1
|
Callan K, Prince CR, Feaga HA. The ribosome-associated quality control pathway supports survival in the absence of non-stop ribosome rescue factors. mBio 2024; 15:e0232224. [PMID: 39535229 PMCID: PMC11633108 DOI: 10.1128/mbio.02322-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
In bacteria, if a ribosome translates an mRNA lacking a stop codon it becomes stalled at the 3' end of the message. These ribosomes must be rescued by trans-translation or the alternative rescue factors (ArfA or ArfB). However, mounting evidence suggests that the ribosome quality control (RQC) pathway may also rescue non-stop ribosomes. Here, we surveyed the conservation of ribosome rescue pathways in >15,000 bacterial genomes. We found that trans-translation is conserved in >97% of bacterial genomes, while the other rescue pathways are restricted to particular phyla. We did not detect the gene encoding RqcH, the major mediator of RQC, in Proteobacteria (Pseudomonadota). In all Proteobacteria investigated to date, trans-translation is essential in the absence of the Arf proteins. Therefore, we tested whether expression of RQC components from Bacillus subtilis could rescue viability in the absence of trans-translation and ArfA in Escherichia coli. We found that the RQC pathway indeed functions in E. coli and rescues the well-documented synthetic lethal phenotype of ∆ssrA∆arfA. Moreover, we show that the RQC pathway in B. subtilis is essential in the absence of trans-translation and ArfA, further supporting a role for the RQC pathway in the rescue of non-stop ribosomes. Finally, we report a strong co-occurrence between RqcH and the ribosome splitting factor MutS2, but present experimental evidence that there are likely additional ribosome splitting factors beyond MutS2 in B. subtilis. Altogether, our work supports a role for RQC in non-stop ribosome rescue and provides a broad survey of ribosome rescue pathways in diverse bacteria. IMPORTANCE In bacteria, it is estimated that 2%-4% of all translation reactions terminate with the ribosome stalled on a damaged mRNA lacking a stop codon. Mechanisms that rescue these ribosomes are essential for viability. We determined the functional overlap between the ribosome quality control pathway and the classical non-stop rescue systems [alternative rescue factor (ArfA) and trans-translation] in a representative Firmicute and Proteobacterium, phyla that are evolutionarily distinct. Furthermore, we used a bioinformatics approach to examine the conservation and overlap of various ribosome rescue systems in >15,000 species throughout the bacterial domain. These results provide key insights into ribosome rescue in diverse phyla.
Collapse
Affiliation(s)
- Katrina Callan
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Cassidy R. Prince
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Heather A. Feaga
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Huang W, Baliga C, Aleksandrova EV, Atkinson G, Polikanov YS, Vázquez-Laslop N, Mankin AS. Activity, structure, and diversity of Type II proline-rich antimicrobial peptides from insects. EMBO Rep 2024; 25:5194-5211. [PMID: 39415050 PMCID: PMC11549390 DOI: 10.1038/s44319-024-00277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024] Open
Abstract
Apidaecin 1b (Api), the first characterized Type II Proline-rich antimicrobial peptide (PrAMP), is encoded in the honey bee genome. It inhibits bacterial growth by binding in the nascent peptide exit tunnel of the ribosome after the release of the completed protein and trapping the release factors. By genome mining, we have identified 71 PrAMPs encoded in insect genomes as pre-pro-polyproteins. Having chemically synthesized and tested the activity of 26 peptides, we demonstrate that despite significant sequence variation in the N-terminal sequence, the majority of the PrAMPs that retain the conserved C-terminal sequence of Api are able to trap the ribosome at the stop codons and induce stop codon readthrough-all hallmarks of Type II PrAMP mode of action. Some of the characterized PrAMPs exhibit superior antibacterial activity in comparison with Api. The newly solved crystallographic structures of the ribosome complexed with Api and with the more active peptide Fva1 from the stingless bee demonstrate the universal placement of the PrAMPs' C-terminal pharmacophore in the post-release ribosome despite variations in their N-terminal sequence.
Collapse
Affiliation(s)
- Weiping Huang
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Chetana Baliga
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, New BEL Road, MSR Nagar, Bangalore, Karnataka, 560054, India
| | - Elena V Aleksandrova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Gemma Atkinson
- Department of Experimental Medical Science, Lund University, 221 00, Lund, Sweden
- Virus Centre, Lund University, Lund, Sweden
| | - Yury S Polikanov
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Nora Vázquez-Laslop
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Alexander S Mankin
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
3
|
Zhu D, Cao W, Li J, Wu C, Cao D, Zhang X. Correction of preferred orientation-induced distortion in cryo-electron microscopy maps. SCIENCE ADVANCES 2024; 10:eadn0092. [PMID: 39058771 DOI: 10.1126/sciadv.adn0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/06/2024] [Indexed: 07/28/2024]
Abstract
Reconstruction maps of cryo-electron microscopy (cryo-EM) exhibit distortion when the cryo-EM dataset is incomplete, usually caused by unevenly distributed orientations. Prior efforts had been attempted to address this preferred orientation problem using tilt-collection strategy and modifications to grids or to air-water interfaces. However, these approaches often require time-consuming experiments, and the effect was always protein dependent. Here, we developed a procedure containing removing misaligned particles and an iterative reconstruction method based on signal-to-noise ratio of Fourier component to correct this distortion by recovering missing data using a purely computational algorithm. This procedure called signal-to-noise ratio iterative reconstruction method (SIRM) was applied on incomplete datasets of various proteins to fix distortion in cryo-EM maps and to a more isotropic resolution. In addition, SIRM provides a better reference map for further reconstruction refinements, resulting in an improved alignment, which ultimately improves map quality and benefits model building.
Collapse
Affiliation(s)
- Dongjie Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Weili Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Junxi Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Chunling Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Duanfang Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
4
|
Callan K, Prince CR, Feaga HA. RqcH supports survival in the absence of non-stop ribosome rescue factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603306. [PMID: 39026760 PMCID: PMC11257542 DOI: 10.1101/2024.07.12.603306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Ribosomes frequently translate truncated or damaged mRNAs due to the extremely short half-life of mRNAs in bacteria. When ribosomes translate mRNA that lacks a stop codon (non-stop mRNA), specialized pathways are required to rescue the ribosome from the 3' end of the mRNA. The most highly conserved non-stop rescue pathway is trans-translation, which is found in greater than 95% of bacterial genomes. In all Proteobacteria that have been studied, the alternative non-stop ribosome rescue factors, ArfA and ArfB, are essential in the absence of trans-translation. Here, we investigate the interaction between non-stop rescue pathways and RqcH, a ribosome quality control factor that is broadly conserved outside of Proteobacteria. RqcH does not act directly on non-stop ribosomes but adds a degron tag to stalled peptides that obstruct the large ribosomal subunit, which allows the stalled peptide to be cleared from the ribosome by peptidyl-tRNA hydrolase (PTH). We show that Bacillus subtilis can survive without trans-translation and BrfA (Bacillus ArfA homolog), due to the presence of RqcH. We also show that expression of RqcH and its helper protein RqcP rescues the synthetic lethality of ΔssrAΔarfA in Escherichia coli. These results suggest that non-stop ribosome complexes can be disassembled and then cleared because of the tagging activity of RqcH, and that this process is essential in the absence of non-stop ribosome rescue pathways. Moreover, we surveyed the conservation of ribosome rescue pathways in >14,000 bacterial genomes. Our analysis reveals a broad distribution of non-stop rescue pathways, especially trans-translation and RqcH, and a strong co-occurrence between the ribosome splitting factor MutS2 and RqcH. Altogether, our results support a role for RqcH in non-stop ribosome rescue and provide a broad survey of ribosome rescue pathways in diverse bacterial species.
Collapse
Affiliation(s)
- Katrina Callan
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | | | - Heather A. Feaga
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
5
|
Koludarova L, Battersby BJ. Mitochondrial protein synthesis quality control. Hum Mol Genet 2024; 33:R53-R60. [PMID: 38280230 PMCID: PMC11112378 DOI: 10.1093/hmg/ddae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/05/2023] [Indexed: 01/29/2024] Open
Abstract
Human mitochondrial DNA is one of the most simplified cellular genomes and facilitates compartmentalized gene expression. Within the organelle, there is no physical barrier to separate transcription and translation, nor is there evidence that quality control surveillance pathways are active to prevent translation on faulty mRNA transcripts. Mitochondrial ribosomes synthesize 13 hydrophobic proteins that require co-translational insertion into the inner membrane of the organelle. To maintain the integrity of the inner membrane, which is essential for organelle function, requires responsive quality control mechanisms to recognize aberrations in protein synthesis. In this review, we explore how defects in mitochondrial protein synthesis can arise due to the culmination of inherent mistakes that occur throughout the steps of gene expression. In turn, we examine the stepwise series of quality control processes that are needed to eliminate any mistakes that would perturb organelle homeostasis. We aim to provide an integrated view on the quality control mechanisms of mitochondrial protein synthesis and to identify promising avenues for future research.
Collapse
Affiliation(s)
- Lidiia Koludarova
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00014, Finland
| | - Brendan J Battersby
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
6
|
Seely SM, Basu RS, Gagnon MG. Mechanistic insights into the alternative ribosome recycling by HflXr. Nucleic Acids Res 2024; 52:4053-4066. [PMID: 38407413 DOI: 10.1093/nar/gkae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024] Open
Abstract
During stress conditions such as heat shock and antibiotic exposure, ribosomes stall on messenger RNAs, leading to inhibition of protein synthesis. To remobilize ribosomes, bacteria use rescue factors such as HflXr, a homolog of the conserved housekeeping GTPase HflX that catalyzes the dissociation of translationally inactive ribosomes into individual subunits. Here we use time-resolved cryo-electron microscopy to elucidate the mechanism of ribosome recycling by Listeria monocytogenes HflXr. Within the 70S ribosome, HflXr displaces helix H69 of the 50S subunit and induces long-range movements of the platform domain of the 30S subunit, disrupting inter-subunit bridges B2b, B2c, B4, B7a and B7b. Our findings unveil a unique ribosome recycling strategy by HflXr which is distinct from that mediated by RRF and EF-G. The resemblance between HflXr and housekeeping HflX suggests that the alternative ribosome recycling mechanism reported here is universal in the prokaryotic kingdom.
Collapse
Affiliation(s)
- Savannah M Seely
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ritwika S Basu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Matthieu G Gagnon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
7
|
Vazulka S, Schiavinato M, Tauer C, Wagenknecht M, Cserjan-Puschmann M, Striedner G. RNA-seq reveals multifaceted gene expression response to Fab production in Escherichia coli fed-batch processes with particular focus on ribosome stalling. Microb Cell Fact 2024; 23:14. [PMID: 38183013 PMCID: PMC10768439 DOI: 10.1186/s12934-023-02278-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Escherichia coli is a cost-effective expression system for production of antibody fragments like Fabs. Various yield improvement strategies have been applied, however, Fabs remain challenging to produce. This study aimed to characterize the gene expression response of commonly used E. coli strains BL21(DE3) and HMS174(DE3) to periplasmic Fab expression using RNA sequencing (RNA-seq). Two Fabs, Fabx and FTN2, fused to a post-translational translocation signal sequence, were produced in carbon-limited fed-batch cultivations. RESULTS Production of Fabx impeded cell growth substantially stronger than FTN2 and yields of both Fabs differed considerably. The most noticeable, common changes in Fab-producing cells suggested by our RNA-seq data concern the cell envelope. The Cpx and Psp stress responses, both connected to inner membrane integrity, were activated, presumably by recombinant protein aggregation and impairment of the Sec translocon. The data additionally suggest changes in lipopolysaccharide synthesis, adjustment of membrane permeability, and peptidoglycan maturation and remodeling. Moreover, all Fab-producing strains showed depletion of Mg2+, indicated by activation of the PhoQP two-component signal transduction system during the early stage and sulfur and phosphate starvation during the later stage of the process. Furthermore, our data revealed ribosome stalling, caused by the Fabx amino acid sequence, as a contributor to low Fabx yields. Increased Fabx yields were obtained by a site-specific amino acid exchange replacing the stalling sequence. Contrary to expectations, cell growth was not impacted by presence or removal of the stalling sequence. Considering ribosome rescue is a conserved mechanism, the substantial differences observed in gene expression between BL21(DE3) and HMS174(DE3) in response to ribosome stalling on the recombinant mRNA were surprising. CONCLUSIONS Through characterization of the gene expression response to Fab production under industrially relevant cultivation conditions, we identified potential cell engineering targets. Thereby, we hope to enable rational approaches to improve cell fitness and Fab yields. Furthermore, we highlight ribosome stalling caused by the amino acid sequence of the recombinant protein as a possible challenge during recombinant protein production.
Collapse
Affiliation(s)
- Sophie Vazulka
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Matteo Schiavinato
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Christopher Tauer
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Martin Wagenknecht
- Boehringer Ingelheim RCV, GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, A-1120, Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
8
|
Koller TO, Morici M, Berger M, Safdari HA, Lele DS, Beckert B, Kaur KJ, Wilson DN. Structural basis for translation inhibition by the glycosylated drosocin peptide. Nat Chem Biol 2023; 19:1072-1081. [PMID: 36997646 PMCID: PMC10449632 DOI: 10.1038/s41589-023-01293-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/14/2023] [Indexed: 04/07/2023]
Abstract
The proline-rich antimicrobial peptide (PrAMP) drosocin is produced by Drosophila species to combat bacterial infection. Unlike many PrAMPs, drosocin is O-glycosylated at threonine 11, a post-translation modification that enhances its antimicrobial activity. Here we demonstrate that the O-glycosylation not only influences cellular uptake of the peptide but also interacts with its intracellular target, the ribosome. Cryogenic electron microscopy structures of glycosylated drosocin on the ribosome at 2.0-2.8-Å resolution reveal that the peptide interferes with translation termination by binding within the polypeptide exit tunnel and trapping RF1 on the ribosome, reminiscent of that reported for the PrAMP apidaecin. The glycosylation of drosocin enables multiple interactions with U2609 of the 23S rRNA, leading to conformational changes that break the canonical base pair with A752. Collectively, our study reveals novel molecular insights into the interaction of O-glycosylated drosocin with the ribosome, which provide a structural basis for future development of this class of antimicrobials.
Collapse
Affiliation(s)
- Timm O Koller
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Martino Morici
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Max Berger
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Haaris A Safdari
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Deepti S Lele
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Bertrand Beckert
- Dubochet Center for Imaging (DCI) at EPFL, EPFL SB IPHYS DCI, Lausanne, Switzerland
| | - Kanwal J Kaur
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
9
|
Ng KY, Lutfullahoglu Bal G, Richter U, Safronov O, Paulin L, Dunn CD, Paavilainen VO, Richer J, Newman WG, Taylor RW, Battersby BJ. Nonstop mRNAs generate a ground state of mitochondrial gene expression noise. SCIENCE ADVANCES 2022; 8:eabq5234. [PMID: 36399564 PMCID: PMC9674279 DOI: 10.1126/sciadv.abq5234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/22/2022] [Indexed: 05/29/2023]
Abstract
A stop codon within the mRNA facilitates coordinated termination of protein synthesis, releasing the nascent polypeptide from the ribosome. This essential step in gene expression is impeded with transcripts lacking a stop codon, generating nonstop ribosome complexes. Here, we use deep sequencing to investigate sources of nonstop mRNAs generated from the human mitochondrial genome. We identify diverse types of nonstop mRNAs on mitochondrial ribosomes that are resistant to translation termination by canonical release factors. Failure to resolve these aberrations by the mitochondrial release factor in rescue (MTRFR) imparts a negative regulatory effect on protein synthesis that is associated with human disease. Our findings reveal a source of underlying noise in mitochondrial gene expression and the importance of responsive ribosome quality control mechanisms for cell fitness and human health.
Collapse
Affiliation(s)
- Kah Ying Ng
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Guleycan Lutfullahoglu Bal
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Uwe Richter
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Omid Safronov
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Cory D. Dunn
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ville O. Paavilainen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Julie Richer
- Department of Medical Genetics, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - William G. Newman
- Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Brendan J. Battersby
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Nadler F, Lavdovskaia E, Krempler A, Cruz-Zaragoza LD, Dennerlein S, Richter-Dennerlein R. Human mtRF1 terminates COX1 translation and its ablation induces mitochondrial ribosome-associated quality control. Nat Commun 2022; 13:6406. [PMID: 36302763 PMCID: PMC9613700 DOI: 10.1038/s41467-022-34088-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/11/2022] [Indexed: 12/25/2022] Open
Abstract
Translation termination requires release factors that read a STOP codon in the decoding center and subsequently facilitate the hydrolysis of the nascent peptide chain from the peptidyl tRNA within the ribosome. In human mitochondria eleven open reading frames terminate in the standard UAA or UAG STOP codon, which can be recognized by mtRF1a, the proposed major mitochondrial release factor. However, two transcripts encoding for COX1 and ND6 terminate in the non-conventional AGA or AGG codon, respectively. How translation termination is achieved in these two cases is not known. We address this long-standing open question by showing that the non-canonical release factor mtRF1 is a specialized release factor that triggers COX1 translation termination, while mtRF1a terminates the majority of other mitochondrial translation events including the non-canonical ND6. Loss of mtRF1 leads to isolated COX deficiency and activates the mitochondrial ribosome-associated quality control accompanied by the degradation of COX1 mRNA to prevent an overload of the ribosome rescue system. Taken together, these results establish the role of mtRF1 in mitochondrial translation, which had been a mystery for decades, and lead to a comprehensive picture of translation termination in human mitochondria.
Collapse
Affiliation(s)
- Franziska Nadler
- grid.411984.10000 0001 0482 5331Department of Cellular Biochemistry, University Medical Center Goettingen, D-37073 Goettingen, Germany
| | - Elena Lavdovskaia
- grid.411984.10000 0001 0482 5331Department of Cellular Biochemistry, University Medical Center Goettingen, D-37073 Goettingen, Germany ,grid.7450.60000 0001 2364 4210Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Goettingen, D-37075 Goettingen, Germany
| | - Angelique Krempler
- grid.411984.10000 0001 0482 5331Department of Cellular Biochemistry, University Medical Center Goettingen, D-37073 Goettingen, Germany
| | - Luis Daniel Cruz-Zaragoza
- grid.411984.10000 0001 0482 5331Department of Cellular Biochemistry, University Medical Center Goettingen, D-37073 Goettingen, Germany
| | - Sven Dennerlein
- grid.411984.10000 0001 0482 5331Department of Cellular Biochemistry, University Medical Center Goettingen, D-37073 Goettingen, Germany
| | - Ricarda Richter-Dennerlein
- grid.411984.10000 0001 0482 5331Department of Cellular Biochemistry, University Medical Center Goettingen, D-37073 Goettingen, Germany ,grid.7450.60000 0001 2364 4210Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Goettingen, D-37075 Goettingen, Germany ,grid.7450.60000 0001 2364 4210Goettingen Center for Molecular Biosciences, University of Goettingen, D-37077 Goettingen, Germany
| |
Collapse
|
11
|
Tian Y, Zeng F, Raybarman A, Fatma S, Carruthers A, Li Q, Huang RH. Sequential rescue and repair of stalled and damaged ribosome by bacterial PrfH and RtcB. Proc Natl Acad Sci U S A 2022; 119:e2202464119. [PMID: 35858322 PMCID: PMC9304027 DOI: 10.1073/pnas.2202464119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/10/2022] [Indexed: 01/14/2023] Open
Abstract
RtcB is involved in transfer RNA (tRNA) splicing in archaeal and eukaryotic organisms. However, most RtcBs are found in bacteria, whose tRNAs have no introns. Because tRNAs are the substrates of archaeal and eukaryotic RtcB, it is assumed that bacterial RtcBs are for repair of damaged tRNAs. Here, we show that a subset of bacterial RtcB, denoted RtcB2 herein, specifically repair ribosomal damage in the decoding center. To access the damage site for repair, however, the damaged 70S ribosome needs to be dismantled first, and this is accomplished by bacterial PrfH. Peptide-release assays revealed that PrfH is only active with the damaged 70S ribosome but not with the intact one. A 2.55-Å cryo-electron microscopy structure of PrfH in complex with the damaged 70S ribosome provides molecular insight into PrfH discriminating between the damaged and the intact ribosomes via specific recognition of the cleaved 3'-terminal nucleotide. RNA repair assays demonstrated that RtcB2 efficiently repairs the damaged 30S ribosomal subunit but not the damaged tRNAs. Cell-based assays showed that the RtcB2-PrfH pair reverse the damage inflicted by ribosome-specific ribotoxins in vivo. Thus, our combined biochemical, structural, and cell-based studies have uncovered a bacterial defense system specifically evolved to reverse the lethal ribosomal damage in the decoding center for cell survival.
Collapse
Affiliation(s)
- Yannan Tian
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Fuxing Zeng
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
| | - Adrika Raybarman
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Shirin Fatma
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Amy Carruthers
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Qingrong Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
| | - Raven H. Huang
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
12
|
Kurita D, Himeno H. Bacterial Ribosome Rescue Systems. Microorganisms 2022; 10:372. [PMID: 35208827 PMCID: PMC8874680 DOI: 10.3390/microorganisms10020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 12/10/2022] Open
Abstract
To maintain proteostasis, the cell employs multiple ribosome rescue systems to relieve the stalled ribosome on problematic mRNA. One example of problematic mRNA is non-stop mRNA that lacks an in-frame stop codon produced by endonucleolytic cleavage or transcription error. In Escherichia coli, there are at least three ribosome rescue systems that deal with the ribosome stalled on non-stop mRNA. According to one estimation, 2-4% of translation is the target of ribosome rescue systems even under normal growth conditions. In the present review, we discuss the recent findings of ribosome rescue systems in bacteria.
Collapse
Affiliation(s)
| | - Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Hirosaki University, 3, Bunkyo-cho, Hirosaki 036-8561, Japan;
| |
Collapse
|
13
|
Nadler F, Lavdovskaia E, Richter-Dennerlein R. Maintaining mitochondrial ribosome function: The role of ribosome rescue and recycling factors. RNA Biol 2021; 19:117-131. [PMID: 34923906 PMCID: PMC8786322 DOI: 10.1080/15476286.2021.2015561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The universally conserved process of protein biosynthesis is crucial for maintaining cellular homoeostasis and in eukaryotes, mitochondrial translation is essential for aerobic energy production. Mitochondrial ribosomes (mitoribosomes) are highly specialized to synthesize 13 core subunits of the oxidative phosphorylation (OXPHOS) complexes. Although the mitochondrial translation machinery traces its origin from a bacterial ancestor, it has acquired substantial differences within this endosymbiotic environment. The cycle of mitoribosome function proceeds through the conserved canonical steps of initiation, elongation, termination and mitoribosome recycling. However, when mitoribosomes operate in the context of limited translation factors or on aberrant mRNAs, they can become stalled and activation of rescue mechanisms is required. This review summarizes recent advances in the understanding of protein biosynthesis in mitochondria, focusing especially on the mechanistic and physiological details of translation termination, and mitoribosome recycling and rescue.
Collapse
Affiliation(s)
- Franziska Nadler
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Elena Lavdovskaia
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| | - Ricarda Richter-Dennerlein
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| |
Collapse
|
14
|
Petrychenko V, Peng BZ, de A P Schwarzer AC, Peske F, Rodnina MV, Fischer N. Structural mechanism of GTPase-powered ribosome-tRNA movement. Nat Commun 2021; 12:5933. [PMID: 34635670 PMCID: PMC8505512 DOI: 10.1038/s41467-021-26133-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/17/2021] [Indexed: 11/25/2022] Open
Abstract
GTPases are regulators of cell signaling acting as molecular switches. The translational GTPase EF-G stands out, as it uses GTP hydrolysis to generate force and promote the movement of the ribosome along the mRNA. The key unresolved question is how GTP hydrolysis drives molecular movement. Here, we visualize the GTPase-powered step of ongoing translocation by time-resolved cryo-EM. EF-G in the active GDP-Pi form stabilizes the rotated conformation of ribosomal subunits and induces twisting of the sarcin-ricin loop of the 23 S rRNA. Refolding of the GTPase switch regions upon Pi release initiates a large-scale rigid-body rotation of EF-G pivoting around the sarcin-ricin loop that facilitates back rotation of the ribosomal subunits and forward swiveling of the head domain of the small subunit, ultimately driving tRNA forward movement. The findings demonstrate how a GTPase orchestrates spontaneous thermal fluctuations of a large RNA-protein complex into force-generating molecular movement.
Collapse
MESH Headings
- Binding Sites
- Biomechanical Phenomena
- Cryoelectron Microscopy
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Guanosine Triphosphate/chemistry
- Guanosine Triphosphate/metabolism
- Hydrolysis
- Kinetics
- Models, Molecular
- Peptide Elongation Factor G/chemistry
- Peptide Elongation Factor G/genetics
- Peptide Elongation Factor G/metabolism
- Protein Binding
- Protein Biosynthesis
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Folding
- Protein Interaction Domains and Motifs
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Thermodynamics
Collapse
Affiliation(s)
- Valentyn Petrychenko
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Bee-Zen Peng
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ana C de A P Schwarzer
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Niels Fischer
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
15
|
Korostelev AA. Diversity and Similarity of Termination and Ribosome Rescue in Bacterial, Mitochondrial, and Cytoplasmic Translation. BIOCHEMISTRY (MOSCOW) 2021; 86:1107-1121. [PMID: 34565314 DOI: 10.1134/s0006297921090066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
When a ribosome encounters the stop codon of an mRNA, it terminates translation, releases the newly made protein, and is recycled to initiate translation on a new mRNA. Termination is a highly dynamic process in which release factors (RF1 and RF2 in bacteria; eRF1•eRF3•GTP in eukaryotes) coordinate peptide release with large-scale molecular rearrangements of the ribosome. Ribosomes stalled on aberrant mRNAs are rescued and recycled by diverse bacterial, mitochondrial, or cytoplasmic quality control mechanisms. These are catalyzed by rescue factors with peptidyl-tRNA hydrolase activity (bacterial ArfA•RF2 and ArfB, mitochondrial ICT1 and mtRF-R, and cytoplasmic Vms1), that are distinct from each other and from release factors. Nevertheless, recent structural studies demonstrate a remarkable similarity between translation termination and ribosome rescue mechanisms. This review describes how these pathways rely on inherent ribosome dynamics, emphasizing the active role of the ribosome in all translation steps.
Collapse
Affiliation(s)
- Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA.
| |
Collapse
|
16
|
Su T, Kudva R, Becker T, Buschauer R, Komar T, Berninghausen O, von Heijne G, Cheng J, Beckmann R. Structural basis of l-tryptophan-dependent inhibition of release factor 2 by the TnaC arrest peptide. Nucleic Acids Res 2021; 49:9539-9547. [PMID: 34403461 PMCID: PMC8450073 DOI: 10.1093/nar/gkab665] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/13/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022] Open
Abstract
In Escherichia coli, elevated levels of free l-tryptophan (l-Trp) promote translational arrest of the TnaC peptide by inhibiting its termination. However, the mechanism by which translation-termination by the UGA-specific decoding release factor 2 (RF2) is inhibited at the UGA stop codon of stalled TnaC-ribosome-nascent chain complexes has so far been ambiguous. This study presents cryo-EM structures for ribosomes stalled by TnaC in the absence and presence of RF2 at average resolutions of 2.9 and 3.5 Å, respectively. Stalled TnaC assumes a distinct conformation composed of two small α-helices that act together with residues in the peptide exit tunnel (PET) to coordinate a single L-Trp molecule. In addition, while the peptidyl-transferase center (PTC) is locked in a conformation that allows RF2 to adopt its canonical position in the ribosome, it prevents the conserved and catalytically essential GGQ motif of RF2 from adopting its active conformation in the PTC. This explains how translation of the TnaC peptide effectively allows the ribosome to function as a L-Trp-specific small-molecule sensor that regulates the tnaCAB operon.
Collapse
Affiliation(s)
- Ting Su
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Renuka Kudva
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-10691, Sweden.,Science for Life Laboratories, Solna 17165, Sweden
| | - Thomas Becker
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Robert Buschauer
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Tobias Komar
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Otto Berninghausen
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-10691, Sweden.,Science for Life Laboratories, Solna 17165, Sweden
| | - Jingdong Cheng
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| | - Roland Beckmann
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich 81377, Germany
| |
Collapse
|
17
|
Kummer E, Schubert KN, Schoenhut T, Scaiola A, Ban N. Structural basis of translation termination, rescue, and recycling in mammalian mitochondria. Mol Cell 2021; 81:2566-2582.e6. [PMID: 33878294 DOI: 10.1016/j.molcel.2021.03.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 12/26/2022]
Abstract
The mitochondrial translation system originates from a bacterial ancestor but has substantially diverged in the course of evolution. Here, we use single-particle cryo-electron microscopy (cryo-EM) as a screening tool to identify mitochondrial translation termination mechanisms and to describe them in molecular detail. We show how mitochondrial release factor 1a releases the nascent chain from the ribosome when it encounters the canonical stop codons UAA and UAG. Furthermore, we define how the peptidyl-tRNA hydrolase ICT1 acts as a rescue factor on mitoribosomes that have stalled on truncated messages to recover them for protein synthesis. Finally, we present structural models detailing the process of mitochondrial ribosome recycling to explain how a dedicated elongation factor, mitochondrial EFG2 (mtEFG2), has specialized for cooperation with the mitochondrial ribosome recycling factor to dissociate the mitoribosomal subunits at the end of the translation process.
Collapse
Affiliation(s)
- Eva Kummer
- Swiss Federal Institute of Technology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093 Zurich, Switzerland.
| | - Katharina Noel Schubert
- Swiss Federal Institute of Technology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093 Zurich, Switzerland
| | - Tanja Schoenhut
- Swiss Federal Institute of Technology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093 Zurich, Switzerland
| | - Alain Scaiola
- Swiss Federal Institute of Technology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093 Zurich, Switzerland
| | - Nenad Ban
- Swiss Federal Institute of Technology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093 Zurich, Switzerland.
| |
Collapse
|
18
|
Müller C, Crowe-McAuliffe C, Wilson DN. Ribosome Rescue Pathways in Bacteria. Front Microbiol 2021; 12:652980. [PMID: 33815344 PMCID: PMC8012679 DOI: 10.3389/fmicb.2021.652980] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Ribosomes that become stalled on truncated or damaged mRNAs during protein synthesis must be rescued for the cell to survive. Bacteria have evolved a diverse array of rescue pathways to remove the stalled ribosomes from the aberrant mRNA and return them to the free pool of actively translating ribosomes. In addition, some of these pathways target the damaged mRNA and the incomplete nascent polypeptide chain for degradation. This review highlights the recent developments in our mechanistic understanding of bacterial ribosomal rescue systems, including drop-off, trans-translation mediated by transfer-messenger RNA and small protein B, ribosome rescue by the alternative rescue factors ArfA and ArfB, as well as Bacillus ribosome rescue factor A, an additional rescue system found in some Gram-positive bacteria, such as Bacillus subtilis. Finally, we discuss the recent findings of ribosome-associated quality control in particular bacterial lineages mediated by RqcH and RqcP. The importance of rescue pathways for bacterial survival suggests they may represent novel targets for the development of new antimicrobial agents against multi-drug resistant pathogenic bacteria.
Collapse
Affiliation(s)
| | | | - Daniel N. Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
19
|
Charting the sequence-activity landscape of peptide inhibitors of translation termination. Proc Natl Acad Sci U S A 2021; 118:2026465118. [PMID: 33674389 DOI: 10.1073/pnas.2026465118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Apidaecin (Api), an unmodified 18-amino-acid-long proline-rich antibacterial peptide produced by bees, has been recently described as a specific inhibitor of translation termination. It invades the nascent peptide exit tunnel of the postrelease ribosome and traps the release factors preventing their recycling. Api binds in the exit tunnel in an extended conformation that matches the placement of a nascent polypeptide and establishes multiple contacts with ribosomal RNA (rRNA) and ribosomal proteins. Which of these interactions are critical for Api's activity is unknown. We addressed this problem by analyzing the activity of all possible single-amino-acid substitutions of the Api variants synthesized in the bacterial cell. By conditionally expressing the engineered api gene, we generated Api directly in the bacterial cytosol, thereby bypassing the need for importing the peptide from the medium. The endogenously expressed Api, as well as its N-terminally truncated mutants, retained the antibacterial properties and the mechanism of action of the native peptide. Taking advantage of the Api expression system and next-generation sequencing, we mapped in one experiment all the single-amino-acid substitutions that preserve or alleviate the on-target activity of the Api mutants. Analysis of the inactivating mutations made it possible to define the pharmacophore of Api involved in critical interactions with the ribosome, transfer RNA (tRNA), and release factors. We also identified the Api segment that tolerates a variety of amino acid substitutions; alterations in this segment could be used to improve the pharmacological properties of the antibacterial peptide.
Collapse
|
20
|
Carbone CE, Demo G, Madireddy R, Svidritskiy E, Korostelev AA. ArfB can displace mRNA to rescue stalled ribosomes. Nat Commun 2020; 11:5552. [PMID: 33144582 PMCID: PMC7641280 DOI: 10.1038/s41467-020-19370-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Ribosomes stalled during translation must be rescued to replenish the pool of translation-competent ribosomal subunits. Bacterial alternative rescue factor B (ArfB) releases nascent peptides from ribosomes stalled on mRNAs truncated at the A site, allowing ribosome recycling. Prior structural work revealed that ArfB recognizes such ribosomes by inserting its C-terminal α-helix into the vacant mRNA tunnel. In this work, we report that ArfB can efficiently recognize a wider range of mRNA substrates, including longer mRNAs that extend beyond the A-site codon. Single-particle cryo-EM unveils that ArfB employs two modes of function depending on the mRNA length. ArfB acts as a monomer to accommodate a shorter mRNA in the ribosomal A site. By contrast, longer mRNAs are displaced from the mRNA tunnel by more than 20 Å and are stabilized in the intersubunit space by dimeric ArfB. Uncovering distinct modes of ArfB function resolves conflicting biochemical and structural studies, and may lead to re-examination of other ribosome rescue pathways, whose functions depend on mRNA lengths.
Collapse
Affiliation(s)
- Christine E Carbone
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States
| | - Gabriel Demo
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Rohini Madireddy
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States
- Medicago Inc., 7 Triangle drive, Durham, NC, 27713, USA
| | - Egor Svidritskiy
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States.
- Sanofi, 49 New York Ave, Suite 3660, Framingham, MA, 01701, USA.
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, 01605, United States.
| |
Collapse
|
21
|
Mangano K, Florin T, Shao X, Klepacki D, Chelysheva I, Ignatova Z, Gao Y, Mankin AS, Vázquez-Laslop N. Genome-wide effects of the antimicrobial peptide apidaecin on translation termination in bacteria. eLife 2020; 9:e62655. [PMID: 33031031 PMCID: PMC7544508 DOI: 10.7554/elife.62655] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/20/2020] [Indexed: 12/16/2022] Open
Abstract
Biochemical studies suggested that the antimicrobial peptide apidaecin (Api) inhibits protein synthesis by binding in the nascent peptide exit tunnel and trapping the release factor associated with a terminating ribosome. The mode of Api action in bacterial cells had remained unknown. Here genome-wide analysis reveals that in bacteria, Api arrests translating ribosomes at stop codons and causes pronounced queuing of the trailing ribosomes. By sequestering the available release factors, Api promotes pervasive stop codon bypass, leading to the expression of proteins with C-terminal extensions. Api-mediated translation arrest leads to the futile activation of the ribosome rescue systems. Understanding the unique mechanism of Api action in living cells may facilitate the development of new medicines and research tools for genome exploration.
Collapse
Affiliation(s)
- Kyle Mangano
- Center for Biomolecular Sciences, University of Illinois at ChicagoChicagoUnited States
- Department of Pharmaceutical Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Tanja Florin
- Center for Biomolecular Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Xinhao Shao
- Department of Pharmaceutical Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Dorota Klepacki
- Center for Biomolecular Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Irina Chelysheva
- Institute of Biochemistry and Molecular Biology, University of HamburgHamburgGermany
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of HamburgHamburgGermany
| | - Yu Gao
- Department of Pharmaceutical Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at ChicagoChicagoUnited States
- Department of Pharmaceutical Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at ChicagoChicagoUnited States
- Department of Pharmaceutical Sciences, University of Illinois at ChicagoChicagoUnited States
| |
Collapse
|