1
|
Cheng M, Xu Y, Cui X, Wei X, Chang Y, Xu J, Lei C, Xue L, Zheng Y, Wang Z, Huang L, Zheng M, Luo H, Leng Y, Jiang C. Deep longitudinal lower respiratory tract microbiome profiling reveals genome-resolved functional and evolutionary dynamics in critical illness. Nat Commun 2024; 15:8361. [PMID: 39333527 PMCID: PMC11436904 DOI: 10.1038/s41467-024-52713-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
The lower respiratory tract (LRT) microbiome impacts human health, especially among critically ill patients. However, comprehensive characterizations of the LRT microbiome remain challenging due to low microbial mass and host contamination. We develop a chelex100-based low-biomass microbial-enrichment method (CMEM) that enables deep metagenomic profiling of LRT samples to recover near-complete microbial genomes. We apply the method to 453 longitudinal LRT samples from 157 intensive care unit (ICU) patients in three geographically distant hospitals. We recover 120 high-quality metagenome-assembled genomes (MAGs) and associated plasmids without culturing. We detect divergent longitudinal microbiome dynamics and hospital-specific dominant opportunistic pathogens and resistomes in pneumonia patients. Diagnosed pneumonia and the ICU stay duration were associated with the abundance of specific antibiotic-resistance genes (ARGs). Moreover, CMEM can serve as a robust tool for genome-resolved analyses. MAG-based analyses reveal strain-specific resistome and virulome among opportunistic pathogen strains. Evolutionary analyses discover increased mobilome in prevailing opportunistic pathogens, highly conserved plasmids, and new recombination hotspots associated with conjugative elements and prophages. Integrative analysis with epidemiological data reveals frequent putative inter-patient strain transmissions in ICUs. In summary, we present a genome-resolved functional, transmission, and evolutionary landscape of the LRT microbiota in critically ill patients.
Collapse
Affiliation(s)
- Minghui Cheng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310030, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Yingjie Xu
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Cui
- Department of Intensive Care Unit, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Xin Wei
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310030, China
| | - Yundi Chang
- Department of Intensive Care Unit, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Jun Xu
- Department of Critical Care Medicine, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cheng Lei
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Lei Xue
- Department of Intensive Care Unit, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yifan Zheng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310030, China
| | - Zhang Wang
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Lingtong Huang
- Department of Critical Care Medicine, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Hong Luo
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Yuxin Leng
- Department of Intensive Care Unit, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
| | - Chao Jiang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310030, China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, 321000, China.
| |
Collapse
|
2
|
Wu X, Alibayov B, Xiang X, Lattar SM, Sakai F, Medders AA, Antezana BS, Keller LE, Vidal AGJ, Tzeng YL, Robinson DA, Stephens DS, Yu Y, Vidal JE. Ultrastructural, metabolic and genetic characteristics of determinants facilitating the acquisition of macrolide resistance by Streptococcus pneumoniae. Drug Resist Updat 2024; 77:101138. [PMID: 39167981 DOI: 10.1016/j.drup.2024.101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
AIMS To investigate the molecular events associated with acquiring macrolide resistance genes [mefE/mel (Mega) or ermB] in Streptococcus pneumoniae (Spn) during nasopharyngeal colonization. METHODS AND RESULTS Genomic analysis of 128 macrolide-resistant Spn isolates revealed recombination events in genes of the conjugation apparatus, or the competence system, in strains carrying Tn916-related elements. Studies using confocal and electron microscopy demonstrated that during the transfer of Tn916-related elements in nasopharyngeal cell biofilms, pneumococcal strains formed clusters facilitating their acquisition of resistance determinants at a high recombination frequency (rF). Remarkably, these aggregates comprise both encapsulated and nonencapsulated pneumococci that span extracellular and intracellular compartments. rF assessments showed similar rates regardless Mega was associated with large integrative and conjugative elements (ICEs) (>23 kb) or not (∼5.4 kb). The rF for Mega Class IV(c) insertion region (∼53 kb) was three orders of magnitude higher than the transformation of the capsule locus. Metabolomics studies of the microenvironment created by colonization of human nasopharyngeal cells revealed a link between the acquisition of ICEs and the pathways involving nicotinic acid and sucrose. CONCLUSIONS Pneumococcal clusters, both extracellular and intracellular, facilitate macrolide resistance acquisition, and ICEs were acquired at a higher frequency than the capsule locus. Metabolic changes could serve as intervention targets.
Collapse
Affiliation(s)
- Xueqing Wu
- Department of Infectious Diseases, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310052, China
| | - Babek Alibayov
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Xi Xiang
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Santiago M Lattar
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Fuminori Sakai
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Austin A Medders
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Brenda S Antezana
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, United States; Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, GA 30322, United States
| | - Lance E Keller
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States; Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Ana G J Vidal
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Yih-Ling Tzeng
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, United States; Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, GA 30322, United States
| | - D Ashley Robinson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States; Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - David S Stephens
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, United States; Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, GA 30322, United States
| | - Yunsong Yu
- Department of Infectious Diseases, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310052, China.
| | - Jorge E Vidal
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States; Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216, United States.
| |
Collapse
|
3
|
Jansen van Rensburg MJ, Berger DJ, Yassine I, Shaw D, Fohrmann A, Bray JE, Jolley KA, Maiden MCJ, Brueggemann AB. Development of the Pneumococcal Genome Library, a core genome multilocus sequence typing scheme, and a taxonomic life identification number barcoding system to investigate and define pneumococcal population structure. Microb Genom 2024; 10:001280. [PMID: 39137139 PMCID: PMC11321556 DOI: 10.1099/mgen.0.001280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Investigating the genomic epidemiology of major bacterial pathogens is integral to understanding transmission, evolution, colonization, disease, antimicrobial resistance and vaccine impact. Furthermore, the recent accumulation of large numbers of whole genome sequences for many bacterial species enhances the development of robust genome-wide typing schemes to define the overall bacterial population structure and lineages within it. Using the previously published data, we developed the Pneumococcal Genome Library (PGL), a curated dataset of 30 976 genomes and contextual data for carriage and disease pneumococci recovered between 1916 and 2018 in 82 countries. We leveraged the size and diversity of the PGL to develop a core genome multilocus sequence typing (cgMLST) scheme comprised of 1222 loci. Finally, using multilevel single-linkage clustering, we stratified pneumococci into hierarchical clusters based on allelic similarity thresholds and defined these with a taxonomic life identification number (LIN) barcoding system. The PGL, cgMLST scheme and LIN barcodes represent a high-quality genomic resource and fine-scale clustering approaches for the analysis of pneumococcal populations, which support the genomic epidemiology and surveillance of this leading global pathogen.
Collapse
Affiliation(s)
| | - Duncan J. Berger
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Iman Yassine
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - David Shaw
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Andy Fohrmann
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - James E. Bray
- Department of Biology, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
4
|
Hiller NL, Orihuela CJ. Biological puzzles solved by using Streptococcus pneumoniae: a historical review of the pneumococcal studies that have impacted medicine and shaped molecular bacteriology. J Bacteriol 2024; 206:e0005924. [PMID: 38809015 PMCID: PMC11332154 DOI: 10.1128/jb.00059-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
The major human pathogen Streptococcus pneumoniae has been the subject of intensive clinical and basic scientific study for over 140 years. In multiple instances, these efforts have resulted in major breakthroughs in our understanding of basic biological principles as well as fundamental tenets of bacterial pathogenesis, immunology, vaccinology, and genetics. Discoveries made with S. pneumoniae have led to multiple major public health victories that have saved the lives of millions. Studies on S. pneumoniae continue today, where this bacterium is being used to dissect the impact of the host on disease processes, as a powerful cell biology model, and to better understand the consequence of human actions on commensal bacteria at the population level. Herein we review the major findings, i.e., puzzle pieces, made with S. pneumoniae and how, over the years, they have come together to shape our understanding of this bacterium's biology and the practice of medicine and modern molecular biology.
Collapse
Affiliation(s)
- N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Carlos J. Orihuela
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
5
|
Zhang D, Li H, Yang Q, Xu Y. Microbial-mediated conversion of soil organic carbon co-regulates the evolution of antibiotic resistance. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134404. [PMID: 38688217 DOI: 10.1016/j.jhazmat.2024.134404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
The influence of organic carbon on the proliferation of antibiotic resistance genes (ARGs) in the soil has been widely documented. However, it is unclear how soil organic carbon (SOC) interacts with the evolution of antibiotic resistance in bacteria. Here, we examined the variations in ARGs abundance during SOC mineralization and explored the microbiological mechanisms and key metabolic pathways involved in their coevolution. The results showed that the SOC mineralization rate was closely correlated with ARGs abundance (p < 0.05). High organic carbon (OC) mineralization was conducive to the occurrence of multidrug resistance genes. For example, multidrug_transporter and mexB increased 2.26 and 7.83 times from the initial level. The competitor (stress) evolutionary strategy model revealed that higher OC inputs drive environmental microorganisms to evolve from stress tolerant to high resistance and strong adaptation. Meta-genomic and transcriptomic analyses revealed that the conversion process of pyruvate to acetyl-CoA to acetate was the critical metabolic pathway for the co-regulation of antibiotic resistance. Gene deletion validation trials have demonstrated that the key functional genes (ackA and pta) involved in this process can modulate the development of vancomycin and multidrug resistance. This outcome provides a preliminary framework for microbial mechanisms that target the co-regulation of microbial OC conversion and the evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Dandan Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Qifan Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
6
|
Davison C, Tallman S, de Ste-Croix M, Antonio M, Oggioni MR, Kwambana-Adams B, Freund F, Beleza S. Long-term evolution of Streptococcus mitis and Streptococcus pneumoniae leads to higher genetic diversity within rather than between human populations. PLoS Genet 2024; 20:e1011317. [PMID: 38843312 PMCID: PMC11185502 DOI: 10.1371/journal.pgen.1011317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/18/2024] [Accepted: 05/23/2024] [Indexed: 06/19/2024] Open
Abstract
Evaluation of the apportionment of genetic diversity of human bacterial commensals within and between human populations is an important step in the characterization of their evolutionary potential. Recent studies showed a correlation between the genomic diversity of human commensal strains and that of their host, but the strength of this correlation and of the geographic structure among human populations is a matter of debate. Here, we studied the genomic diversity and evolution of the phylogenetically related oro-nasopharyngeal healthy-carriage Streptococcus mitis and Streptococcus pneumoniae, whose lifestyles range from stricter commensalism to high pathogenic potential. A total of 119 S. mitis genomes showed higher within- and among-host variation than 810 S. pneumoniae genomes in European, East Asian and African populations. Summary statistics of the site-frequency spectrum for synonymous and non-synonymous variation and ABC modelling showed this difference to be due to higher ancestral bacterial population effective size (Ne) in S. mitis, whose genomic variation has been maintained close to mutation-drift equilibrium across (at least many) generations, whereas S. pneumoniae has been expanding from a smaller ancestral bacterial population. Strikingly, both species show limited differentiation among human populations. As genetic differentiation is inversely proportional to the product of effective population size and migration rate (Nem), we argue that large Ne have led to similar differentiation patterns, even if m is very low for S. mitis. We conclude that more diversity within than among human populations and limited population differentiation must be common features of the human microbiome due to large Ne.
Collapse
Affiliation(s)
- Charlotte Davison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Sam Tallman
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Megan de Ste-Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Martin Antonio
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
- Centre for Epidemic Preparedness and Response, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Marco R. Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Brenda Kwambana-Adams
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Malawi Liverpool Welcome Programme, Blantyre, Malawi
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Fabian Freund
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Sandra Beleza
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
7
|
Cheng HCR, Belman S, Salje H, Dagan R, Bentley SD. Estimating geographical spread of Streptococcus pneumoniae within Israel using genomic data. Microb Genom 2024; 10:001262. [PMID: 38913413 PMCID: PMC11261897 DOI: 10.1099/mgen.0.001262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Understanding how pathogens spread across geographical space is fundamental for control measures such as vaccination. Streptococcus pneumoniae (the pneumococcus) is a respiratory bacterium responsible for a large proportion of infectious disease morbidity and mortality globally. Even in the post-vaccination era, the rates of invasive pneumococcal disease (IPD) remain stable in most countries, including Israel. To understand the geographical spread of the pneumococcus in Israel, we analysed 1174 pneumococcal genomes from patients with IPD across multiple regions. We included the evolutionary distance between pairs of isolates inferred using whole-genome data within a relative risk (RR) ratio framework to capture the geographical structure of S. pneumoniae. While we could not find geographical structure at the overall lineage level, the extra granularity provided by whole-genome sequence data showed that it takes approximately 5 years for invasive pneumococcal isolates to become fully mixed across the country.This article contains data hosted by Microreact.
Collapse
Affiliation(s)
| | - Sophie Belman
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Global Health Resilience, Earth Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Ron Dagan
- Gunzburger Chair for Study of Infectious Diseases, The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Stephen D. Bentley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
8
|
Jiang W, Lin T, Pan J, Rivera CE, Tincher C, Wang Y, Zhang Y, Gao X, Wang Y, Tsui HCT, Winkler ME, Lynch M, Long H. Spontaneous mutations and mutational responses to penicillin treatment in the bacterial pathogen Streptococcus pneumoniae D39. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:198-211. [PMID: 38827133 PMCID: PMC11136922 DOI: 10.1007/s42995-024-00220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 03/04/2024] [Indexed: 06/04/2024]
Abstract
Bacteria with functional DNA repair systems are expected to have low mutation rates due to strong natural selection for genomic stability. However, our study of the wild-type Streptococcus pneumoniae D39, a pathogen responsible for many common diseases, revealed a high spontaneous mutation rate of 0.02 per genome per cell division in mutation-accumulation (MA) lines. This rate is orders of magnitude higher than that of other non-mutator bacteria and is characterized by a high mutation bias in the A/T direction. The high mutation rate may have resulted from a reduction in the overall efficiency of selection, conferred by the tiny effective population size in nature. In line with this, S. pneumoniae D39 also exhibited the lowest DNA mismatch-repair (MMR) efficiency among bacteria. Treatment with the antibiotic penicillin did not elevate the mutation rate, as penicillin did not induce DNA damage and S. pneumoniae lacks a stress response pathway. Our findings suggested that the MA results are applicable to within-host scenarios and provide insights into pathogen evolution. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00220-6.
Collapse
Affiliation(s)
- Wanyue Jiang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237 China
| | - Tongtong Lin
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Jiao Pan
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Caitlyn E. Rivera
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
| | - Clayton Tincher
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
| | - Yaohai Wang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Yu Zhang
- School of Mathematics Science, Ocean University of China, Qingdao, 266000 China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, School of Life Science, Shandong University, Qingdao, 266237 China
| | - Yan Wang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Ho-Ching T. Tsui
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
| | | | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85281 USA
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237 China
| |
Collapse
|
9
|
Rafiqullah IM, Varghese R, Hellmann KT, Velmurugan A, Neeravi A, Kumar Daniel JL, Vidal JE, Kompithra RZ, Verghese VP, Veeraraghavan B, Robinson DA. Pneumococcal population genomics changes during the early time period of conjugate vaccine uptake in southern India. Microb Genom 2024; 10:001191. [PMID: 38315173 PMCID: PMC10926699 DOI: 10.1099/mgen.0.001191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Streptococcus pneumoniae is a major cause of invasive disease of young children in low- and middle-income countries. In southern India, pneumococcal conjugate vaccines (PCVs) that can prevent invasive pneumococcal disease began to be used more frequently after 2015. To characterize pneumococcal evolution during the early time period of PCV uptake in southern India, genomes were sequenced and selected characteristics were determined for 402 invasive isolates collected from children <5 years of age during routine surveillance from 1991 to 2020. Overall, the prevalence and diversity of vaccine type (VT) and non-vaccine type (NVT) isolates did not significantly change post-uptake of PCV. Individually, serotype 1 and global pneumococcal sequence cluster (GPSC or strain lineage) 2 significantly decreased, whereas serotypes 6B, 9V and 19A and GPSCs 1, 6, 10 and 23 significantly increased in proportion post-uptake of PCV. Resistance determinants to penicillin, erythromycin, co-trimoxazole, fluoroquinolones and tetracycline, and multidrug resistance significantly increased in proportion post-uptake of PCV and especially among VT isolates. Co-trimoxazole resistance determinants were common pre- and post-uptake of PCV (85 and 93 %, respectively) and experienced the highest rates of recombination in the genome. Accessory gene frequencies were seen to be changing by small amounts across the frequency spectrum specifically among VT isolates, with the largest changes linked to antimicrobial resistance determinants. In summary, these results indicate that as of 2020 this pneumococcal population was not yet approaching a PCV-induced equilibrium and they highlight changes related to antimicrobial resistance. Augmenting PCV coverage and prudent use of antimicrobials are needed to counter invasive pneumococcal disease in this region.
Collapse
Affiliation(s)
- Iftekhar M. Rafiqullah
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Rosemol Varghese
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | - K. Taylor Hellmann
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Aravind Velmurugan
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | - Ayyanraj Neeravi
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | | | - Jorge E. Vidal
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Rajeev Z. Kompithra
- Department of Child Health, Christian Medical College and Hospital, Vellore, India
| | - Valsan P. Verghese
- Department of Child Health, Christian Medical College and Hospital, Vellore, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | - D. Ashley Robinson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
10
|
Mulberry N, Rutherford AR, Colijn C. Pneumococcal population dynamics: Investigating vaccine-induced changes through multiscale modelling. PLoS Comput Biol 2023; 19:e1011755. [PMID: 38153948 PMCID: PMC10781023 DOI: 10.1371/journal.pcbi.1011755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/10/2024] [Accepted: 12/12/2023] [Indexed: 12/30/2023] Open
Abstract
The mechanisms behind vaccine-induced strain replacement in the pneumococcus remain poorly understood. There is emerging evidence that distinct pneumococcal lineages can co-colonise for significant time periods, and that novel recombinants can readily emerge during natural colonisation. Despite this, patterns of post-vaccine replacement are indicative of competition between specific lineages. Here, we develop a multiscale transmission model to investigate explicitly how within host dynamics shape observed ecological patterns, both pre- and post-vaccination. Our model framework explores competition between and within strains defined by distinct antigenic, metabolic and resistance profiles. We allow for strains to freely co-colonise and recombine within hosts, and consider how each of these types may contribute to a strain's overall fitness. Our results suggest that antigenic and resistance profiles are key drivers of post-vaccine success.
Collapse
Affiliation(s)
- Nicola Mulberry
- Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Caroline Colijn
- Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
11
|
Mokaya J, Mellor KC, Murray GGR, Kalizang’oma A, Lekhuleni C, Zar HJ, Nicol MP, McGee L, Bentley SD, Lo SW, Dube F. Genomic epidemiology of Streptococcus pneumoniae serotype 16F lineages. Microb Genom 2023; 9:001123. [PMID: 37917136 PMCID: PMC10711320 DOI: 10.1099/mgen.0.001123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
Due to the emergence of non-vaccine serotypes in vaccinated populations, Streptococcus pneumoniae remains a major global health challenge despite advances in vaccine development. Serotype 16F is among the predominant non-vaccine serotypes identified among vaccinated infants in South Africa (SA). To characterize lineages and antimicrobial resistance in 16F isolates obtained from South Africa and place the local findings in a global context, we analysed 10 923 S. pneumoniae carriage isolates obtained from infants recruited as part of a broader SA birth cohort. We inferred serotype, resistance profile for penicillin, chloramphenicol, cotrimoxazole, erythromycin and tetracycline, and global pneumococcal sequence clusters (GPSCs) from genomic data. To ensure global representation, we also included S. pneumoniae carriage and disease isolates from the Global Pneumococcal Sequencing (GPS) project database (n=19 607, collected from 49 countries across 5 continents, 1995-2018, accessed 17 March 2022). Nine per cent (934/10923) of isolates obtained from infants in the Drakenstein community in SA and 2 %(419/19607) of genomes in the GPS dataset were serotype 16F. Serotype 16F isolates were from 28 different lineages of S. pneumoniae, with GPSC33 and GPSC46 having the highest proportion of serotype 16F isolates at 26 % (346/1353) and 53 % (716/1353), respectively. Serotype 16F isolates were identified globally, but most isolates were collected from Africa. GPSC33 was associated with carriage [OR (95 % CI) 0.24 (0.09-0.66); P=0.003], while GPSC46 was associated with disease [OR (95 % CI) 19.9 (2.56-906.50); P=0.0004]. Ten per cent (37/346) and 15 % (53/346) of isolates within GPSC33 had genes associated with resistance to penicillin and co-trimoxazole, respectively, and 18 % (128/716) of isolates within GPSC46 had genes associated with resistance to co-trimoxazole. Resistant isolates formed genetic clusters, which may suggest emerging resistant lineages. Serotype 16F lineages were common in southern Africa. Some of these lineages were associated with disease and resistance to penicillin and cotrimoxazole. We recommend continuous genomic surveillance to determine the long-term impact of serotype 16F lineages on vaccine efficacy and antimicrobial therapy globally. Investing in vaccine strategies that offer protection over a wide range of serotypes/lineages remains essential. This paper contains data hosted by Microreact.
Collapse
Affiliation(s)
- Jolynne Mokaya
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
| | - Kate C. Mellor
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
| | - Gemma G. R. Murray
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Akuzike Kalizang’oma
- NIHR Mucosal Pathogens Research Unit, Research Department of Infection, Division of Infection and Immunity, University College London, London, UK
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - Cebile Lekhuleni
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Heather J. Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Childrenʼs Hospital and SA-MRC unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Mark P. Nicol
- Marshall Centre, School of Biomedical Sciences, University of Western Australia, School of Biomedical Sciences, Perth, ACT, Australia
| | - Lesley McGee
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Stephanie W. Lo
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
- Milner Centre for Evolution, Life Sciences Department, University of Bath, Bath, UK
| | - Felix Dube
- Department of Molecular and Cell Biology and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- School of Medicine, University of Lusaka, Lusaka, Zambia
| |
Collapse
|
12
|
Raghuram V, Gunoskey JJ, Hofstetter KS, Jacko NF, Shumaker MJ, Hu YJ, Read TD, David MZ. Comparison of genomic diversity between single and pooled Staphylococcus aureus colonies isolated from human colonization cultures. Microb Genom 2023; 9:001111. [PMID: 37934072 PMCID: PMC10711313 DOI: 10.1099/mgen.0.001111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/21/2023] [Indexed: 11/08/2023] Open
Abstract
The most common approach to sampling the bacterial populations within an infected or colonized host is to sequence genomes from a single colony obtained from a culture plate. However, it is recognized that this method does not capture the genetic diversity in the population. Sequencing a mixture of several colonies (pool-seq) is a better approach to detect population heterogeneity, but it is more complex to analyse due to different types of heterogeneity, such as within-clone polymorphisms, multi-strain mixtures, multi-species mixtures and contamination. Here, we compared 8 single-colony isolates (singles) and pool-seq on a set of 2286 Staphylococcus aureus culture samples to identify features that can distinguish pure samples, samples undergoing intraclonal variation and mixed strain samples. The samples were obtained by swabbing 3 body sites on 85 human participants quarterly for a year, who initially presented with a methicillin-resistant S. aureus skin and soft-tissue infection (SSTI). We compared parameters such as sequence quality, contamination, allele frequency, nucleotide diversity and pangenome diversity in each pool to those for the corresponding singles. Comparing singles from the same culture plate, we found that 18% of sample collections contained mixtures of multiple multilocus sequence types (MLSTs or STs). We showed that pool-seq data alone could predict the presence of multi-ST populations with 95% accuracy. We also showed that pool-seq could be used to estimate the number of intra-clonal polymorphic sites in the population. Additionally, we found that the pool may contain clinically relevant genes such as antimicrobial resistance markers that may be missed when only examining singles. These results highlight the potential advantage of analysing genome sequences of total populations obtained from clinical cultures rather than single colonies.
Collapse
Affiliation(s)
- Vishnu Raghuram
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Jessica J. Gunoskey
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Katrina S. Hofstetter
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Natasia F. Jacko
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Margot J. Shumaker
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Yi-Juan Hu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA
| | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Michael Z. David
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
13
|
Hackman J, Sheppard C, Phelan J, Jones-Warner W, Sobkowiak B, Shah S, Litt D, Fry NK, Toizumi M, Yoshida LM, Hibberd M, Miller E, Flasche S, Hué S. Phylogenetic inference of pneumococcal transmission from cross-sectional data, a pilot study. Wellcome Open Res 2023; 8:427. [PMID: 38638914 PMCID: PMC11024593 DOI: 10.12688/wellcomeopenres.19219.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 04/20/2024] Open
Abstract
Background: Inference on pneumococcal transmission has mostly relied on longitudinal studies which are costly and resource intensive. Therefore, we conducted a pilot study to test the ability to infer who infected whom from cross-sectional pneumococcal sequences using phylogenetic inference. Methods: Five suspected transmission pairs, for which there was epidemiological evidence of who infected whom, were selected from a household study. For each pair, Streptococcus pneumoniae full genomes were sequenced from nasopharyngeal swabs collected on the same day. The within-host genetic diversity of the pneumococcal population was used to infer the transmission direction and then cross-validated with the direction suggested by the epidemiological records. Results: The pneumococcal genomes clustered into the five households from which the samples were taken. The proportion of concordantly inferred transmission direction generally increased with increasing minimum genome fragment size and single nucleotide polymorphisms. We observed a larger proportion of unique polymorphic sites in the source bacterial population compared to that of the recipient in four of the five pairs, as expected in the case of a transmission bottleneck. The only pair that did not exhibit this effect was also the pair that had consistent discordant transmission direction compared to the epidemiological records suggesting potential misdirection as a result of false-negative sampling. Conclusions: This pilot provided support for further studies to test if the direction of pneumococcal transmission can be reliably inferred from cross-sectional samples if sequenced with sufficient depth and fragment length.
Collapse
Affiliation(s)
- Jada Hackman
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Carmen Sheppard
- Vaccine Preventable Bacteria Section, UK Health Security Agency, London, UK
| | - Jody Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - William Jones-Warner
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Ben Sobkowiak
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Sonal Shah
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - David Litt
- Vaccine Preventable Bacteria Section, UK Health Security Agency, London, UK
| | - Norman K. Fry
- Vaccine Preventable Bacteria Section, UK Health Security Agency, London, UK
- Immunisation & Countermeasures Division, UK Health Security Agency, London, UK
| | - Michiko Toizumi
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Paediatric Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Lay-Myint Yoshida
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Paediatric Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Martin Hibberd
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Elizabeth Miller
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Stefan Flasche
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Stéphane Hué
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
14
|
Abstract
A massive number of microorganisms, belonging to different species, continuously divide inside the guts of animals and humans. The large size of these communities and their rapid division times imply that we should be able to watch microbial evolution in the gut in real time, in a similar manner to what has been done in vitro. Here, we review recent findings on how natural selection shapes intrahost evolution (also known as within-host evolution), with a focus on the intestines of mice and humans. The microbiota of a healthy host is not as static as initially thought from the information measured at only one genomic marker. Rather, the genomes of each gut-colonizing species can be highly dynamic, and such dynamism seems to be related to the microbiota species diversity. Genetic and bioinformatic tools, and analysis of time series data, allow quantification of the selection strength on emerging mutations and horizontal transfer events in gut ecosystems. The drivers and functional consequences of gut evolution can now begin to be grasped. The rules of this intrahost microbiota evolution, and how they depend on the biology of each species, need to be understood for more effective development of microbiota therapies to help maintain or restore host health.
Collapse
Affiliation(s)
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| |
Collapse
|
15
|
Mokaya J, Mellor KC, Murray GGR, Kalizang'oma A, Lekhuleni C, Zar HJ, Nicol MP, McGee L, Bentley SD, Lo SW, Dube F. Evidence of virulence and antimicrobial resistance in Streptococcus pneumoniae serotype 16F lineages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554804. [PMID: 37693504 PMCID: PMC10491096 DOI: 10.1101/2023.08.25.554804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Introduction Due to the emergence of non-vaccine serotypes in vaccinated populations, Streptococcus pneumoniae remains a major global health challenge despite advances in vaccine development. Serotype 16F is among the predominant non-vaccine serotypes identified among vaccinated infants in South Africa (SA). Aim To characterise lineages and antimicrobial resistance in 16F isolates obtained from South Africa and placed the local findings in a global context. Methodology We analysed 10923 S. pneumoniae carriage isolates obtained from infants recruited as part of a broader SA birth cohort. We inferred serotype, resistance profile for penicillin, chloramphenicol, cotrimoxazole, erythromycin and tetracycline, and Global Pneumococcal Sequence Clusters (GPSCs) from genomic data. To ensure global representation, we also included S. pneumoniae carriage and disease isolates from the Global Pneumococcal Sequencing (GPS) project database (n=19,607, collected from 49 countries across five continents, years covered (1995 - 2018), accessed on 17 th March 2022). Results Nine percent (934/10923) of isolates obtained from infants in the Drakenstein community in SA and 2% (419/19607) of genomes in the GPS dataset were serotype 16F. Serotype 16F isolates were from 28 different lineages of S. pneumoniae, with GPSC33 and GPSC46 having the highest proportion of serotype 16F isolates at 26% (346/1353) and 53% (716/1353), respectively. Serotype 16F isolates were identified globally, however, most isolates were collected from Africa. GPSC33 was associated with carriage [OR (95% CI) 0.24 (0.09 - 0.66); p=0.003], while GPSC46 was associated with disease [OR (95% CI) 19.9 (2.56 - 906.50); p=0.0004]. 10% (37/346) and 15% (53/346) of isolates within GPSC33 had genes associated with resistance to penicillin and co-trimoxazole, respectively, and 18% (128/716) of isolates within GPSC46 had genes associated with resistance to co-trimoxazole. Resistant isolates formed genetic clusters which may suggest emerging resistant lineages. Discussion Serotype 16F lineages are common in Southern Africa. Some of these lineages are associated with disease, and resistance to penicillin and cotrimoxazole. We recommend continuous genomic surveillance to determine long term impact of serotype 16F lineages on vaccine efficacy and antimicrobial therapy globally. Investing in vaccine strategies that offer protection over a wide range of serotypes/lineages remains essential. DATA SUMMARY The sequencing reads for the genomes analysed have been deposited in the European Nucleotide Archive and the accession numbers for each isolate are listed in Supplementary Table1 . Phylogenetic tree of serotype 16F pneumococcal genomes and associated metadata are available for download and visualisation on the Microreact website: Phylogenies of seotype 16F, GPSC33 and GPSC46 are available on the Microreact serotype-16F , GPSC33 and GPSC46 , respectively. IMPACT STATEMENT This study shows that serotype 16F lineages are predominant in Southern Africa and are associated with disease and antimicrobial resistance. Although serotype 16F has been included in the newer formulation of the upcoming vaccine formulations of PCV21 and IVT-25, continuous surveillance to determine long term impact of serotype 16F lineages on vaccines and antimicrobial therapy remains essential.
Collapse
|
16
|
Raghuram V, Gunoskey JJ, Hofstetter KS, Jacko NF, Shumaker MJ, Hu YJ, Read TD, David MZ. Comparison of genomic diversity between single and pooled Staphylococcus aureus colonies isolated from human colonisation cultures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544959. [PMID: 37397999 PMCID: PMC10312683 DOI: 10.1101/2023.06.14.544959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The most common approach to sampling the bacterial populations within an infected or colonised host is to sequence genomes from a single colony obtained from a culture plate. However, it is recognized that this method does not capture the genetic diversity in the population. An alternative is to sequence a mixture containing multiple colonies ("pool-seq"), but this has the disadvantage that it is a non-homogeneous sample, making it difficult to perform specific experiments. We compared differences in measures of genetic diversity between eight single-colony isolates (singles) and pool-seq on a set of 2286 S. aureus culture samples. The samples were obtained by swabbing three body sites on 85 human participants quarterly for a year, who initially presented with a methicillin-resistant S. aureus skin and soft-tissue infection (SSTI). We compared parameters such as sequence quality, contamination, allele frequency, nucleotide diversity and pangenome diversity in each pool to the corresponding singles. Comparing singles from the same culture plate, we found that 18% of sample collections contained mixtures of multiple Multilocus sequence types (MLSTs or STs). We showed that pool-seq data alone could predict the presence of multi-ST populations with 95% accuracy. We also showed that pool-seq could be used to estimate the number of polymorphic sites in the population. Additionally, we found that the pool may contain clinically relevant genes such as antimicrobial resistance markers that may be missed when only examining singles. These results highlight the potential advantage of analysing genome sequences of total populations obtained from clinical cultures rather than single colonies.
Collapse
Affiliation(s)
- Vishnu Raghuram
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Jessica J. Gunoskey
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katrina S. Hofstetter
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Natasia F. Jacko
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Margot J. Shumaker
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi-Juan Hu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA
| | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Michael Z. David
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Bee GCW, Lokken-Toyli KL, Yeung ST, Rodriguez L, Zangari T, Anderson EE, Ghosh S, Rothlin CV, Brodin P, Khanna KM, Weiser JN. Age-dependent differences in efferocytosis determine the outcome of opsonophagocytic protection from invasive pathogens. Immunity 2023; 56:1255-1268.e5. [PMID: 37059107 PMCID: PMC10330046 DOI: 10.1016/j.immuni.2023.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/22/2022] [Accepted: 03/21/2023] [Indexed: 04/16/2023]
Abstract
In early life, susceptibility to invasive infection skews toward a small subset of microbes, whereas other pathogens associated with diseases later in life, including Streptococcus pneumoniae (Spn), are uncommon among neonates. To delineate mechanisms behind age-dependent susceptibility, we compared age-specific mouse models of invasive Spn infection. We show enhanced CD11b-dependent opsonophagocytosis by neonatal neutrophils improved protection against Spn during early life. The augmented function of neonatal neutrophils was mediated by higher CD11b surface expression at the population level due to dampened efferocytosis, which also resulted in more CD11bhi "aged" neutrophils in peripheral blood. Dampened efferocytosis during early life could be attributed to the lack of CD169+ macrophages in neonates and reduced systemic expressions of multiple efferocytic mediators, including MerTK. On experimentally impairing efferocytosis later in life, CD11bhi neutrophils increased and protection against Spn improved. Our findings reveal how age-dependent differences in efferocytosis determine infection outcome through the modulation of CD11b-driven opsonophagocytosis and immunity.
Collapse
Affiliation(s)
- Gavyn Chern Wei Bee
- Department of Microbiology, New York University Grossman School of Medicine, New York, USA.
| | - Kristen L Lokken-Toyli
- Department of Microbiology, New York University Grossman School of Medicine, New York, USA
| | - Stephen T Yeung
- Department of Microbiology, New York University Grossman School of Medicine, New York, USA
| | - Lucie Rodriguez
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Tonia Zangari
- Department of Microbiology, New York University Grossman School of Medicine, New York, USA
| | - Exene E Anderson
- Department of Microbiology, New York University Grossman School of Medicine, New York, USA
| | - Sourav Ghosh
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA; Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Carla V Rothlin
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Petter Brodin
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Immunology & Inflammation, Imperial College London, London, UK
| | - Kamal M Khanna
- Department of Microbiology, New York University Grossman School of Medicine, New York, USA; Laura & Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Jeffrey N Weiser
- Department of Microbiology, New York University Grossman School of Medicine, New York, USA.
| |
Collapse
|
18
|
Frequent Transmission of Streptococcus pneumoniae Serotype 35B and 35D, Clonal Complex 558 Lineage, across Continents and the Formation of Multiple Clades in Japan. Antimicrob Agents Chemother 2023; 67:e0108322. [PMID: 36651739 PMCID: PMC9933736 DOI: 10.1128/aac.01083-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Streptococcus pneumoniae is a common bacterial pathogen that causes infections in children worldwide, even after administration of the pneumococcal conjugate vaccine. S. pneumoniae serotype 35B, especially the clonal complex 558 (CC558) lineage, has emerged globally following implementation of the 13-valent pneumococcal conjugate vaccine. Serotype 35B strains are also associated with multidrug resistance to both β-lactams and non-β-lactam drugs. In addition, a novel serotype, 35D, which is closely related to 35B and differs in polysaccharide structure, was recently reported. However, the genetic relationship among globally disseminating serotype 35B and D (35B/D) strains remains unknown. To investigate the molecular epidemiology of global serotype 35B/D strains, we conducted a genomic analysis of serotype 35B/D strains from various continents, including those from the Japanese national surveillance collection. A total of 87 isolates were identified as serotype 35B/D in the Japanese surveillance collection (n = 1,358). All the isolates were assigned to either CC558 or CC2755. Serotype 35D isolates were interspersed with serotype 35B isolates. Phylogenetic analysis revealed the formation of multiple clusters by the Japanese serotype 35B/D-CC558 isolates among the foreign isolates, which suggested multiple events of introduction of the clone into Japan. The global 35B/D-CC558 strains were found to share specific penicillin-binding protein profiles, pbp1a-4, pbp2b-7, and pbp2x-7, associated with penicillin, cephalosporin, and carbapenem nonsusceptibility. Moreover, 88.5% of the Japanese 35B/D-CC558 and 35B/D-CC2755 isolates were found to harbor the Tn916-like integrative and conjugative elements Tn2009, Tn2010, and Tn6002, associated with multidrug resistance to macrolides and tetracyclines. The results of this study imply that serotype 35B/D-CC558 strains could be frequently transmitted intercontinentally.
Collapse
|
19
|
Aggarwal SD, Lees JA, Jacobs NT, Bee GCW, Abruzzo AR, Weiser JN. BlpC-mediated selfish program leads to rapid loss of Streptococcus pneumoniae clonal diversity during infection. Cell Host Microbe 2023; 31:124-134.e5. [PMID: 36395758 PMCID: PMC9839470 DOI: 10.1016/j.chom.2022.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/27/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022]
Abstract
Successful colonization of a host requires bacterial adaptation through genetic and population changes that are incompletely defined. Using chromosomal barcoding and high-throughput sequencing, we investigate the population dynamics of Streptococcus pneumoniae during infant mouse colonization. Within 1 day post inoculation, diversity was reduced >35-fold with expansion of a single clonal lineage. This loss of diversity was not due to immune factors, microbiota, or exclusive genetic drift. Rather, bacteriocins induced by the BlpC-quorum sensing pheromone resulted in predation of kin cells. In this intra-strain competition, the subpopulation reaching a quorum likely eliminates others that have yet to activate the blp locus. Additionally, this reduced diversity restricts the number of unique clones that establish colonization during transmission between hosts. Genetic variation in the blp locus was also associated with altered transmissibility in a human population, further underscoring the importance of BlpC in clonal selection and its role as a selfish element.
Collapse
Affiliation(s)
- Surya D Aggarwal
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| | - John A Lees
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA; European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton CB10 1SD, UK; MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London W12 7TA, UK
| | - Nathan T Jacobs
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Gavyn Chern Wei Bee
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Annie R Abruzzo
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jeffrey N Weiser
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
20
|
The Outer Surface Protease, SepM, Is Required for
blp
Locus Activation in Three of the Four Most Common Pherotypes of Streptococcus pneumoniae. J Bacteriol 2022; 204:e0019622. [PMID: 36286514 PMCID: PMC9664958 DOI: 10.1128/jb.00196-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae
is an important cause of disease in humans that occurs when the bacteria in the nasopharynx bypasses host defenses to invade deeper tissues. Colonization fitness thus represents an important initial step in pathogenesis.
S. pneumoniae
produces antimicrobial peptides called bacteriocins that provide a competitive advantage over neighboring bacteria in the nasopharynx.
Collapse
|
21
|
Genestet C, Refrégier G, Hodille E, Zein-Eddine R, Le Meur A, Hak F, Barbry A, Westeel E, Berland JL, Engelmann A, Verdier I, Lina G, Ader F, Dray S, Jacob L, Massol F, Venner S, Dumitrescu O. Mycobacterium tuberculosis genetic features associated with pulmonary tuberculosis severity. Int J Infect Dis 2022; 125:74-83. [PMID: 36273524 DOI: 10.1016/j.ijid.2022.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Mycobacterium tuberculosis (Mtb) infections result in a wide spectrum of clinical presentations but without proven Mtb genetic determinants. Herein, we hypothesized that the genetic features of Mtb clinical isolates, such as specific polymorphisms or microdiversity, may be linked to tuberculosis (TB) severity. METHODS A total of 234 patients with pulmonary TB (including 193 drug-susceptible and 14 monoresistant cases diagnosed between 2017 and 2020 and 27 multidrug-resistant cases diagnosed between 2010 and 2020) were stratified according to TB disease severity, and Mtb genetic features were explored using whole genome sequencing, including heterologous single-nucleotide polymorphism (SNP), calling to explore microdiversity. Finally, we performed a structural equation modeling analysis to relate TB severity to Mtb genetic features. RESULTS The clinical isolates from patients with mild TB carried mutations in genes associated with host-pathogen interaction, whereas those from patients with moderate/severe TB carried mutations associated with regulatory mechanisms. Genome-wide association study identified an SNP in the promoter of the gene coding for the virulence regulator espR, statistically associated with moderate/severe disease. Structural equation modeling and model comparisons indicated that TB severity was associated with the detection of Mtb microdiversity within clinical isolates and to the espR SNP. CONCLUSION Taken together, these results provide a new insight to better understand TB pathophysiology and could provide a new prognosis tool for pulmonary TB severity.
Collapse
Affiliation(s)
- Charlotte Genestet
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Rhône-Alpes, Lyon, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Rhône-Alpes, Lyon, France.
| | - Guislaine Refrégier
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Île-de-France, Orsay, France.; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Île-de-France, Gif-sur-Yvette, France
| | - Elisabeth Hodille
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Rhône-Alpes, Lyon, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Rhône-Alpes, Lyon, France
| | - Rima Zein-Eddine
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Île-de-France, Orsay, France.; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Île-de-France, Gif-sur-Yvette, France; Laboratory of Optics and Biosciences, CNRS-INSERM-Ecole Polytechnique, Île-de-France, Palaiseau, France
| | - Adrien Le Meur
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Île-de-France, Orsay, France.; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Île-de-France, Gif-sur-Yvette, France
| | - Fiona Hak
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Île-de-France, Orsay, France.; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Île-de-France, Gif-sur-Yvette, France
| | - Alexia Barbry
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Rhône-Alpes, Lyon, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Rhône-Alpes, Lyon, France
| | - Emilie Westeel
- Fondation Mérieux, Emerging Pathogens Laboratory, Rhône-Alpes, Lyon, France
| | - Jean-Luc Berland
- Fondation Mérieux, Emerging Pathogens Laboratory, Rhône-Alpes, Lyon, France
| | - Astrid Engelmann
- Centre Hospitalier Fleyriat, Rhône-Alpes, Bourg-en-Bresse, France
| | - Isabelle Verdier
- Centre Hospitalier Fleyriat, Rhône-Alpes, Bourg-en-Bresse, France
| | - Gérard Lina
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Rhône-Alpes, Lyon, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Rhône-Alpes, Lyon, France; Université Lyon 1, Facultés de Médecine et de Pharmacie de Lyon, Rhône-Alpes, Lyon, France
| | - Florence Ader
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Rhône-Alpes, Lyon, France; Hospices Civils de Lyon, Service des Maladies infectieuses et tropicales, Rhône-Alpes, Lyon, France
| | - Stéphane Dray
- Biometrics and Evolutionary Biology Laboratory, CNRS UMR 5558, Université Lyon 1, Rhône-Alpes, Villeurbanne, France
| | - Laurent Jacob
- Biometrics and Evolutionary Biology Laboratory, CNRS UMR 5558, Université Lyon 1, Rhône-Alpes, Villeurbanne, France
| | - François Massol
- UMR 8198 Evo-Eco-Paleo, SPICI Group, University of Lille, Hauts-de-France, Lille, France; CNRS, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, University of Lille, Hauts-de-France, Lille, France
| | - Samuel Venner
- Biometrics and Evolutionary Biology Laboratory, CNRS UMR 5558, Université Lyon 1, Rhône-Alpes, Villeurbanne, France
| | - Oana Dumitrescu
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Rhône-Alpes, Lyon, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Rhône-Alpes, Lyon, France; Université Lyon 1, Facultés de Médecine et de Pharmacie de Lyon, Rhône-Alpes, Lyon, France
| | | |
Collapse
|
22
|
Giulieri SG, Guérillot R, Duchene S, Hachani A, Daniel D, Seemann T, Davis JS, Tong SYC, Young BC, Wilson DJ, Stinear TP, Howden BP. Niche-specific genome degradation and convergent evolution shaping Staphylococcus aureus adaptation during severe infections. eLife 2022; 11:e77195. [PMID: 35699423 PMCID: PMC9270034 DOI: 10.7554/elife.77195] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
During severe infections, Staphylococcus aureus moves from its colonising sites to blood and tissues and is exposed to new selective pressures, thus, potentially driving adaptive evolution. Previous studies have shown the key role of the agr locus in S. aureus pathoadaptation; however, a more comprehensive characterisation of genetic signatures of bacterial adaptation may enable prediction of clinical outcomes and reveal new targets for treatment and prevention of these infections. Here, we measured adaptation using within-host evolution analysis of 2590 S. aureus genomes from 396 independent episodes of infection. By capturing a comprehensive repertoire of single nucleotide and structural genome variations, we found evidence of a distinctive evolutionary pattern within the infecting populations compared to colonising bacteria. These invasive strains had up to 20-fold enrichments for genome degradation signatures and displayed significantly convergent mutations in a distinctive set of genes, linked to antibiotic response and pathogenesis. In addition to agr-mediated adaptation, we identified non-canonical, genome-wide significant loci including sucA-sucB and stp1. The prevalence of adaptive changes increased with infection extent, emphasising the clinical significance of these signatures. These findings provide a high-resolution picture of the molecular changes when S. aureus transitions from colonisation to severe infection and may inform correlation of infection outcomes with adaptation signatures.
Collapse
Affiliation(s)
- Stefano G Giulieri
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
- Department of Infectious Diseases, Austin HealthHeidelbergAustralia
- Victorian Infectious Diseases Service, Royal Melbourne HospitalMelbourneAustralia
| | - Romain Guérillot
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| | - Sebastian Duchene
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| | - Abderrahman Hachani
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| | - Diane Daniel
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Torsten Seemann
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Joshua S Davis
- Department of Infectious Diseases, John Hunter HospitalNewcastle, New South WalesAustralia
- Menzies School of Health Research, Charles Darwin UniversityCasuarina, Northern TerritoryAustralia
| | - Steven YC Tong
- Menzies School of Health Research, Charles Darwin UniversityCasuarina, Northern TerritoryAustralia
- Victorian Infectious Disease Service, Royal Melbourne Hospital, and University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | | | - Daniel J Wilson
- Big Data Institute, Nuffield Department of Population Health, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, University of OxfordOxfordUnited Kingdom
| | - Timothy P Stinear
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| | - Benjamin P Howden
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
- Department of Infectious Diseases, Austin HealthHeidelbergAustralia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Doherty Institute for Infection and ImmunityMelbourneAustralia
| |
Collapse
|
23
|
Effect of childhood vaccination and antibiotic use on pneumococcal populations and genome-wide associations with disease among children in Nepal: an observational study. THE LANCET MICROBE 2022; 3:e503-e511. [PMID: 35779566 PMCID: PMC9242864 DOI: 10.1016/s2666-5247(22)00066-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/19/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022] Open
Abstract
Background Methods Findings Interpretation Funding
Collapse
|
24
|
Induction of Susceptibility to Disseminated Infection with IgA1 Protease-Producing Encapsulated Pathogens Streptococcus pneumoniae, Haemophilus influenzae Type b, and Neisseria meningitidis. mBio 2022; 13:e0055022. [PMID: 35420467 PMCID: PMC9239265 DOI: 10.1128/mbio.00550-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae are the principal causes of bacterial meningitis. It is unexplained why only occasional individuals develop invasive infection, while the vast majority remain healthy and develop immunity when encountering these pathogens. A capsular polysaccharide and an IgA1 protease are common to these pathogens. We tested the hypothesis that patients are primed to susceptibility to invasive infection by other bacteria that express the same capsular polysaccharide but no IgA1 protease. Thereby, the subsequently colonizing pathogen may protect its surface with IgA1 protease-generated Fab fragments of IgA1 devoid of Fc-mediated effector functions. Military recruits who remained healthy when acquiring meningococci showed a significant response of inhibitory antibodies against the IgA1 protease of the colonizing clone concurrent with serum antibodies against its capsular polysaccharide. At hospitalization, 70.8% of meningitis patients carried fecal bacteria cross-reactive with the capsule of the actual pathogen, in contrast to 6% of controls (P < 0.0001). These were Escherichia coli K100, K1, and K92 in patients with infection caused by H. influenzae type b and N. meningitidis groups B and C, respectively. This concurred with a significant IgA1 response to the capsule but not to the IgA1 protease of the pathogen. The demonstrated multitude of relationships between capsular types and distinct IgA1 proteases in pneumococci suggests an alternative route of immunological priming associated with recombining bacteria. The findings support the model and offer an explanation for the rare occurrence of invasive diseases in spite of the comprehensive occurrence of the pathogens.
Collapse
|
25
|
Nahm MH, Yu J, Calix JJ, Ganaie F. Ficolin-2 Lectin Complement Pathway Mediates Capsule-Specific Innate Immunity Against Invasive Pneumococcal Disease. Front Immunol 2022; 13:841062. [PMID: 35418983 PMCID: PMC8996173 DOI: 10.3389/fimmu.2022.841062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Reports conflict regarding which lectin-microbial ligand interactions elicit a protective response from the lectin pathway (LP) of complement. Using fluorescent microscopy, we demonstrate the human lectin ficolin-2 binds to Streptococcus pneumoniae serotype 11A capsule polysaccharide dependent on the O-acetyltransferase gene wcjE. This triggers complement deposition and promotes opsonophagocytosis of encapsulated pneumococci. Even partial loss of ficolin-2 ligand expression through wcjE mutation abrogated bacterial killing. Ficolin-2 did not interact with any pneumococcal non-capsule structures, including teichoic acid. We describe multiple 11A clonal derivatives expressing varying degrees of wcjE-dependent epitopes co-isolated from single blood specimens, likely representing microevolutionary shifts towards wcjE-deficient populations during invasive pneumococcal disease (IPD). We find epidemiological evidence of wcjE impairing pneumococcal invasiveness, supporting that the LP's ficolin-2 axis provides innate, serotype-specific serological protection against IPD. The fact that the LP is triggered by only a few discrete carbohydrate ligands emphasizes the need to reevaluate its impact in a glycopolymer-specific manner.
Collapse
Affiliation(s)
- Moon H. Nahm
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jigui Yu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Juan J. Calix
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Division of Infectious Diseases, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Feroze Ganaie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
26
|
Persistent serotype 3 and 19A invasive pneumococcal diseases in adults in vaccine era: Serotype-dependent difference in ceftriaxone susceptibility. Vaccine 2022; 40:2258-2265. [DOI: 10.1016/j.vaccine.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/10/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022]
|
27
|
Denamur E, Condamine B, Esposito-Farèse M, Royer G, Clermont O, Laouenan C, Lefort A, de Lastours V, Galardini M. Genome wide association study of Escherichia coli bloodstream infection isolates identifies genetic determinants for the portal of entry but not fatal outcome. PLoS Genet 2022; 18:e1010112. [PMID: 35324915 PMCID: PMC8946752 DOI: 10.1371/journal.pgen.1010112] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/21/2022] [Indexed: 11/19/2022] Open
Abstract
Escherichia coli is an important cause of bloodstream infections (BSI), which is of concern given its high mortality and increasing worldwide prevalence. Finding bacterial genetic variants that might contribute to patient death is of interest to better understand infection progression and implement diagnostic methods that specifically look for those factors. E. coli samples isolated from patients with BSI are an ideal dataset to systematically search for those variants, as long as the influence of host factors such as comorbidities are taken into account. Here we performed a genome-wide association study (GWAS) using data from 912 patients with E. coli BSI from hospitals in Paris, France. We looked for associations between bacterial genetic variants and three patient outcomes (death at 28 days, septic shock and admission to intensive care unit), as well as two portals of entry (urinary and digestive tract), using various clinical variables from each patient to account for host factors. We did not find any association between genetic variants and patient outcomes, potentially confirming the strong influence of host factors in influencing the course of BSI; we however found a strong association between the papGII operon and entrance of E. coli through the urinary tract, which demonstrates the power of bacterial GWAS when applied to actual clinical data. Despite the lack of associations between E. coli genetic variants and patient outcomes, we estimate that increasing the sample size by one order of magnitude could lead to the discovery of some putative causal variants. Given the wide adoption of bacterial genome sequencing of clinical isolates, such sample sizes may be soon available.
Collapse
Affiliation(s)
- Erick Denamur
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France
- Laboratoire de Génétique Moléculaire, Hôpital Bichat, AP-HP, Paris, France
| | | | - Marina Esposito-Farèse
- Département d’épidémiologie, biostatistiques et recherche clinique, Hôpital Bichat, AP-HP, Paris, France
| | - Guilhem Royer
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France
- LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, Evry, France
- Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, Créteil, France
| | | | - Cédric Laouenan
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France
- Département d’épidémiologie, biostatistiques et recherche clinique, Hôpital Bichat, AP-HP, Paris, France
| | - Agnès Lefort
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France
- Service de Médecine Interne, Hôpital Beaujon, AP-HP, Clichy, France
| | - Victoire de Lastours
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France
- Service de Médecine Interne, Hôpital Beaujon, AP-HP, Clichy, France
| | - Marco Galardini
- Institute for Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| | | | | |
Collapse
|
28
|
The Role of luxS in the Middle Ear Streptococcus pneumoniae Isolate 947. Pathogens 2022; 11:pathogens11020216. [PMID: 35215159 PMCID: PMC8877971 DOI: 10.3390/pathogens11020216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
The LuxS protein, encoded by luxS, is required for the production of autoinducer 2 (AI-2) in Streptococcus pneumoniae. The AI-2 molecule serves as a quorum sensing signal, and thus regulates cellular processes such as carbohydrate utilisation and biofilm formation, as well as impacting virulence. The role of luxS in S. pneumoniae biology and lifestyle has been predominantly assessed in the laboratory strain D39. However, as biofilm formation, which is regulated by luxS, is critical for the ability of S. pneumoniae to cause otitis media, we investigated the role of luxS in a middle ear isolate, strain 947. Our results identified luxS to have a role in prevention of S. pneumoniae transition from colonisation of the nasopharynx to the ear, and in facilitating adherence to host epithelial cells.
Collapse
|
29
|
Tonkin-Hill G, Ling C, Chaguza C, Salter SJ, Hinfonthong P, Nikolaou E, Tate N, Pastusiak A, Turner C, Chewapreecha C, Frost SDW, Corander J, Croucher NJ, Turner P, Bentley SD. Pneumococcal within-host diversity during colonization, transmission and treatment. Nat Microbiol 2022; 7:1791-1804. [PMID: 36216891 PMCID: PMC9613479 DOI: 10.1038/s41564-022-01238-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022]
Abstract
Characterizing the genetic diversity of pathogens within the host promises to greatly improve surveillance and reconstruction of transmission chains. For bacteria, it also informs our understanding of inter-strain competition and how this shapes the distribution of resistant and sensitive bacteria. Here we study the genetic diversity of Streptococcus pneumoniae within 468 infants and 145 of their mothers by deep sequencing whole pneumococcal populations from 3,761 longitudinal nasopharyngeal samples. We demonstrate that deep sequencing has unsurpassed sensitivity for detecting multiple colonization, doubling the rate at which highly invasive serotype 1 bacteria were detected in carriage compared with gold-standard methods. The greater resolution identified an elevated rate of transmission from mothers to their children in the first year of the child's life. Comprehensive treatment data demonstrated that infants were at an elevated risk of both the acquisition and persistent colonization of a multidrug-resistant bacterium following antimicrobial treatment. Some alleles were enriched after antimicrobial treatment, suggesting that they aided persistence, but generally purifying selection dominated within-host evolution. Rates of co-colonization imply that in the absence of treatment, susceptible lineages outcompeted resistant lineages within the host. These results demonstrate the many benefits of deep sequencing for the genomic surveillance of bacterial pathogens.
Collapse
Affiliation(s)
- Gerry Tonkin-Hill
- grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK ,grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Blindern, Norway
| | - Clare Ling
- grid.10223.320000 0004 1937 0490Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand ,grid.4991.50000 0004 1936 8948Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chrispin Chaguza
- grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK ,grid.47100.320000000419368710Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT USA
| | - Susannah J. Salter
- grid.5335.00000000121885934Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Pattaraporn Hinfonthong
- grid.10223.320000 0004 1937 0490Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Elissavet Nikolaou
- grid.48004.380000 0004 1936 9764Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK ,grid.1058.c0000 0000 9442 535XInfection and Immunity, Murdoch Children’s Research Institute, Melbourne, Victoria Australia ,grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria Australia
| | - Natalie Tate
- grid.48004.380000 0004 1936 9764Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Claudia Turner
- grid.4991.50000 0004 1936 8948Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK ,grid.459332.a0000 0004 0418 5364Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Claire Chewapreecha
- grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK ,grid.10223.320000 0004 1937 0490Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Simon D. W. Frost
- grid.419815.00000 0001 2181 3404Microsoft Research, Redmond, WA USA ,grid.8991.90000 0004 0425 469XLondon School of Hygiene and Tropical Medicine, London, UK
| | - Jukka Corander
- grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK ,grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Blindern, Norway ,grid.7737.40000 0004 0410 2071Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Nicholas J. Croucher
- grid.7445.20000 0001 2113 8111MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Paul Turner
- grid.4991.50000 0004 1936 8948Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK ,grid.459332.a0000 0004 0418 5364Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Stephen D. Bentley
- grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| |
Collapse
|
30
|
Green AE, Howarth D, Chaguza C, Echlin H, Langendonk RF, Munro C, Barton TE, Hinton JCD, Bentley SD, Rosch JW, Neill DR. Pneumococcal Colonization and Virulence Factors Identified Via Experimental Evolution in Infection Models. Mol Biol Evol 2021; 38:2209-2226. [PMID: 33502519 PMCID: PMC8136498 DOI: 10.1093/molbev/msab018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Streptococcus pneumoniae is a commensal of the human nasopharynx and a major cause of respiratory and invasive disease. We examined adaptation and evolution of pneumococcus, within nasopharynx and lungs, in an experimental system where the selective pressures associated with transmission were removed. This was achieved by serial passage of pneumococci, separately, in mouse models of nasopharyngeal carriage or pneumonia. Passaged pneumococci became more effective colonizers of the respiratory tract and we observed several examples of potential parallel evolution. The cell wall-modifying glycosyltransferase LafA was under strong selection during lung passage, whereas the surface expressed pneumococcal vaccine antigen gene pvaA and the glycerol-3-phosphate dehydrogenase gene gpsA were frequent targets of mutation in nasopharynx-passaged pneumococci. These mutations were not identified in pneumococci that were separately evolved by serial passage on laboratory agar. We focused on gpsA, in which the same single nucleotide polymorphism arose in two independently evolved nasopharynx-passaged lineages. We describe a new role for this gene in nasopharyngeal carriage and show that the identified single nucleotide change confers resistance to oxidative stress and enhanced nasopharyngeal colonization potential. We demonstrate that polymorphisms in gpsA arise and are retained during human colonization. These findings highlight how within-host environmental conditions can determine trajectories of bacterial evolution. Relative invasiveness or attack rate of pneumococcal lineages may be defined by genes that make niche-specific contributions to bacterial fitness. Experimental evolution in animal infection models is a powerful tool to investigate the relative roles played by pathogen virulence and colonization factors within different host niches.
Collapse
Affiliation(s)
- Angharad E Green
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Deborah Howarth
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Chrispin Chaguza
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Haley Echlin
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - R Frèdi Langendonk
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Connor Munro
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Thomas E Barton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jay C D Hinton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Stephen D Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Jason W Rosch
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel R Neill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
31
|
Al-Lahham A, Khanfar N, Albataina N, Al Shwayat R, Altwal R, Abulfeilat T, Alawneh G, Khurd M, Alqadi Altamimi A. Urban and Rural Disparities in Pneumococcal Carriage and Resistance in Jordanian Children, 2015-2019. Vaccines (Basel) 2021; 9:vaccines9070789. [PMID: 34358205 PMCID: PMC8309963 DOI: 10.3390/vaccines9070789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND A pneumococcal carriage surveillance study took place examining Jordanian children in urban and rural areas in the period 2015-2019. OBJECTIVES To determine urban and rural differences in pneumococcal carriage rate, resistance, and serotypes among healthy Jordanian children from Amman (urban) and eastern Madaba (rural). METHODS Nasopharyngeal swabs (NP) were taken from 682 children aged 1 to 163 months. Pneumococcal identification, serotyping, and resistance were performed according to standard method. RESULTS The number of cases tested for Amman was 267 and there were 415 cases tested for eastern Madaba. Carriage rate for eastern Madaba was 39.5% and 31.1% for Amman. Predominant serotypes for eastern Madaba and Amman were 19F (21.3%; 15.7%), 23F (12.2%; 9.6%), 14 (6.7%; 2.4%), 19A (4.9%; 2.4%), and 6A (5.5%; 3.6%). Resistance rates for eastern Madaba and Amman were as follows: penicillin (95.8%; 81.9%), clarithromycin (68.9%; 59.0%), clindamycin (40.8%; 31.3%), and trimethoprim-sulfamethoxazole (73.2%; 61.4%). Coverage of PCV7, PCV13, and the future PCV20 for Amman was 42.2%, 48.2%, and 60.2%; for eastern Madaba, coverage was 50.0%, 62.2%, and 73.2%, respectively. In Amman 25.8% of children received 1-3 PCV7 injections compared to 1.9% of children in eastern Madaba. CONCLUSIONS There were significant differences in carriage, resistance, and coverage between both regions. The potential inclusion of a PCV vaccination program for rural areas is essential.
Collapse
Affiliation(s)
- Adnan Al-Lahham
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman 11180, Jordan; (N.A.); (R.A.S.); (R.A.); (T.A.); (G.A.); (M.K.); (A.A.A.)
- Correspondence: ; Tel.: +962-799706079
| | - Nashat Khanfar
- Pediatric Clinic, Khalda, Salim Khouri Str. 48, Amman 11953, Jordan;
| | - Noor Albataina
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman 11180, Jordan; (N.A.); (R.A.S.); (R.A.); (T.A.); (G.A.); (M.K.); (A.A.A.)
| | - Rana Al Shwayat
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman 11180, Jordan; (N.A.); (R.A.S.); (R.A.); (T.A.); (G.A.); (M.K.); (A.A.A.)
| | - Rawsan Altwal
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman 11180, Jordan; (N.A.); (R.A.S.); (R.A.); (T.A.); (G.A.); (M.K.); (A.A.A.)
| | - Talal Abulfeilat
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman 11180, Jordan; (N.A.); (R.A.S.); (R.A.); (T.A.); (G.A.); (M.K.); (A.A.A.)
| | - Ghaith Alawneh
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman 11180, Jordan; (N.A.); (R.A.S.); (R.A.); (T.A.); (G.A.); (M.K.); (A.A.A.)
| | - Mohammad Khurd
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman 11180, Jordan; (N.A.); (R.A.S.); (R.A.); (T.A.); (G.A.); (M.K.); (A.A.A.)
| | - Abdelsalam Alqadi Altamimi
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman 11180, Jordan; (N.A.); (R.A.S.); (R.A.); (T.A.); (G.A.); (M.K.); (A.A.A.)
| |
Collapse
|
32
|
Proteomic analysis of serial isolates of Trichosporon asahii identifies host-specific adaptations using the TMT/MRM approach. J Proteomics 2021; 245:104309. [PMID: 34153541 DOI: 10.1016/j.jprot.2021.104309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022]
Abstract
The opportunistic fungal pathogen Trichosporon asahii (T. asahii) is an important causal agent of mortality in immunocompromised patients and associated with frequent relapses, even with sufficient antifungal treatment. Investigating the proteomes of initial and recurrent isolates may help to identify within-host adaptive changes. In this study, using tandem mass tag (TMT)-labeling combined with liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) technology, we analyzed the proteomes of two T. asahii strains that were isolated 15 years apart from the same patient who suffered initial and recurrent episodes of systemic disseminated trichosporonosis. A total of 597 differentially expressed proteins were identified. Functional analysis showed that the increased proteins were primarily concentrated on peptide/protein/energy/drug metabolism and translation. Most of the results were determined to be consistent with the findings of phenotypic assays, such as tests for drug susceptibility, temperature growth, biofilm formation, melanization and paromomycin assays. Moreover, we performed multiple reaction monitoring (MRM) mass spectrometry to verify 27 candidate proteins, and the results of this experiment were also highly consistent with the results of the TMT analysis. Therefore, to the best of our knowledge, these data provide the first molecular evidence of how the T. asahii proteome changes related to host-specific adaptation during human infection. SIGNIFICANCE: Systemic infection with Trichosporon asahii (T. asahii) has recently been recognized as an important causal agent of mortality in immunocompromised patients. Although triazole treatment usually works efficiently in the early phase of infection, many patients relapse. Hence, comparative analyses of the proteomics of initial and recurrent isolates may reveal evidence of adaptive changes within the host. Our study demonstrates that the recurrent strain has undergone proteomic changes using tandem mass tag (TMT)-labeling combined with liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Moreover, the results of phenotypic assays, including drug susceptibility, temperature growth, biofilm formation, melanization and paromomycin assays, were highly consistent with the proteomic changes, and multiple reaction monitoring (MRM) verification also showed similar trends to the TMT results. In summary, our study is the first to investigate the adaptation of T. asahii under pressure from antifungal chemotherapy and host immune responses.
Collapse
|
33
|
Connolly JPR, Roe AJ, O'Boyle N. Prokaryotic life finds a way: insights from evolutionary experimentation in bacteria. Crit Rev Microbiol 2020; 47:126-140. [PMID: 33332206 DOI: 10.1080/1040841x.2020.1854172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
While evolution proceeds through the generation of random variant alleles, the application of selective pressures can select for subsets of mutations that confer fitness-improving physiological benefits. This, in essence, defines the process of adaptive evolution. The rapid replication rate of bacteria has allowed for the design of experiments to study these processes over a reasonable timeframe within a laboratory setting. This has been greatly assisted by advances in tractability of diverse microorganisms, next generation sequencing technologies and bioinformatic analysis pipelines. Examining the processes by which organisms adapt their genetic code to cope with sub-optimal growth conditions has yielded a wealth of molecular insight into diverse biological processes. Here we discuss how the study of adaptive evolutionary trajectories in bacteria has allowed for improved understanding of stress responses, revealed important insight into microbial physiology, allowed for the production of highly optimised strains for use in biotechnology and increased our knowledge of the role of genomic plasticity in chronic infections.
Collapse
Affiliation(s)
- James P R Connolly
- Newcastle University Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Andrew J Roe
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Nicky O'Boyle
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
34
|
Abstract
Gram-positive bacteria employ an array of secreted peptides to control population-level behaviors in response to environmental cues. We review mechanistic and functional features of secreted peptides produced by the human pathogen Streptococcus pneumoniae. We discuss sequence features, mechanisms of transport, and receptors for 3 major categories of small peptides: the double-glycine peptides, the Rap, Rgg, NprR, PlcR, and PrgX (RRNPP)-binding peptides, and the lanthionine-containing peptides. We highlight the impact of factors that contribute to carriage and pathogenesis, specifically genetic diversity, microbial competition, biofilm development, and environmental adaptation. A recent expansion in pneumococcal peptide studies reveals a complex network of interacting signaling systems where multiple peptides are integrated into the same signaling pathway, allowing multiple points of entry into the pathway and extending information content in new directions. In addition, since peptides are present in the extracellular milieu, there are opportunities for crosstalk, quorum sensing (QS), as well as intra- and interstrain and species interactions. Knowledge on the manner that population-level behaviors contribute to disease provides an avenue for the design and development of anti-infective strategies.
Collapse
|
35
|
Chaguza C, Senghore M, Bojang E, Lo SW, Ebruke C, Gladstone RA, Tientcheu PE, Bancroft RE, Worwui A, Foster-Nyarko E, Ceesay F, Okoi C, McGee L, Klugman KP, Breiman RF, Barer MR, Adegbola RA, Antonio M, Bentley SD, Kwambana-Adams BA. Carriage Dynamics of Pneumococcal Serotypes in Naturally Colonized Infants in a Rural African Setting During the First Year of Life. Front Pediatr 2020; 8:587730. [PMID: 33489998 PMCID: PMC7820366 DOI: 10.3389/fped.2020.587730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) carriage precedes invasive disease and influences population-wide strain dynamics, but limited data exist on temporal carriage patterns of serotypes due to the prohibitive costs of longitudinal studies. Here, we report carriage prevalence, clearance and acquisition rates of pneumococcal serotypes sampled from newborn infants bi-weekly from weeks 1 to 27, and then bi-monthly from weeks 35 to 52 in the Gambia. We used sweep latex agglutination and whole genome sequencing to serotype the isolates. We show rapid pneumococcal acquisition with nearly 31% of the infants colonized by the end of first week after birth and quickly exceeding 95% after 2 months. Co-colonization with multiple serotypes was consistently observed in over 40% of the infants at each sampling point during the first year of life. Overall, the mean acquisition time and carriage duration regardless of serotype was 38 and 24 days, respectively, but varied considerably between serotypes comparable to observations from other regions. Our data will inform disease prevention and control measures including providing baseline data for parameterising infectious disease mathematical models including those assessing the impact of clinical interventions such as pneumococcal conjugate vaccines.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Parasites and Microbes Programme, Wellcome Sanger Institute, Cambridge, United Kingdom.,Darwin College, University of Cambridge, Cambridge, United Kingdom
| | - Madikay Senghore
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Ebrima Bojang
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Stephanie W Lo
- Parasites and Microbes Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Chinelo Ebruke
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Rebecca A Gladstone
- Parasites and Microbes Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Peggy-Estelle Tientcheu
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Rowan E Bancroft
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Archibald Worwui
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Ebenezer Foster-Nyarko
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Fatima Ceesay
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Catherine Okoi
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Keith P Klugman
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Robert F Breiman
- Emory Global Health Institute, Emory University, Atlanta, GA, United States
| | - Michael R Barer
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Richard A Adegbola
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia.,RAMBICON Immunisation & Global Health Consulting, Lekki, Nigeria
| | - Martin Antonio
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia.,Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Stephen D Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Cambridge, United Kingdom.,Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Brenda A Kwambana-Adams
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia.,NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|