1
|
Feng J, Wang X, Pan H. In-situ Reconstruction of Catalyst in Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411688. [PMID: 39436113 DOI: 10.1002/adma.202411688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/26/2024] [Indexed: 10/23/2024]
Abstract
Reconstruction of catalysts is now well recognized as a common phenomenon in electrocatalysis. As the reconstructed structure may promote or hamper the electrochemical performance, how to achieve the designed active surface for highly enhanced catalytic activity through the reconstruction needs to be carefully investigated. In this review, the genesis and electrochemical effects of reconstruction in various electrochemical catalytic processes, such as hydrogen evolution reaction (HER), oxygen evolution reaction (OER), carbon dioxide reduction reaction (CO2RR), and nitrate reduction reaction (NO3RR) are first described. Then, the strategies for optimizing the reconstruction, such as valence states control, active phase retention, phase evolution engineering, and surface poisoning prevention are comprehensively discussed. Finally, the general rules of reconstruction optimization are summarized and give perspectives for future study. It is believed that the review shall provide deep insights into electrocatalytic mechanisms and guide the design of pre-catalysts with highly improved activity.
Collapse
Affiliation(s)
- Jinxian Feng
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Xuesen Wang
- Department of Physics, National University of Singapore, Singapore, 119077, Singapore
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, 999078, China
| |
Collapse
|
2
|
Huang Y, Wu Y, Lu Y, Chen J, Lin H, Chen C, Chen C, Jing C, Zhou J, Zhang L, Wang Y, Chou W, Wang S, Hu Z, Dong C. Direct Identification of O─O Bond Formation Through Three-Step Oxidation During Water Splitting by Operando Soft X-ray Absorption Spectroscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401236. [PMID: 39090836 PMCID: PMC11515896 DOI: 10.1002/advs.202401236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/14/2024] [Indexed: 08/04/2024]
Abstract
Anionic redox allows the direct formation of O─O bonds from lattice oxygens and provides higher catalytic in the oxygen evolution reaction (OER) than does the conventional metal ion mechanism. While previous theories have predicted and experiments have suggested the possible O─O bond, it has not yet been directly observed in the OER process. In this study, operando soft X-ray absorption spectroscopy (sXAS) at the O K-edge and the operando Raman spectra is performed on layered double CoFe hydroxides (LDHs) after intercalation with [Cr(C2O4)3]3-, and revealed a three-step oxidation process, staring from Co2+ to Co3+, further to Co4+ (3d6L), and ultimately leading to the formation of O─O bonds and O2 evolution above a threshold voltage (1.4 V). In contrast, a gradual oxidation of Fe is observed in CoFe LDHs. The OER activity exhibits a significant enhancement, with the overpotential decreasing from 300 to 248 mV at 10 mA cm-2, following the intercalation of [Cr(C2O4)3]3- into CoFe LDHs, underscoring a crucial role of anionic redox in facilitating water splitting.
Collapse
Affiliation(s)
- Yu‐Cheng Huang
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
- Department of ElectrophysicsNational Yang Ming Chiao Tung UniversityHsinchu300093Taiwan
| | - Yujie Wu
- State Key Laboratory of Chemo/Bio‐Sensing and ChemometricsCollege of Chemistry and Chemical EngineeringAdvanced Catalytic Engineering Research Center of the Ministry of EducationHunan UniversityChangsha410082China
| | - Ying‐Rui Lu
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Jeng‐Lung Chen
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Hong‐Ji Lin
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Chien‐Te Chen
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Chi‐Liang Chen
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Chao Jing
- Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
| | - Jing Zhou
- Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
| | - Linjuan Zhang
- Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
| | - Yanyong Wang
- State Key Laboratory of Chemo/Bio‐Sensing and ChemometricsCollege of Chemistry and Chemical EngineeringAdvanced Catalytic Engineering Research Center of the Ministry of EducationHunan UniversityChangsha410082China
| | - Wu‐Ching Chou
- Department of ElectrophysicsNational Yang Ming Chiao Tung UniversityHsinchu300093Taiwan
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio‐Sensing and ChemometricsCollege of Chemistry and Chemical EngineeringAdvanced Catalytic Engineering Research Center of the Ministry of EducationHunan UniversityChangsha410082China
| | - Zhiwei Hu
- Max‐Planck‐Institute for Chemical Physics of Solids01187DresdenGermany
| | - Chung‐Li Dong
- Research Center for X‐ray Science & Department of PhysicsTamkang UniversityNew Taipei25137Taiwan
| |
Collapse
|
3
|
Li A, Tang X, Cao R, Song D, Wang F, Yan H, Chen H, Wei Z. Directed Surface Reconstruction of Fe Modified Co 2VO 4 Spinel Oxides for Water Oxidation Catalysts Experiencing Self-Terminating Surface Deterioration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401818. [PMID: 38529734 DOI: 10.1002/adma.202401818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Affordable highly efficient catalysts for electrochemical oxygen evolution reaction (OER) play pivotal roles in green hydrogen production via water electrolysis. Regarding the non-noble metal-based electrocatalysts, considerable efforts are made to decipher the cation leaching and surface reconstruction; yet, little attention is focused on correlating them with catalytical activity and stability. Herein, in situ reconstruction of Fe-modified Co2VO4 precursor catalyst to form a highly active (Fe,V)-doped CoOOH phase for OER is reported, during which partial leaching of V accelerates the surface reconstruction and the V reserved in the reconstructed CoOOH layer in the form of alkali-resistant V2O3 serves for dynamic charge compensation and prevention of excessive loss of lattice oxygen and Co dissolution. Fe substitution facilitates Co pre-oxidation and endows the catalysts with structural flexibility by elevating O 2p band level; hence, encouraging participation of lattice oxygen in OER. The optimized Co2Fe0.25V0.75O4 electrode can afford current densities of 10 and 500 mA cm-2 at low overpotentials of 205 and 320 mV, respectively, with satisfactory stability over 600 h. By coupling with Pt/C cathode, the assembled alkaline electrolyzer can deliver 500 mA cm-2 at a low cell voltage of 1.798 V, better than that of commercial RuO2 (+) || Pt/C (-).
Collapse
Affiliation(s)
- Ang Li
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing, 400044, China
| | - Xiaoxia Tang
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing, 400044, China
| | - Runjie Cao
- College of Polymer Science and Engineering, Sichuan University, No. 29 Jiuyanqiao Wangjiang Road, Chengdu, 610064, China
| | - Dongcai Song
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing, 400044, China
| | - Fangzheng Wang
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing, 400044, China
| | - Hua Yan
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing, 400044, China
| | - Hongmei Chen
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing, 400044, China
| | - Zidong Wei
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing, 400044, China
| |
Collapse
|
4
|
Li M, Li H, Fan H, Liu Q, Yan Z, Wang A, Yang B, Wang E. Engineering interfacial sulfur migration in transition-metal sulfide enables low overpotential for durable hydrogen evolution in seawater. Nat Commun 2024; 15:6154. [PMID: 39039058 PMCID: PMC11263604 DOI: 10.1038/s41467-024-50535-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/12/2024] [Indexed: 07/24/2024] Open
Abstract
Hydrogen production from seawater remains challenging due to the deactivation of the hydrogen evolution reaction (HER) electrode under high current density. To overcome the activity-stability trade-offs in transition-metal sulfides, we propose a strategy to engineer sulfur migration by constructing a nickel-cobalt sulfides heterostructure with nitrogen-doped carbon shell encapsulation (CN@NiCoS) electrocatalyst. State-of-the-art ex situ/in situ characterizations and density functional theory calculations reveal the restructuring of the CN@NiCoS interface, clearly identifying dynamic sulfur migration. The NiCoS heterostructure stimulates sulfur migration by creating sulfur vacancies at the Ni3S2-Co9S8 heterointerface, while the migrated sulfur atoms are subsequently captured by the CN shell via strong C-S bond, preventing sulfide dissolution into alkaline electrolyte. Remarkably, the dynamically formed sulfur-doped CN shell and sulfur vacancies pairing sites significantly enhances HER activity by altering the d-band center near Fermi level, resulting in a low overpotential of 4.6 and 8 mV at 10 mA cm-2 in alkaline freshwater and seawater media, and long-term stability up to 1000 h. This work thus provides a guidance for the design of high-performance HER electrocatalyst by engineering interfacial atomic migration.
Collapse
Affiliation(s)
- Min Li
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hong Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Hefei Fan
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Qianfeng Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Zhao Yan
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Bing Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| | - Erdong Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| |
Collapse
|
5
|
Cai K, Chen W, Wan Y, Chu H, Hai X, Zou R. Self-Reconstructed Metal-Organic Framework-Based Hybrid Electrocatalysts for Efficient Oxygen Evolution. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1168. [PMID: 39057845 PMCID: PMC11279696 DOI: 10.3390/nano14141168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Refining synthesis strategies for metal-organic framework (MOF)-based catalysts to improve their performance and stability in an oxygen evolution reaction (OER) is a big challenge. In this study, a series of nanostructured electrocatalysts were synthesized through a solvothermal method by growing MOFs and metal-triazolates (METs) on nickel foam (NF) substrates (named MET-M/NF, M = Fe, Co, Cu), and these electrocatalysts could be used directly as OER self-supporting electrodes. Among these electrocatalysts, MET-Fe/NF exhibited the best OER performance, requiring only an overpotential of 122 mV at a current density of 10 mA cm-2 and showing remarkable stability over 15 h. The experimental results uncovered that MET-Fe/NF underwent an in situ structural reconstruction, resulting in the formation of numerous iron/nickel (oxy)hydroxides with high OER activity. Furthermore, in a two-electrode water-splitting setup, MET-Fe/NF only required 1.463 V to achieve a current density of 10 mA cm-2. Highlighting its potential for practical applications. This work provides insight into the design and development of efficient MOF-based OER catalysts.
Collapse
Affiliation(s)
- Kunting Cai
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Weibin Chen
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Yinji Wan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China
| | - Hsingkai Chu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Xiao Hai
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| |
Collapse
|
6
|
Huang JF, Hsieh WJ, Chen JL. Carbon-Promoted Pt-Single Atoms Anchored on RuO 2 Nanorods to Boost Electrochemical Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27504-27510. [PMID: 38758608 PMCID: PMC11145582 DOI: 10.1021/acsami.4c06033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
While efficient for electrochemical hydrogen evolution reaction (HER), Pt is limited by its cost and rarity. Traditional Pt catalysts and Pt single-atom (aPt) catalysts (Pt-SACs) face challenges in maintaining kinetically favorable HER pathways (Volmer-Tafel) at ultralow Pt loadings. Herein, carbon-promoted aPts were deposited on RuO2 without the addition of reductants. aPts confined on carbon-supported RuO2 nanorods (aPt/RuO2NR/Carbon) promoted "inter-aPts" Tafel. aPt/RuO2NR/Carbon is the Pt-SAC that retained underpotentially deposited H; additionally, its HER onset overpotential was "negative". The aPt/RuO2NR/Carbon exhibited 260-fold higher Pt mass activity (imPt)/turnover frequency (TOF) (522.7 A mg-1/528.4 s-1) than that of commercial Pt/C (1.9 A mg-1/1.9 s-1). In an ultralow Pt loading (0.19 μg cm-2), the HER rate-determining step maintained Volmer-Tafel and the Pt utilization efficiency was 100.3%.
Collapse
Affiliation(s)
- Jing-Fang Huang
- A
Department of Chemistry, National Chung
Hsing University, Taichung 402, Taiwan (R.O.C)
| | - Wen-Jun Hsieh
- A
Department of Chemistry, National Chung
Hsing University, Taichung 402, Taiwan (R.O.C)
| | - Jeng-Lung Chen
- National
Synchrotron Radiation Research Center, Science-Based
Industrial Park, Hsinchu30076, Taiwan (R.O.C)
| |
Collapse
|
7
|
Liu S, Huang WH, Meng S, Jiang K, Han J, Zhang Q, Hu Z, Pao CW, Geng H, Huang X, Zhan C, Yun Q, Xu Y, Huang X. 3D Noble-Metal Nanostructures Approaching Atomic Efficiency and Atomic Density Limits. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312140. [PMID: 38241656 DOI: 10.1002/adma.202312140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/10/2023] [Indexed: 01/21/2024]
Abstract
Noble metals have been widely used in catalysis, however, the scarcity and high cost of noble metal motivate researchers to balance the atomic efficiency and atomic density, which is formidably challenging. This article proposes a robust strategy for fabricating 3D amorphous noble metal-based oxides with simultaneous enhancement on atomic efficiency and density with the assistance of atomic channels, where the atomic utilization increases from 18.2% to 59.4%. The unique properties of amorphous bimetallic oxides and formation of atomic channels have been evidenced by detailed experimental characterizations and theoretical simulations. Moreover, the universality of the current strategy is validated by other binary oxides. When Cu2IrOx with atomic channels (Cu2IrOx-AE) is used as catalyst for oxygen evolution reaction (OER), the mass activity and turnover frequency value of Cu2IrOx-AE are 1-2 orders of magnitude higher than CuO/IrO2 and Cu2IrOx without atomic channels, largely outperforming the reported OER catalysts. Theoretical calculations reveal that the formation of atomic channels leads to various Ir sites, on which the proton of adsorbed *OH can transfer to adjacent O atoms of [IrO6]. This work may attract immediate interest of researchers in material science, chemistry, catalysis, and beyond.
Collapse
Affiliation(s)
- Shangheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, 215123, China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Shuang Meng
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Kezhu Jiang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jiajia Han
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Qiaobao Zhang
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187, Dresden, Germany
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Hongbo Geng
- School of Materials Engineering Changshu Institute of Technology Changshu, Changshu, 215500, China
| | - Xuan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Changhong Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qinbai Yun
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, Kowloon, 999077, China
| | - Yong Xu
- Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, 215123, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
8
|
Li Q, Zhang D, Wu J, Dai S, Liu H, Lu M, Cui R, Liang W, Wang D, Xi P, Liu M, Li H, Huang L. Cation-Deficient Perovskites Greatly Enhance the Electrocatalytic Activity for Oxygen Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309266. [PMID: 38019100 DOI: 10.1002/adma.202309266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Many perovskite oxides (ABO3 ) are considered the most promising alternatives to noble metal catalysts for oxygen reduction reaction (ORR) due to their high intrinsic activities. However, their electrocatalytic performance is often limited by poor electrical conductivity and low specific surface area. Here an electrochemically induced calcium-leaching process is reported to greatly increase the electrochemical surface area (ECSA) of La0.6 Ca0.4 MnO3 (LCMO64). The ECSA of the activated, Ca-deficient LCMO64 is ≈33.84% higher than that of the unactivated materials, demonstrating superior electrocatalytic ORR performance to the benchmark commercial Pt/C catalyst in an alkaline solution. Theoretical analysis coupled with electrochemical surface state probing and pH-dependent microkinetic modeling suggests that this catalyst with the identified most favorable state under ORR operating conditions reaches the Sabatier optimum of alkaline ORR. This reconstructed LCMO64 is among the best-performing ORR catalysts ever reported, providing new insights into the design of advanced perovskite materials with optimal surface chemistry.
Collapse
Affiliation(s)
- Qun Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Di Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Jiabin Wu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Simin Dai
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Heng Liu
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Min Lu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Renwen Cui
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wenxi Liang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Meilin Liu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Liang Huang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
9
|
Fuentes V, Balcells L, Konstantinović Z, Martínez B, Pomar A. Evaluation of Sputtering Processes in Strontium Iridate Thin Films. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:242. [PMID: 38334512 PMCID: PMC10856326 DOI: 10.3390/nano14030242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/10/2024]
Abstract
The growth of epitaxial thin films from the Ruddlesden-Popper series of strontium iridates by magnetron sputtering is analyzed. It was found that, even using a non-stoichiometric target, the films formed under various conditions were consistently of the perovskite-like n = ∞ SrIrO3 phase, with no evidence of other RP series phases. A detailed inspection of the temperature-oxygen phase diagram underscored that kinetics mechanisms prevail over thermodynamics considerations. The analysis of the angular distribution of sputtered iridium and strontium species indicated clearly different spatial distribution patterns. Additionally, significant backsputtering was detected at elevated temperatures. Thus, it is assumed that the interplay between these two kinetic phenomena is at the origin of the preferential nucleation of the SrIrO3 phase. In addition, strategies for controlling cation stoichiometry off-axis have also been explored. Finally, the long-term stability of the films has been demonstrated.
Collapse
Affiliation(s)
- Víctor Fuentes
- Instituto de Ciencia de Materiales de Barcelona, ICMAB-CSIC, Campus Universitario UAB, 08193 Bellaterra, Spain; (V.F.); (L.B.); (B.M.)
| | - Lluis Balcells
- Instituto de Ciencia de Materiales de Barcelona, ICMAB-CSIC, Campus Universitario UAB, 08193 Bellaterra, Spain; (V.F.); (L.B.); (B.M.)
| | - Zorica Konstantinović
- Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Benjamín Martínez
- Instituto de Ciencia de Materiales de Barcelona, ICMAB-CSIC, Campus Universitario UAB, 08193 Bellaterra, Spain; (V.F.); (L.B.); (B.M.)
| | - Alberto Pomar
- Instituto de Ciencia de Materiales de Barcelona, ICMAB-CSIC, Campus Universitario UAB, 08193 Bellaterra, Spain; (V.F.); (L.B.); (B.M.)
| |
Collapse
|
10
|
Liu Z, Bai Y, Sun H, Guan D, Li W, Huang WH, Pao CW, Hu Z, Yang G, Zhu Y, Ran R, Zhou W, Shao Z. Synergistic dual-phase air electrode enables high and durable performance of reversible proton ceramic electrochemical cells. Nat Commun 2024; 15:472. [PMID: 38212300 PMCID: PMC10784466 DOI: 10.1038/s41467-024-44767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Reversible proton ceramic electrochemical cells are promising solid-state ion devices for efficient power generation and energy storage, but necessitate effective air electrodes to accelerate the commercial application. Here, we construct a triple-conducting hybrid electrode through a stoichiometry tuning strategy, composed of a cubic phase Ba0.5Sr0.5Co0.8Fe0.2O3-δ and a hexagonal phase Ba4Sr4(Co0.8Fe0.2)4O16-δ. Unlike the common method of creating self-assembled hybrids by breaking through material tolerance limits, the strategy of adjusting the stoichiometric ratio of the A-site/B-site not only achieves strong interactions between hybrid phases, but also can efficiently modifies the phase contents. When operate as an air electrode for reversible proton ceramic electrochemical cell, the hybrid electrode with unique dual-phase synergy shows excellent electrochemical performance with a current density of 3.73 A cm-2 @ 1.3 V in electrolysis mode and a peak power density of 1.99 W cm-2 in fuel cell mode at 650 °C.
Collapse
Affiliation(s)
- Zuoqing Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 211816, Nanjing, People's Republic of China
| | - Yuesheng Bai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 211816, Nanjing, People's Republic of China
| | - Hainan Sun
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Daqin Guan
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) and Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Kowloon, China
| | - Wenhuai Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 211816, Nanjing, People's Republic of China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Zhiwei Hu
- Max-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187, Dresden, Germany
| | - Guangming Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 211816, Nanjing, People's Republic of China.
| | - Yinlong Zhu
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, People's Republic of China.
| | - Ran Ran
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 211816, Nanjing, People's Republic of China
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 211816, Nanjing, People's Republic of China
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 211816, Nanjing, People's Republic of China.
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia.
| |
Collapse
|
11
|
Xue F, Zhang C, Peng H, Liu F, Yan X, Yao Q, Hu Z, Chan TS, Liu M, Zhang J, Xu Y, Huang X. Nanotip-Induced Electric Field for Hydrogen Catalysis. NANO LETTERS 2023; 23:11827-11834. [PMID: 38079388 DOI: 10.1021/acs.nanolett.3c03845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Local electric field induced by the lightning-rod effect attracts great attention for regulating the local microenvironment and electronic properties of active sites. Nevertheless, local electric-field-assisted applications are mainly limited to metals with strong surface plasmonic resonance properties (e.g., Au, Ag, and Cu). Herein, we fabricate RuCu snow-like nanosheets (SNSs) with high-curvature nanotips for enhancing the hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER). Theoretical simulations show that RuCu SNSs can induce a strong local electric field around the sharp nanotips, which favors the accumulation of OH- for HOR and H+ for HER. Cu incorporation can modulate the binding strength of OH* and H*, leading to significantly enhanced HOR and HER performance. Impressively, the mass activity of RuCu SNSs for alkaline HOR is 31.3 times higher than that of RuCu nanocrystals without sharp tips. Besides, the required overpotential for reaching 10 mA cm-2 during HER over RuCu SNSs is 14.0 mV.
Collapse
Affiliation(s)
- Fei Xue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chunyang Zhang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hao Peng
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Feng Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xueli Yan
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qing Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden 01187, Germany
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Maochang Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Juntao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Yong Xu
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
12
|
Guan D, Xu H, Zhang Q, Huang YC, Shi C, Chang YC, Xu X, Tang J, Gu Y, Pao CW, Haw SC, Chen JM, Hu Z, Ni M, Shao Z. Identifying a Universal Activity Descriptor and a Unifying Mechanism Concept on Perovskite Oxides for Green Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305074. [PMID: 37452655 DOI: 10.1002/adma.202305074] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Producing indispensable hydrogen and oxygen for social development via water electrolysis shows more prospects than other technologies. Although electrocatalysts have been explored for centuries, a universal activity descriptor for both hydrogen-evolution reaction (HER) and oxygen-evolution reaction (OER) is not yet developed. Moreover, a unifying concept is not yet established to simultaneously understand HER/OER mechanisms. Here, the relationships between HER/OER activities in three common electrolytes and over ten representative material properties on 12 3d-metal-based model oxides are rationally bridged through statistical methodologies. The orbital charge-transfer energy (Δ) can serve as an ideal universal descriptor, where a neither too large nor too small Δ (≈1 eV) with optimal electron-cloud density around Fermi level affords the best activities, fulfilling Sabatier's principle. Systematic experiments and computations unravel that pristine oxide with Δ ≈ 1 eV possesses metal-like high-valence configurations and active lattice-oxygen sites to help adsorb key protons in HER and induce lattice-oxygen participation in the OER, respectively. After reactions, partially generated metals in the HER and high-valence hydroxides in the OER dominate proton adsorption and couple with pristine lattice-oxygen activation, respectively. These can be successfully rationalized by the unifying orbital charge-transfer theory. This work provides the foundation of rational material design and mechanism understanding for many potential applications.
Collapse
Affiliation(s)
- Daqin Guan
- WA School of Mines: Minerals, Energy, and Chemical Engineering, Curtin University, Perth, Western Australia, 6845, Australia
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) and Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Hengyue Xu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Qingwen Zhang
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Yu-Cheng Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Chenliang Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Yu-Chung Chang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Xiaomin Xu
- WA School of Mines: Minerals, Energy, and Chemical Engineering, Curtin University, Perth, Western Australia, 6845, Australia
| | - Jiayi Tang
- WA School of Mines: Minerals, Energy, and Chemical Engineering, Curtin University, Perth, Western Australia, 6845, Australia
| | - Yuxing Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Shu-Chih Haw
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Jin-Ming Chen
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Zhiwei Hu
- Max-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187, Dresden, Germany
| | - Meng Ni
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) and Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Zongping Shao
- WA School of Mines: Minerals, Energy, and Chemical Engineering, Curtin University, Perth, Western Australia, 6845, Australia
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| |
Collapse
|
13
|
Liu S, Tan H, Huang YC, Zhang Q, Lin H, Li L, Hu Z, Huang WH, Pao CW, Lee JF, Kong Q, Shao Q, Xu Y, Huang X. Structurally-Distorted RuIr-Based Nanoframes for Long-Duration Oxygen Evolution Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305659. [PMID: 37620729 DOI: 10.1002/adma.202305659] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Indexed: 08/26/2023]
Abstract
Oxygen evolution reaction (OER) plays a key role in proton exchange membrane water electrolysis (PEMWE), yet the electrocatalysts still suffer from the disadvantages of low activity and poor stability in acidic conditions. Here, a new class of CdRu2 IrOx nanoframes with distorted structure for acidic OER is successfully fabricated. Impressively, CdRu2 IrOx displays an ultralow overpotential of 189 mV and an ultralong stability of 1500 h at 10 mA cm⁻2 toward OER in 0.5 M H2 SO4 . Moreover, a PEMWE using the distorted CdRu2 IrOx can be steadily operated at 0.1 A cm⁻2 for 90 h. Microstructural analyses and X-ray absorption spectroscopy (XAS) demonstrate that the synergy between Ru and Ir in CdRu2 IrOx induces the distortion of Ru-O, Ir-O, and Ru-M (M = Ru, Ir) bonds. In situ XAS indicates that the applied potential leads to the deformation octahedral structure of RuOx /IrOx and the formation of stable Ru5+ species for OER. Theoretical calculations also reveal that the distorted structures can reduce the energy barrier of rate-limiting step during OER. This work provides an efficient strategy for constructing structural distortion to achieve significant enhancement on the activity and stability of OER catalysts.
Collapse
Affiliation(s)
- Shangheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Huang Tan
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yu-Cheng Huang
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Qiaobao Zhang
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Ling Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187, Dresden, Germany
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Qingyu Kong
- Synchrotron Soleil, L'Orme des Merisiers, St-Aubin, Gif-sur-Yvette Cedex, 91192, France
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Yong Xu
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
14
|
Hou Z, Cui C, Li Y, Gao Y, Zhu D, Gu Y, Pan G, Zhu Y, Zhang T. Lattice-Strain Engineering for Heterogenous Electrocatalytic Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209876. [PMID: 36639855 DOI: 10.1002/adma.202209876] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The energy efficiency of metal-air batteries and water-splitting techniques is severely constrained by multiple electronic transfers in the heterogenous oxygen evolution reaction (OER), and the high overpotential induced by the sluggish kinetics has become an uppermost scientific challenge. Numerous attempts are devoted to enabling high activity, selectivity, and stability via tailoring the surface physicochemical properties of nanocatalysts. Lattice-strain engineering as a cutting-edge method for tuning the electronic and geometric configuration of metal sites plays a pivotal role in regulating the interaction of catalytic surfaces with adsorbate molecules. By defining the d-band center as a descriptor of the structure-activity relationship, the individual contribution of strain effects within state-of-the-art electrocatalysts can be systematically elucidated in the OER optimization mechanism. In this review, the fundamentals of the OER and the advancements of strain-catalysts are showcased and the innovative trigger strategies are enumerated, with particular emphasis on the feedback mechanism between the precise regulation of lattice-strain and optimal activity. Subsequently, the modulation of electrocatalysts with various attributes is categorized and the impediments encountered in the practicalization of strained effect are discussed, ending with an outlook on future research directions for this burgeoning field.
Collapse
Affiliation(s)
- Zhiqian Hou
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chenghao Cui
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanni Li
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yingjie Gao
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Deming Zhu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuanfan Gu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guoyu Pan
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yaqiong Zhu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tao Zhang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
15
|
Yao Q, Yu Z, Li L, Huang X. Strain and Surface Engineering of Multicomponent Metallic Nanomaterials with Unconventional Phases. Chem Rev 2023; 123:9676-9717. [PMID: 37428987 DOI: 10.1021/acs.chemrev.3c00252] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Multicomponent metallic nanomaterials with unconventional phases show great prospects in electrochemical energy storage and conversion, owing to unique crystal structures and abundant structural effects. In this review, we emphasize the progress in the strain and surface engineering of these novel nanomaterials. We start with a brief introduction of the structural configurations of these materials, based on the interaction types between the components. Next, the fundamentals of strain, strain effect in relevant metallic nanomaterials with unconventional phases, and their formation mechanisms are discussed. Then the progress in surface engineering of these multicomponent metallic nanomaterials is demonstrated from the aspects of morphology control, crystallinity control, surface modification, and surface reconstruction. Moreover, the applications of the strain- and surface-engineered unconventional nanomaterials mainly in electrocatalysis are also introduced, where in addition to the catalytic performance, the structure-performance correlations are highlighted. Finally, the challenges and opportunities in this promising field are prospected.
Collapse
Affiliation(s)
- Qing Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhiyong Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Leigang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
16
|
Adak M, Basak HK, Chakraborty B. Ease of Electrochemical Arsenate Dissolution from FeAsO 4 Microparticles during Alkaline Oxygen Evolution Reaction. ACS ORGANIC & INORGANIC AU 2023; 3:223-232. [PMID: 37545654 PMCID: PMC10401858 DOI: 10.1021/acsorginorgau.3c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 08/08/2023]
Abstract
Transition metal-based ABO4-type materials have now been paid significant attention due to their excellent electrochemical activity. However, a detailed study to understand the active species and its electro-evolution pathway is not traditionally performed. Herein, FeAsO4, a bimetallic ABO4-type oxide, has been prepared solvothermally. In-depth microscopic and spectroscopic studies showed that the as-synthesized cocoon-like FeAsO4 microparticles consist of several small individual nanocrystals with a mixture of monoclinic and triclinic phases. While depositing FeAsO4 on three-dimensional nickel foam (NF), it can show oxygen evolution reaction (OER) in a moderate operating potential. During the electrochemical activation of the FeAsO4/NF anode through cyclic voltammetric (CV) cycles prior to the OER study, an exponential increment in the current density (j) was observed. An ex situ Raman study with the electrode along with field emission scanning electron microscopy imaging showed that the pronounced OER activity with increasing number of CV cycles is associated with a rigorous morphological and chemical change, which is followed by [AsO4]3- leaching from FeAsO4. A chronoamperometric study and subsequent spectro- and microscopic analyses of the isolated sample from the electrode show an amorphous γ-FeO(OH) formation at the constant potential condition. The in situ formation of FeO(OH)ED (ED indicates electrochemically derived) shows better activity compared to pristine FeAsO4 and independently prepared FeO(OH). Tafel, impedance spectroscopic study, and determination of electrochemical surface area have inferred that the in situ formed FeO(OH)ED shows better electro-kinetics and possesses higher surface active sites compared to its parent FeAsO4. In this study, the electrochemical activity of FeAsO4 has been correlated with its structural integrity and unravels its electro-activation pathway by characterizing the active species for OER.
Collapse
|
17
|
Ni S, Qu H, Xu Z, Zhu X, Chen L, Xing H, Wu X, Liu H, Yang L. Regulating the Spin State of Metal and Metal Carbide Heterojunctions for Efficient Oxygen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37466139 DOI: 10.1021/acsami.3c07955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Developing high-performance electrocatalysts for oxygen evolution reaction (OER) is of importance for improving the overall efficiency of water splitting. Herein, the CoFe/(CoxFe1-x)3Mo3C heterojunction is purposely designed as an OER catalyst, which displays a low overpotential of 293 mV for affording a current density of 10 mA cm-2 and a small Tafel slope of 48 mV/dec. Various characterization results demonstrate that the significant work-function difference between CoFe and (CoxFe1-x)3Mo3C can induce interfacial charge redistribution, which results in the formation of Co and Fe sites with a high-spin state, thus stimulating the surface phase reconstruction of CoFe/(CoxFe1-x)3Mo3C to corresponding active oxyhydroxide. Meanwhile, the electrochemical leaching of Mo ions from the initial structure can contribute to the formation of defective sites, further benefiting OH- adsorption and surface oxidation. Moreover, the remaining CoFe can accelerate electron migration during the electrocatalytic process. This study presents new insights into constructing efficient OER electrocatalysts with an optimized spin-state configuration via interfacial engineering.
Collapse
Affiliation(s)
- Shan Ni
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongnan Qu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zihao Xu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyang Zhu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyan Chen
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifang Xing
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Wu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Huizhou Liu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Liangrong Yang
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| |
Collapse
|
18
|
Ren M, Zhu X, Luo Q, Li X, Yang J. Proposal of spin crossover as a reversible switch of catalytic activity for the oxygen evolution reaction in two dimensional metal-organic frameworks. NANOSCALE 2023. [PMID: 37314098 DOI: 10.1039/d3nr01708g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of oxygen evolution reaction (OER) catalysts with high activity and controllability is crucial for clean energy conversion and storage but remains a challenge. Here, based on first-principles calculations, we propose to utilize spin crossover (SCO) in two-dimensional (2D) metal-organic frameworks (MOFs) to achieve reversible control of OER catalytic activity. The theoretical design of a 2D square lattice MOF with Co as nodes and tetrakis-substituted cyanimino squaric acid (TCSA) as ligands, which transforms between the high spin (HS) and the low spin (LS) state by applying an external strain (∼2%), confirms our proposal. In particular, the HS-LS spin state transition of Co(TCSA) considerably regulates the adsorption strength of the key intermediate HO* in the OER process, resulting in a significant reduction of the overpotential from 0.62 V in the HS state to 0.32 V in the LS state, thus realizing a reversible switch for the activity of the OER. Moreover, the high activity of the LS state is confirmed by microkinetic and constant potential method simulations.
Collapse
Affiliation(s)
- Min Ren
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiangyu Zhu
- Institutes of Physical Science and Information, Department of Chemistry, Anhui University, Hefei, Anhui 230601, China
| | - Qiquan Luo
- Institutes of Physical Science and Information, Department of Chemistry, Anhui University, Hefei, Anhui 230601, China
| | - Xingxing Li
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Jinglong Yang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
19
|
Wu JX, Chen WX, He CT, Zheng K, Zhuo LL, Zhao ZH, Zhang JP. Atomically Dispersed Dual-Metal Sites Showing Unique Reactivity and Dynamism for Electrocatalysis. NANO-MICRO LETTERS 2023; 15:120. [PMID: 37127819 PMCID: PMC10151301 DOI: 10.1007/s40820-023-01080-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
The real structure and in situ evolution of catalysts under working conditions are of paramount importance, especially for bifunctional electrocatalysis. Here, we report asymmetric structural evolution and dynamic hydrogen-bonding promotion mechanism of an atomically dispersed electrocatalyst. Pyrolysis of Co/Ni-doped MAF-4/ZIF-8 yielded nitrogen-doped porous carbons functionalized by atomically dispersed Co-Ni dual-metal sites with an unprecedented N8V4 structure, which can serve as an efficient bifunctional electrocatalyst for overall water splitting. More importantly, the electrocatalyst showed remarkable activation behavior due to the in situ oxidation of the carbon substrate to form C-OH groups. Density functional theory calculations suggested that the flexible C-OH groups can form reversible hydrogen bonds with the oxygen evolution reaction intermediates, giving a bridge between elementary reactions to break the conventional scaling relationship.
Collapse
Affiliation(s)
- Jun-Xi Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Xing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Chun-Ting He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, People's Republic of China.
| | - Kai Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Lin-Ling Zhuo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zhen-Hua Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jie-Peng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
20
|
Huang H, Chang YC, Huang YC, Li L, Komarek AC, Tjeng LH, Orikasa Y, Pao CW, Chan TS, Chen JM, Haw SC, Zhou J, Wang Y, Lin HJ, Chen CT, Dong CL, Kuo CY, Wang JQ, Hu Z, Zhang L. Unusual double ligand holes as catalytic active sites in LiNiO 2. Nat Commun 2023; 14:2112. [PMID: 37055401 PMCID: PMC10102180 DOI: 10.1038/s41467-023-37775-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
Designing efficient catalyst for the oxygen evolution reaction (OER) is of importance for energy conversion devices. The anionic redox allows formation of O-O bonds and offers higher OER activity than the conventional metal sites. Here, we successfully prepare LiNiO2 with a dominant 3d8L configuration (L is a hole at O 2p) under high oxygen pressure, and achieve a double ligand holes 3d8L2 under OER since one electron removal occurs at O 2p orbitals for NiIII oxides. LiNiO2 exhibits super-efficient OER activity among LiMO2, RMO3 (M = transition metal, R = rare earth) and other unary 3d catalysts. Multiple in situ/operando spectroscopies reveal NiIII→NiIV transition together with Li-removal during OER. Our theory indicates that NiIV (3d8L2) leads to direct O-O coupling between lattice oxygen and *O intermediates accelerating the OER activity. These findings highlight a new way to design the lattice oxygen redox with enough ligand holes created in OER process.
Collapse
Affiliation(s)
- Haoliang Huang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yu-Chung Chang
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan, ROC
| | - Yu-Cheng Huang
- Department of Physics, Tamkang University, New Taipei City, Taiwan, ROC
| | - Lili Li
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Alexander C Komarek
- Max Planck Institute for Chemical Physics of Solids, Dresden, 01187, Germany
| | - Liu Hao Tjeng
- Max Planck Institute for Chemical Physics of Solids, Dresden, 01187, Germany
| | - Yuki Orikasa
- Department of Applied Chemistry, Ritsumeikan University, Kusatsu, Shiga, 535-8577, Japan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan, ROC
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan, ROC
| | - Jin-Ming Chen
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan, ROC
| | - Shu-Chih Haw
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan, ROC
| | - Jing Zhou
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yifeng Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Hong-Ji Lin
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan, ROC
| | - Chien-Te Chen
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan, ROC
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei City, Taiwan, ROC
| | - Chang-Yang Kuo
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan, ROC
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Dresden, 01187, Germany
| | - Linjuan Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
- University of Chinese Academy of Sciences, Beijing, 10049, China.
| |
Collapse
|
21
|
Tian W, Li L, Zhu G. Interface Engineering of Oxygen-Vacancy-Rich VO-NiFe2O4@Ni2P Heterostructure for Highly Efficient Oxygen Evolution Reaction. Catal Letters 2023. [DOI: 10.1007/s10562-023-04301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
22
|
Unraveling oxygen vacancy site mechanism of Rh-doped RuO 2 catalyst for long-lasting acidic water oxidation. Nat Commun 2023; 14:1412. [PMID: 36918568 PMCID: PMC10015077 DOI: 10.1038/s41467-023-37008-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Exploring durable electrocatalysts with high activity for oxygen evolution reaction (OER) in acidic media is of paramount importance for H2 production via polymer electrolyte membrane electrolyzers, yet it remains urgently challenging. Herein, we report a synergistic strategy of Rh doping and surface oxygen vacancies to precisely regulate unconventional OER reaction path via the Ru-O-Rh active sites of Rh-RuO2, simultaneously boosting intrinsic activity and stability. The stabilized low-valent catalyst exhibits a remarkable performance, with an overpotential of 161 mV at 10 mA cm-2 and activity retention of 99.2% exceeding 700 h at 50 mA cm-2. Quasi in situ/operando characterizations demonstrate the recurrence of reversible oxygen species under working potentials for enhanced activity and durability. It is theoretically revealed that Rh-RuO2 passes through a more optimal reaction path of lattice oxygen mediated mechanism-oxygen vacancy site mechanism induced by the synergistic interaction of defects and Ru-O-Rh active sites with the rate-determining step of *O formation, breaking the barrier limitation (*OOH) of the traditional adsorption evolution mechanism.
Collapse
|
23
|
Liu F, Wu X, Guo R, Miao H, Wang F, Yang C, Yuan J. Suppressing the Surface Amorphization of Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3-δ Perovskite toward Oxygen Catalytic Reactions by Introducing the Compressive Stress. Inorg Chem 2023; 62:4373-4384. [PMID: 36862561 DOI: 10.1021/acs.inorgchem.3c00158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) perovskite has been recognized as a promising oxygen evolution reaction (OER) catalyst due to its superior intrinsic catalytic activity. However, BSCF suffers from serious degradation during the OER process due to its surface amorphization caused by the segregation of A-site ions (Ba2+ and Sr2+). Herein, we construct a novel BSCF composite catalyst (BSCF-GDC-NR) by anchoring the gadolinium-doped ceria oxide (GDC) nanoparticles on the surface of a BSCF nanorod by a concentration-difference electrospinning method. Our BSCF-GDC-NR has greatly improved bifunctional oxygen catalytic activity and stability toward both oxygen reduction reaction (ORR) and OER compared with the pristine BSCF. The improvement of the stability can be related to that anchoring GDC on BSCF effectively suppresses the segregation and dissolution of A-site elements in BSCF during the preparation and catalytic processes. The suppression effects are ascribed to the introduction of compressive stress between BSCF and GDC, which greatly inhibits the diffusions of Ba and Sr ions. This work can give a guidance for developing the perovskite oxygen catalysts with high activity and stability.
Collapse
Affiliation(s)
- Fuyue Liu
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, PR China
| | - Xuyang Wu
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ran Guo
- Shanghai Frontiers Science Center of "Full Penetration" Far-reaching Offshore Ocean Energy and Power, Merchant Marine College, Shanghai Maritime University, Shanghai 200135, China
| | - He Miao
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, PR China
| | - Fu Wang
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, PR China
| | - Chao Yang
- Shanghai Frontiers Science Center of "Full Penetration" Far-reaching Offshore Ocean Energy and Power, Merchant Marine College, Shanghai Maritime University, Shanghai 200135, China
| | - Jinliang Yuan
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, PR China
| |
Collapse
|
24
|
Jia H, Yao N, Zhu J, Luo W. Reconstructured Electrocatalysts during Oxygen Evolution Reaction under Alkaline Electrolytes. Chemistry 2023; 29:e202203073. [PMID: 36367365 DOI: 10.1002/chem.202203073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
The development of electrocatalysts with high-efficiency and clear structure-activity relationship towards the sluggish oxygen evolution reaction (OER) is essential for the wide application of water electrolyzers. Recently, the dynamic reconstruction phenomenon of the catalysts' surface structures during the OER process has been discovered. With the help of various advanced ex situ and in situ characterization, it is demonstrated that such surface reconstruction could yield actual active species to catalyze the water oxidation process. However, the attention and studies of potential interaction between reconstructed species and substrate are lacking. This review summarizes the recent development of typical reconstructed electrocatalysts and the substrate effect. First, the advanced characterization for electrocatalytic reconstruction is briefly discussed. Then, typical reconstructed electrocatalysts are comprehensively summarized and the key role of substrate effects during the OER process is emphasized. Finally, the future challenges and perspectives of surface reconstructed catalysts for water electrolysis are discussed.
Collapse
Affiliation(s)
- Hongnan Jia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Na Yao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430073, P. R. China
| | - Juan Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
25
|
Wang X, Huang K, Wu X, Yuan L, Li L, Li G, Feng S. Manipulation and observation of atomic-scale superlattices in perovskite manganate. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
26
|
Reuss T, Nair Lalithambika SS, David C, Döring F, Jooss C, Risch M, Techert S. Advancements in Liquid Jet Technology and X-ray Spectroscopy for Understanding Energy Conversion Materials during Operation. Acc Chem Res 2023; 56:203-214. [PMID: 36636991 PMCID: PMC9910040 DOI: 10.1021/acs.accounts.2c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
ConspectusWater splitting is intensively studied for sustainable and effective energy storage in green/alternative energy harvesting-storage-release cycles. In this work, we present our recent developments for combining liquid jet microtechnology with different types of soft X-ray spectroscopy at high-flux X-ray sources, in particular developed for studying the oxygen evolution reaction (OER). We are particularly interested in the development of in situ photon-in/photon-out techniques, such as in situ resonant inelastic X-ray scattering (RIXS) techniques at high-repetition-frequency X-ray sources, pointing toward operando capabilities. The pilot catalytic systems we use are perovskites having the general structure ABO3 with lanthanides or group II elements at the A sites and transition metals at the B sites. Depending on the chemical substitutions of ABO3, their catalytic activity for OER can be tuned by varying the composition.In this work, we present our in situ RIXS studies of the manganese L-edge of perovskites during OER. We have developed various X-ray spectroscopy approaches like transmission zone plate-, reflection zone plate-, and grating-based emission spectroscopy techniques. Combined with tunable incident X-ray energies, we yield complementary information about changing (inverse) X-ray absorption features of the perovskites, allowing us to deduce element- and oxidation-state-specific chemical monitoring of the catalyst. Adding liquid jet technology, we monitor element- and oxidation-state-specific interactions of the catalyst with water adsorbate during OER. By comparing the different technical spectroscopy approaches combined with high-repetition-frequency experiments at synchrotrons and free-electron lasers, we conclude that the combination of liquid jet with low-resolution zone-plate-based X-ray spectroscopy is sufficient for element- and oxidation-state-specific chemical monitoring during OER and easy to handle.For an in-depth study of OER mechanisms, however, including the characterization of catalyst-water adsorbate in terms of their charge transfer properties and especially valence intermediates formed during OER, high-resolution spectroscopy tools based on a combination of liquid jets with gratings bear bigger potential since they allow resolution of otherwise-overlapping X-ray spectroscopy transitions. Common for all of these experimental approaches is the conclusion that without the versatile developments of liquid jets and liquid beam technologies, elaborate experiments such as high-repetition experiments at high-flux X-ray sources (like synchrotrons or free-electron lasers) would hardly be possible. Such experiments allow sample refreshment for every single X-ray shot for repetition frequencies of up to 5 MHz, so that it is possible (a) to study X-ray-radiation-sensitive samples and also (b) to utilize novel types of flux-hungry X-ray spectroscopy tools like photon-in/photon-out X-ray spectroscopy to study the OER.
Collapse
Affiliation(s)
- Torben Reuss
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - Christian David
- Paul
Scherrer Institute, Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland
| | - Florian Döring
- Paul
Scherrer Institute, Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland
| | - Christian Jooss
- Institute
of Material Physics, Göttingen University, Friedrich Hund Platz 1, 37077 Göttingen, Germany
| | - Marcel Risch
- Institute
of Material Physics, Göttingen University, Friedrich Hund Platz 1, 37077 Göttingen, Germany
| | - Simone Techert
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany,Institute
for X-ray Physics, Göttingen University, Friedrich Hund Platz 1, 37077 Göttingen, Germany,
| |
Collapse
|
27
|
Wang X, Li W, Zhou C, Xu M, Hu Z, Pao CW, Zhou W, Shao Z. Enhanced Proton Conduction with Low Oxygen Vacancy Concentration and Favorable Hydration for Protonic Ceramic Fuel Cells Cathode. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1339-1347. [PMID: 36579819 DOI: 10.1021/acsami.2c19343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Protonic ceramic fuel cells (PCFCs), as an efficient energy storage and conversion device, have great potential to solve the serious problems of energy shortage and environmental pollution. Improving the proton conductivity of the promising cathode materials is an effective solution to promote the widespread application of PCFCs at low temperatures (450-650 °C). Herein, considering the high oxygen reduction reaction (ORR) activity of BaCoO3-based perovskite oxide and beneficial proton uptake capacity of Zn-doping, we construct BaCo0.4Fe0.4Zn0.1Y0.1O3-δ (BCFZnY) as the PCFCs cathode, and compare it with the classic triple-conducting cathode BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZrY). Different from the general strategy of increasing the initial oxygen vacancy concentration of cathode materials, this work unveils that enhancing the hydration of perovskite oxide with low oxygen vacancy concentration is a more effective strategy to accelerate the proton diffusion in the electrode. Therefore, the BCFZnY cathode achieved excellent proton conductivities of 8.05 × 10-3 and 6.38 × 10-3 S cm-1 as obtained by hydrogen permeation measurements and peak power densities of 982 and 320 mW cm-2 in a BaZr0.1Ce0.7Y0.1Yb0.1O3-δ-based anode-supported fuel cell at 600 and 450 °C, respectively.
Collapse
Affiliation(s)
- Xiaoyu Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211800, China
| | - Wenhuai Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211800, China
| | - Chuan Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211800, China
| | - Meigui Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211800, China
| | - Zhiwei Hu
- Max-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, Dresden01187, Germany
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center101 Hsin-Ann Road, Hsinchu30076, Taiwan
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211800, China
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211800, China
| |
Collapse
|
28
|
Kreider ME, Burke Stevens M. Material Changes in Electrocatalysis: An In Situ/Operando Focus on the Dynamics of Cobalt‐Based Oxygen Reduction and Evolution Catalysts. ChemElectroChem 2022. [DOI: 10.1002/celc.202200958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Melissa E. Kreider
- Department of Chemical Engineering Stanford University 443 Via Ortega, Stanford California 94305 United States
- SUNCAT Center for Interface Science and Catalysis SLAC National Accelerator Laboratory Menlo Park California 94025 United States
| | - Michaela Burke Stevens
- SUNCAT Center for Interface Science and Catalysis SLAC National Accelerator Laboratory Menlo Park California 94025 United States
| |
Collapse
|
29
|
Zhu Y, Wang J, Koketsu T, Kroschel M, Chen JM, Hsu SY, Henkelman G, Hu Z, Strasser P, Ma J. Iridium single atoms incorporated in Co 3O 4 efficiently catalyze the oxygen evolution in acidic conditions. Nat Commun 2022; 13:7754. [PMID: 36517475 PMCID: PMC9751110 DOI: 10.1038/s41467-022-35426-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Designing active and stable electrocatalysts with economic efficiency for acidic oxygen evolution reaction is essential for developing proton exchange membrane water electrolyzers. Herein, we report on a cobalt oxide incorporated with iridium single atoms (Ir-Co3O4), prepared by a mechanochemical approach. Operando X-ray absorption spectroscopy reveals that Ir atoms are partially oxidized to active Ir>4+ during the reaction, meanwhile Ir and Co atoms with their bridged electrophilic O ligands acting as active sites, are jointly responsible for the enhanced performance. Theoretical calculations further disclose the isolated Ir atoms can effectively boost the electronic conductivity and optimize the energy barrier. As a result, Ir-Co3O4 exhibits significantly higher mass activity and turnover frequency than those of benchmark IrO2 in acidic conditions. Moreover, the catalyst preparation can be easily scaled up to gram-level per batch. The present approach highlights the concept of constructing single noble metal atoms incorporated cost-effective metal oxides catalysts for practical applications.
Collapse
Affiliation(s)
- Yiming Zhu
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Jiaao Wang
- Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712-0165, USA
| | - Toshinari Koketsu
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
- Department of Chemistry, Technical University Berlin, 10623, Berlin, Germany
| | - Matthias Kroschel
- Department of Chemistry, Technical University Berlin, 10623, Berlin, Germany
| | - Jin-Ming Chen
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Su-Yang Hsu
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Graeme Henkelman
- Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712-0165, USA
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187, Dresden, Germany.
| | - Peter Strasser
- Department of Chemistry, Technical University Berlin, 10623, Berlin, Germany.
| | - Jiwei Ma
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China.
| |
Collapse
|
30
|
Wang X, Zhong H, Xi S, Lee WSV, Xue J. Understanding of Oxygen Redox in the Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107956. [PMID: 35853837 DOI: 10.1002/adma.202107956] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The electron-transfer process during the oxygen evolution reaction (OER) often either proceeds solely via a metal redox chemistry (adsorbate evolution mechanism (AEM), with metal bands around the Fermi level) or an oxygen redox chemistry (lattice oxygen oxidation mechanism (LOM), with oxygen bands around the Fermi level). Unlike the AEM, the LOM involves oxygen redox chemistry instead of metal redox, which leads to the formation of a direct oxygen-oxygen (OO) bond. As a result, such a process is able to bypass the rate-determining step, that is, OO bonding, in AEM, which highlights the critical advantage of LOM as compared to the conventional AEM. Thus, it has been well reported that LOM-based catalysts are able to demonstrate higher OER activities as compared to AEM-based catalysts. Here, a comprehensive understanding of the oxygen redox in LOM and all documented and possible characterization techniques that can be used to identify the oxygen redox are reviewed. This review will interpret the origins of oxygen redox in the reported LOM-based electrocatalysts and the underlying science of LOM-induced surface reconstruction in transition metal oxides. Finally, perspectives on the future development of LOM electrocatalysts are also provided.
Collapse
Affiliation(s)
- Xiaopeng Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573, Singapore
| | - Haoyin Zhong
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573, Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore, 627833, Singapore
| | - Wee Siang Vincent Lee
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573, Singapore
| | - Junmin Xue
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573, Singapore
| |
Collapse
|
31
|
Liao Q, Liu X, Deng K, Liu P, Lv X, Tian W, Ji J. Plasma-Induced Surface Reconstruction of NiFe/Co 3O 4 Nanoarrays for High-Current and Ultrastable Oxygen Evolution and the Urea Oxidation Reaction. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qingdian Liao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xuesong Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Kuan Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Peng Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xingbin Lv
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, Sichuan, P. R. China
| | - Wen Tian
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Junyi Ji
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
32
|
Huang YC, Chen W, Xiao Z, Hu Z, Lu YR, Chen JL, Chen CL, Lin HJ, Chen CT, Arul KT, Wang S, Dong CL, Chou WC. In Situ/ Operando Soft X-ray Spectroscopic Identification of a Co 4+ Intermediate in the Oxygen Evolution Reaction of Defective Co 3O 4 Nanosheets. J Phys Chem Lett 2022; 13:8386-8396. [PMID: 36047673 DOI: 10.1021/acs.jpclett.2c01557] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Defect engineering is an important means of improving the electrochemical performance of the Co3O4 electrocatalyst in the oxygen evolution reaction (OER). In this study, operando soft X-ray absorption spectroscopy (SXAS) is used to explore the electronic structure of Co3O4 under OER for the first time. The defect-rich Co3O4 (D-Co3O4) has a Co2.45+ state with Co2+ at both octahedral (Oh) and tetrahedral (Td) sites and Co3+ at Oh, whereas Co3O4 has Co2.6+ with Co2+ and Co3+ at Td and Oh sites, respectively. SXAS reveals that upon increasing the voltage, the Co2+ in D-Co3O4 is converted to low-spin Co3+, some of which is further converted to low-spin Co4+; most Co2+ in Co3O4 is converted to Co3+ but rarely to Co4+. When the voltage is switched off, Co4+ intermediates quickly disappear. These findings reveal Co(Oh) in D-Co3O4 can be rapidly converted to active low-spin Co4+ under operando conditions, which cannot be observed by ex situ XAS.
Collapse
Affiliation(s)
- Yu-Cheng Huang
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Research Center for X-ray Science & Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Wei Chen
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zhaohui Xiao
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Marin Resource Utilization in South China Sea, School Materials Science and Engineering, Hainan University, Haikou 570228, P.R. China
| | - Zhiwei Hu
- Max-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Street 40, 01187 Dresden, Germany
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu 30010, Taiwan
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Hsinchu 30010, Taiwan
| | - Chi-Liang Chen
- National Synchrotron Radiation Research Center, Hsinchu 30010, Taiwan
| | - Hong-Ji Lin
- National Synchrotron Radiation Research Center, Hsinchu 30010, Taiwan
| | - Chien-Te Chen
- National Synchrotron Radiation Research Center, Hsinchu 30010, Taiwan
| | - K Thanigai Arul
- Research Center for X-ray Science & Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Chung-Li Dong
- Research Center for X-ray Science & Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Wu-Ching Chou
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
33
|
Construction of metal (oxy) hydroxides surface on high entropy alloy as lattice-oxygen-participated electrocatalyst for oxygen evolution reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Dong Q, Wang H, Ren J, Wang X, Ji S, Wang R. Ultra-dispersed copper nanoparticles constructing crystalline-amorphous interface sites for alkaline water splitting. J Colloid Interface Sci 2022; 627:650-660. [PMID: 35872421 DOI: 10.1016/j.jcis.2022.07.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
In literature, the creation of an interface between a highly conductive crystalline phase and an amorphous phase with unsaturated sites has been proven to be an effective strategy in the design of electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). However, the procedural complexity and limited formation of interfaces have compromised the envisioned effects. In this work, the dense crystalline Fe2O3/amorphous Cu interface was created simultaneously by the combination of solverthermal and annealing processes. The results showed that the ultra-dispersed Cu nanoparticles attributed to the formation of crystalline-amorphous (c-a) interface sites, which facilitated the electron transfer with the tuned electronic structures as well as the favorable adsorption of surface oxygen species. As a result, the developed Fe2O3/Cu-PNC catalyst outperformed most of the competing bifunctional catalysts reported for both OER and HER operations.
Collapse
Affiliation(s)
- Qing Dong
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hui Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jianwei Ren
- Department of Mechanical Engineering Science, University of Johannesburg, Cnr Kingsway and University Roads, Auckland Park, 2092 Johannesburg, South Africa.
| | - Xuyun Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shan Ji
- College of Biological, Chemical Science and Chemical Engineering, Jiaxing University, Jiaxing 314001, China
| | - Rongfang Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
35
|
Zhou YN, Zhao HY, Wang HY, Nan J, Dong B, Wang FG, Dong YW, Liu B, Chai YM. Active Microstructure Transformation and Enhanced Stability of Iron Foam Derived from Industrial Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17229-17239. [PMID: 35385258 DOI: 10.1021/acsami.2c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tracking microstructure transformation under industrial conditions is significant and urgent for the development of oxygen evolution reaction (OER) catalysts. Herein, employing iron foam (IF) as an object, we closely monitor related morphologies and composition evolution under 300 mA cm-2 at 40 °C (IF-40-t)/80 °C (IF-80-t) in 6 M KOH and find that the OER activity first increases and then decreases with the continuous generation of FeOOH. Moreover, the reasons for different tendencies of Tafel slope, double-layer capacitance, and impedance for IF-40-t/IF-80-t have been investigated thoroughly. In detail, the OER activity of IF-40-t is governed by electron and mass transport, while for IF-80-t, the dominating factor is electron transfer. Further, to improve the stability, guided by the above results, two versatile methods that do not sacrifice electron and mass transport have been proposed: surface coating and dynamic interface construction. The synchronous improvements of stability and activity are deeply revealed, which may provide inspiration for catalyst design for industrial applications.
Collapse
Affiliation(s)
- Ya-Nan Zhou
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hui-Ying Zhao
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hui-Ying Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Jun Nan
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
- CNOOC Tianjin Chemical Research and Design Institute Co., Ltd., Tianjin 300131, P. R. China
| | - Bin Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Feng-Ge Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yi-Wen Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Bin Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yong-Ming Chai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
36
|
Lei L, Yin Z, Huang D, Chen Y, Chen S, Cheng M, Du L, Liang Q. Metallic Co and crystalline Co-Mo oxides supported on graphite felt for bifunctional electrocatalytic hydrogen evolution and urea oxidation. J Colloid Interface Sci 2022; 612:413-423. [PMID: 34999546 DOI: 10.1016/j.jcis.2021.12.149] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/01/2022]
Abstract
Oxygen evolution reaction (OER) and urea oxidation reaction (UOR) play important roles in the field of hydrogen energy preparation and pollution treatment. In this work, by merging bimetallic Co-Mo oxides with metallic Co on the graphite felt (GF), we effectively manufacture a 3D bifunctional and highly efficient electrocatalyst (CoMoO@Co/GF) with multi-site functionality for the simultaneous reduction of water and the oxidation of urea in an alkaline medium. The presence of metallic Co causes Co-Mo oxides to evolve from amorphous to crystalline structures. The coupling interface produced between metallic Co and Co-Mo oxides is proven to facilitate electron transport in addition to extensively accessible and highly electroactive Co-Mo oxide nanoflower architecture. The experimental results reveal that the overpotentials for OER and UOR in the CoMoO@Co/GF electrode require only 269 and 115 mV to obtain a current density of 10 mA cm-2, respectively. Furthermore, with the aid of urea, the overpotential for HER at the current density of 10 mA cm-2 is lowered to 155 mV. Most notably, the constructed CoMoO@Co/GF-based electrolytic cell only requires a 1.5 V dry battery to achieve effective H2 evolution and noteworthy stability, outperforming the commercial catalyst-based device and many previous results. The combination of experiments and theoretical calculations further clarifies the active sites in the catalyst. What's more, the pathway of electron transfer in the catalytic process is defined.
Collapse
Affiliation(s)
- Lei Lei
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhuo Yin
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China.
| | - Danlian Huang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Yashi Chen
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Sha Chen
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Li Du
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qinghua Liang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| |
Collapse
|
37
|
Naveen MH, Bui TL, Lee L, Khan R, Chung W, Thota R, Joo SW, Bang JH. Nanostructuring Matters: Stabilization of Electrocatalytic Oxygen Evolution Reaction Activity of ZnCo 2O 4 by Zinc Leaching. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15165-15175. [PMID: 35319178 DOI: 10.1021/acsami.1c24403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite the enormous attention paid to cobalt oxide materials as efficient water splitting electrocatalysts, a deep understanding of their activity discrepancy is still elusive. In this work, we showed that stabilization of the internally generated oxygen evolution reaction (OER) active phase (oxyhydroxide) is crucial for ZnCo2O4 electrocatalysts. A systematic evaluation of the bulk and nanostructured ZnCo2O4 system concomitant with nanostructured Co3O4 showed that leaching of Zn is the driving force behind the near-surface transformation to the oxyhydroxide phase. The relative contribution to this near-surface reconstruction was found to be surface-sensitive. The electrochemical observations combined with Raman and impedance spectroscopy revealed that the good catalytic activity could be attributed to the formation of the cobalt oxyhydroxide phase, which was created by the dissolution of Zn from the nanostructured surface. Moreover, this study sheds light on previous contradicting postulates regarding the discrepancy of the OER activity of ZnCo2O4. Our finding regarding the formation of the OER active phase in spinel Zn-Co oxide will motivate researchers to focus more on the near-surface reconstruction behavior of cobalt-based oxide electrocatalysts in the future.
Collapse
Affiliation(s)
- Malenahalli H Naveen
- Nanosensor Research Institute, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Thanh Lam Bui
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, Republic of Korea
| | - Lanlee Lee
- Department of Bionano Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Rizwan Khan
- Department of Bionano Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Woowon Chung
- Department of Bionano Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Raju Thota
- Nanosensor Research Institute, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Sang-Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, Republic of Korea
| | - Jin Ho Bang
- Department of Chemical and Molecular Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
| |
Collapse
|
38
|
High-Property Anode Catalyst Compositing Co-Based Perovskite and NiFe-Layered Double Hydroxide for Alkaline Seawater Splitting. Processes (Basel) 2022. [DOI: 10.3390/pr10040668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The progress of high-efficiency non-precious metal anode catalysts for direct seawater splitting is of great importance. However, due to the slow oxygen evolution reaction (OER) kinetics, competition of chlorine evolution reaction (ClER), and corrosion of chloride ions on the anode, the direct seawater splitting faces many challenges. Herein, we develop a perovskite@NiFe layered double hydroxide composite for anode catalyst based on Ba0.5Sr0.5Co0.8Fe0.2O3 (BSCF) and NiFe layered double hydroxide (NiFe-LDH) heterostructure. The optimized BSCF@CeO2@NiFe exhibits excellent OER activity, with the potential at 100 mA cm−2 (Ej = 100) being 1.62 V in the alkaline natural seawater. Moreover, the electrolytic cell composed of BSCF@CeO2@NiFe anode shows an excellent stability, with negligible attenuation during the long-term overall seawater splitting with the remarkable self-recovery ability in the initial operation stage, and the direct seawater splitting potential increasing by about 30 mV at 10 mA cm−2. Our work can give a guidance for the design and preparation of anode catalysts for the direct seawater splitting.
Collapse
|
39
|
Saruyama M, Pelicano CM, Teranishi T. Bridging electrocatalyst and cocatalyst studies for solar hydrogen production via water splitting. Chem Sci 2022; 13:2824-2840. [PMID: 35382478 PMCID: PMC8905826 DOI: 10.1039/d1sc06015e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
Solar-driven water-splitting has been considered as a promising technology for large-scale generation of sustainable energy for succeeding generations. Recent intensive efforts have led to the discovery of advanced multi-element-compound water-splitting electrocatalysts with very small overpotentials in anticipation of their application to solar cell-assisted water electrolysis. Although photocatalytic and photoelectrochemical water-splitting systems are more attractive approaches for scaling up without much technical complexity and high investment costs, improving their efficiencies remains a huge challenge. Hybridizing photocatalysts or photoelectrodes with cocatalysts has been an effective scheme to enhance their overall solar energy conversion efficiencies. However, direct integration of highly-active electrocatalysts as cocatalysts introduces critical factors that require careful consideration. These additional requirements limit the design principle for cocatalysts compared with electrocatalysts, decelerating development of cocatalyst materials. This perspective first summarizes the recent advances in electrocatalyst materials and the effective strategies to assemble cocatalyst/photoactive semiconductor composites, and further discusses the core principles and tools that hold the key in designing advanced cocatalysts and generating a deeper understanding on how to further push the limits of water-splitting efficiency.
Collapse
Affiliation(s)
- Masaki Saruyama
- Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | | | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| |
Collapse
|
40
|
Liu S, Geng S, Li L, Zhang Y, Ren G, Huang B, Hu Z, Lee JF, Lai YH, Chu YH, Xu Y, Shao Q, Huang X. A top-down strategy for amorphization of hydroxyl compounds for electrocatalytic oxygen evolution. Nat Commun 2022; 13:1187. [PMID: 35246554 PMCID: PMC8897429 DOI: 10.1038/s41467-022-28888-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/20/2022] [Indexed: 11/08/2022] Open
Abstract
Amorphous materials have attracted increasing attention in diverse fields due to their unique properties, yet their controllable fabrications still remain great challenges. Here, we demonstrate a top-down strategy for the fabrications of amorphous oxides through the amorphization of hydroxides. The versatility of this strategy has been validated by the amorphizations of unitary, binary and ternary hydroxides. Detailed characterizations indicate that the amorphization process is realized by the variation of coordination environment during thermal treatment, where the M-OH octahedral structure in hydroxides evolves to M-O tetrahedral structure in amorphous oxides with the disappearance of the M-M coordination. The optimal amorphous oxide (FeCoSn(OH)6-300) exhibits superior oxygen evolution reaction (OER) activity in alkaline media, where the turnover frequency (TOF) value is 39.4 times higher than that of FeCoSn(OH)6. Moreover, the enhanced OER performance and the amorphization process are investigated with density functional theory (DFT) and molecule dynamics (MD) simulations. The reported top-down fabrication strategy for fabricating amorphous oxides, may further promote fundamental research into and practical applications of amorphous materials for catalysis.
Collapse
Affiliation(s)
- Shangheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Jiangsu, China
| | - Shize Geng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Jiangsu, China
| | - Ling Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Jiangsu, China
| | - Ying Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Guomian Ren
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, 510006, Guangzhou, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187, Dresden, Germany
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, 30076, Hsinchu, Taiwan
| | - Yu-Hong Lai
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, 30010, Hsinchu, Taiwan
| | - Ying-Hao Chu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, 30010, Hsinchu, Taiwan
| | - Yong Xu
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, 510006, Guangzhou, China.
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Jiangsu, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China.
| |
Collapse
|
41
|
Huang Y, Zhu Y, Nie A, Fu H, Hu Z, Sun X, Haw SC, Chen JM, Chan TS, Yu S, Sun G, Jiang G, Han J, Luo W, Huang Y. Enabling Anionic Redox Stability of P2-Na 5/6 Li 1/4 Mn 3/4 O 2 by Mg Substitution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105404. [PMID: 34961966 DOI: 10.1002/adma.202105404] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/12/2021] [Indexed: 06/14/2023]
Abstract
Oxygen-based anionic redox reactions have recently emerged as a lever to increase the capacity of Mn-rich layered oxide cathodes in addition to the charge compensation based on cationic redox reactions for sodium-ion batteries. Unfortunately, the irreversibility of anionic redox often aggravates irreversible structure change and poor cycling performance. Here, a stable anionic redox is achieved through substituting Na ions by Mg ions in P2-type Na0.83 Li0.25 Mn0.75 O2 . Density functional theory (DFT) calculations reveal that Mg substitution effectively decreases the oxygen chemical potential, causing an improvement in lattice oxygen stability. Moreover, at a highly desodiated state, Mg ions that remain in the lattice and interact with O 2p orbitals can decrease the undercoordinated oxygen and the nonbonded, electron-deficient O 2p states, facilitating the reversibility of oxygen redox. When cycled in the voltage range of 2.6-4.5 V where only anionic redox occurs for charge compensation, Na0.773 Mg0.03 Li0.25 Mn0.75 O2 presents a much better reversibility, giving a 4 times better cycle stability than that of Na0.83 Li0.25 Mn0.75 O2 . Experimentally, Na0.773 Mg0.03 Li0.25 Mn0.75 O2 exhibits a ≈1.1% volume expansion during sodium insertion/extraction, suggestive of a "zero-strain" cathode. Overall, the work opens a new avenue for enhancing anionic reversibility of oxygen-related Mn-rich cathodes.
Collapse
Affiliation(s)
- Yangyang Huang
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Yongcheng Zhu
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Anmin Nie
- State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei, 066004, China
| | - Haoyu Fu
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187, Dresden, Germany
| | - Xueping Sun
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Shu-Chih Haw
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Jin-Ming Chen
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Sijie Yu
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Guang Sun
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Gang Jiang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jiantao Han
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Wei Luo
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
42
|
Zhou J, Hu Y, Chang YC, Hu Z, Huang YC, Fan Y, Lin HJ, Pao CW, Dong CL, Lee JF, Chen CT, Wang JQ, Zhang L. In Situ Exploring of the Origin of the Enhanced Oxygen Evolution Reaction Efficiency of Metal(Co/Fe)–Organic Framework Catalysts Via Postprocessing. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05532] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jing Zhou
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yitian Hu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yu-Chung Chang
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan 30076, R. O. C
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Dresden 01187, Germany
| | - Yu-Cheng Huang
- Tamkang University, Tamsui, New Taipei, Taiwan 25137, R. O. C
| | - YaLei Fan
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Hong-Ji Lin
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan 30076, R. O. C
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan 30076, R. O. C
| | - Chung-Li Dong
- Tamkang University, Tamsui, New Taipei, Taiwan 25137, R. O. C
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan 30076, R. O. C
| | - Chien-Te Chen
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan 30076, R. O. C
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Dalian National Laboratory for Clean Energy, Dalian, Liaoning 116023, China
| | - Linjuan Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Dalian National Laboratory for Clean Energy, Dalian, Liaoning 116023, China
| |
Collapse
|
43
|
Ouahrani T, Daouli A, Badawi M, Bendaoud L, Morales-Garcia A, Errandonea D. Understanding the thermodynamic, dynamic, bonding, and electrocatalytic properties of low dimensional MgPSe3. Dalton Trans 2022; 51:9689-9698. [DOI: 10.1039/d2dt01194h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of novel two-dimensional structures for potential applications in photocatalysis or in optoelectronics is a challenging task. In this work, first-principles calculations have been carried out to explore the...
Collapse
|
44
|
Lin X, Huang YC, Hu Z, Li L, Zhou J, Zhao Q, Huang H, Sun J, Pao CW, Chang YC, Lin HJ, Chen CT, Dong CL, Wang JQ, Zhang L. 5f Covalency Synergistically Boosting Oxygen Evolution of UCoO 4 Catalyst. J Am Chem Soc 2021; 144:416-423. [PMID: 34878269 PMCID: PMC8759065 DOI: 10.1021/jacs.1c10311] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Electronic structure
modulation among multiple metal sites is key
to the design of efficient catalysts. Most studies have focused on
regulating 3d transition-metal active ions through other d-block metals,
while few have utilized f-block metals. Herein, we report a new class
of catalyst, namely, UCoO4 with alternative CoO6 and 5f-related UO6 octahedra, as a unique example of
a 5f-covalent compound that exhibits enhanced electrocatalytic oxygen
evolution reaction (OER) activity because of the presence of the U
5f–O 2p–Co 3d network. UCoO4 exhibits a low
overpotential of 250 mV at 10 mA cm–2, surpassing
other unitary cobalt-based catalysts ever reported. X-ray absorption
spectroscopy revealed that the Co2+ ion in pristine UCoO4 was converted to high-valence Co3+/4+, while U6+ remained unchanged during the OER, indicating that only
Co was the active site. Density functional theory calculations demonstrated
that the OER activity of Co3+/4+ was synergistically enhanced
by the covalent bonding of U6+-5f in the U 5f–O
2p–Co 3d network. This study opens new avenues for the realization
of electronic structure manipulation via unique 5f involvement.
Collapse
Affiliation(s)
- Xiao Lin
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yu-Cheng Huang
- Department of Physics, Tamkang University, Tamsui, New Taipei City 25137, Taiwan, R.O.C
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, Dresden 01187, Germany
| | - Lili Li
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jing Zhou
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Qingyun Zhao
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Haoliang Huang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jian Sun
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, R.O.C
| | - Yu-Chung Chang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, R.O.C
| | - Hong-Ji Lin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, R.O.C
| | - Chien-Te Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, R.O.C
| | - Chung-Li Dong
- Department of Physics, Tamkang University, Tamsui, New Taipei City 25137, Taiwan, R.O.C
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linjuan Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
45
|
Gao R, Deng M, Yan Q, Fang Z, Li L, Shen H, Chen Z. Structural Variations of Metal Oxide-Based Electrocatalysts for Oxygen Evolution Reaction. SMALL METHODS 2021; 5:e2100834. [PMID: 34928041 DOI: 10.1002/smtd.202100834] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/21/2021] [Indexed: 06/14/2023]
Abstract
Electrocatalytic oxygen evolution reaction (OER), an important electrode reaction in electrocatalytic and photoelectrochemical cells for a carbon-free energy cycle, has attracted considerable attention in the last few years. Metal oxides have been considered as good candidates for electrocatalytic OER because they can be easily synthesized and are relatively stable during the OER process. However, inevitable structural variations still occur to them due to the complex reaction steps and harsh working conditions of OER, thus impending the further insight into the catalytic mechanism and rational design of highly efficient electrocatalysts. The aim of this review is to disclose the current research progress toward the structural variations of metal oxide-based OER electrocatalysts. The origin of structural variations of metal oxides is discussed. Based on some typical oxides performing OER activity, the external and internal factors that influence the structural stability are summarized and then some general approaches to regulate the structural variation process are provided. Some operando methods are also concluded to monitor the structural variation processes and to identify the final active structure. Additionally, the unresolved problems and challenges are presented in an attempt to get further insight into the mechanism of structural variations and establish a rational structure-catalysis relationship.
Collapse
Affiliation(s)
- Ruiqin Gao
- School of Biological and Chemical Engineering, NingboTech University, No.1 South Qianhu Road, Ningbo, 315100, P. R. China
| | - Meng Deng
- School of Biological and Chemical Engineering, NingboTech University, No.1 South Qianhu Road, Ningbo, 315100, P. R. China
| | - Qing Yan
- School of Biological and Chemical Engineering, NingboTech University, No.1 South Qianhu Road, Ningbo, 315100, P. R. China
| | - Zhenxing Fang
- College of Science and Technology, Ningbo University, 521 Wenwei Road, Ningbo, 315100, P. R. China
| | - Lichun Li
- College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Roady, Hangzhou, 310032, P. R. China
| | - Haoyu Shen
- School of Biological and Chemical Engineering, NingboTech University, No.1 South Qianhu Road, Ningbo, 315100, P. R. China
| | - Zhengfei Chen
- School of Biological and Chemical Engineering, NingboTech University, No.1 South Qianhu Road, Ningbo, 315100, P. R. China
| |
Collapse
|
46
|
Wu X, Miao H, Yin M, Hu R, Wang F, Zhang H, Xia L, Zhang C, Yuan J. Biomimetic construction of bifunctional perovskite oxygen catalyst for zinc-air batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Ding H, Liu H, Chu W, Wu C, Xie Y. Structural Transformation of Heterogeneous Materials for Electrocatalytic Oxygen Evolution Reaction. Chem Rev 2021; 121:13174-13212. [PMID: 34523916 DOI: 10.1021/acs.chemrev.1c00234] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemical water splitting for hydrogen generation is a promising pathway for renewable energy conversion and storage. One of the most important issues for efficient water splitting is to develop cost-effective and highly efficient electrocatalysts to drive sluggish oxygen-evolution reaction (OER) at the anode side. Notably, structural transformation such as surface oxidation of metals or metal nonoxide compounds and surface amorphization of some metal oxides during OER have attracted growing attention in recent years. The investigation of structural transformation in OER will contribute to the in-depth understanding of accurate catalytic mechanisms and will finally benefit the rational design of catalytic materials with high activity. In this Review, we provide an overview of heterogeneous materials with obvious structural transformation during OER electrocatalysis. To gain insight into the essence of structural transformation, we summarize the driving forces and critical factors that affect the transformation process. In addition, advanced techniques that are used to probe chemical states and atomic structures of transformed surfaces are also introduced. We then discuss the structure of active species and the relationship between catalytic performance and structural properties of transformed materials. Finally, the challenges and prospects of heterogeneous OER electrocatalysis are presented.
Collapse
Affiliation(s)
- Hui Ding
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hongfei Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wangsheng Chu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Changzheng Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230026, P. R. China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
48
|
Guan D, Zhang K, Hu Z, Wu X, Chen JL, Pao CW, Guo Y, Zhou W, Shao Z. Exceptionally Robust Face-Sharing Motifs Enable Efficient and Durable Water Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103392. [PMID: 34436805 DOI: 10.1002/adma.202103392] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Corner-sharing oxides usually suffer from structural reconstruction during the bottleneck oxygen-evolution reaction (OER) in water electrolysis. Therefore, introducing dynamically stable active sites in an alternative structure is urgent but challenging. Here, 1D 5H-polytype Ba5 Bi0.25 Co3.75 FeO14- δ oxide with face-sharing motifs is identified as a highly active and stable candidate for alkaline OER. Benefiting from the stable face-sharing motifs with three couples of combined bonds, Ba5 Bi0.25 Co3.75 FeO14- δ can maintain its local structures even under high OER potentials as evidenced by fast operando spectroscopy, contributing to a negligible performance degradation over 110 h. Besides, the higher Co valence and smaller orbital bandgap in Ba5 Bi0.25 Co3.75 FeO14- δ endow it with a much better electron transport ability than its corner-sharing counterpart, leading to a distinctly reduced overpotential of 308 mV at 10 mA cm-2 in 0.1 m KOH. Further mechanism studies show that the short distance between lattice-oxygen sites in face-sharing Ba5 Bi0.25 Co3.75 FeO14- δ can accelerate the deprotonation step (*OOH + OH- = *OO + H2 O + e- ) via a steric inductive effect to promote lattice-oxygen participation. In this work, not only is a new 1D face-sharing oxide with impressive OER performance discovered, but also a rational design of dynamic stable and active sites for sustainable energy systems is inaugurated.
Collapse
Affiliation(s)
- Daqin Guan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Kaifeng Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Zhiwei Hu
- Max-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, Dresden, 01187, Germany
| | - Xinhao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Yanan Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| |
Collapse
|
49
|
Sun H, Zhu Y, Jung W. Tuning Reconstruction Level of Precatalysts to Design Advanced Oxygen Evolution Electrocatalysts. Molecules 2021; 26:molecules26185476. [PMID: 34576947 PMCID: PMC8469832 DOI: 10.3390/molecules26185476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/25/2022] Open
Abstract
Surface reconstruction engineering is an effective strategy to promote the catalytic activities of electrocatalysts, especially for water oxidation. Taking advantage of the physicochemical properties of precatalysts by manipulating their structural self-reconstruction levels provide a promising methodology for achieving suitable catalysts. In this review, we focus on recent advances in research related to the rational control of the process and level of surface transformation ultimately to design advanced oxygen evolution electrocatalysts. We start by discussing the original contributions to surface changes during electrochemical reactions and related factors that can influence the electrocatalytic properties of materials. We then present an overview of current developments and a summary of recently proposed strategies to boost electrochemical performance outcomes by the controlling structural self-reconstruction process. By conveying these insights, processes, general trends, and challenges, this review will further our understanding of surface reconstruction processes and facilitate the development of high-performance electrocatalysts beyond water oxidation.
Collapse
Affiliation(s)
- Hainan Sun
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
| | - Yinlong Zhu
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia;
| | - WooChul Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
- Correspondence:
| |
Collapse
|
50
|
Liu J, Ding P, Zhu Z, Du W, Xu X, Hu J, Zhou Y, Zeng H. Engineering Self-Reconstruction via Flexible Components in Layered Double Hydroxides for Superior-Evolving Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101671. [PMID: 34342939 DOI: 10.1002/smll.202101671] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Indexed: 06/13/2023]
Abstract
Most transition metal-based catalysts for electrocatalytic oxygen evolution reaction (OER) undergo surface reconstruction to generate real active sites favorable for high OER performance. Herein, how to use self-reconstruction as an efficient strategy to develop novel and robust OER catalysts by designing pre-catalysts with flexible components susceptible to OER conditions is proposed. The NiFe-based layered double hydroxides (LDHs) intercalated with resoluble molybdate (MoO4 2- ) anions in interlayers are constructed and then demonstrated to achieve complete electrochemical self-reconstruction (ECSR) into active NiFe-oxyhydroxides (NiFeOOH) beneficial to alkaline OER. Various ex situ and in situ techniques are used to capture structural evolution process including fast dissolution of MoO4 2- and deep reconstruction to NiFeOOH upon simultaneous hydroxyl invasion and electro-oxidation. The obtained NiFeOOH exhibits an excellent OER performance with an overpotential of only 268 mV at 50 mA cm-1 and robust durability over 45 h, much superior to NiFe-LDH and commercial IrO2 benchmark. This work suggests that the ECSR engineering in component-flexible precursors is a promising strategy to develop highly active OER catalysts for energy conversion.
Collapse
Affiliation(s)
- Jiao Liu
- School of Physics Science and Technology, Chemistry Interdisciplinary Research Center, Yangzhou University, Yangzhou, 225002, China
| | - Peng Ding
- School of Physics Science and Technology, Chemistry Interdisciplinary Research Center, Yangzhou University, Yangzhou, 225002, China
| | - Zexuan Zhu
- School of Physics Science and Technology, Chemistry Interdisciplinary Research Center, Yangzhou University, Yangzhou, 225002, China
| | - Wei Du
- School of Physics, Nanjing University, Nanjing, 210093, China
| | - Xiaoyong Xu
- School of Physics Science and Technology, Chemistry Interdisciplinary Research Center, Yangzhou University, Yangzhou, 225002, China
| | - Jingguo Hu
- School of Physics Science and Technology, Chemistry Interdisciplinary Research Center, Yangzhou University, Yangzhou, 225002, China
| | - Yong Zhou
- School of Physics, Nanjing University, Nanjing, 210093, China
| | - Haibo Zeng
- Institute of Optoelectronics and Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|