V102 K instead of the traditional "two-enzymes PNP/UP" approach. These results provide deep insights into the catalytic mechanisms of the PNP and demonstrate the benefits of using the InDels strategy to achieve substrate promiscuity in an enzyme, as well as broadening the substrate spectrum of the enzyme.
Collapse
Affiliation(s)
- Gaofei Liu
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Jialing Wang
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Jianlin Chu
- School
of Pharmaceutical Sciences, Nanjing Tech
University, Nanjing 211800, China
| | - Tianyue Jiang
- School
of Pharmaceutical Sciences, Nanjing Tech
University, Nanjing 211800, China
| | - Song Qin
- School
of Pharmaceutical Sciences, Nanjing Tech
University, Nanjing 211800, China
| | - Zhen Gao
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Bingfang He
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
- School
of Pharmaceutical Sciences, Nanjing Tech
University, Nanjing 211800, China
| |
Collapse
|
11
|
Ohmuro-Matsuyama Y, Matsui H, Kanai M, Furuta T. Glow-type conversion and characterization of a minimal luciferase via mutational analyses. FEBS J 2023; 290:5554-5565. [PMID: 37622174 DOI: 10.1111/febs.16937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/20/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
Luciferases are widely used as reporter proteins in various fields. Recently, we developed a minimal bright luciferase, picALuc, via partial deletion of the artificial luciferase (ALuc) derived from copepods luciferases. However, the structures of copepod luciferases in the substrate-bound state remain unknown. Moreover, as suggested by structural modeling, picALuc has a larger active site cavity, unlike that in other copepod luciferases. Here, to explore the bioluminescence mechanism of picALuc and its luminescence properties, we conducted multiple mutational analyses, and identified residues and regions important for catalysis and bioluminescence. Mutations of residues likely involved in catalysis (S33, H34, and D55) markedly reduced bioluminescence, whereas that of residue (E50) (near the substrate in the structural model) enhanced luminescence intensity. Furthermore, deletion mutants (Δ70-Δ78) in the loop region (around I73) exhibited longer luminescence lifetimes (~ 30 min) and were reactivated multiple times upon re-addition of the substrate. Due to the high thermostability of picALuc, one of its representative mutant (Δ74), was able to be reused, that is, luminescence recycling, for day-scale time at room temperature. These findings provide important insights into picALuc bioluminescence mechanism and copepod luciferases and may help with sustained observations in a variety of applications.
Collapse
Affiliation(s)
| | - Hayato Matsui
- Technology Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Masaki Kanai
- Technology Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Tadaomi Furuta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
12
|
Min JG, Jeong HD, Kim KI. Identification of Various InDel-II Variants of the White Spot Syndrome Virus Isolated from Frozen Shrimp and Bivalves Obtained in the Korean Commercial Market. Animals (Basel) 2023; 13:3348. [PMID: 37958102 PMCID: PMC10650675 DOI: 10.3390/ani13213348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
White spot syndrome virus (WSSV) poses a significant threat to the global shrimp industry. We investigated the presence of WSSV in frozen shrimp (n = 86) and shellfish (n = 185) from the Korean market (2010-2018). The detection rate of first-step polymerase chain reaction (PCR) in domestic shrimp was 36.8% (7/19), whereas that in imported shrimp was 0.01% (1/67). Furthermore, the WSSV genome was amplified from domestic bivalve mollusks by first- and second-step PCR with accuracies of 3.4% (5/147) and 15.6% (23/147), respectively. The genetic relatedness of InDel-II regions among WSSVs detected in domestic shrimp groups revealed four variants (777, 5649, 11,070 and 13,046 bp insertion or deletion), and imported shrimp groups had four variants (10,778, 11,086, 11,500 and 13,210 bp) compared with the putative ancestor WSSV strain. The 5649 bp variant was the dominant type among the WSSV variants detected in domestic shrimp (54.5%, 6/11). Notably, bivalve mollusks exhibited six variants (777, 5649, 5783, 5876, 11,070 and 13,046 bp), including four variants detected in shrimp, indicating that bivalve mollusks could facilitate WSSV tracking. In a challenge test, whiteleg shrimp (Litopenaeus vannamei) exhibited varying mortality rates, indicating a link between InDel-II deletion and viral replication. These findings highlight the complexity of WSSV transmission.
Collapse
Affiliation(s)
| | | | - Kwang-Il Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Republic of Korea; (J.-G.M.)
| |
Collapse
|
13
|
Robin AY, Brochier-Armanet C, Bertrand Q, Barette C, Girard E, Madern D. Deciphering Evolutionary Trajectories of Lactate Dehydrogenases Provides New Insights into Allostery. Mol Biol Evol 2023; 40:msad223. [PMID: 37797308 PMCID: PMC10583557 DOI: 10.1093/molbev/msad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023] Open
Abstract
Lactate dehydrogenase (LDH, EC.1.1.127) is an important enzyme engaged in the anaerobic metabolism of cells, catalyzing the conversion of pyruvate to lactate and NADH to NAD+. LDH is a relevant enzyme to investigate structure-function relationships. The present work provides the missing link in our understanding of the evolution of LDHs. This allows to explain (i) the various evolutionary origins of LDHs in eukaryotic cells and their further diversification and (ii) subtle phenotypic modifications with respect to their regulation capacity. We identified a group of cyanobacterial LDHs displaying eukaryotic-like LDH sequence features. The biochemical and structural characterization of Cyanobacterium aponinum LDH, taken as representative, unexpectedly revealed that it displays homotropic and heterotropic activation, typical of an allosteric enzyme, whereas it harbors a long N-terminal extension, a structural feature considered responsible for the lack of allosteric capacity in eukaryotic LDHs. Its crystallographic structure was solved in 2 different configurations typical of the R-active and T-inactive states encountered in allosteric LDHs. Structural comparisons coupled with our evolutionary analyses helped to identify 2 amino acid positions that could have had a major role in the attenuation and extinction of the allosteric activation in eukaryotic LDHs rather than the presence of the N-terminal extension. We tested this hypothesis by site-directed mutagenesis. The resulting C. aponinum LDH mutants displayed reduced allosteric capacity mimicking those encountered in plants and human LDHs. This study provides a new evolutionary scenario of LDHs that unifies descriptions of regulatory properties with structural and mutational patterns of these important enzymes.
Collapse
Affiliation(s)
- Adeline Y Robin
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Céline Brochier-Armanet
- Laboratoire de Biométrie et Biologie Évolutive, Université Claude Bernard Lyon 1, CNRS, UMR5558, Villeurbanne F-69622, France
| | - Quentin Bertrand
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institut, Villigen, Switzerland
| | - Caroline Barette
- Université Grenoble Alpes, CEA, Inserm, IRIG, BGE, Grenoble 38000, France
| | - Eric Girard
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Dominique Madern
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| |
Collapse
|
14
|
Gantz M, Neun S, Medcalf EJ, van Vliet LD, Hollfelder F. Ultrahigh-Throughput Enzyme Engineering and Discovery in In Vitro Compartments. Chem Rev 2023; 123:5571-5611. [PMID: 37126602 PMCID: PMC10176489 DOI: 10.1021/acs.chemrev.2c00910] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Indexed: 05/03/2023]
Abstract
Novel and improved biocatalysts are increasingly sourced from libraries via experimental screening. The success of such campaigns is crucially dependent on the number of candidates tested. Water-in-oil emulsion droplets can replace the classical test tube, to provide in vitro compartments as an alternative screening format, containing genotype and phenotype and enabling a readout of function. The scale-down to micrometer droplet diameters and picoliter volumes brings about a >107-fold volume reduction compared to 96-well-plate screening. Droplets made in automated microfluidic devices can be integrated into modular workflows to set up multistep screening protocols involving various detection modes to sort >107 variants a day with kHz frequencies. The repertoire of assays available for droplet screening covers all seven enzyme commission (EC) number classes, setting the stage for widespread use of droplet microfluidics in everyday biochemical experiments. We review the practicalities of adapting droplet screening for enzyme discovery and for detailed kinetic characterization. These new ways of working will not just accelerate discovery experiments currently limited by screening capacity but profoundly change the paradigms we can probe. By interfacing the results of ultrahigh-throughput droplet screening with next-generation sequencing and deep learning, strategies for directed evolution can be implemented, examined, and evaluated.
Collapse
Affiliation(s)
| | | | | | | | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| |
Collapse
|
15
|
Banerjee A, Bahar I. Structural Dynamics Predominantly Determine the Adaptability of Proteins to Amino Acid Deletions. Int J Mol Sci 2023; 24:8450. [PMID: 37176156 PMCID: PMC10179678 DOI: 10.3390/ijms24098450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
The insertion or deletion (indel) of amino acids has a variety of effects on protein function, ranging from disease-forming changes to gaining new functions. Despite their importance, indels have not been systematically characterized towards protein engineering or modification goals. In the present work, we focus on deletions composed of multiple contiguous amino acids (mAA-dels) and their effects on the protein (mutant) folding ability. Our analysis reveals that the mutant retains the native fold when the mAA-del obeys well-defined structural dynamics properties: localization in intrinsically flexible regions, showing low resistance to mechanical stress, and separation from allosteric signaling paths. Motivated by the possibility of distinguishing the features that underlie the adaptability of proteins to mAA-dels, and by the rapid evaluation of these features using elastic network models, we developed a positive-unlabeled learning-based classifier that can be adopted for protein design purposes. Trained on a consolidated set of features, including those reflecting the intrinsic dynamics of the regions where the mAA-dels occur, the new classifier yields a high recall of 84.3% for identifying mAA-dels that are stably tolerated by the protein. The comparative examination of the relative contribution of different features to the prediction reveals the dominant role of structural dynamics in enabling the adaptation of the mutant to mAA-del without disrupting the native fold.
Collapse
Affiliation(s)
- Anupam Banerjee
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
16
|
Lemire BD, Uppuluri P. Coding Sequence Insertions in Fungal Genomes are Intrinsically Disordered and can Impart Functionally-Important Properties on the Host Protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535715. [PMID: 37066283 PMCID: PMC10104129 DOI: 10.1101/2023.04.06.535715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Insertion and deletion mutations (indels) are important mechanisms of generating protein diversity. Indels in coding sequences are under considerable selective pressure to maintain reading frames and to preserve protein function, but once generated, indels provide raw material for the acquisition of new protein properties and functions. We reported recently that coding sequence insertions in the Candida albicans NDU1 protein, a mitochondrial protein involved in the assembly of the NADH:ubiquinone oxidoreductase are imperative for respiration, biofilm formation and pathogenesis. NDU1 inserts are specific to CTG-clade fungi, absent in human ortholog and successfully harnessed as drug targets. Here, we present the first comprehensive report investigating indels and clade-defining insertions (CDIs) in fungal proteomes. We investigated 80 ascomycete proteomes encompassing CTG clade species, the Saccharomycetaceae family, the Aspergillaceae family and the Herpotrichiellaceae (black yeasts) family. We identified over 30,000 insertions, 4,000 CDIs and 2,500 clade-defining deletions (CDDs). Insert sizes range from 1 to over 1,000 residues in length, while maximum deletion length is 19 residues. Inserts are strikingly over-represented in protein kinases, and excluded from structural domains and transmembrane segments. Inserts are predicted to be highly disordered. The amino acid compositions of the inserts are highly depleted in hydrophobic residues and enriched in polar residues. An indel in the Saccharomyces cerevisiae Sth1 protein, the catalytic subunit of the RSC (Remodel the Structure of Chromatin) complex is predicted to be disordered until it forms a ß-strand upon interaction. This interaction performs a vital role in RSC-mediated transcriptional regulation, thereby expanding protein function.
Collapse
Affiliation(s)
- Bernard D. Lemire
- Department of Biochemistry, University of Alberta, Edmonton, Canada (retired)
| | - Priya Uppuluri
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
17
|
Sellés Vidal L, Isalan M, Heap JT, Ledesma-Amaro R. A primer to directed evolution: current methodologies and future directions. RSC Chem Biol 2023; 4:271-291. [PMID: 37034405 PMCID: PMC10074555 DOI: 10.1039/d2cb00231k] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/18/2023] [Indexed: 01/30/2023] Open
Abstract
Directed evolution is one of the most powerful tools for protein engineering and functions by harnessing natural evolution, but on a shorter timescale. It enables the rapid selection of variants of biomolecules with properties that make them more suitable for specific applications. Since the first in vitro evolution experiments performed by Sol Spiegelman in 1967, a wide range of techniques have been developed to tackle the main two steps of directed evolution: genetic diversification (library generation), and isolation of the variants of interest. This review covers the main modern methodologies, discussing the advantages and drawbacks of each, and hence the considerations for designing directed evolution experiments. Furthermore, the most recent developments are discussed, showing how advances in the handling of ever larger library sizes are enabling new research questions to be tackled.
Collapse
Affiliation(s)
- Lara Sellés Vidal
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Bioengineering, Imperial College London London SW7 2AZ UK
| | - Mark Isalan
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Life Sciences, Imperial College London London SW7 2AZ UK
| | - John T Heap
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Life Sciences, Imperial College London London SW7 2AZ UK
- School of Life Sciences, The University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Bioengineering, Imperial College London London SW7 2AZ UK
| |
Collapse
|
18
|
Goodchild-Michelman IM, Church GM, Schubert MG, Tang TC. Light and carbon: Synthetic biology toward new cyanobacteria-based living biomaterials. Mater Today Bio 2023; 19:100583. [PMID: 36846306 PMCID: PMC9945787 DOI: 10.1016/j.mtbio.2023.100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023] Open
Abstract
Cyanobacteria are ideal candidates to use in developing carbon neutral and carbon negative technologies; they are efficient photosynthesizers and amenable to genetic manipulation. Over the past two decades, researchers have demonstrated that cyanobacteria can make sustainable, useful biomaterials, many of which are engineered living materials. However, we are only beginning to see such technologies applied at an industrial scale. In this review, we explore the ways in which synthetic biology tools enable the development of cyanobacteria-based biomaterials. First we give an overview of the ecological and biogeochemical importance of cyanobacteria and the work that has been done using cyanobacteria to create biomaterials so far. This is followed by a discussion of commonly used cyanobacteria strains and synthetic biology tools that exist to engineer cyanobacteria. Then, three case studies-bioconcrete, biocomposites, and biophotovoltaics-are explored as potential applications of synthetic biology in cyanobacteria-based materials. Finally, challenges and future directions of cyanobacterial biomaterials are discussed.
Collapse
Affiliation(s)
- Isabella M. Goodchild-Michelman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Max G. Schubert
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Tzu-Chieh Tang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
19
|
Macdonald CB, Nedrud D, Grimes PR, Trinidad D, Fraser JS, Coyote-Maestas W. DIMPLE: deep insertion, deletion, and missense mutation libraries for exploring protein variation in evolution, disease, and biology. Genome Biol 2023; 24:36. [PMID: 36829241 PMCID: PMC9951526 DOI: 10.1186/s13059-023-02880-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Insertions and deletions (indels) enable evolution and cause disease. Due to technical challenges, indels are left out of most mutational scans, limiting our understanding of them in disease, biology, and evolution. We develop a low cost and bias method, DIMPLE, for systematically generating deletions, insertions, and missense mutations in genes, which we test on a range of targets, including Kir2.1. We use DIMPLE to study how indels impact potassium channel structure, disease, and evolution. We find deletions are most disruptive overall, beta sheets are most sensitive to indels, and flexible loops are sensitive to deletions yet tolerate insertions.
Collapse
Affiliation(s)
- Christian B Macdonald
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA
| | | | | | - Donovan Trinidad
- Department of Medicine, Division of Infectious Disease, University of California, San Francisco, USA
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA.,Quantitative Biosciences Institute, University of California, San Francisco, USA
| | - Willow Coyote-Maestas
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA. .,Quantitative Biosciences Institute, University of California, San Francisco, USA.
| |
Collapse
|
20
|
Huss P, Chen J, Raman S. High-throughput approaches to understand and engineer bacteriophages. Trends Biochem Sci 2023; 48:187-197. [PMID: 36180320 PMCID: PMC9868059 DOI: 10.1016/j.tibs.2022.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 01/26/2023]
Abstract
Bacteriophage research has been vital to fundamental aspects of modern biology. Advances in metagenomics have revealed treasure troves of new and uncharacterized bacteriophages ('phages') that are not yet understood. However, our ability to find new phages has outpaced our understanding of how sequence encodes function in phages. Traditional approaches for characterizing phages are limited in scale and face hurdles in determining how changes in sequence drive function. We describe powerful emerging technologies that can be used to clarify sequence-function relationships in phages through high-throughput genome engineering. Using these approaches, up to 105 variants can be characterized through pooled selection experiments and deep sequencing. We describe caveats when using these tools and provide examples of basic science and engineering goals that are pursuable using these approaches.
Collapse
Affiliation(s)
- Phil Huss
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jackie Chen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
21
|
Miton CM, Tokuriki N. Insertions and Deletions (Indels): A Missing Piece of the Protein Engineering Jigsaw. Biochemistry 2023; 62:148-157. [PMID: 35830609 DOI: 10.1021/acs.biochem.2c00188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the years, protein engineers have studied nature and borrowed its tricks to accelerate protein evolution in the test tube. While there have been considerable advances, our ability to generate new proteins in the laboratory is seemingly limited. One explanation for these shortcomings may be that insertions and deletions (indels), which frequently arise in nature, are largely overlooked during protein engineering campaigns. The profound effect of indels on protein structures, by way of drastic backbone alterations, could be perceived as "saltation" events that bring about significant phenotypic changes in a single mutational step. Should we leverage these effects to accelerate protein engineering and gain access to unexplored regions of adaptive landscapes? In this Perspective, we describe the role played by indels in the functional diversification of proteins in nature and discuss their untapped potential for protein engineering, despite their often-destabilizing nature. We hope to spark a renewed interest in indels, emphasizing that their wider study and use may prove insightful and shape the future of protein engineering by unlocking unique functional changes that substitutions alone could never achieve.
Collapse
Affiliation(s)
- Charlotte M Miton
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 BC, Canada
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 BC, Canada
| |
Collapse
|
22
|
Seuma M, Lehner B, Bolognesi B. An atlas of amyloid aggregation: the impact of substitutions, insertions, deletions and truncations on amyloid beta fibril nucleation. Nat Commun 2022; 13:7084. [PMID: 36400770 PMCID: PMC9674652 DOI: 10.1038/s41467-022-34742-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
Multiplexed assays of variant effects (MAVEs) guide clinical variant interpretation and reveal disease mechanisms. To date, MAVEs have focussed on a single mutation type-amino acid (AA) substitutions-despite the diversity of coding variants that cause disease. Here we use Deep Indel Mutagenesis (DIM) to generate a comprehensive atlas of diverse variant effects for a disease protein, the amyloid beta (Aβ) peptide that aggregates in Alzheimer's disease (AD) and is mutated in familial AD (fAD). The atlas identifies known fAD mutations and reveals that many variants beyond substitutions accelerate Aβ aggregation and are likely to be pathogenic. Truncations, substitutions, insertions, single- and internal multi-AA deletions differ in their propensity to enhance or impair aggregation, but likely pathogenic variants from all classes are highly enriched in the polar N-terminal region of Aβ. This comparative atlas highlights the importance of including diverse mutation types in MAVEs and provides important mechanistic insights into amyloid nucleation.
Collapse
Affiliation(s)
- Mireia Seuma
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Benedetta Bolognesi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.
| |
Collapse
|
23
|
Iqbal Z, Sadaf S. A patent-based consideration of latest platforms in the art of directed evolution: a decade long untold story. Biotechnol Genet Eng Rev 2022; 38:133-246. [PMID: 35200115 DOI: 10.1080/02648725.2021.2017638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Directed (or in vitro) evolution of proteins and metabolic pathways requires tools for creating genetic diversity and identifying protein variants with new or improved functional properties. Besides simplicity, reliability, speed, versatility, universal applicability and economy of the technique, the new science of synthetic biology requires improved means for construction of smart and high-quality mutant libraries to better navigate the sequence diversity. In vitro CRISPR/Cas9-mediated mutagenic (ICM) system and machine-learning (ML)-assisted approaches to directed evolution are now in the field to achieve the goal. This review describes the gene diversification strategies, screening and selection methods, in silico (computer-aided), Cas9-mediated and ML-based approaches to mutagenesis, developed especially in the last decade, and their patent position. The objective behind is to emphasize researchers the need for noting which mutagenesis, screening or selection method is patented and then selecting a suitable restriction-free approach to sequence diversity. Techniques and evolved products subject to patent rights need commercial license if their use is for purposes other than private or experimental research.
Collapse
Affiliation(s)
- Zarina Iqbal
- IP Litigation Department, PakPat World Intellectual Property Protection Services, Lahore, Pakistan
| | - Saima Sadaf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
24
|
Foley G, Mora A, Ross CM, Bottoms S, Sützl L, Lamprecht ML, Zaugg J, Essebier A, Balderson B, Newell R, Thomson RES, Kobe B, Barnard RT, Guddat L, Schenk G, Carsten J, Gumulya Y, Rost B, Haltrich D, Sieber V, Gillam EMJ, Bodén M. Engineering indel and substitution variants of diverse and ancient enzymes using Graphical Representation of Ancestral Sequence Predictions (GRASP). PLoS Comput Biol 2022; 18:e1010633. [PMID: 36279274 PMCID: PMC9632902 DOI: 10.1371/journal.pcbi.1010633] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 11/03/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Ancestral sequence reconstruction is a technique that is gaining widespread use in molecular evolution studies and protein engineering. Accurate reconstruction requires the ability to handle appropriately large numbers of sequences, as well as insertion and deletion (indel) events, but available approaches exhibit limitations. To address these limitations, we developed Graphical Representation of Ancestral Sequence Predictions (GRASP), which efficiently implements maximum likelihood methods to enable the inference of ancestors of families with more than 10,000 members. GRASP implements partial order graphs (POGs) to represent and infer insertion and deletion events across ancestors, enabling the identification of building blocks for protein engineering. To validate the capacity to engineer novel proteins from realistic data, we predicted ancestor sequences across three distinct enzyme families: glucose-methanol-choline (GMC) oxidoreductases, cytochromes P450, and dihydroxy/sugar acid dehydratases (DHAD). All tested ancestors demonstrated enzymatic activity. Our study demonstrates the ability of GRASP (1) to support large data sets over 10,000 sequences and (2) to employ insertions and deletions to identify building blocks for engineering biologically active ancestors, by exploring variation over evolutionary time.
Collapse
Affiliation(s)
- Gabriel Foley
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Ariane Mora
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Connie M. Ross
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Scott Bottoms
- Campus Straubing for Biotechnology and Sustainability, Technische Universität München, Straubing, Germany
| | - Leander Sützl
- Institut für Lebensmitteltechnologie, Universität für Bodenkultur Wien, Vienna, Austria
| | - Marnie L. Lamprecht
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Julian Zaugg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Alexandra Essebier
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Brad Balderson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Rhys Newell
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Raine E. S. Thomson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Ross T. Barnard
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Luke Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia
| | - Jörg Carsten
- Zentralinstitut für Katalyseforschung, Technische Universität München, Munich, Germany
| | - Yosephine Gumulya
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Burkhard Rost
- Fakultät für Informatik, Technische Universität München, Munich, Germany
| | - Dietmar Haltrich
- Institut für Lebensmitteltechnologie, Universität für Bodenkultur Wien, Vienna, Austria
| | - Volker Sieber
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Campus Straubing for Biotechnology and Sustainability, Technische Universität München, Straubing, Germany
- Zentralinstitut für Katalyseforschung, Technische Universität München, Munich, Germany
| | - Elizabeth M. J. Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- * E-mail: (MB); (EMJG)
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- * E-mail: (MB); (EMJG)
| |
Collapse
|
25
|
Hirschi S, Ward TR, Meier WP, Müller DJ, Fotiadis D. Synthetic Biology: Bottom-Up Assembly of Molecular Systems. Chem Rev 2022; 122:16294-16328. [PMID: 36179355 DOI: 10.1021/acs.chemrev.2c00339] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bottom-up assembly of biological and chemical components opens exciting opportunities to engineer artificial vesicular systems for applications with previously unmet requirements. The modular combination of scaffolds and functional building blocks enables the engineering of complex systems with biomimetic or new-to-nature functionalities. Inspired by the compartmentalized organization of cells and organelles, lipid or polymer vesicles are widely used as model membrane systems to investigate the translocation of solutes and the transduction of signals by membrane proteins. The bottom-up assembly and functionalization of such artificial compartments enables full control over their composition and can thus provide specifically optimized environments for synthetic biological processes. This review aims to inspire future endeavors by providing a diverse toolbox of molecular modules, engineering methodologies, and different approaches to assemble artificial vesicular systems. Important technical and practical aspects are addressed and selected applications are presented, highlighting particular achievements and limitations of the bottom-up approach. Complementing the cutting-edge technological achievements, fundamental aspects are also discussed to cater to the inherently diverse background of the target audience, which results from the interdisciplinary nature of synthetic biology. The engineering of proteins as functional modules and the use of lipids and block copolymers as scaffold modules for the assembly of functionalized vesicular systems are explored in detail. Particular emphasis is placed on ensuring the controlled assembly of these components into increasingly complex vesicular systems. Finally, all descriptions are presented in the greater context of engineering valuable synthetic biological systems for applications in biocatalysis, biosensing, bioremediation, or targeted drug delivery.
Collapse
Affiliation(s)
- Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Wolfgang P Meier
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| |
Collapse
|
26
|
"Toolbox" construction of an extremophilic nitrile hydratase from Streptomyces thermoautotrophicus for the promising industrial production of various amides. Int J Biol Macromol 2022; 221:1103-1111. [PMID: 36108746 DOI: 10.1016/j.ijbiomac.2022.09.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/23/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022]
Abstract
Nitrile hydratase (NHase; EC 4.2.1.84) is widely used to synthesize the corresponding amides from nitriles, which is the most successful green biocatalyst. However, the limited acceptability of substrates and instability under harsh reaction conditions have hindered its widespread industrial application. Here, a gene encoding an extremophilic NHase from Streptomyces thermoautotrophicus (S.t NHase) was successfully overexpressed in Escherichia coli. The enzyme exhibited excellent thermostability, retaining >50 % of residual activity after heat treatment at 65 °C for 252 min. To further improve the catalytic performance of S.t NHase, semi-rational engineering of its substrate access tunnel was performed. A mutant βL48D showed a specific activity of 566.18 ± 18.86 U/mg towards 3-cyanopyridine, which was 7.7 times higher than its parent enzyme (73.80 ± 5.76 U/mg). Molecular dynamics simulation showed that the introduction of aspartic acid into βLeu48 resulted in a larger and more frequent opening of the substrate access tunnel entrance. On this basis, a "toolbox" containing various mutants on the substrate access tunnel was further established, whose catalytic activity towards various nitrile substrates was extensively improved, showing great potential for efficient synthesis of multiple high-value amides.
Collapse
|
27
|
Jayaraman V, Toledo‐Patiño S, Noda‐García L, Laurino P. Mechanisms of protein evolution. Protein Sci 2022; 31:e4362. [PMID: 35762715 PMCID: PMC9214755 DOI: 10.1002/pro.4362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/06/2022]
Abstract
How do proteins evolve? How do changes in sequence mediate changes in protein structure, and in turn in function? This question has multiple angles, ranging from biochemistry and biophysics to evolutionary biology. This review provides a brief integrated view of some key mechanistic aspects of protein evolution. First, we explain how protein evolution is primarily driven by randomly acquired genetic mutations and selection for function, and how these mutations can even give rise to completely new folds. Then, we also comment on how phenotypic protein variability, including promiscuity, transcriptional and translational errors, may also accelerate this process, possibly via "plasticity-first" mechanisms. Finally, we highlight open questions in the field of protein evolution, with respect to the emergence of more sophisticated protein systems such as protein complexes, pathways, and the emergence of pre-LUCA enzymes.
Collapse
Affiliation(s)
- Vijay Jayaraman
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Saacnicteh Toledo‐Patiño
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Lianet Noda‐García
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and EnvironmentHebrew University of JerusalemRehovotIsrael
| | - Paola Laurino
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| |
Collapse
|
28
|
Savino S, Desmet T, Franceus J. Insertions and deletions in protein evolution and engineering. Biotechnol Adv 2022; 60:108010. [PMID: 35738511 DOI: 10.1016/j.biotechadv.2022.108010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
Protein evolution or engineering studies are traditionally focused on amino acid substitutions and the way these contribute to fitness. Meanwhile, the insertion and deletion of amino acids is often overlooked, despite being one of the most common sources of genetic variation. Recent methodological advances and successful engineering stories have demonstrated that the time is ripe for greater emphasis on these mutations and their understudied effects. This review highlights the evolutionary importance and biotechnological relevance of insertions and deletions (indels). We provide a comprehensive overview of approaches that can be employed to include indels in random, (semi)-rational or computational protein engineering pipelines. Furthermore, we discuss the tolerance to indels at the structural level, address how domain indels can link the function of unrelated proteins, and feature studies that illustrate the surprising and intriguing potential of frameshift mutations.
Collapse
Affiliation(s)
- Simone Savino
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jorick Franceus
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium..
| |
Collapse
|
29
|
Ma Q, Wang X, Luan F, Han P, Zheng X, Yin Y, Zhang X, Zhang Y, Gao X. Functional Studies on an Indel Loop between the Subtypes of meso-Diaminopimelate Dehydrogenase. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Qinyuan Ma
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Xiaoxiao Wang
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Fang Luan
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Ping Han
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Xue Zheng
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Yanmiao Yin
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Xianghe Zhang
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Yàning Zhang
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Xiuzhen Gao
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
30
|
Scheele RA, Lindenburg LH, Petek M, Schober M, Dalby KN, Hollfelder F. Droplet-based screening of phosphate transfer catalysis reveals how epistasis shapes MAP kinase interactions with substrates. Nat Commun 2022; 13:844. [PMID: 35149678 PMCID: PMC8837617 DOI: 10.1038/s41467-022-28396-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 01/10/2022] [Indexed: 11/20/2022] Open
Abstract
The combination of ultrahigh-throughput screening and sequencing informs on function and intragenic epistasis within combinatorial protein mutant libraries. Establishing a droplet-based, in vitro compartmentalised approach for robust expression and screening of protein kinase cascades (>107 variants/day) allowed us to dissect the intrinsic molecular features of the MKK-ERK signalling pathway, without interference from endogenous cellular components. In a six-residue combinatorial library of the MKK1 docking domain, we identified 29,563 sequence permutations that allow MKK1 to efficiently phosphorylate and activate its downstream target kinase ERK2. A flexibly placed hydrophobic sequence motif emerges which is defined by higher order epistatic interactions between six residues, suggesting synergy that enables high connectivity in the sequence landscape. Through positive epistasis, MKK1 maintains function during mutagenesis, establishing the importance of co-dependent residues in mammalian protein kinase-substrate interactions, and creating a scenario for the evolution of diverse human signalling networks. Here, the authors use a droplet-based screen for phosphate transfer catalysis, testing variants of the human protein kinase MKK1 for its ability to activate its downstream target ERK2. Data reveal a flexible motif in the MKK1 docking domain that promotes efficient activation of ERK2, and suggest epistasis between the residues within that sequence.
Collapse
Affiliation(s)
- Remkes A Scheele
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | | | - Maya Petek
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.,Faculty of Medicine, University of Maribor, SI-2000, Maribor, Slovenia
| | - Markus Schober
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
| |
Collapse
|
31
|
Using the Evolutionary History of Proteins to Engineer Insertion-Deletion Mutants from Robust, Ancestral Templates Using Graphical Representation of Ancestral Sequence Predictions (GRASP). METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2397:85-110. [PMID: 34813061 DOI: 10.1007/978-1-0716-1826-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Analyzing the natural evolution of proteins by ancestral sequence reconstruction (ASR) can provide valuable information about the changes in sequence and structure that drive the development of novel protein functions. However, ASR has also been used as a protein engineering tool, as it often generates thermostable proteins which can serve as robust and evolvable templates for enzyme engineering. Importantly, ASR has the potential to provide an insight into the history of insertions and deletions that have occurred in the evolution of a protein family. Indels are strongly associated with functional change during enzyme evolution and represent a largely unexplored source of genetic diversity for designing proteins with novel or improved properties. Current ASR methods differ in the way they handle indels; inclusion or exclusion of indels is often managed subjectively, based on assumptions the user makes about the likelihood of each recombination event, yet most currently available ASR tools provide limited, if any, opportunities for evaluating indel placement in a reconstructed sequence. Graphical Representation of Ancestral Sequence Predictions (GRASP) is an ASR tool that maps indel evolution throughout a reconstruction and enables the evaluation of indel variants. This chapter provides a general protocol for performing a reconstruction using GRASP and using the results to create indel variants. The method addresses protein template selection, sequence curation, alignment refinement, tree building, ancestor reconstruction, evaluation of indel variants and approaches to library development.
Collapse
|
32
|
Kuiper BP, Prins RC, Billerbeck S. Oligo Pools as an Affordable Source of Synthetic DNA for Cost-Effective Library Construction in Protein- and Metabolic Pathway Engineering. Chembiochem 2021; 23:e202100507. [PMID: 34817110 PMCID: PMC9300125 DOI: 10.1002/cbic.202100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/23/2021] [Indexed: 11/11/2022]
Abstract
The construction of custom libraries is critical for rational protein engineering and directed evolution. Array‐synthesized oligo pools of thousands of user‐defined sequences (up to ∼350 bases in length) have emerged as a low‐cost commercially available source of DNA. These pools cost ≤10 % (depending on error rate and length) of other commercial sources of custom DNA, and this significant cost difference can determine whether an enzyme engineering project can be realized on a given research budget. However, while being cheap, oligo pools do suffer from a low concentration of individual oligos and relatively high error rates. Several powerful techniques that specifically make use of oligo pools have been developed and proven valuable or even essential for next‐generation protein and pathway engineering strategies, such as sequence‐function mapping, enzyme minimization, or de‐novo design. Here we consolidate the knowledge on these techniques and their applications to facilitate the use of oligo pools within the protein engineering community.
Collapse
Affiliation(s)
- Bastiaan P Kuiper
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Rianne C Prins
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Sonja Billerbeck
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
33
|
Alex Wong CF, van Vliet L, Bhujbal SV, Guo C, Sletmoen M, Stokke BT, Hollfelder F, Lale R. A Titratable Cell Lysis-on-Demand System for Droplet-Compartmentalized Ultrahigh-Throughput Screening in Functional Metagenomics and Directed Evolution. ACS Synth Biol 2021; 10:1882-1894. [PMID: 34260196 PMCID: PMC8383311 DOI: 10.1021/acssynbio.1c00084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Water-in-oil emulsion
droplets are an attractive format for ultrahigh-throughput
screening in functional metagenomics and directed evolution applications
that allow libraries with more than 107 members to be characterized
in a day. Single library members are compartmentalized in droplets
that are generated in microfluidic devices and tested for the presence
of target biocatalysts. The target proteins can be produced intracellularly,
for example, in bacterial hosts in-droplet cell lysis is therefore
necessary to allow the enzymes to encounter the substrate to initiate
an activity assay. Here, we present a titratable lysis-on-demand (LoD)
system enabling the control of the cell lysis rate in Escherichia
coli. We demonstrate that the rate of cell lysis can be controlled
by adjusting the externally added inducer concentration. This LoD
system is evaluated both at the population level (by optical density
measurements) and at the single-cell level (on single-cell arrays
and in alginate microbeads). Additionally, we validate the LoD system
by droplet screening of a phosphotriesterase expressed from E. coli, with cell lysis triggered by inducer concentrations
in the μM range. The LoD system yields sufficient release of
the intracellularly produced enzymes to bring about a detectable quantity
of product (measured by fluorescence in flow cytometry of double emulsions),
while leaving viable cells for the downstream recovery of the genetic
material.
Collapse
Affiliation(s)
- Che Fai Alex Wong
- Department of Biotechnology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Liisa van Vliet
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Swapnil Vilas Bhujbal
- Department of Biotechnology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Chengzhi Guo
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Marit Sletmoen
- Department of Biotechnology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Bjørn Torger Stokke
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Rahmi Lale
- Department of Biotechnology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| |
Collapse
|
34
|
Alejaldre L, Pelletier JN, Quaglia D. Methods for enzyme library creation: Which one will you choose?: A guide for novices and experts to introduce genetic diversity. Bioessays 2021; 43:e2100052. [PMID: 34263468 DOI: 10.1002/bies.202100052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
Enzyme engineering allows to explore sequence diversity in search for new properties. The scientific literature is populated with methods to create enzyme libraries for engineering purposes, however, choosing a suitable method for the creation of mutant libraries can be daunting, in particular for the novices. Here, we address both novices and experts: how can one enter the arena of enzyme library design and what guidelines can advanced users apply to select strategies best suited to their purpose? Section I is dedicated to the novices and presents an overview of established and standard methods for library creation, as well as available commercial solutions. The expert will discover an up-to-date tool to freshen up their repertoire (Section I) and learn of the newest methods that are likely to become a mainstay (Section II). We focus primarily on in vitro methods, presenting the advantages of each method. Our ultimate aim is to offer a selection of methods/strategies that we believe to be most useful to the enzyme engineer, whether a first-timer or a seasoned user.
Collapse
Affiliation(s)
- Lorea Alejaldre
- Département de biochimie and Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, Quebec, Canada.,PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, Quebec, Canada
| | - Joelle N Pelletier
- Département de biochimie and Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, Quebec, Canada.,PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, Quebec, Canada.,Département de chimie, Université de Montréal, Montréal, Quebec, Canada
| | - Daniela Quaglia
- Département de chimie, Université de Montréal, Montréal, Quebec, Canada.,School of Chemistry, University of Nottingham, Nottingham, UK
| |
Collapse
|
35
|
Schenkmayerova A, Pinto GP, Toul M, Marek M, Hernychova L, Planas-Iglesias J, Daniel Liskova V, Pluskal D, Vasina M, Emond S, Dörr M, Chaloupkova R, Bednar D, Prokop Z, Hollfelder F, Bornscheuer UT, Damborsky J. Engineering the protein dynamics of an ancestral luciferase. Nat Commun 2021; 12:3616. [PMID: 34127663 PMCID: PMC8203615 DOI: 10.1038/s41467-021-23450-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/27/2021] [Indexed: 01/06/2023] Open
Abstract
Protein dynamics are often invoked in explanations of enzyme catalysis, but their design has proven elusive. Here we track the role of dynamics in evolution, starting from the evolvable and thermostable ancestral protein AncHLD-RLuc which catalyses both dehalogenase and luciferase reactions. Insertion-deletion (InDel) backbone mutagenesis of AncHLD-RLuc challenged the scaffold dynamics. Screening for both activities reveals InDel mutations localized in three distinct regions that lead to altered protein dynamics (based on crystallographic B-factors, hydrogen exchange, and molecular dynamics simulations). An anisotropic network model highlights the importance of the conformational flexibility of a loop-helix fragment of Renilla luciferases for ligand binding. Transplantation of this dynamic fragment leads to lower product inhibition and highly stable glow-type bioluminescence. The success of our approach suggests that a strategy comprising (i) constructing a stable and evolvable template, (ii) mapping functional regions by backbone mutagenesis, and (iii) transplantation of dynamic features, can lead to functionally innovative proteins.
Collapse
Affiliation(s)
- Andrea Schenkmayerova
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Gaspar P Pinto
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Toul
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Marek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Joan Planas-Iglesias
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Veronika Daniel Liskova
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Daniel Pluskal
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michal Vasina
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Stephane Emond
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Mark Dörr
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - David Bednar
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zbynek Prokop
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| | - Jiri Damborsky
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
36
|
Tizei PAG, Harris E, Withanage S, Renders M, Pinheiro VB. A novel framework for engineering protein loops exploring length and compositional variation. Sci Rep 2021; 11:9134. [PMID: 33911147 PMCID: PMC8080606 DOI: 10.1038/s41598-021-88708-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 04/12/2021] [Indexed: 02/02/2023] Open
Abstract
Insertions and deletions (indels) are known to affect function, biophysical properties and substrate specificity of enzymes, and they play a central role in evolution. Despite such clear significance, this class of mutation remains an underexploited tool in protein engineering with few available platforms capable of systematically generating and analysing libraries of varying sequence composition and length. We present a novel DNA assembly platform (InDel assembly), based on cycles of endonuclease restriction digestion and ligation of standardised dsDNA building blocks, that can generate libraries exploring both composition and sequence length variation. In addition, we developed a framework to analyse the output of selection from InDel-generated libraries, combining next generation sequencing and alignment-free strategies for sequence analysis. We demonstrate the approach by engineering the well-characterized TEM-1 β-lactamase Ω-loop, involved in substrate specificity, identifying multiple novel extended spectrum β-lactamases with loops of modified length and composition-areas of the sequence space not previously explored. Together, the InDel assembly and analysis platforms provide an efficient route to engineer protein loops or linkers where sequence length and composition are both essential functional parameters.
Collapse
Affiliation(s)
- Pedro A. G. Tizei
- grid.83440.3b0000000121901201Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - Emma Harris
- grid.4464.20000 0001 2161 2573Department of Biological Sciences, University of London, Malet Street, Birkbeck, WC1E 7HX UK
| | - Shamal Withanage
- grid.415751.3KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Marleen Renders
- grid.415751.3KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Vitor B. Pinheiro
- grid.83440.3b0000000121901201Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT UK ,grid.4464.20000 0001 2161 2573Department of Biological Sciences, University of London, Malet Street, Birkbeck, WC1E 7HX UK ,grid.415751.3KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| |
Collapse
|
37
|
Kant Bhatia S, Vivek N, Kumar V, Chandel N, Thakur M, Kumar D, Yang YH, Pugazendhi A, Kumar G. Molecular biology interventions for activity improvement and production of industrial enzymes. BIORESOURCE TECHNOLOGY 2021; 324:124596. [PMID: 33440311 DOI: 10.1016/j.biortech.2020.124596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Metagenomics and directed evolution technology have brought a revolution in search of novel enzymes from extreme environment and improvement of existing enzymes and tuning them towards certain desired properties. Using advanced tools of molecular biology i.e. next generation sequencing, site directed mutagenesis, fusion protein, surface display, etc. now researchers can engineer enzymes for improved activity, stability, and substrate specificity to meet the industrial demand. Although many enzymatic processes have been developed up to industrial scale, still there is a need to overcome limitations of maintaining activity during the catalytic process. In this article recent developments in enzymes industrial applications and advancements in metabolic engineering approaches to improve enzymes efficacy and production are reviewed.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Narisetty Vivek
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Neha Chandel
- School of Medical and Allied Sciences, GD Goenka University, Gurugram 122103, Haryana, India
| | - Meenu Thakur
- Department of Biotechnology, Shoolini Institute of Life Sciences and Business Management, Solan 173212, Himachal Pradesh, India
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Arivalagan Pugazendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho ChiMinh City, Viet Nam
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
38
|
Yu J, Yang J, Seok C, Song WJ. Symmetry-related residues as promising hotspots for the evolution of de novo oligomeric enzymes. Chem Sci 2021; 12:5091-5101. [PMID: 34168770 PMCID: PMC8179601 DOI: 10.1039/d0sc06823c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Directed evolution has provided us with great opportunities and prospects in the synthesis of tailor-made proteins. It, however, often requires at least mid to high throughput screening, necessitating more effective strategies for laboratory evolution. We herein demonstrate that protein symmetry can be a versatile criterion for searching for promising hotspots for the directed evolution of de novo oligomeric enzymes. The randomization of symmetry-related residues located at the rotational axes of artificial metallo-β-lactamase yields drastic effects on catalytic activities, whereas that of non-symmetry-related, yet, proximal residues to the active site results in negligible perturbations. Structural and biochemical analysis of the positive hits indicates that seemingly trivial mutations at symmetry-related spots yield significant alterations in overall structures, metal-coordination geometry, and chemical environments of active sites. Our work implicates that numerous artificially designed and natural oligomeric proteins might have evolutionary advantages of propagating beneficial mutations using their global symmetry. Symmetry-related residues located at the rotational axes can be promising hotspots for the evolution of de novo oligomeric enzymes even though they are distantly located from the active site pocket.![]()
Collapse
Affiliation(s)
- Jaeseung Yu
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 Republic of Korea
| | - Jinsol Yang
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 Republic of Korea
| | - Chaok Seok
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 Republic of Korea
| | - Woon Ju Song
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
39
|
In vitro evolution of antibody affinity via insertional scanning mutagenesis of an entire antibody variable region. Proc Natl Acad Sci U S A 2020; 117:27307-27318. [PMID: 33067389 DOI: 10.1073/pnas.2002954117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We report a systematic combinatorial exploration of affinity enhancement of antibodies by insertions and deletions (InDels). Transposon-based introduction of InDels via the method TRIAD (transposition-based random insertion and deletion mutagenesis) was used to generate large libraries with random in-frame InDels across the entire single-chain variable fragment gene that were further recombined and screened by ribosome display. Knowledge of potential insertion points from TRIAD libraries formed the basis of exploration of length and sequence diversity of novel insertions by insertional-scanning mutagenesis (InScaM). An overall 256-fold affinity improvement of an anti-IL-13 antibody BAK1 as a result of InDel mutagenesis and combination with known point mutations validates this approach, and suggests that the results of this InDel mutagenesis and conventional exploration of point mutations can synergize to generate antibodies with higher affinity.
Collapse
|