1
|
Rana K, Yadav P, Chakraborty R, Jha SK, Agrawal U, Bajaj A. Engineered Nanomicelles Delivering the Combination of Steroids and Antioxidants Can Mitigate Local and Systemic Inflammation, Including Sepsis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11595-11610. [PMID: 39946544 DOI: 10.1021/acsami.4c14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Chronic inflammation is mainly characterized by the release of proinflammatory cytokines (cytokine storm) and reactive oxygen/nitrogen species. Sepsis is a life-threatening condition resulting from the successive chronic inflammatory responses toward infection, leading to multiple organ failure and, ultimately, death. As inflammation and oxidative stress are known to nourish each other and initiate an uncontrolled immune response, inhibiting the cross-talk between the inflammatory response using anti-inflammatory drugs and oxidative stress using antioxidants can be a promising strategy to target sepsis. Here, we present the engineering of chimeric nanomicelles (NMs) using an ester-linked polyethylene glycol-derived lithocholic acid-drug conjugate using dexamethasone (DEX), a potent glucocorticoid possessing anti-inflammatory properties, and vitamin E (VITE), an antioxidant to target oxidative stress. Interestingly, these chimeric DEX-VITE NMs show enhanced accumulation at the inflamed sites driven by enhanced permeation and retention effect and mitigate localized acute inflammation in paw, lung, and liver inflammation models. We further demonstrated the efficacy of these NMs in mitigating LPS-induced endotoxemia and CLP-induced microbial sepsis, conferring survival advantages. DEX-VITE NMs also modulate immune homeostasis by decreasing the infiltration of total immune cells, neutrophils, and overall macrophages. Finally, administration of DEX-VITE NMs also reduces the release of proinflammatory cytokines and prevents vascular damage, two critical factors of sepsis pathogenesis. Therefore, this therapeutic approach of chimeric NMs can effectively deliver steroids and antioxidants to mitigate uncontrolled localized and systemic inflammation.
Collapse
Affiliation(s)
- Kajal Rana
- NCR Biotech Science Cluster, Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Poonam Yadav
- NCR Biotech Science Cluster, Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Ruchira Chakraborty
- NCR Biotech Science Cluster, Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Somesh K Jha
- NCR Biotech Science Cluster, Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Usha Agrawal
- Asian Institute of Public Health University, Haridamada, Jatani, Bhubaneswar, Odisha 752054, India
| | - Avinash Bajaj
- NCR Biotech Science Cluster, Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| |
Collapse
|
2
|
Wang R, Ma P, He S, Wang X, Zhang J, Ye J, Su M, Shi X, Dou R. Quaternized Molecular Brush-Grafted Injectable Microgel with Anti-Inflammatory and Drainage Properties for Efficient Therapy of Anal Fistula. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407537. [PMID: 39651807 PMCID: PMC11791944 DOI: 10.1002/advs.202407537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/11/2024] [Indexed: 12/11/2024]
Abstract
Anal fistula is a common disease with recurrent inflammation and accumulated exudate. Traditional treatments often fail to effectively eliminate inflammation and ensure adequate drainage, leading to prolonged healing time and a high recurrence rate. Herein, a new class of quaternized molecular brush-grafted injectable microgel (denoted as GAA@CNT-g-PVBTMA) is developed through thermal polymerization and mechanical fragmentation to promote the healing process of anal fistula. Benefiting from the fragmented morphology with a porous structure, the microgel can effectively fill the fistula and facilitate the drainage of exudate. Owing to the electrostatic interactions between the positively charged quaternized carbon nanotube molecular brush (CNT-g-PVBTMA) and the negatively charged inflammatory cytokines, GAA@CNT-g-PVBTMA microgel exhibits excellent anti-inflammatory properties with scavenging rates of 92.6% for tumor necrosis factor-α (TNF-α) and 92.5% for interleukin-1β (IL-1β). Rat inflammatory anal fistula model demonstrates that the microgel can effectively reduce inflammation and epithelialization of the fistula, thereby promoting the healing of the anal fistula. By integrating effective filling, adequate drainage, and excellent anti-inflammatory properties, GAA@CNT-g-PVBTMA microgel provides a promising new direction for the treatment of anal fistula.
Collapse
Affiliation(s)
- Runxian Wang
- The Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000P. R. China
| | - Pengwei Ma
- School of ChemistrySun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Siqi He
- The Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000P. R. China
| | - Xiao Wang
- The Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000P. R. China
| | - Jinquan Zhang
- The Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000P. R. China
| | - Junwen Ye
- Department of General Surgery (Colorectal Surgery)Guangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655P. R. China
| | - Mingli Su
- Department of General Surgery (Endoscopic Surgery)Guangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655P. R. China
| | - Xingxing Shi
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Ruoxu Dou
- The Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhai519000P. R. China
| |
Collapse
|
3
|
Wu H, Liu Y, Wang Y, Piao Y, Meng Z, Hu X, Shi L, Shen J, Li Y. Dynamic Covalent Prodrug Nanonetworks via Reaction-Induced Self-Assembly for Periodontitis Treatment. ACS NANO 2024; 18:34884-34901. [PMID: 39663546 DOI: 10.1021/acsnano.4c12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Periodontitis is characterized by dysbiotic biofilms, gingival inflammation, and bone resorption, highlighting the urgent need for a comprehensive approach to drug combination therapy. In this study, we introduce dynamic covalent nanonetworks (dcNNWs) synthesized through a one-pot, four-component reaction-induced self-assembly method using polyamines, 2-formylphenylboronic acid, epigallocatechin gallate, and alendronate. The formation of iminoboronate bonds drives the creation of dcNNWs, allowing controlled release in the periodontitis microenvironment. The inclusion of catechol and bisphosphonate imparts exceptional bioadhesive properties to the dcNNWs, enhancing their efficacy in preventing pathogenic bacterial biofilm formation and eliminating mature biofilms. Moreover, the dcNNWs efficiently absorb pathogen-associated molecular patterns and scavenge excess reactive oxygen species, regulating the local immune response and demonstrating anti-inflammatory effects. Additionally, the released polyphenol and alendronate from the dcNNWs alleviated inflammation and enhanced osteogenesis significantly. The detailed synergistic effects of dcNNWs in biofilm eradication, anti-inflammation, and bone remodeling, with minimal impact on healthy tissues, are confirmed in a rat model of periodontitis. With a facile synthesis process, excellent synergistic effects in periodontitis treatment, and biocompatibility, our dcNNWs present a promising and translational solution for the effective management of periodontitis.
Collapse
Affiliation(s)
- Haoyue Wu
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yumeng Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University institution, Wenzhou, Zhejiang 325035, China
| | - Yinzi Piao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Zhuojun Meng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Xiaowen Hu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Jing Shen
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Yuanfeng Li
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University institution, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
4
|
Sung JJ, Shaw JR, Rezende JD, Dharmaraj S, Cottingham AL, Weldemariam MM, Jones JW, Kane MA, Pearson RM. Lipid Nanoparticles from L. meyenii Walp Mitigate Sepsis through Multimodal Protein Corona Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623417. [PMID: 39605639 PMCID: PMC11601351 DOI: 10.1101/2024.11.13.623417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Plant-derived nanoparticles (PDNP) are nano-sized particles isolated from various edible plants that contain bioactive components involved in regulating cellular immune responses against pathogenic intrusion and inflammation. Purpose This study describes a novel PDNP derived from Lepidium meyenii Walp (maca) that efficiently captures pro-inflammatory cytokines and acute phase proteins in its protein corona to enhance survival in two representative lethal models of sepsis. Methods Lipid nanoparticles were isolated from maca (MDNP) and triacylglycerols and phytoceramides were identified as major constituents using lipidomics. The physicochemical properties of MDNPs were determined, anti-inflammatory effects of MDNP were evaluated using in vitro models and in vivo using endotoxemia and cecal ligation and puncture (CLP) polymicrobial sepsis models. Proteomic analysis of MDNP in healthy or LPS-induced inflammatory plasma was used to determine the composition and inflammatory pathways modulated due to the MDNP protein corona. Results In vitro studies showed that MDNP were non-toxic, reduced macrophage activation, and effectively sequestered pro-inflammatory cytokines to mitigate NF- κ B activity under lipopolysaccharide (LPS) stimulation. In a pre-established LPS-induced endotoxemia model, MDNP-treated mice showed significantly reduced systemic pro-inflammatory cytokines and enhanced survival. Untargeted proteomics and pathway analysis of the MDNP protein corona identified an enrichment in acute phase proteins in MDNP-LPS plasma coronas. MDNP treatment also significantly improved survival in the CLP sepsis model in the absence of antibiotics. Conclusion This work identified MDNP as an efficient, plant-derived lipid NP that broadly sequesters and neutralizes a compilation of inflammatory mediators in their coronas, offering multimodal therapeutic potential for treating inflammatory diseases.
Collapse
|
5
|
Shi S, Li X, Zhang F, Jiang Z, Wang J, Zhao L, Chen J, Shu X, Fang B, Liu P, He J, Ge S, Wang F, Guo J, Li Y, Luo J, Wang R. Alleviating D-Galactose-Induced Aging in Mice by Modulating Gut-Liver Axis Using Lactiplantibacillus plantarum TY-Y10. Foods 2024; 13:3618. [PMID: 39594034 PMCID: PMC11593747 DOI: 10.3390/foods13223618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Oxidative stress is closely linked to aging. Probiotics, whether viable or heat-inactivated, have shown antioxidant properties; however, their effect and mechanism of action in reducing oxidative stress during aging remains underexplored. This study examined the effects of viable and heat-inactivated Lactiplantibacillus plantarum TY-Y10 (L. plantarum TY-Y10) on D-galactose (D-gal)-induced aging in mice, aiming to uncover potential anti-aging mechanisms. Mice were induced to age with D-gal injections, then treated with sodium ascorbate (positive control) or varying doses of L. plantarum TY-Y10 for eight weeks. After treatment, oxidative stress markers, gut microbiota, and liver health were analyzed. Results showed that L. plantarum TY-Y10 decreased malondialdehyde (MDA) and inflammatory markers while increasing antioxidant levels (glutathione, superoxide dismutase, catalase and glutathione peroxidase). Liver damage was reduced, and expression of Nrf2 and related antioxidant enzymes improved. Additionally, L. plantarum TY-Y10 enhanced the abundance of short-chain fatty acid-producing bacteria, boosting fecal short-chain fatty acid levels. In short, both viable and heat-inactivated L. plantarum TY-Y10 mitigated oxidative stress in aging mice by modulating gut microbiota and activating liver antioxidant pathways through the gut-liver axis.
Collapse
Affiliation(s)
- Shaoqi Shi
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, Co-Constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100190, China; (S.S.)
| | - Xiaoxia Li
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, Co-Constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100190, China; (S.S.)
| | - Feng Zhang
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing 401120, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jing Wang
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing 401120, China
| | - Liang Zhao
- Research Center for Probiotics, China Agricultural University, Beijing 100083, China
| | - Juan Chen
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, Co-Constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100190, China; (S.S.)
| | - Xi Shu
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing 401120, China
| | - Bing Fang
- Food Laboratory of Zhongyuan, Luohe 461103, China
| | - Ping Liu
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, Co-Constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100190, China; (S.S.)
| | - Jingjing He
- Research Center for Probiotics, China Agricultural University, Beijing 100083, China
| | - Shaoyang Ge
- Hebei Engineering Research Center of Animal Product, Sanhe 065200, China
| | - Fuqing Wang
- Tibet Tianhong Science and Technology Co., Ltd., Lhasa 850000, China
| | - Jie Guo
- Research Center for Probiotics, China Agricultural University, Beijing 100083, China
| | - Yixuan Li
- Research Center for Probiotics, China Agricultural University, Beijing 100083, China
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, Co-Constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100190, China; (S.S.)
| |
Collapse
|
6
|
Messina JM, Luo M, Hossan MS, Gadelrab HA, Yang X, John A, Wilmore JR, Luo J. Unveiling cytokine charge disparity as a potential mechanism for immune regulation. Cytokine Growth Factor Rev 2024; 77:1-14. [PMID: 38184374 DOI: 10.1016/j.cytogfr.2023.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
Cytokines are small signaling proteins that regulate the immune responses to infection and tissue damage. Surface charges of cytokines determine their in vivo fate in immune regulation, e.g., half-life and distribution. The overall negative charges in the extracellular microenvironment and the acidosis during inflammation and infection may differentially impact cytokines with different surface charges for fine-tuned immune regulation via controlling tissue residential properties. However, the trend and role of cytokine surface charges has yet to be elucidated in the literature. Interestingly, we have observed that most pro-inflammatory cytokines have a negative charge, while most anti-inflammatory cytokines and chemokines have a positive charge. In this review, we extensively examined the surface charges of all cytokines and chemokines, summarized the pharmacokinetics and tissue adhesion of major cytokines, and analyzed the link of surface charge with cytokine biodistribution, activation, and function in immune regulation. Additionally, we identified that the general trend of charge disparity between pro- and anti-inflammatory cytokines represents a unique opportunity to develop precise immune modulation approaches, which can be applied to many inflammation-associated diseases including solid tumors, chronic wounds, infection, and sepsis.
Collapse
Affiliation(s)
- Jennifer M Messina
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Minghao Luo
- Department of Clinical Medicine, 2nd Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Md Shanewaz Hossan
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Hadil A Gadelrab
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiguang Yang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Anna John
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Joel R Wilmore
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States.
| |
Collapse
|
7
|
Peng Y, Liang S, Meng QF, Liu D, Ma K, Zhou M, Yun K, Rao L, Wang Z. Engineered Bio-Based Hydrogels for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313188. [PMID: 38362813 DOI: 10.1002/adma.202313188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Immunotherapy represents a revolutionary paradigm in cancer management, showcasing its potential to impede tumor metastasis and recurrence. Nonetheless, challenges including limited therapeutic efficacy and severe immune-related side effects are frequently encountered, especially in solid tumors. Hydrogels, a class of versatile materials featuring well-hydrated structures widely used in biomedicine, offer a promising platform for encapsulating and releasing small molecule drugs, biomacromolecules, and cells in a controlled manner. Immunomodulatory hydrogels present a unique capability for augmenting immune activation and mitigating systemic toxicity through encapsulation of multiple components and localized administration. Notably, hydrogels based on biopolymers have gained significant interest owing to their biocompatibility, environmental friendliness, and ease of production. This review delves into the recent advances in bio-based hydrogels in cancer immunotherapy and synergistic combinatorial approaches, highlighting their diverse applications. It is anticipated that this review will guide the rational design of hydrogels in the field of cancer immunotherapy, fostering clinical translation and ultimately benefiting patients.
Collapse
Affiliation(s)
- Yuxuan Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qian-Fang Meng
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kongshuo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mengli Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kaiqing Yun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
8
|
Yang X, Guo D, Ji X, Shi C, Messina JM, Suo L, Luo J. Telodendrimer functionalized hydrogel platform for sustained antibiotics release in infection control. Acta Biomater 2024; 178:147-159. [PMID: 38447811 DOI: 10.1016/j.actbio.2024.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Wound infection commonly causes delayed healing, especially in the setting of chronic wounds. Local release of antibiotics is considered a viable approach to treat chronic wounds. We have developed a versatile telodendrimer (TD) platform for efficient loading of charged antibiotic molecules via a combination of multivalent and synergistic charge and hydrophobic interactions. The conjugation of TD in biocompatible hydrogel allows for topical application to provide sustained antibiotic release. Notably, a drug loading capacity as high as 20 % of the drug-to-resin dry weight ratio can be achieved. The payload content (PC) and release profile of the various antibiotics can be optimized by fine-tuning TD density and valency in hydrogel based on the charge and hydrophobic features of the drug, e.g., polymyxin B (PMB), gentamycin (GM), and daptomycin (Dap), for effective infection control. We have shown that hydrogel with moderately reduced TD density demonstrates a more favorable release profile than hydrogel with higher TD density. Antibiotics loaded in TD hydrogel have comparable antimicrobial potency and reduced cytotoxicity compared to the free antibiotics due to a prolonged, controlled drug release profile. In a mouse model of skin and soft tissue infection, the subcutaneous administration of PMB-loaded TD hydrogel effectively eliminated the bacterial burden. Overall, these results suggest that engineerable TD hydrogels have great potential as a topical treatment to control infection for wound healing. STATEMENT OF SIGNIFICANCE: Wound infection causes a significant delay in the wound healing process, which results in a significant financial and resource burden to the healthcare system. PEGA-telodendrimer (TD) resin hydrogel is an innovative and versatile platform that can be fine-tuned to efficiently encapsulate different antibiotics by altering charged and hydrophobic structural moieties. Additionally, this platform is advantageous as the TD density in the resin can also be fine-tuned to provide the desired antibiotic payload release profile. Sustained antibiotics release through optimization of TD density provides a prolonged therapeutic window and reduces burst release-induced cytotoxicity compared to conventional antibiotics application. Studies in a preclinical mouse model of bacteria-induced skin and soft tissue infection demonstrated promising therapeutic efficacy as evidenced by effective infection control and prolonged antibacterial efficacy of antibiotics-loaded PEGA-TD resin. In conclusion, the PEGA-TD resin platform provides a highly customizable approach for effective antibiotics release with significant potential for topical application to treat various bacterial wound infections to promote wound healing.
Collapse
Affiliation(s)
- Xiguang Yang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Dandan Guo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiaotian Ji
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Changying Shi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Jennifer M Messina
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Liye Suo
- Department of Pathology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States.
| |
Collapse
|
9
|
Wu T, Li Y, Wu Z, Wang Z, Li Y, Jian K, He C, Zhang C, Shi L, Dai J. Enzyme-immobilized nanoclay hydrogel simultaneously reduces inflammation and scar deposition to treat spinal cord injury. CHEMICAL ENGINEERING JOURNAL 2024; 484:149642. [DOI: 10.1016/j.cej.2024.149642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Wang Y, Guo D, Winkler R, Lei X, Wang X, Messina J, Luo J, Lu H. Development of novel liver-targeting glucocorticoid prodrugs. MEDICINE IN DRUG DISCOVERY 2024; 21:100172. [PMID: 38390434 PMCID: PMC10883687 DOI: 10.1016/j.medidd.2023.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Background Glucocorticoids (GCs) are widely used in the treatment of inflammatory liver diseases and sepsis, but GC's various side effects on extrahepatic tissues limit their clinical benefits. Liver-targeting GC therapy may have multiple advantages over systemic GC therapy. The purpose of this study was to develop novel liver-targeting GC prodrugs as improved treatment for inflammatory liver diseases and sepsis. Methods A hydrophilic linker or an ultra-hydrophilic zwitterionic linker carboxylic betaine (CB) was used to bridge cholic acid (CA) and dexamethasone (DEX) to generate transporter-dependent liver-targeting GC prodrugs CA-DEX and the highly hydrophilic CA-CB-DEX. The efficacy of liver-targeting DEX prodrugs and DEX were determined in primary human hepatocytes (PHH), macrophages, human whole blood, and/or mice with sepsis induced by cecal ligation and puncture. Results CA-DEX was moderately water soluble, whereas CA-CB-DEX was highly water soluble. CA-CB-DEX and CA-DEX displayed highly transporter-dependent activities in reporter assays. Data mining found marked dysregulation of many GR-target genes important for lipid catabolism, cytoprotection, and inflammation in patients with severe alcoholic hepatitis. These key GR-target genes were similarly and rapidly (within 6 h) induced or down-regulated by CA-CB-DEX and DEX in PHH. CA-CB-DEX had much weaker inhibitory effects than DEX on endotoxin-induced cytokines in mouse macrophages and human whole blood. In contrast, CA-CB-DEX exerted more potent anti-inflammatory effects than DEX in livers of septic mice. Conclusions CA-CB-DEX demonstrated good hepatocyte-selectivity in vitro and better anti-inflammatory effects in vivo. Further test of CA-CB-DEX as a novel liver-targeting GC prodrug for inflammatory liver diseases and sepsis is warranted.
Collapse
Affiliation(s)
- Yazheng Wang
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Dandan Guo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Rebecca Winkler
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiaohong Lei
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiaojing Wang
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Jennifer Messina
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Juntao Luo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| |
Collapse
|
11
|
Cicchinelli S, Pignataro G, Gemma S, Piccioni A, Picozzi D, Ojetti V, Franceschi F, Candelli M. PAMPs and DAMPs in Sepsis: A Review of Their Molecular Features and Potential Clinical Implications. Int J Mol Sci 2024; 25:962. [PMID: 38256033 PMCID: PMC10815927 DOI: 10.3390/ijms25020962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Sepsis is a serious organ dysfunction caused by a dysregulated immune host reaction to a pathogen. The innate immunity is programmed to react immediately to conserved molecules, released by the pathogens (PAMPs), and the host (DAMPs). We aimed to review the molecular mechanisms of the early phases of sepsis, focusing on PAMPs, DAMPs, and their related pathways, to identify potential biomarkers. We included studies published in English and searched on PubMed® and Cochrane®. After a detailed discussion on the actual knowledge of PAMPs/DAMPs, we analyzed their role in the different organs affected by sepsis, trying to elucidate the molecular basis of some of the most-used prognostic scores for sepsis. Furthermore, we described a chronological trend for the release of PAMPs/DAMPs that may be useful to identify different subsets of septic patients, who may benefit from targeted therapies. These findings are preliminary since these pathways seem to be strongly influenced by the peculiar characteristics of different pathogens and host features. Due to these reasons, while initial findings are promising, additional studies are necessary to clarify the potential involvement of these molecular patterns in the natural evolution of sepsis and to facilitate their transition into the clinical setting.
Collapse
Affiliation(s)
- Sara Cicchinelli
- Department of Emergency, S.S. Filippo e Nicola Hospital, 67051 Avezzano, Italy;
| | - Giulia Pignataro
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Stefania Gemma
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Andrea Piccioni
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Domitilla Picozzi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Veronica Ojetti
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Francesco Franceschi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| |
Collapse
|
12
|
Yang X, Guo D, Ji X, Shi C, Luo J. Engineering Nanotrap Hydrogel for Immune Modulation in Wound Healing. Macromol Rapid Commun 2023; 44:e2300322. [PMID: 37533180 PMCID: PMC10834856 DOI: 10.1002/marc.202300322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Imbalanced immune regulation leads to the abnormal wound healing process, e.g., chronic unhealing wound or hypertrophic scar formation. Thus, the attenuation of the overflowing inflammatory factors is a viable approach to maintain the homeostatic immune regulation to facilitate normal wound healing. A versatile telodendrimer (TD) nanotrap (NT) platform is developed for efficient biomolecular protein binding. The conjugation of TD NT in size-exclusive biocompatible hydrogel resin allows for topical application for cytokine scavenging. Fine-tuning the TD NT density/valency in hydrogel resin controls resin swelling, optimizes molecular diffusion, and improves cytokine capture for effective immune modulation. The hydrogel with reduced TD NT density allows for higher protein/cytokine adsorption capacity with faster kinetics, due to the reduced barrier of TD NT nano-assembly. The positively charged TD NT hydrogel exhibits superior removal of negatively charged proinflammatory cytokines from the lipopolysaccharide (LPS, a potent endotoxin) primed immune cell culture medium. The negatively charged TD NT hydrogel removes positively charged anti-inflammatory cytokines efficiently from cell culture medium. TD NT hydrogel effectively constrains the local inflammation induced by subcutaneous LPS injection in mice. These results indicate the great potential applications of the engineered TD NT hydrogel as topical immune modulatory treatments to attenuate local inflammation.
Collapse
Affiliation(s)
- Xiguang Yang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Dandan Guo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Xiaotian Ji
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Changying Shi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Immunology and Microbiology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
13
|
Zhou C, Liu Y, Li Y, Shi L. Recent advances and prospects in nanomaterials for bacterial sepsis management. J Mater Chem B 2023; 11:10778-10792. [PMID: 37901894 DOI: 10.1039/d3tb02220j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Bacterial sepsis is a life-threatening condition caused by bacteria entering the bloodstream and triggering an immune response, underscoring the importance of early recognition and prompt treatment. Nanomedicine holds promise for addressing sepsis through improved diagnostics, nanoparticle biosensors for detection and imaging, enhanced antibiotic delivery, combating resistance, and immune modulation. However, challenges remain in ensuring safety, regulatory compliance, scalability, and cost-effectiveness before clinical implementation. Further research is needed to optimize design, efficacy, safety, and regulatory strategies for effective utilization of nanomedicines in bacterial sepsis diagnosis and treatment. This review highlights the significant potential of nanomedicines, including improved drug delivery, enhanced diagnostics, and immunomodulation for bacterial sepsis. It also emphasizes the need for further research to optimize design, efficacy, safety profiles, and address regulatory challenges to facilitate clinical translation.
Collapse
Affiliation(s)
- Chaoyang Zhou
- Department of Critical Care Medicine, The People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
| | - Yong Liu
- Department of Critical Care Medicine, The People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Yuanfeng Li
- Department of Critical Care Medicine, The People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Song Y, Zhang R, Qin H, Xu W, Sun J, Jiang J, Ye Y, Gao J, Li H, Huang W, Liu K, Hu Y, Peng F, Tu Y. Micromotor-Enabled Active Hydrogen and Tobramycin Delivery for Synergistic Sepsis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303759. [PMID: 37818787 PMCID: PMC10667834 DOI: 10.1002/advs.202303759] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/08/2023] [Indexed: 10/13/2023]
Abstract
Sepsis is a highly heterogeneous syndrome normally characterized by bacterial infection and dysregulated systemic inflammatory response that leads to multiple organ failure and death. Single anti-inflammation or anti-infection treatment exhibits limited survival benefit for severe cases. Here a biodegradable tobramycin-loaded magnesium micromotor (Mg-Tob motor) is successfully developed as a potential hydrogen generator and active antibiotic deliverer for synergistic therapy of sepsis. The peritoneal fluid of septic mouse provides an applicable space for Mg-water reaction. Hydrogen generated sustainably and controllably from the motor interface propels the motion to achieve active drug delivery along with attenuating hyperinflammation. The developed Mg-Tob motor demonstrates efficient protection from anti-inflammatory and antibacterial activity both in vitro and in vivo. Importantly, it prevents multiple organ failure and significantly improves the survival rate up to 87.5% in a high-grade sepsis model with no survival, whereas only about half of mice survive with the individual therapies. This micromotor displays the superior therapeutic effect of synergistic hydrogen-chemical therapy against sepsis, thus holding great promise to be an innovative and translational drug delivery system to treat sepsis or other inflammation-related diseases in the near future.
Collapse
Affiliation(s)
- Yanzhen Song
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Ruotian Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Hanfeng Qin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Wenxin Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jia Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jiamiao Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Yicheng Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Junbin Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Huaan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Weichang Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Kun Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Yunrui Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Fei Peng
- School of Materials Science and EngineeringSun Yat‐Sen UniversityGuangzhou510275China
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
15
|
Wang L, Li W, Li M, Lai P, Yang C, Wang H, Ma B, Huang R, Zu Y. Bio-Inspired Fractal Robust Hydrogel Catheter for Intra-Abdominal Sepsis Management. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303090. [PMID: 37822166 PMCID: PMC10646267 DOI: 10.1002/advs.202303090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/10/2023] [Indexed: 10/13/2023]
Abstract
To deal with intra-abdominal sepsis, one of the major global causes of death in hospitalized patients, efficient abscess drainage is crucial. Despite decades of advances, traditional catheters have demonstrated poor drainage and absorption properties due to their simple tubular structures and their dense nonporous surface. Herein, inspired by porous sponges and fractal roots, a multifaceted hydrogel catheter with effective drainage, absorptive, and robust properties, is presented. Its unique fractal structures provide extensive internal branching and a high specific surface area for effective drainage, while the hierarchical porous structures provide a wide range of absorption capabilities. Additionally, its distinctive multi-interpenetration network maintains robust and appropriate mechanical properties, even after absorption multiple times of liquid and mechanical disturbance, allowing for intact removal from the abdominal cavity without harm to the animal in vivo. Besides, the loaded antimicrobial peptides are capable of being released in situ to inhibit the potential for infections. In vivo experiments have demonstrated that this hydrogel catheter efficiently removes lethal abscesses and improves survival. It is believed that this innovative and practical catheter will create a future precedent for hydrogel drainage devices for more effective management of intra-abdominal sepsis.
Collapse
Affiliation(s)
- Lichun Wang
- Department of Critical Care MedicineThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Wenzhao Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001China
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Min Li
- Department of Gastrointestinal SurgerySouthern Medical UniversityAffiliated Dongguan Shilong Peoples HospitalSSL Center Hospital Dongguan CityDongguan523326China
| | - Puxiang Lai
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Chunhua Yang
- Department of Critical Care MedicineThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Hui Wang
- Department of General Surgery (Colorectal Surgery) and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesGuangdong Institute of GastroenterologyBiomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Bo Ma
- Department of UrologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Rongkang Huang
- Department of General Surgery (Colorectal Surgery) and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesGuangdong Institute of GastroenterologyBiomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Yan Zu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001China
| |
Collapse
|
16
|
Wang M, Feng J, Zhou D, Wang J. Bacterial lipopolysaccharide-induced endothelial activation and dysfunction: a new predictive and therapeutic paradigm for sepsis. Eur J Med Res 2023; 28:339. [PMID: 37700349 PMCID: PMC10498524 DOI: 10.1186/s40001-023-01301-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Lipopolysaccharide, a highly potent endotoxin responsible for severe sepsis, is the major constituent of the outer membrane of gram-negative bacteria. Endothelial cells participate in both innate and adaptive immune responses as the first cell types to detect lipopolysaccharide or other foreign debris in the bloodstream. Endothelial cells are able to recognize the presence of LPS and recruit specific adaptor proteins to the membrane domains of TLR4, thereby initiating an intracellular signaling cascade. However, lipopolysaccharide binding to endothelial cells induces endothelial activation and even damage, manifested by the expression of proinflammatory cytokines and adhesion molecules that lead to sepsis. MAIN FINDINGS LPS is involved in both local and systemic inflammation, activating both innate and adaptive immunity. Translocation of lipopolysaccharide into the circulation causes endotoxemia. Endothelial dysfunction, including exaggerated inflammation, coagulopathy and vascular leakage, may play a central role in the dysregulated host response and pathogenesis of sepsis. By discussing the many strategies used to treat sepsis, this review attempts to provide an overview of how lipopolysaccharide induces the ever more complex syndrome of sepsis and the potential for the development of novel sepsis therapeutics. CONCLUSIONS To reduce patient morbidity and mortality, preservation of endothelial function would be central to the management of sepsis.
Collapse
Affiliation(s)
- Min Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Jun Feng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Daixing Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
| | - Junshuai Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
17
|
Kang XF, Lu XL, Bi CF, Hu XD, Li Y, Li JK, Yang LS, Liu J, Ma L, Zhang JF. Xuebijing injection protects sepsis induced myocardial injury by mediating TLR4/NF-κB/IKKα and JAK2/STAT3 signaling pathways. Aging (Albany NY) 2023; 15:8501-8517. [PMID: 37650558 PMCID: PMC10496990 DOI: 10.18632/aging.204990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/20/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE Compelling evidence has demonstrated that Xuebijing (XBJ) exerted protective effects against SIMI. The aims of this study were to investigate whether TLR4/IKKα-mediated NF-κB and JAK2/STAT3 pathways were involved in XBJ's cardio-protection during sepsis and the mechanisms. METHODS In this study, rats were randomly assigned to three groups: Sham group; CLP group; XBJ group. Rats were treated with XBJ or sanitary saline after CLP. Echocardiography, myocardial enzymes and HE were used to detect cardiac function. IL-1β, IL-6 and TNF-α in serum were measured using ELISA kits. Cardiomyocyte apoptosis were tested by TUNEL staining. The protein levels of Bax, Bcl-2, Bcl-xl, Cleaved-Caspase 3, Cleaved-Caspase 9, Cleaved-PARP, TLR4, p-NF-κB, p-IKKα, p-JAK2 and p-STAT3 in the myocardium were assayed by western blotting. And finally, immunofluorescence was used to assess the level of p-JAK2 and p-STAT3 in heart tissue. RESULTS The results of echocardiography, myocardial enzyme and HE test showed that XBJ could significantly improve SIMI. The IL-1β, IL-6 and TNF-α levels in the serum were markedly lower in the XBJ group than in the CLP group (p<0.05). TUNEL staining's results showed that XBJ ameliorated CLP-induced cardiomyocyte apoptosis. Meanwhile, XBJ downregulated the protein levels of Bax, Cleaved-Caspase 3, Cleaved-Caspase 9, Cleaved-PARP, TLR4, p-NF-κB, p-IKKα, p-JAK2 and p-STAT3, as well as upregulated the protein levels of Bcl-2, Bcl-xl (p <0.05). CONCLUSIONS In here, we observed that XBJ's cardioprotective advantages may be attributable to its ability to suppress inflammation and apoptosis via inhibiting the TLR4/ IKKα-mediated NF-κB and JAK2/STAT3 pathways during sepsis.
Collapse
Affiliation(s)
- Xiang-Fei Kang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Xiao-Li Lu
- Laboratory Animal Centre, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Cheng-Fei Bi
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Xiao-Dong Hu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Ying Li
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jin-Kui Li
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jia Liu
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| |
Collapse
|
18
|
Guo X, Shen P, Shao R, Hong T, Liu W, Shen Y, Su F, Wang Q, He B. Efferocytosis-inspired nanodrug treats sepsis by alleviating inflammation and secondary immunosuppression. Biomed Mater 2023; 18:055020. [PMID: 37567216 DOI: 10.1088/1748-605x/acef9a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/10/2023] [Indexed: 08/13/2023]
Abstract
Uncontrolled inflammation storm induced by sepsis may lead to severe organ dysfunction and secondary immunosuppression, which is one of the main reasons for high mortality and prolonged hospitalization of septic patients. However, there is a lack of effective treatments for it at present. Here, we report an efferocytosis-inspired nanodrug (BCN@M) to treat sepsis and secondary immunosuppression via regulating the macrophage function. Bioactive molecular curcumin was loaded with bovine serum albumin and then coated with the damaged erythrocyte membrane derived from septic mice. It was found that the septic erythrocytes promoted the efferocytosis signal and BCN@M uptake efficiency by macrophages. The well-constructed BCN@M nanodrug reduced the hyperinflammation in sepsis and restored the bacterial clearance ability of macrophage in the secondary immunosuppression state. This study highlights BCN@M as an efferocytosis-inspired nanodrug to alleviate hyperinflammation and secondary immunosuppression of sepsis.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Centre for Cardiopulmonary Translational Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Department of Anesthesiology, Huadong Hospital affiliated to Fudan University, Shanghai, People's Republic of China
| | - Peiming Shen
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Rongjiao Shao
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Centre for Cardiopulmonary Translational Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ting Hong
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Department of Anesthesiology, Huadong Hospital affiliated to Fudan University, Shanghai, People's Republic of China
| | - Weizhuo Liu
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Centre for Cardiopulmonary Translational Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yi Shen
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Centre for Cardiopulmonary Translational Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Fan Su
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Centre for Cardiopulmonary Translational Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qinlan Wang
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Bin He
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
19
|
Tram NDT, Tran QTN, Xu J, Su JCT, Liao W, Wong WSF, Ee PLR. Multifunctional Antibacterial Nanonets Attenuate Inflammatory Responses through Selective Trapping of Endotoxins and Pro-Inflammatory Cytokines. Adv Healthc Mater 2023; 12:e2203232. [PMID: 36988351 PMCID: PMC11468709 DOI: 10.1002/adhm.202203232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/08/2023] [Indexed: 03/30/2023]
Abstract
Extracellular lipopolysaccharide (LPS) released from bacteria cells can enter the bloodstream and cause septic complications with excessive host inflammatory responses. Target-specific strategies to inactivate inflammation mediators have largely failed to improve the prognosis of septic patients in clinical trials. By utilizing their high density of positive charges, de novo designed peptide nanonets are shown to selectively entrap the negatively charged LPS and pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). This in turn enables the nanonets to suppress LPS-induced cytokine production by murine macrophage cell line and rescue the antimicrobial activity of the last-resort antibiotic, colistin, from LPS binding. Using an acute lung injury model in mice, it is demonstrated that intratracheal administration of the fibrillating peptides is effective at lowering local release of TNF-α and IL-6. Together with previously shown ability to simultaneously trap and kill pathogenic bacteria, the peptide nanonets display remarkable potential as a holistic, multifunctional anti-infective, and anti-septic biomaterial.
Collapse
Affiliation(s)
- Nhan Dai Thien Tram
- National University of SingaporeDepartment of Pharmacy18 Science Drive 4Singapore117543Singapore
| | - Quy Thi Ngoc Tran
- National University Health SystemDepartment of PharmacologyYong Loo Lin School of Medicine16 Medical Drive MD3Singapore117600Singapore
- Drug Discovery and Optimization Platform (DDOP)Yong Loo Lin School of MedicineNational University Health SystemSingapore117600Singapore
- Singapore‐HUJ Alliance for Research and Enterprise (SHARE)1 CREATE WaySingapore138602Singapore
| | - Jian Xu
- National University of SingaporeDepartment of Pharmacy18 Science Drive 4Singapore117543Singapore
| | - Jeannie Ching Ting Su
- National University of SingaporeDepartment of Pharmacy18 Science Drive 4Singapore117543Singapore
| | - Wupeng Liao
- National University Health SystemDepartment of PharmacologyYong Loo Lin School of Medicine16 Medical Drive MD3Singapore117600Singapore
- Singapore‐HUJ Alliance for Research and Enterprise (SHARE)1 CREATE WaySingapore138602Singapore
| | - Wai Shiu Fred Wong
- National University Health SystemDepartment of PharmacologyYong Loo Lin School of Medicine16 Medical Drive MD3Singapore117600Singapore
- Drug Discovery and Optimization Platform (DDOP)Yong Loo Lin School of MedicineNational University Health SystemSingapore117600Singapore
- Singapore‐HUJ Alliance for Research and Enterprise (SHARE)1 CREATE WaySingapore138602Singapore
| | - Pui Lai Rachel Ee
- National University of SingaporeDepartment of Pharmacy18 Science Drive 4Singapore117543Singapore
| |
Collapse
|
20
|
Shi Z, Zhang X, Yang X, Zhang X, Ma F, Gan H, Chen J, Wang D, Sun W, Wang J, Wang C, Lyu L, Yang K, Deng L, Qing G. Specific Clearance of Lipopolysaccharide from Blood Based on Peptide Bottlebrush Polymer for Sepsis Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302560. [PMID: 37247257 DOI: 10.1002/adma.202302560] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/16/2023] [Indexed: 05/31/2023]
Abstract
Lipopolysaccharide (LPS) is the primary bacterial toxin that is vital to the pathogenesis and progression of sepsis associated with extremely high morbidity and mortality worldwide. However, specific clearance of LPS from circulating blood is highly challenging because of the structural complexity and its variation between/within bacterial species. Herein, a robust strategy based on phage display screening and hemocompatible peptide bottlebrush polymer design for specific clearance of targeted LPS from circulating blood is proposed. Using LPS extracted from Escherichia coli as an example, a novel peptide (HWKAVNWLKPWT) with high affinity (KD < 1.0 nм), specificity, and neutralization activity (95.9 ± 0.1%) against the targeted LPS is discovered via iterative affinity selection coupled with endotoxin detoxification screening. A hemocompatible bottlebrush polymer bearing the short peptide [poly(PEGMEA-co-PEP-1)] exhibits high LPS selectivity to reduce circulating LPS level from 2.63 ± 0.01 to 0.78 ± 0.05 EU mL-1 in sepsis rabbits via extracorporeal hemoperfusion (LPS clearance ratio > 70%), reversing the LPS-induced leukocytopenia and multiple organ damages significantly. This work provides a universal paradigm for developing a highly selective hemoadsorbent library fully covering the LPS family, which is promising to create a new era of precision medicine in sepsis therapy.
Collapse
Affiliation(s)
- Zhenqiang Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Xiancheng Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Xijing Yang
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Xiaoyu Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Fei Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China
| | - Hui Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China
| | - Junjun Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Wenjing Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Jingxia Wang
- Radiation Chemistry Department, Sichuan Institute of Atomic Energy, Chengdu, 610101, P.R. China
| | - Cunli Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Liting Lyu
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Kaiguang Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Lijing Deng
- Pediatric Intensive Care Unit, Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| |
Collapse
|
21
|
Li Z, Feng Y, Zhang S, Li T, Li H, Wang D, Hao K, He C, Tian H, Chen X. A Multifunctional Nanoparticle Mitigating Cytokine Storm by Scavenging Multiple Inflammatory Mediators of Sepsis. ACS NANO 2023; 17:8551-8563. [PMID: 37129445 DOI: 10.1021/acsnano.3c00906] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sepsis is a disease caused by infection, which is characterized by a dysregulated immune response in the host and affects more than 30 million people worldwide each year. However, the current single therapeutic approaches are not effective in controlling the progression of sepsis. Here, we synthesize a nanoparticle (TMP) containing tannic acid (TA), Polymyxin B (PMB), and Mn2+ (Mn) by a simple one-pot method. TMP has the following characteristics: (1) All components have good biocompatibility; (2) simple preparation process without subsequent processing; (3) antibacterial and remove multiple inflammatory mediators; and (4) effectively mitigating cytokine storm both in the acute lung injury (ALI) and the cecal ligation and puncture (CLP) model. Our results demonstrate the critical role of targeting multiple mediators to mitigate cytokine storms for the treatment of sepsis.
Collapse
Affiliation(s)
- Zhen Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 13022, China
- University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Yuanji Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sijia Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 13022, China
- University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Tong Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 13022, China
- University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Huixin Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 13022, China
- University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Dianwei Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 13022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Kai Hao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoliang He
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 13022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 13022, China
- University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 13022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| |
Collapse
|
22
|
Liu Z, Han Z, Jin X, An J, Kim J, Chen W, Kim JS, Zheng J, Deng J. Regulating the microenvironment with nanomaterials: Potential strategies to ameliorate COVID-19. Acta Pharm Sin B 2023; 13:S2211-3835(23)00054-0. [PMID: 36846153 PMCID: PMC9941074 DOI: 10.1016/j.apsb.2023.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2, has resulted in serious economic and health burdens. Current treatments remain inadequate to extinguish the epidemic, and efficient therapeutic approaches for COVID-19 are urgently being sought. Interestingly, accumulating evidence suggests that microenvironmental disorder plays an important role in the progression of COVID-19 in patients. In addition, recent advances in nanomaterial technologies provide promising opportunities for alleviating the altered homeostasis induced by a viral infection, providing new insight into COVID-19 treatment. Most literature reviews focus only on certain aspects of microenvironment alterations and fail to provide a comprehensive overview of the changes in homeostasis in COVID-19 patients. To fill this gap, this review systematically discusses alterations of homeostasis in COVID-19 patients and potential mechanisms. Next, advances in nanotechnology-based strategies for promoting homeostasis restoration are summarized. Finally, we discuss the challenges and prospects of using nanomaterials for COVID-19 management. This review provides a new strategy and insights into treating COVID-19 and other diseases associated with microenvironment disorders.
Collapse
Affiliation(s)
- Zhicheng Liu
- Department of Urology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Department of Urology, Urological Surgery Research Institute, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhuolei Han
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xin Jin
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jusung An
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Jaewon Kim
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Wenting Chen
- Department of Rheumatology and Clinical Immunology, Army Medical Center, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Ji Zheng
- Department of Urology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Department of Urology, Urological Surgery Research Institute, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
23
|
Huang J, Chen Y, Guo Z, Yu Y, Zhang Y, Li P, Shi L, Lv G, Sun B. Prospective study and validation of early warning marker discovery based on integrating multi-omics analysis in severe burn patients with sepsis. BURNS & TRAUMA 2023; 11:tkac050. [PMID: 36659877 PMCID: PMC9840905 DOI: 10.1093/burnst/tkac050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/22/2022] [Indexed: 01/17/2023]
Abstract
Background Early detection, timely diagnosis and rapid response are essential for case management and precautions of burn-associated sepsis. However, studies on indicators for early warning and intervention have rarely been conducted. This study was performed to better understand the pathophysiological changes and targets for prevention of severe burn injuries. Methods We conducted a multi-center, prospective multi-omics study, including genomics, microRNAomics, proteomics and single-cell transcriptomics, in 60 patients with severe burn injuries. A mouse model of severe burn injuries was also constructed to verify the early warning ability and therapeutic effects of potential markers. Results Through genomic analysis, we identified seven important susceptibility genes (DNAH11, LAMA2, ABCA2, ZFAND4, CEP290, MUC20 and ENTPD1) in patients with severe burn injuries complicated with sepsis. Through plasma miRNAomics studies, we identified four miRNAs (hsa-miR-16-5p, hsa-miR-185-5p, hsa-miR-451a and hsa-miR-423-5p) that may serve as early warning markers of burn-associated sepsis. A proteomic study indicated the changes in abundance of major proteins at different time points after severe burn injury and revealed the candidate early warning markers S100A8 and SERPINA10. In addition, the proteomic analysis indicated that neutrophils play an important role in the pathogenesis of severe burn injuries, as also supported by findings from single-cell transcriptome sequencing of neutrophils. Through further studies on severely burned mice, we determined that S100A8 is also a potential early therapeutic target for severe burn injuries, beyond being an early warning indicator. Conclusions Our multi-omics study identified seven susceptibility genes, four miRNAs and two proteins as early warning markers for severe burn-associated sepsis. In severe burn-associated sepsis, the protein S100A8 has both warning and therapeutic effects.
Collapse
Affiliation(s)
| | | | | | - Yanzhen Yu
- Department of Burns and Plastic Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China
| | - Yi Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong 226000, Jiangsu, China
| | - Pingsong Li
- Department of Burns and Plastic Surgery, Northern Jiangsu People’s Hospital, Yangzhou 225001, Jiangsu, China
| | - Lei Shi
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Guozhong Lv
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214041, Jiangsu, China
| | | |
Collapse
|
24
|
Arumugam GS, Damodharan K, Doble M, Thennarasu S. Significant perspectives on various viral infections targeted antiviral drugs and vaccines including COVID-19 pandemicity. MOLECULAR BIOMEDICINE 2022; 3:21. [PMID: 35838929 PMCID: PMC9283561 DOI: 10.1186/s43556-022-00078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
A virus enters a living organism and recruits host metabolism to reproduce its own genome and proteins. The viral infections are intricate and cannot be completely removed through existing antiviral drugs. For example, the herpes, influenza, hepatitis and human immunodeficiency viruses are a few dreadful ones amongst them. Significant studies are needed to understand the viral entry and their growth in host cells to design effective antivirals. This review emphasizes the range of therapeutical antiviral drugs, inhibitors along with vaccines to fight against viral pathogens, especially for combating COVID-19. Moreover, we have provided the basic and in depth information about viral targets, drugs availability, their mechanisms of action, method of prevention of viral diseases and highlighted the significances of anticoagulants, convalescent plasma for COVID-19 treatment, scientific details of airborne transmission, characteristics of antiviral drug delivery using nanoparticles/carriers, nanoemulsions, nanogels, metal based nanoparticles, alike the future nanosystems through nanobubbles, nanofibers, nanodiamonds, nanotraps, nanorobots and eventually, the therapeutic applications of micro- and nanoparticulates, current status for clinical development against COVID-19 together with environmental implications of antivirals, gene therapy etc., which may be useful for repurposing and designing of novel antiviral drugs against various dreadful diseases, especially the SARS-CoV-2 and other associated variants.
Collapse
|
25
|
Ji X, Yang X, Shi C, Guo D, Wang X, Messina JM, Meng Q, Urao N, Cooney R, Luo J. Functionalized core-shell nanogel scavenger for immune modulation therapy in sepsis. ADVANCED THERAPEUTICS 2022; 5:2200127. [PMID: 36590645 PMCID: PMC9797201 DOI: 10.1002/adtp.202200127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/05/2023]
Abstract
Sepsis is a complex, life-threatening hyperinflammatory syndrome associated with organ failure and high mortality due to lack of effective treatment options. Here we report a core-shell hydrogel nanoparticle with the core functionalized with telodendrimer (TD) nanotrap (NT) to control hyperinflammation in sepsis. The combination of multi-valent charged and hydrophobic moieties in TD enables effective binding with biomolecules in NT. The higher crosslinking in the shell structure of nanogel excludes the abundant large serum proteins and allows for size-selectivity in scavenging the medium-sized septic molecules (10-30 kDa), e.g., lipopolysaccharides (LPS, a potent endotoxin in sepsis), thus reducing cytokine production. At the same time, the core-shell TD NT nanogel captures the over-flowing proinflammatory cytokines effectively both in vitro and in vivo from biological fluids to further control hyperinflammation. Intraperitoneal injection of core-shell TD NT nanogel effectively attenuates NF-κB activation and cytokine production in LPS-induced septic mouse models. These results indicate the potential applications of the injectable TD NT core-shell nanogel to attenuate local or systemic inflammation.
Collapse
Affiliation(s)
- Xiaotian Ji
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiguang Yang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Changying Shi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Dandan Guo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiaojing Wang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Jennifer M Messina
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Qinghe Meng
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Norifumi Urao
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
- Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Robert Cooney
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
- Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
- Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
- Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| |
Collapse
|
26
|
Wei Y, Wang J, Wu S, Zhou R, Zhang K, Zhang Z, Liu J, Qin S, Shi J. Nanomaterial-Based Zinc Ion Interference Therapy to Combat Bacterial Infections. Front Immunol 2022; 13:899992. [PMID: 35844505 PMCID: PMC9279624 DOI: 10.3389/fimmu.2022.899992] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/27/2022] [Indexed: 01/04/2023] Open
Abstract
Pathogenic bacterial infections are the second highest cause of death worldwide and bring severe challenges to public healthcare. Antibiotic resistance makes it urgent to explore new antibacterial therapy. As an essential metal element in both humans and bacteria, zinc ions have various physiological and biochemical functions. They can stabilize the folded conformation of metalloproteins and participate in critical biochemical reactions, including DNA replication, transcription, translation, and signal transduction. Therefore, zinc deficiency would impair bacterial activity and inhibit the growth of bacteria. Interestingly, excess zinc ions also could cause oxidative stress to damage DNA, proteins, and lipids by inhibiting the function of respiratory enzymes to promote the formation of free radicals. Such dual characteristics endow zinc ions with unparalleled advantages in the direction of antibacterial therapy. Based on the fascinating features of zinc ions, nanomaterial-based zinc ion interference therapy emerges relying on the outstanding benefits of nanomaterials. Zinc ion interference therapy is divided into two classes: zinc overloading and zinc deprivation. In this review, we summarized the recent innovative zinc ion interference strategy for the treatment of bacterial infections and focused on analyzing the antibacterial mechanism of zinc overloading and zinc deprivation. Finally, we discuss the current limitations of zinc ion interference antibacterial therapy and put forward problems of clinical translation for zinc ion interference antibacterial therapy.
Collapse
Affiliation(s)
- Yongbin Wei
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiaming Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sixuan Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ruixue Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Deng J, Wang R, Huang S, Ding J, Zhou W. Macrophages-regulating nanomedicines for sepsis therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Hirad AH, Ansari SA, Ali MAE, Egeh MA. Microwave-mediated synthesis of Iron oxide nanoparticles: Photocatalytic, antimicrobial and their cytotoxicity assessment. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Xu W, Xu N, Zhang M, Wang Y, Ling G, Yuan Y, Zhang P. Nanotraps based on multifunctional materials for trapping and enrichment. Acta Biomater 2022; 138:57-72. [PMID: 34492372 DOI: 10.1016/j.actbio.2021.08.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022]
Abstract
Many biomarkers for early diagnosis of cancer and other diseases are difficult to detect because they often exist in body fluids in very low concentrations and are masked by high-abundance proteins such as albumin and immunoglobulins. At the same time, water pollution is one of the most serious environmental problems, but the existing adsorption materials have many shortcomings such as slow kinetics, small adsorption capacity and low adsorption efficiency. Nanotraps, mixed with gases or liquids, can capture and concentrate target substances, such as biomolecules, metal ions and oxoanions. Using nanotraps is a versatile sample pre-processing approach and it can improve the sensitivity of downstream analysis techniques. Herein, the preparations and applications of different types of nanotraps are mainly introduced. What's more, the shortcomings of using nanotraps in practical applications are also discussed. Using nanotraps is a promising sample pre-processing technology, which is of great significance for biomarkers discovery, diseases diagnosis, sewage purification and valuable ions recovery. STATEMENT OF SIGNIFICANCE: This review collates and summarizes the preparations and applications of different types of nanotraps, and discusses the shortcomings of using nanotraps in practical applications. Nanotraps, mixed with gases or liquids, can capture and concentrate target materials, such as biomolecules, metal ions and oxoanions. Using nanotraps is a versatile sample pre-processing approach and it can improve the sensitivity of downstream analysis techniques. During the COVID-19 pandemic, hydrogel nanotraps were successfully utilized for RT-PCR analysis with the FDA Emergency Used Authorization for COVID-19. Using nanotraps is a promising sample pre-processing technology, which is of great significance for biomarkers discovery, diseases diagnosis, sewage purification and valuable ions recovery.
Collapse
Affiliation(s)
- Wenxin Xu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Na Xu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Manyue Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yan Wang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Yue Yuan
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
30
|
Luo G, Zhang J, Sun Y, Wang Y, Wang H, Cheng B, Shu Q, Fang X. Nanoplatforms for Sepsis Management: Rapid Detection/Warning, Pathogen Elimination and Restoring Immune Homeostasis. NANO-MICRO LETTERS 2021; 13:88. [PMID: 33717630 PMCID: PMC7938387 DOI: 10.1007/s40820-021-00598-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/14/2020] [Indexed: 05/20/2023]
Abstract
Sepsis, a highly life-threatening organ dysfunction caused by uncontrollable immune responses to infection, is a leading contributor to mortality in intensive care units. Sepsis-related deaths have been reported to account for 19.7% of all global deaths. However, no effective and specific therapeutic for clinical sepsis management is available due to the complex pathogenesis. Concurrently eliminating infections and restoring immune homeostasis are regarded as the core strategies to manage sepsis. Sophisticated nanoplatforms guided by supramolecular and medicinal chemistry, targeting infection and/or imbalanced immune responses, have emerged as potent tools to combat sepsis by supporting more accurate diagnosis and precision treatment. Nanoplatforms can overcome the barriers faced by clinical strategies, including delayed diagnosis, drug resistance and incapacity to manage immune disorders. Here, we present a comprehensive review highlighting the pathogenetic characteristics of sepsis and future therapeutic concepts, summarizing the progress of these well-designed nanoplatforms in sepsis management and discussing the ongoing challenges and perspectives regarding future potential therapies. Based on these state-of-the-art studies, this review will advance multidisciplinary collaboration and drive clinical translation to remedy sepsis.
Collapse
Affiliation(s)
- Gan Luo
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Jue Zhang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Yaqi Sun
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Ya Wang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Hanbin Wang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Baoli Cheng
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Qiang Shu
- National Clinical Research Center for Child Health, Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 People’s Republic of China
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| |
Collapse
|
31
|
Lynch MJ, Gobbo OL. Advances in Non-Animal Testing Approaches towards Accelerated Clinical Translation of Novel Nanotheranostic Therapeutics for Central Nervous System Disorders. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2632. [PMID: 34685073 PMCID: PMC8538557 DOI: 10.3390/nano11102632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022]
Abstract
Nanotheranostics constitute a novel drug delivery system approach to improving systemic, brain-targeted delivery of diagnostic imaging agents and pharmacological moieties in one rational carrier platform. While there have been notable successes in this field, currently, the clinical translation of such delivery systems for the treatment of neurological disorders has been limited by the inadequacy of correlating in vitro and in vivo data on blood-brain barrier (BBB) permeation and biocompatibility of nanomaterials. This review aims to identify the most contemporary non-invasive approaches for BBB crossing using nanotheranostics as a novel drug delivery strategy and current non-animal-based models for assessing the safety and efficiency of such formulations. This review will also address current and future directions of select in vitro models for reducing the cumbersome and laborious mandate for testing exclusively in animals. It is hoped these non-animal-based modelling approaches will facilitate researchers in optimising promising multifunctional nanocarriers with a view to accelerating clinical testing and authorisation applications. By rational design and appropriate selection of characterised and validated models, ranging from monolayer cell cultures to organ-on-chip microfluidics, promising nanotheranostic particles with modular and rational design can be screened in high-throughput models with robust predictive power. Thus, this article serves to highlight abbreviated research and development possibilities with clinical translational relevance for developing novel nanomaterial-based neuropharmaceuticals for therapy in CNS disorders. By generating predictive data for prospective nanomedicines using validated in vitro models for supporting clinical applications in lieu of requiring extensive use of in vivo animal models that have notable limitations, it is hoped that there will be a burgeoning in the nanotherapy of CNS disorders by virtue of accelerated lead identification through screening, optimisation through rational design for brain-targeted delivery across the BBB and clinical testing and approval using fewer animals. Additionally, by using models with tissue of human origin, reproducible therapeutically relevant nanomedicine delivery and individualised therapy can be realised.
Collapse
Affiliation(s)
- Mark J. Lynch
- School of Pharmacy and Pharmaceutical Sciences, Panoz Building, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Oliviero L. Gobbo
- School of Pharmacy and Pharmaceutical Sciences, Panoz Building, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
32
|
Chen L, Huang Q, Zhao T, Sui L, Wang S, Xiao Z, Nan Y, Ai K. Nanotherapies for sepsis by regulating inflammatory signals and reactive oxygen and nitrogen species: New insight for treating COVID-19. Redox Biol 2021; 45:102046. [PMID: 34174559 PMCID: PMC8205260 DOI: 10.1016/j.redox.2021.102046] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
SARS-CoV-2 has caused up to 127 million cases of COVID-19. Approximately 5% of COVID-19 patients develop severe illness, and approximately 40% of those with severe illness eventually die, corresponding to more than 2.78 million people. The pathological characteristics of COVID-19 resemble typical sepsis, and severe COVID-19 has been identified as viral sepsis. Progress in sepsis research is important for improving the clinical care of these patients. Recent advances in understanding the pathogenesis of sepsis have led to the view that an uncontrolled inflammatory response and oxidative stress are core factors. However, in the traditional treatment of sepsis, it is difficult to achieve a balance between the inflammation, pathogens (viruses, bacteria, and fungi), and patient tolerance, resulting in high mortality of patients with sepsis. In recent years, nanomaterials mediating reactive oxygen and nitrogen species (RONS) and the inflammatory response have shown previously unattainable therapeutic effects on sepsis. Despite these advantages, RONS and inflammatory response-based nanomaterials have yet to be extensively adopted as sepsis therapy. To the best of our knowledge, no review has yet discussed the pathogenesis of sepsis and the application of nanomaterials. To help bridge this gap, we discuss the pathogenesis of sepsis related to inflammation and the overproduction RONS, which activate pathogen-associated molecular pattern (PAMP)-pattern recognition receptor (PRR) and damage-associated molecular pattern (DAMP)-PRR signaling pathways. We also summarize the application of nanomaterials in the treatment of sepsis. As highlighted here, this strategy could synergistically improve the therapeutic efficacy against both RONS and inflammation in sepsis and may prolong survival. Current challenges and future developments for sepsis treatment are also summarized.
Collapse
Affiliation(s)
- Li Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410087, Hunan, China
| | - Tianjiao Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410087, Hunan, China
| | - Lihua Sui
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Shuya Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Yayun Nan
- Geriatric Medical Center, Ningxia People's Hospital, Yinchuan, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.
| |
Collapse
|
33
|
Lim J, Lee YY, Choy YB, Park W, Park CG. Sepsis diagnosis and treatment using nanomaterials. Biomed Eng Lett 2021; 11:197-210. [PMID: 34277115 PMCID: PMC8274966 DOI: 10.1007/s13534-021-00200-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/10/2021] [Accepted: 07/04/2021] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a life-threatening reaction that occurs when the body's severe response to an infection damages the host's own tissues. Sepsis has been globally recognized as a fatal disease. Rapid treatment of sepsis requires prompt identification, administering antibiotics, careful hemodynamic support, and treating the cause of the infection. Clinical outcomes of sepsis depend on early diagnosis and appropriate treatment. Unfortunately, current sepsis diagnosis and treatment, such as polymerase chain reaction-based assay, blood culture assay, and antibiotic therapy, are ineffective; consequently, sepsis-related mortality remains high and increases antimicrobial resistance. To overcome this challenge, nanotechnology, which involves engineering at a nanoscale, is used for diagnosing and treating sepsis. Preclinical models have shown protective effects and potential utility in managing septic shock. Furthermore, nanotechnology treatments based on diverse materials result in the effective treatment of sepsis, improving the survival rate. In this review, we present an overview of the recent research advancements in nanotechnology to diagnose and treat sepsis with a brief introduction to sepsis.
Collapse
Affiliation(s)
- Jaesung Lim
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
| | - Yun Young Lee
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Young Bin Choy
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Wooram Park
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon, Gyeonggi 14662 Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi 16419 Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Gyeonggi 16419 Republic of Korea
| |
Collapse
|
34
|
Koo JH, Kim SH, Jeon SH, Kang MJ, Choi JM. Macrophage-preferable delivery of the leucine-rich repeat domain of NLRX1 ameliorates lethal sepsis by regulating NF-κB and inflammasome signaling activation. Biomaterials 2021; 274:120845. [PMID: 33971559 DOI: 10.1016/j.biomaterials.2021.120845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 12/27/2022]
Abstract
Sepsis is an acute systemic inflammatory disease triggered by bacterial infection leading organ dysfunctions that macrophages are responsible for major triggering of systemic inflammation. Treatment options are limited to antibiotics and drugs to manage the symptoms of sepsis, but there are currently no molecular-targeted therapies. Here, we identified a novel macrophage-preferable delivery peptide, C10, which we conjugated to truncated domains of NLRX1 (leucine-rich repeat region (LRR), and nucleotide binding domain (NBD)) to obtain C10-LRR and C10-NBD. Leucine rich amino acid of C10 enables macrophage preferable moieties that efficiently deliver a cargo protein into macrophages in vitro and in vivo. C10-LRR but not C10-NBD significantly improved survival in an LPS-mediated lethal endotoxemia sepsis model. C10-LRR efficiently inhibited IL-6 production in peritoneal macrophages via prevention of IκB degradation and p65 phosphorylation. In addition, C10-LRR negatively regulated IL-1β production by preventing caspase-1 activation with a sustained mitochondrial MAVS level. Finally, co-treatment with anti-TNFα antibody and C10-LRR had a synergistic effect in an LPS-induced sepsis model. Collectively, these findings indicate that C10-LRR could be an effective therapeutic agent to treat systemic inflammation in sepsis by regulating both NF-κB and inflammasome signaling activation.
Collapse
Affiliation(s)
- Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sang-Hun Kim
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Soung-Hoo Jeon
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Min-Jong Kang
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea; Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
35
|
Yu F, Wei C, Deng P, Peng T, Hu X. Deep exploration of random forest model boosts the interpretability of machine learning studies of complicated immune responses and lung burden of nanoparticles. SCIENCE ADVANCES 2021; 7:7/22/eabf4130. [PMID: 34039604 PMCID: PMC8153727 DOI: 10.1126/sciadv.abf4130] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 04/05/2021] [Indexed: 05/22/2023]
Abstract
The development of machine learning provides solutions for predicting the complicated immune responses and pharmacokinetics of nanoparticles (NPs) in vivo. However, highly heterogeneous data in NP studies remain challenging because of the low interpretability of machine learning. Here, we propose a tree-based random forest feature importance and feature interaction network analysis framework (TBRFA) and accurately predict the pulmonary immune responses and lung burden of NPs, with the correlation coefficient of all training sets >0.9 and half of the test sets >0.75. This framework overcomes the feature importance bias brought by small datasets through a multiway importance analysis. TBRFA also builds feature interaction networks, boosts model interpretability, and reveals hidden interactional factors (e.g., various NP properties and exposure conditions). TBRFA provides guidance for the design and application of ideal NPs and discovers the feature interaction networks that contribute to complex systems with small-size data in various fields.
Collapse
Affiliation(s)
- Fubo Yu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Changhong Wei
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peng Deng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ting Peng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
36
|
Maus A, Strait L, Zhu D. Nanoparticles as delivery vehicles for antiviral therapeutic drugs. ENGINEERED REGENERATION 2021; 2:31-46. [PMID: 38620592 PMCID: PMC7988306 DOI: 10.1016/j.engreg.2021.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/11/2021] [Accepted: 03/09/2021] [Indexed: 02/08/2023] Open
Abstract
With the ongoing COVID-19 pandemic still escalating, many researchers are turning to nanotechnology as a method of treatment not only for this pandemic, but in preparation for the pandemics of the future. Given both a wide variety of biomaterials at their disposal and the recent rise of nanotechnology, scientists now have the means to release and distribute therapeutic drugs in a variety of ways. Such a variety permits medical professionals the ability to choose biomaterials and methods that would provide the best release and treatment methodologies for the viral ailment they are attempting to remedy. This integrative review discusses context of previous pandemics, viral pathogenesis, issues associated with the current state of antiviral delivery systems, numerous biomaterials used for this purpose, and further information regarding the ongoing global COVID-19 pandemic.
Collapse
Affiliation(s)
- Alexander Maus
- Department of Biomedical Engineering, Stony Brook University, United States
| | - Lia Strait
- Department of Biomedical Engineering, Stony Brook University, United States
| | - Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, United States
| |
Collapse
|
37
|
Guo D, Ji X, Luo J. Rational nanocarrier design towards clinical translation of cancer nanotherapy. Biomed Mater 2021; 16. [DOI: 10.1088/1748-605x/abe35a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
|
38
|
Balança B, Desmurs L, Grelier J, Perret-Liaudet A, Lukaszewicz AC. DAMPs and RAGE Pathophysiology at the Acute Phase of Brain Injury: An Overview. Int J Mol Sci 2021; 22:ijms22052439. [PMID: 33670976 PMCID: PMC7957733 DOI: 10.3390/ijms22052439] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Early or primary injury due to brain aggression, such as mechanical trauma, hemorrhage or is-chemia, triggers the release of damage-associated molecular patterns (DAMPs) in the extracellular space. Some DAMPs, such as S100B, participate in the regulation of cell growth and survival but may also trigger cellular damage as their concentration increases in the extracellular space. When DAMPs bind to pattern-recognition receptors, such as the receptor of advanced glycation end-products (RAGE), they lead to non-infectious inflammation that will contribute to necrotic cell clearance but may also worsen brain injury. In this narrative review, we describe the role and ki-netics of DAMPs and RAGE at the acute phase of brain injury. We searched the MEDLINE database for “DAMPs” or “RAGE” or “S100B” and “traumatic brain injury” or “subarachnoid hemorrhage” or “stroke”. We selected original articles reporting data on acute brain injury pathophysiology, from which we describe DAMPs release and clearance upon acute brain injury, and the implication of RAGE in the development of brain injury. We will also discuss the clinical strategies that emerge from this overview in terms of biomarkers and therapeutic perspectives
Collapse
Affiliation(s)
- Baptiste Balança
- Department of Neurological Anesthesiology and Intensive Care Medicine, Hospices Civils de Lyon, Hôpital Pierre Wertheimer, 69500 Bron, France;
- Team TIGER, Lyon Neuroscience Research Centre, Inserm U1028, CNRS UMR 5292, 69500 Bron, France
- Correspondence: ; Tel.: +33-6-2391-0594
| | - Laurent Desmurs
- Clinical Chemistry and Molecular Biology Laboratory, Hospices Civils de Lyon, Hôpital Pierre Wertheimer, 69500 Bron, France; (L.D.); (A.P.-L.)
| | - Jérémy Grelier
- Department of Neurological Anesthesiology and Intensive Care Medicine, Hospices Civils de Lyon, Hôpital Pierre Wertheimer, 69500 Bron, France;
| | - Armand Perret-Liaudet
- Clinical Chemistry and Molecular Biology Laboratory, Hospices Civils de Lyon, Hôpital Pierre Wertheimer, 69500 Bron, France; (L.D.); (A.P.-L.)
- Team BIORAN, Lyon Neuroscience Research Centre, Inserm U1028, CNRS UMR 5292, 69500 Bron, France
| | - Anne-Claire Lukaszewicz
- Department of Neurological Anesthesiology and Intensive Care Medicine, Hospices Civils de Lyon, Hôpital Edouard Herriot, 69003 Lyon, France;
| |
Collapse
|
39
|
Exploring the Mechanism on the Medullary Visceral Zone Inhibiting the Cholinergic Anti-inflammatory Pathway Induced by Sepsis. Mediators Inflamm 2020; 2020:1320278. [PMID: 33061821 PMCID: PMC7542527 DOI: 10.1155/2020/1320278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 12/29/2022] Open
Abstract
Inflammatory storm is an important pathological mechanism of multiple organ dysfunction, and it is associated with most deaths in septic patients, deserving to be studied. Recent findings have confirmed that the Medullary Visceral Zone (MVZ) regulates inflammation and immunity through the cholinergic anti-inflammatory pathway (CAP), but how sepsis affects the MVZ and leads to uncontrolled inflammation remain unclear. The current study reported that sepsis induced MVZ to inhibit CAP which underlies the inflammation storm. Our studies have shown that the rat models of sepsis prepared by cecal ligation and puncture had a higher inflammatory level, higher mortality, and higher Murine Sepsis Score. In septic rats, some indicators of heart rate variability (HRV) such as SDNN, HF band, RMSSD, SD1, and SD2 significantly reduced. In MVZ of septic rats, many cholinergic and catecholaminergic neurons showed apoptotic, with low expressions of tyrosine hydroxylase and choline acetyltransferase. The α7nAChR agonist GTS-21 can improve these pathologies, while the α7nAChR antagonist MLA is the opposite. Our study demonstrates for the first time that cholinergic and catecholaminergic neurons in MVZ went through significant apoptosis and inactiveness in sepsis, which contributes to the inhibition of CAP and acceleration of the inflammation storm in early sepsis. Intervening with CAP has a significant effect on the activity and apoptosis of MVZ neurons while altering systemic inflammation and immunity; in addition, for the first time, we confirmed that some indicators of HRV such as SDNN, HF band, RMSSD, SD1, and SD2 can reflect the activity of CAP, but the CAP interference had little effect on these indicators.
Collapse
|
40
|
Mejlsøe S, Kakkar A. Telodendrimers: Promising Architectural Polymers for Drug Delivery. Molecules 2020; 25:E3995. [PMID: 32887285 PMCID: PMC7504730 DOI: 10.3390/molecules25173995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Architectural complexity has played a key role in enhancing the efficacy of nanocarriers for a variety of applications, including those in the biomedical field. With the continued evolution in designing macromolecules-based nanoparticles for drug delivery, the combination approach of using important features of linear polymers with dendrimers has offered an advantageous and viable platform. Such nanostructures, which are commonly referred to as telodendrimers, are hybrids of linear polymers covalently linked with different dendrimer generations and backbones. There is considerable variety in selection from widely studied linear polymers and dendrimers, which can help tune the overall composition of the resulting hybrid structures. This review highlights the advances in articulating syntheses of these macromolecules, and the contributions these are making in facilitating therapeutic administration. Limited progress has been made in the design and synthesis of these hybrid macromolecules, and it is through an understanding of their physicochemical properties and aqueous self-assembly that one can expect to fully exploit their potential in drug delivery.
Collapse
Affiliation(s)
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada;
| |
Collapse
|