1
|
Rossetti GG, Dommann N, Karamichali A, Dionellis VS, Asensio Aldave A, Yarahmadov T, Rodriguez-Carballo E, Keogh A, Candinas D, Stroka D, Halazonetis TD. In vivo DNA replication dynamics unveil aging-dependent replication stress. Cell 2024; 187:6220-6234.e13. [PMID: 39293447 DOI: 10.1016/j.cell.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 03/16/2024] [Accepted: 08/19/2024] [Indexed: 09/20/2024]
Abstract
The genome duplication program is affected by multiple factors in vivo, including developmental cues, genotoxic stress, and aging. Here, we monitored DNA replication initiation dynamics in regenerating livers of young and old mice after partial hepatectomy to investigate the impact of aging. In young mice, the origin firing sites were well defined; the majority were located 10-50 kb upstream or downstream of expressed genes, and their position on the genome was conserved in human cells. Old mice displayed the same replication initiation sites, but origin firing was inefficient and accompanied by a replication stress response. Inhibitors of the ATR checkpoint kinase fully restored origin firing efficiency in the old mice but at the expense of an inflammatory response and without significantly enhancing the fraction of hepatocytes entering the cell cycle. These findings unveil aging-dependent replication stress and a crucial role of ATR in mitigating the stress-associated inflammation, a hallmark of aging.
Collapse
Affiliation(s)
- Giacomo G Rossetti
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 1205, Switzerland
| | - Noëlle Dommann
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Angeliki Karamichali
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 1205, Switzerland
| | - Vasilis S Dionellis
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 1205, Switzerland
| | - Ainhoa Asensio Aldave
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Tural Yarahmadov
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Adrian Keogh
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Daniel Candinas
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Deborah Stroka
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Thanos D Halazonetis
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 1205, Switzerland.
| |
Collapse
|
2
|
Secchi M, Garbelli A, Riva V, Deidda G, Santonicola C, Formica T, Sabbioneda S, Crespan E, Maga G. Synergistic action of human RNaseH2 and the RNA helicase-nuclease DDX3X in processing R-loops. Nucleic Acids Res 2024; 52:11641-11658. [PMID: 39189461 PMCID: PMC11514492 DOI: 10.1093/nar/gkae731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
R-loops are three-stranded RNA-DNA hybrid structures that play important regulatory roles, but excessive or deregulated R-loops formation can trigger DNA damage and genome instability. Digestion of R-loops is mainly relying on the action of two specialized ribonucleases: RNaseH1 and RNaseH2. RNaseH2 is the main enzyme carrying out the removal of misincorporated rNMPs during DNA replication or repair, through the Ribonucleotide Excision Repair (RER) pathway. We have recently shown that the human RNA helicase DDX3X possessed RNaseH2-like activity, being able to substitute RNaseH2 in reconstituted RER reactions. Here, using synthetic R-loop mimicking substrates, we could show that human DDX3X alone was able to both displace and degrade the ssRNA strand hybridized to DNA. Moreover, DDX3X was found to physically interact with human RNaseH2. Such interaction suppressed the nuclease and helicase activities of DDX3X, but stimulated severalfold the catalytic activity of the trimeric RNaseH2, but not of RNaseH1. Finally, silencing of DDX3X in human cells caused accumulation of RNA-DNA hybrids and phosphorylated RPA foci. These results support a role of DDX3X as a scaffolding protein and auxiliary factor for RNaseH2 during R-loop degradation.
Collapse
Affiliation(s)
- Massimiliano Secchi
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Anna Garbelli
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Valentina Riva
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Graziano Deidda
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Carolina Santonicola
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Teresa Maria Formica
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Simone Sabbioneda
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Emmanuele Crespan
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| |
Collapse
|
3
|
Meng F, Li T, Singh AK, Wang Y, Attiyeh M, Kohram F, Feng Q, Li YR, Shen B, Williams T, Liu Y, Raoof M. Base-excision repair pathway regulates transcription-replication conflicts in pancreatic ductal adenocarcinoma. Cell Rep 2024; 43:114820. [PMID: 39368091 DOI: 10.1016/j.celrep.2024.114820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/19/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024] Open
Abstract
Oncogenic mutations (such as in KRAS) can dysregulate transcription and replication, leading to transcription-replication conflicts (TRCs). Here, we demonstrate that TRCs are enriched in human pancreatic ductal adenocarcinoma (PDAC) compared to other common solid tumors or normal cells. Several orthogonal approaches demonstrated that TRCs are oncogene dependent. A small interfering RNA (siRNA) screen identified several factors in the base-excision repair (BER) pathway as main regulators of TRCs in PDAC cells. Inhibitors of BER pathway (methoxyamine and CRT) enhanced TRCs. Mechanistically, BER pathway inhibition severely altered RNA polymerase II (RNAPII) and R-loop dynamics at nascent DNA, causing RNAPII trapping and contributing to enhanced TRCs. The ensuing DNA damage activated the ATR-Chk1 pathway. Co-treatment with ATR inhibitor (VX970) and BER inhibitor (methoxyamine) at clinically relevant doses synergistically enhanced DNA damage and reduced cell proliferation in PDAC cells. The study provides mechanistic insights into the regulation of TRCs in PDAC by the BER pathway, which has biologic and therapeutic implications.
Collapse
Affiliation(s)
- Fan Meng
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Tiane Li
- Irell & Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA, USA; Department of Cancer Genetic & Epigenetics, City of Hope National Medical Center, Duarte, CA, USA
| | | | - Yingying Wang
- Department of Cancer Genetic & Epigenetics, City of Hope National Medical Center, Duarte, CA, USA
| | - Marc Attiyeh
- Department of Surgery, Cedars Sinai, Los Angeles, CA, USA
| | - Fatemeh Kohram
- Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Qianhua Feng
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Yun R Li
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Binghui Shen
- Department of Cancer Genetic & Epigenetics, City of Hope National Medical Center, Duarte, CA, USA
| | - Terence Williams
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Yilun Liu
- Department of Cancer Genetic & Epigenetics, City of Hope National Medical Center, Duarte, CA, USA
| | - Mustafa Raoof
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA; Department of Cancer Genetic & Epigenetics, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
4
|
Igarashi T, Yano K, Endo S, Shiotani B. Tolerance of Oncogene-Induced Replication Stress: A Fuel for Genomic Instability. Cancers (Basel) 2024; 16:3507. [PMID: 39456601 PMCID: PMC11506635 DOI: 10.3390/cancers16203507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Activation of oncogenes disturbs a wide variety of cellular processes and induces physiological dysregulation of DNA replication, widely referred to as replication stress (RS). Oncogene-induced RS can cause replication forks to stall or collapse, thereby leading to DNA damage. While the DNA damage response (DDR) can provoke an anti-tumor barrier to prevent the development of cancer, a small subset of cells triggers replication stress tolerance (RST), allowing precancerous cells to survive, thereby promoting clonal expansion and genomic instability (GIN). Genomic instability (GIN) is a hallmark of cancer, driving genetic alterations ranging from nucleotide changes to aneuploidy. These alterations increase the probability of oncogenic events and create a heterogeneous cell population with an enhanced ability to evolve. This review explores how major oncogenes such as RAS, cyclin E, and MYC induce RS through diverse mechanisms. Additionally, we delve into the strategies employed by normal and cancer cells to tolerate RS and promote GIN. Understanding the intricate relationship between oncogene activation, RS, and GIN is crucial to better understand how cancer cells emerge and to develop potential cancer therapies that target these vulnerabilities.
Collapse
Affiliation(s)
- Taichi Igarashi
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of Biosciences, School of Science, Kitasato University, Minami-ku, Sagamihara-city, Kanagawa 252-0373, Japan
| | - Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
| | - Syoju Endo
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of NCC Cancer Science, Division of Integrative Molecular Biomedicine, Biomedical Sciences and Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of Genome Stress Signaling, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
5
|
Puzzo F, Crossley MP, Goswami A, Zhang F, Pekrun K, Garzon JL, Cimprich KA, Kay MA. AAV-mediated genome editing is influenced by the formation of R-loops. Mol Ther 2024:S1525-0016(24)00660-9. [PMID: 39369271 DOI: 10.1016/j.ymthe.2024.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/05/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024] Open
Abstract
Recombinant adeno-associated viral vectors (rAAV) hold an intrinsic ability to stimulate homologous recombination (AAV-HR) and are the most used in clinical settings for in vivo gene therapy. However, rAAVs also integrate throughout the genome. Here, we describe DNA-RNA immunoprecipitation sequencing (DRIP-seq) in murine HEPA1-6 hepatoma cells and whole murine liver to establish the similarities and differences in genomic R-loop formation in a transformed cell line and intact tissue. We show enhanced AAV-HR in mice upon genetic and pharmacological upregulation of R-loops. Selecting the highly expressed Albumin gene as a model locus for genome editing in both in vitro and in vivo experiments showed that the R-loop prone 3' end of Albumin was efficiently edited by AAV-HR, whereas the upstream R-loop-deficient region did not result in detectable vector integration. In addition, we found a positive correlation between previously reported off-target rAAV integration sites and R-loop enriched genomic regions. Thus, we conclude that high levels of R-loops, present in highly transcribed genes, may promote rAAV vector genome integration. These findings may shed light on potential mechanisms for improving the safety and efficacy of genome editing by modulating R-loops and may enhance our ability to predict regions most susceptible to off-target insertional mutagenesis by rAAV vectors.
Collapse
Affiliation(s)
- Francesco Puzzo
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Magdalena P Crossley
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Aranyak Goswami
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Feijie Zhang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Katja Pekrun
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Jada L Garzon
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Mark A Kay
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Jalan M, Sharma A, Pei X, Weinhold N, Buechelmaier ES, Zhu Y, Ahmed-Seghir S, Ratnakumar A, Di Bona M, McDermott N, Gomez-Aguilar J, Anderson KS, Ng CKY, Selenica P, Bakhoum SF, Reis-Filho JS, Riaz N, Powell SN. RAD52 resolves transcription-replication conflicts to mitigate R-loop induced genome instability. Nat Commun 2024; 15:7776. [PMID: 39237529 PMCID: PMC11377823 DOI: 10.1038/s41467-024-51784-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/15/2024] [Indexed: 09/07/2024] Open
Abstract
Collisions of the transcription and replication machineries on the same DNA strand can pose a significant threat to genomic stability. These collisions occur in part due to the formation of RNA-DNA hybrids termed R-loops, in which a newly transcribed RNA molecule hybridizes with the DNA template strand. This study investigated the role of RAD52, a known DNA repair factor, in preventing collisions by directing R-loop formation and resolution. We show that RAD52 deficiency increases R-loop accumulation, exacerbating collisions and resulting in elevated DNA damage. Furthermore, RAD52's ability to interact with the transcription machinery, coupled with its capacity to facilitate R-loop dissolution, highlights its role in preventing collisions. Lastly, we provide evidence of an increased mutational burden from double-strand breaks at conserved R-loop sites in human tumor samples, which is increased in tumors with low RAD52 expression. In summary, this study underscores the importance of RAD52 in orchestrating the balance between replication and transcription processes to prevent collisions and maintain genome stability.
Collapse
Affiliation(s)
- Manisha Jalan
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA.
| | - Aman Sharma
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
| | - Xin Pei
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
| | - Nils Weinhold
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
| | | | - Yingjie Zhu
- Department of Pathology and Laboratory Medicine, MSKCC, New York, NY, 10065, USA
| | | | | | - Melody Di Bona
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
- Human Oncology and Pathogenesis, MSKCC, New York, NY, 10065, USA
| | - Niamh McDermott
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
| | | | - Kyrie S Anderson
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
| | - Charlotte K Y Ng
- Department for BioMedical Research, University of Bern, Bern, CH, 3008, Switzerland
- SIB, Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, MSKCC, New York, NY, 10065, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
- Human Oncology and Pathogenesis, MSKCC, New York, NY, 10065, USA
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, MSKCC, New York, NY, 10065, USA
- AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
| | - Simon N Powell
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA.
- Molecular Biology Program, MSKCC, New York, NY, 10065, USA.
| |
Collapse
|
7
|
Jose L, Smith K, Crowner A, Androphy EJ, DeSmet M. Senataxin mediates R-loop resolution on HPV episomes. J Virol 2024; 98:e0100324. [PMID: 39046232 PMCID: PMC11334462 DOI: 10.1128/jvi.01003-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/29/2024] [Indexed: 07/25/2024] Open
Abstract
Three-stranded DNA-RNA structures known as R-loops that form during papillomavirus transcription can cause transcription-replication conflicts and lead to DNA damage. We found that R-loops accumulated at the viral early promoter in human papillomavirus (HPV) episomal cells but were greatly reduced in cells with integrated HPV genomes. RNA-DNA helicases unwind R-loops and allow for transcription and replication to proceed. Depletion of the RNA-DNA helicase senataxin (SETX) using siRNAs increased the presence of R-loops at the viral early promoter in HPV-31 (CIN612) and HPV-16 (W12) episomal HPV cell lines. Depletion of SETX reduced viral transcripts in episomal HPV cell lines. The viral E2 protein, which binds with high affinity to specific palindromes near the promoter and origin, complexes with SETX, and both SETX and E2 are present at the viral p97 promoter in CIN612 and W12 cells. SETX overexpression increased E2 transcription activity on the p97 promoter. SETX depletion also significantly increased integration of viral genomes in CIN612 cells. Our results demonstrate that SETX resolves viral R-loops to proceed with HPV transcription and prevent genome integration.IMPORTANCEPapillomaviruses contain small circular genomes of approximately 8 kilobase pairs and undergo unidirectional transcription from the sense strand of the viral genome. Co-transcriptional R-loops were recently reported to be present at high levels in cells that maintain episomal HPV and were also detected at the early viral promoter. R-loops can inhibit transcription and DNA replication. The process that removes R-loops from the PV genome and the requisite enzymes are unknown. We propose a model in which the host RNA-DNA helicase senataxin assembles on the HPV genome to resolve R-loops in order to maintain the episomal status of the viral genome.
Collapse
Affiliation(s)
- Leny Jose
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Keely Smith
- Indiana University Simon Comprehensive Cancer Center American Cancer Society Post-Baccalaureate Diversity in Cancer Research Education Program, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Anaiya Crowner
- Indiana University Simon Comprehensive Cancer Center American Cancer Society Post-Baccalaureate Diversity in Cancer Research Education Program, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Elliot J. Androphy
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Marsha DeSmet
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
8
|
Templeton CW, Laimins LA. HPV induced R-loop formation represses innate immune gene expression while activating DNA damage repair pathways. PLoS Pathog 2024; 20:e1012454. [PMID: 39178326 PMCID: PMC11376575 DOI: 10.1371/journal.ppat.1012454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/05/2024] [Accepted: 07/28/2024] [Indexed: 08/25/2024] Open
Abstract
R-loops are trimeric nucleic acid structures that form when an RNA molecule hybridizes with its complementary DNA strand, displacing the opposite strand. These structures regulate transcription as well as replication, but aberrant R-loops can form, leading to DNA breaks and genomic instability if unresolved. R-loop levels are elevated in many cancers as well as cells that maintain high-risk human papillomaviruses. We investigated how the distribution as well as function of R-loops changed between normal keratinocytes and HPV positive cells derived from a precancerous lesion of the cervix (CIN I). The levels of R-loops associated with cellular genes were found to be up to 10-fold higher in HPV positive cells than in normal keratinocytes while increases at ALU1 elements increased by up to 500-fold. The presence of enhanced R-loops resulted in altered levels of gene transcription, with equal numbers increased as decreased. While no uniform global effects on transcription due to the enhanced levels of R-loops were detected, genes in several pathways were coordinately increased or decreased in expression only in the HPV positive cells. This included the downregulation of genes in the innate immune pathway, such as DDX58, IL-6, STAT1, IFN-β, and NLRP3. All differentially expressed innate immune genes dependent on R-loops were also associated with H3K36me3 modified histones. Genes that were upregulated by the presence of R-loops in HPV positive cells included those in the DNA damage repair such as ATM, ATRX, and members of the Fanconi Anemia pathway. These genes exhibited a linkage between R-loops and H3K36me3 as well as γH2AX histone marks only in HPV positive cells. These studies identify a potential link in HPV positive cells between DNA damage repair as well as innate immune regulatory pathways with R-loops and γH2AX/H3K36me3 histone marks that may contribute to regulating important functions for HPV pathogenesis.
Collapse
Affiliation(s)
- Conor W Templeton
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Laimonis A Laimins
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
9
|
Wu T, Hou H, Dey A, Bachu M, Chen X, Wisniewski J, Kudoh F, Chen C, Chauhan S, Xiao H, Pan R, Ozato K. Bromodomain protein BRD4 directs mitotic cell division of mouse fibroblasts by inhibiting DNA damage. iScience 2024; 27:109797. [PMID: 38993671 PMCID: PMC11237862 DOI: 10.1016/j.isci.2024.109797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/30/2023] [Accepted: 04/18/2024] [Indexed: 07/13/2024] Open
Abstract
Bromodomain protein BRD4 binds to acetylated histones to regulate transcription. BRD4 also drives cancer cell proliferation. However, the role of BRD4 in normal cell growth has remained unclear. Here, we investigated this question by using mouse embryonic fibroblasts with conditional Brd4 knockout (KO). We found that Brd4KO cells grow more slowly than wild type cells; they do not complete replication, fail to achieve mitosis, and exhibit extensive DNA damage throughout all cell cycle stages. BRD4 was required for expression of more than 450 cell cycle genes including genes encoding core histones and centromere/kinetochore proteins that are critical for genome replication and chromosomal segregation. Moreover, we show that many genes controlling R-loop formation and DNA damage response (DDR) require BRD4 for expression. Finally, BRD4 constitutively occupied genes controlling R-loop, DDR and cell cycle progression. In summary, BRD4 epigenetically marks above genes and serves as a master regulator of normal cell growth.
Collapse
Affiliation(s)
- Tiyun Wu
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haitong Hou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Anup Dey
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahesh Bachu
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Weill Cornell Medicine, Graduate School of Medical Sciences, 1300 York Avenue Box 65, New York, NY 10065, USA
| | - Xiongfong Chen
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Jan Wisniewski
- Confocal Microscopy and Digital Imaging Facility, Experimental Immunology Branch, CCR, NCI NIH Bldg 10 Rm 4A05, Bethesda, MD 20892, USA
| | - Fuki Kudoh
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chao Chen
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Division of Hematology/Oncology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sakshi Chauhan
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Pan
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keiko Ozato
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Luna R, Gómez-González B, Aguilera A. RNA biogenesis and RNA metabolism factors as R-loop suppressors: a hidden role in genome integrity. Genes Dev 2024; 38:504-527. [PMID: 38986581 PMCID: PMC11293400 DOI: 10.1101/gad.351853.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Genome integrity relies on the accuracy of DNA metabolism, but as appreciated for more than four decades, transcription enhances mutation and recombination frequencies. More recent research provided evidence for a previously unforeseen link between RNA and DNA metabolism, which is often related to the accumulation of DNA-RNA hybrids and R-loops. In addition to physiological roles, R-loops interfere with DNA replication and repair, providing a molecular scenario for the origin of genome instability. Here, we review current knowledge on the multiple RNA factors that prevent or resolve R-loops and consequent transcription-replication conflicts and thus act as modulators of genome dynamics.
Collapse
Affiliation(s)
- Rosa Luna
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Belén Gómez-González
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Andrés Aguilera
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), 41092 Seville, Spain;
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
11
|
Abe K, Maunze B, Lopez PA, Xu J, Muhammad N, Yang GY, Katz D, Liu Y, Lauberth SM. Downstream-of-gene (DoG) transcripts contribute to an imbalance in the cancer cell transcriptome. SCIENCE ADVANCES 2024; 10:eadh9613. [PMID: 38959318 PMCID: PMC11221514 DOI: 10.1126/sciadv.adh9613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/29/2024] [Indexed: 07/05/2024]
Abstract
Downstream-of-gene (DoG) transcripts are an emerging class of noncoding RNAs. However, it remains largely unknown how DoG RNA production is regulated and whether alterations in DoG RNA signatures exist in major cancers. Here, through transcriptomic analyses of matched tumors and nonneoplastic tissues and cancer cell lines, we reveal a comprehensive catalog of DoG RNA signatures. Through separate lines of evidence, we support the biological importance of DoG RNAs in carcinogenesis. First, we show tissue-specific and stage-specific differential expression of DoG RNAs in tumors versus paired normal tissues with their respective host genes involved in tumor-promoting versus tumor-suppressor pathways. Second, we identify that differential DoG RNA expression is associated with poor patient survival. Third, we identify that DoG RNA induction is a consequence of treating colon cancer cells with the topoisomerase I (TOP1) poison camptothecin and following TOP1 depletion. Our results underlie the significance of DoG RNAs and TOP1-dependent regulation of DoG RNAs in diversifying and modulating the cancer transcriptome.
Collapse
Affiliation(s)
- Kouki Abe
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brian Maunze
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Pedro-Avila Lopez
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jessica Xu
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nefertiti Muhammad
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Guang-Yu Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - David Katz
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yaping Liu
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shannon M. Lauberth
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
12
|
Técher H, Gopaul D, Heuzé J, Bouzalmad N, Leray B, Vernet A, Mettling C, Moreaux J, Pasero P, Lin YL. MRE11 and TREX1 control senescence by coordinating replication stress and interferon signaling. Nat Commun 2024; 15:5423. [PMID: 38926338 PMCID: PMC11208572 DOI: 10.1038/s41467-024-49740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Oncogene-induced senescence (OIS) arrests cell proliferation in response to replication stress (RS) induced by oncogenes. OIS depends on the DNA damage response (DDR), but also on the cGAS-STING pathway, which detects cytosolic DNA and induces type I interferons (IFNs). Whether and how RS and IFN responses cooperate to promote OIS remains unknown. Here, we show that the induction of OIS by the H-RASV12 oncogene in immortalized human fibroblasts depends on the MRE11 nuclease. Indeed, treatment with the MRE11 inhibitor Mirin prevented RS, micronuclei formation and IFN response induced by RASV12. Overexpression of the cytosolic nuclease TREX1 also prevented OIS. Conversely, overexpression of a dominant negative mutant of TREX1 or treatment with IFN-β was sufficient to induce RS and DNA damage, independent of RASV12 induction. These data suggest that the IFN response acts as a positive feedback loop to amplify DDR in OIS through a process regulated by MRE11 and TREX1.
Collapse
Affiliation(s)
- Hervé Técher
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
- Institute for Research on Cancer and Aging of Nice (IRCAN), Université Côte d'Azur, CNRS UMR7284 - INSERM U1081, Nice, France
| | - Diyavarshini Gopaul
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
- Biotech Research and Innovation Centre, University of Copenhagen, 2200 N, Copenhagen, Denmark
| | - Jonathan Heuzé
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Nail Bouzalmad
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Baptiste Leray
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Audrey Vernet
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Clément Mettling
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
| | - Jérôme Moreaux
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- University of Montpellier, UFR Medicine, Montpellier, France
| | - Philippe Pasero
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France.
| | - Yea-Lih Lin
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France.
| |
Collapse
|
13
|
Goehring L, Keegan S, Lahiri S, Xia W, Kong M, Jimenez-Sainz J, Gupta D, Drapkin R, Jensen RB, Smith DJ, Rothenberg E, Fenyö D, Huang TT. Dormant origin firing promotes head-on transcription-replication conflicts at transcription termination sites in response to BRCA2 deficiency. Nat Commun 2024; 15:4716. [PMID: 38830843 PMCID: PMC11148086 DOI: 10.1038/s41467-024-48286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
BRCA2 is a tumor suppressor protein responsible for safeguarding the cellular genome from replication stress and genotoxicity, but the specific mechanism(s) by which this is achieved to prevent early oncogenesis remains unclear. Here, we provide evidence that BRCA2 acts as a critical suppressor of head-on transcription-replication conflicts (HO-TRCs). Using Okazaki-fragment sequencing (Ok-seq) and computational analysis, we identified origins (dormant origins) that are activated near the transcription termination sites (TTS) of highly expressed, long genes in response to replication stress. Dormant origins are a source for HO-TRCs, and drug treatments that inhibit dormant origin firing led to a reduction in HO-TRCs, R-loop formation, and DNA damage. Using super-resolution microscopy, we showed that HO-TRC events track with elongating RNA polymerase II, but not with transcription initiation. Importantly, RNase H2 is recruited to sites of HO-TRCs in a BRCA2-dependent manner to help alleviate toxic R-loops associated with HO-TRCs. Collectively, our results provide a mechanistic basis for how BRCA2 shields against genomic instability by preventing HO-TRCs through both direct and indirect means occurring at predetermined genomic sites based on the pre-cancer transcriptome.
Collapse
Affiliation(s)
- Liana Goehring
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Sarah Keegan
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Institute for Systems Genetics, New York University School of Medicine, New York University School of Medicine, New York, NY, USA
| | - Sudipta Lahiri
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA
| | - Wenxin Xia
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Michael Kong
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | | | - Dipika Gupta
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ryan B Jensen
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA
| | - Duncan J Smith
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Eli Rothenberg
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - David Fenyö
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Institute for Systems Genetics, New York University School of Medicine, New York University School of Medicine, New York, NY, USA
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
14
|
Geraud M, Cristini A, Salimbeni S, Bery N, Jouffret V, Russo M, Ajello AC, Fernandez Martinez L, Marinello J, Cordelier P, Trouche D, Favre G, Nicolas E, Capranico G, Sordet O. TDP1 mutation causing SCAN1 neurodegenerative syndrome hampers the repair of transcriptional DNA double-strand breaks. Cell Rep 2024; 43:114214. [PMID: 38761375 DOI: 10.1016/j.celrep.2024.114214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024] Open
Abstract
TDP1 removes transcription-blocking topoisomerase I cleavage complexes (TOP1ccs), and its inactivating H493R mutation causes the neurodegenerative syndrome SCAN1. However, the molecular mechanism underlying the SCAN1 phenotype is unclear. Here, we generate human SCAN1 cell models using CRISPR-Cas9 and show that they accumulate TOP1ccs along with changes in gene expression and genomic distribution of R-loops. SCAN1 cells also accumulate transcriptional DNA double-strand breaks (DSBs) specifically in the G1 cell population due to increased DSB formation and lack of repair, both resulting from abortive removal of transcription-blocking TOP1ccs. Deficient TDP1 activity causes increased DSB production, and the presence of mutated TDP1 protein hampers DSB repair by a TDP2-dependent backup pathway. This study provides powerful models to study TDP1 functions under physiological and pathological conditions and unravels that a gain of function of the mutated TDP1 protein, which prevents DSB repair, rather than a loss of TDP1 activity itself, could contribute to SCAN1 pathogenesis.
Collapse
Affiliation(s)
- Mathéa Geraud
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Agnese Cristini
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Simona Salimbeni
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France; Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Nicolas Bery
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Virginie Jouffret
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France; BigA Core Facility, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31062 Toulouse, France
| | - Marco Russo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Andrea Carla Ajello
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Lara Fernandez Martinez
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Jessica Marinello
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Pierre Cordelier
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Didier Trouche
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Estelle Nicolas
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Olivier Sordet
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France.
| |
Collapse
|
15
|
Puzzo F, Crossley MP, Goswami A, Zhang F, Pekrun K, Garzon JL, Cimprich KA, Kay MA. AAV-mediated genome editing is influenced by the formation of R-loops. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592855. [PMID: 38766176 PMCID: PMC11100726 DOI: 10.1101/2024.05.07.592855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Recombinant adeno-associated viral vectors (rAAV) hold an intrinsic ability to stimulate homologous recombination (AAV-HR) and are the most used in clinical settings for in vivo gene therapy. However, rAAVs also integrate throughout the genome. Here, we describe DNA-RNA immunoprecipitation sequencing (DRIP-seq) in murine HEPA1-6 hepatoma cells and whole murine liver to establish the similarities and differences in genomic R-loop formation in a transformed cell line and intact tissue. We show enhanced AAV-HR in mice upon genetic and pharmacological upregulation of R-loops. Selecting the highly expressed Albumin gene as a model locus for genome editing in both in vitro and in vivo experiments showed that the R-loop prone, 3' end of Albumin was efficiently edited by AAV-HR, whereas the upstream R-loop-deficient region did not result in detectable vector integration. In addition, we found a positive correlation between previously reported off-target rAAV integration sites and R-loop enriched genomic regions. Thus, we conclude that high levels of R-loops, present in highly transcribed genes, promote rAAV vector genome integration. These findings may shed light on potential mechanisms for improving the safety and efficacy of genome editing by modulating R-loops and may enhance our ability to predict regions most susceptible to off-target insertional mutagenesis by rAAV vectors.
Collapse
Affiliation(s)
- Francesco Puzzo
- Department of Genetics, Stanford University, Stanford, CA
- Department of Pediatrics, Stanford University, Stanford, CA
| | | | - Aranyak Goswami
- Department of Genetics, Stanford University, Stanford, CA
- Department of Pediatrics, Stanford University, Stanford, CA
| | - Feijie Zhang
- Department of Genetics, Stanford University, Stanford, CA
- Department of Pediatrics, Stanford University, Stanford, CA
| | - Katja Pekrun
- Department of Genetics, Stanford University, Stanford, CA
- Department of Pediatrics, Stanford University, Stanford, CA
| | - Jada L Garzon
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA
| | - Mark A Kay
- Department of Genetics, Stanford University, Stanford, CA
- Department of Pediatrics, Stanford University, Stanford, CA
| |
Collapse
|
16
|
Corazzi L, Ionasz VS, Andrejev S, Wang LC, Vouzas A, Giaisi M, Di Muzio G, Ding B, Marx AJM, Henkenjohann J, Allers MM, Gilbert DM, Wei PC. Linear interaction between replication and transcription shapes DNA break dynamics at recurrent DNA break Clusters. Nat Commun 2024; 15:3594. [PMID: 38678011 PMCID: PMC11055891 DOI: 10.1038/s41467-024-47934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Recurrent DNA break clusters (RDCs) are replication-transcription collision hotspots; many are unique to neural progenitor cells. Through high-resolution replication sequencing and a capture-ligation assay in mouse neural progenitor cells experiencing replication stress, we unravel the replication features dictating RDC location and orientation. Most RDCs occur at the replication forks traversing timing transition regions (TTRs), where sparse replication origins connect unidirectional forks. Leftward-moving forks generate telomere-connected DNA double-strand breaks (DSBs), while rightward-moving forks lead to centromere-connected DSBs. Strand-specific mapping for DNA-bound RNA reveals co-transcriptional dual-strand DNA:RNA hybrids present at a higher density in RDC than in other actively transcribed long genes. In addition, mapping RNA polymerase activity uncovers that head-to-head interactions between replication and transcription machinery result in 60% DSB contribution to the head-on compared to 40% for co-directional. Taken together we reveal TTR as a fragile class and show how the linear interaction between transcription and replication impacts genome stability.
Collapse
Affiliation(s)
- Lorenzo Corazzi
- German Cancer Research Center, 69120, Heidelberg, Germany
- Faculty of Bioscience, Ruprecht-Karl-University of Heidelberg, 69120, Heidelberg, Germany
| | - Vivien S Ionasz
- German Cancer Research Center, 69120, Heidelberg, Germany
- Faculty of Bioscience, Ruprecht-Karl-University of Heidelberg, 69120, Heidelberg, Germany
| | | | - Li-Chin Wang
- German Cancer Research Center, 69120, Heidelberg, Germany
| | - Athanasios Vouzas
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Marco Giaisi
- German Cancer Research Center, 69120, Heidelberg, Germany
| | - Giulia Di Muzio
- German Cancer Research Center, 69120, Heidelberg, Germany
- Faculty of Bioscience, Ruprecht-Karl-University of Heidelberg, 69120, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences, Ruprecht-Karl-University of Heidelberg, 69120, Heidelberg, Germany
| | - Boyu Ding
- German Cancer Research Center, 69120, Heidelberg, Germany
- Faculty of Bioscience, Ruprecht-Karl-University of Heidelberg, 69120, Heidelberg, Germany
- Faculty of Medicine, Ruprecht-Karl-University of Heidelberg, 69120, Heidelberg, Germany
| | - Anna J M Marx
- German Cancer Research Center, 69120, Heidelberg, Germany
- Faculty of Bioscience, Ruprecht-Karl-University of Heidelberg, 69120, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences, Ruprecht-Karl-University of Heidelberg, 69120, Heidelberg, Germany
| | - Jonas Henkenjohann
- German Cancer Research Center, 69120, Heidelberg, Germany
- Faculty of Bioscience, Ruprecht-Karl-University of Heidelberg, 69120, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences, Ruprecht-Karl-University of Heidelberg, 69120, Heidelberg, Germany
| | - Michael M Allers
- German Cancer Research Center, 69120, Heidelberg, Germany
- Faculty of Medicine, Ruprecht-Karl-University of Heidelberg, 69120, Heidelberg, Germany
| | - David M Gilbert
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Pei-Chi Wei
- German Cancer Research Center, 69120, Heidelberg, Germany.
- Faculty of Bioscience, Ruprecht-Karl-University of Heidelberg, 69120, Heidelberg, Germany.
- Interdisciplinary Center for Neurosciences, Ruprecht-Karl-University of Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
17
|
Xu Y, Jiao Y, Liu C, Miao R, Liu C, Wang Y, Ma C, Liu J. R-loop and diseases: the cell cycle matters. Mol Cancer 2024; 23:84. [PMID: 38678239 PMCID: PMC11055327 DOI: 10.1186/s12943-024-02000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
The cell cycle is a crucial biological process that is involved in cell growth, development, and reproduction. It can be divided into G1, S, G2, and M phases, and each period is closely regulated to ensure the production of two similar daughter cells with the same genetic material. However, many obstacles influence the cell cycle, including the R-loop that is formed throughout this process. R-loop is a triple-stranded structure, composed of an RNA: DNA hybrid and a single DNA strand, which is ubiquitous in organisms from bacteria to mammals. The existence of the R-loop has important significance for the regulation of various physiological processes. However, aberrant accumulation of R-loop due to its limited resolving ability will be detrimental for cells. For example, DNA damage and genomic instability, caused by the R-loop, can activate checkpoints in the cell cycle, which in turn induce cell cycle arrest and cell death. At present, a growing number of factors have been proven to prevent or eliminate the accumulation of R-loop thereby avoiding DNA damage and mutations. Therefore, we need to gain detailed insight into the R-loop resolution factors at different stages of the cell cycle. In this review, we review the current knowledge of factors that play a role in resolving the R-loop at different stages of the cell cycle, as well as how mutations of these factors lead to the onset and progression of diseases.
Collapse
Affiliation(s)
- Yuqin Xu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Yue Jiao
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chengbin Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Rui Miao
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chunyan Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Yilong Wang
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chunming Ma
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Jiao Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
18
|
Boddu PC, Gupta AK, Roy R, De La Peña Avalos B, Olazabal-Herrero A, Neuenkirchen N, Zimmer JT, Chandhok NS, King D, Nannya Y, Ogawa S, Lin H, Simon MD, Dray E, Kupfer GM, Verma A, Neugebauer KM, Pillai MM. Transcription elongation defects link oncogenic SF3B1 mutations to targetable alterations in chromatin landscape. Mol Cell 2024; 84:1475-1495.e18. [PMID: 38521065 PMCID: PMC11061666 DOI: 10.1016/j.molcel.2024.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/26/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Transcription and splicing of pre-messenger RNA are closely coordinated, but how this functional coupling is disrupted in human diseases remains unexplored. Using isogenic cell lines, patient samples, and a mutant mouse model, we investigated how cancer-associated mutations in SF3B1 alter transcription. We found that these mutations reduce the elongation rate of RNA polymerase II (RNAPII) along gene bodies and its density at promoters. The elongation defect results from disrupted pre-spliceosome assembly due to impaired protein-protein interactions of mutant SF3B1. The decreased promoter-proximal RNAPII density reduces both chromatin accessibility and H3K4me3 marks at promoters. Through an unbiased screen, we identified epigenetic factors in the Sin3/HDAC/H3K4me pathway, which, when modulated, reverse both transcription and chromatin changes. Our findings reveal how splicing factor mutant states behave functionally as epigenetic disorders through impaired transcription-related changes to the chromatin landscape. We also present a rationale for targeting the Sin3/HDAC complex as a therapeutic strategy.
Collapse
Affiliation(s)
- Prajwal C Boddu
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA
| | - Abhishek K Gupta
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA
| | - Rahul Roy
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA
| | - Bárbara De La Peña Avalos
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center (UTHSC) at San Antonio, San Antonio, TX, USA
| | - Anne Olazabal-Herrero
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA
| | - Nils Neuenkirchen
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Joshua T Zimmer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Namrata S Chandhok
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Darren King
- Section of Hematology and Medical Oncology, Department of Internal Medicine and Rogel Cancer Center, University of Michigan Health, Ann Arbor, MI, USA
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Haifan Lin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Eloise Dray
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center (UTHSC) at San Antonio, San Antonio, TX, USA
| | - Gary M Kupfer
- Department of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Amit Verma
- Division of Hemato-Oncology, Department of Medicine and Department of Developmental and Molecular Biology, Albert Einstein-Montefiore Cancer Center, New York, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Yale Center for RNA Science and Medicine, Yale University, New Haven, CT, USA
| | - Manoj M Pillai
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA; Yale Center for RNA Science and Medicine, Yale University, New Haven, CT, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
19
|
Cunningham ML, Schiewer MJ. PARP-ish: Gaps in Molecular Understanding and Clinical Trials Targeting PARP Exacerbate Racial Disparities in Prostate Cancer. Cancer Res 2024; 84:743102. [PMID: 38635890 PMCID: PMC11217733 DOI: 10.1158/0008-5472.can-23-3458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/25/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
PARP is a nuclear enzyme with a major function in the DNA damage response. PARP inhibitors (PARPi) have been developed for treating tumors harboring homologous recombination repair (HRR) defects that lead to a dependency on PARP. There are currently three PARPi approved for use in advanced prostate cancer (PCa), and several others are in clinical trials for this disease. Recent clinical trial results have reported differential efficacy based on the specific PARPi utilized as well as patient race. There is a racial disparity in PCa, where African American (AA) males are twice as likely to develop and die from the disease compared to European American (EA) males. Despite the disparity, there continues to be a lack of diversity in clinical trial cohorts for PCa. In this review, PARP nuclear functions, inhibition, and clinical relevance are explored through the lens of racial differences. This review will touch on the biological variations that have been explored thus far between AA and EA males with PCa to offer rationale for investigating PARPi response in the context of race at both the basic science and the clinical development levels.
Collapse
Affiliation(s)
- Moriah L. Cunningham
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Matthew J. Schiewer
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
20
|
Rombaut D, Lefèvre C, Rached T, Bondu S, Letessier A, Mangione RM, Farhat B, Lesieur-Pasquier A, Castillo-Guzman D, Boussaid I, Friedrich C, Tourville A, De Carvalho M, Levavasseur F, Leduc M, Le Gall M, Battault S, Temple M, Houy A, Bouscary D, Willems L, Park S, Raynaud S, Cluzeau T, Clappier E, Fenaux P, Adès L, Margueron R, Wassef M, Alsafadi S, Chapuis N, Kosmider O, Solary E, Constantinou A, Stern MH, Droin N, Palancade B, Miotto B, Chédin F, Fontenay M. Accelerated DNA replication fork speed due to loss of R-loops in myelodysplastic syndromes with SF3B1 mutation. Nat Commun 2024; 15:3016. [PMID: 38589367 PMCID: PMC11001894 DOI: 10.1038/s41467-024-46547-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
Myelodysplastic syndromes (MDS) with mutated SF3B1 gene present features including a favourable outcome distinct from MDS with mutations in other splicing factor genes SRSF2 or U2AF1. Molecular bases of these divergences are poorly understood. Here we find that SF3B1-mutated MDS show reduced R-loop formation predominating in gene bodies associated with intron retention reduction, not found in U2AF1- or SRSF2-mutated MDS. Compared to erythroblasts from SRSF2- or U2AF1-mutated patients, SF3B1-mutated erythroblasts exhibit augmented DNA synthesis, accelerated replication forks, and single-stranded DNA exposure upon differentiation. Importantly, histone deacetylase inhibition using vorinostat restores R-loop formation, slows down DNA replication forks and improves SF3B1-mutated erythroblast differentiation. In conclusion, loss of R-loops with associated DNA replication stress represents a hallmark of SF3B1-mutated MDS ineffective erythropoiesis, which could be used as a therapeutic target.
Collapse
Affiliation(s)
- David Rombaut
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
- Laboratoire d'excellence du Globule Rouge GR-Ex, Université Paris Cité, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Carine Lefèvre
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
- Laboratoire d'excellence du Globule Rouge GR-Ex, Université Paris Cité, Paris, France
| | - Tony Rached
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Sabrina Bondu
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Anne Letessier
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
| | | | - Batoul Farhat
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Auriane Lesieur-Pasquier
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Daisy Castillo-Guzman
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA, USA
| | - Ismael Boussaid
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Chloé Friedrich
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Aurore Tourville
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Magali De Carvalho
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Françoise Levavasseur
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Marjorie Leduc
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Platform Proteom'IC, Université Paris Cité, Institut Cochin, Paris, France
| | - Morgane Le Gall
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Platform Proteom'IC, Université Paris Cité, Institut Cochin, Paris, France
| | - Sarah Battault
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Marie Temple
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Alexandre Houy
- Institut Curie, PSL Research University, Sorbonne University, INSERM U830, DNA repair and uveal melanoma, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France
| | - Didier Bouscary
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Clinical Department of Hematology, Paris, France
| | - Lise Willems
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Clinical Department of Hematology, Paris, France
| | - Sophie Park
- Department of Hematology, Centre Hospitalier Universitaire, Université de Grenoble Alpes, Grenoble, France
| | - Sophie Raynaud
- Laboratory of Hematology, Université Côte d'Azur, Centre Hospitalier Universitaire, Nice, France
| | - Thomas Cluzeau
- Clinical Department of Hematology, Université Côte d'Azur, Centre Hospitalier Universitaire, Nice, France
| | - Emmanuelle Clappier
- Assistance Publique-Hôpitaux de Paris.Nord-Université Paris Cité, Saint-Louis Hospital, Laboratory of Hematology, Paris, France
| | - Pierre Fenaux
- Assistance Publique-Hôpitaux de Paris.Nord-Université Paris Cité, Saint-Louis Hospital, Service Hématologie Séniors, Paris, France
| | - Lionel Adès
- Assistance Publique-Hôpitaux de Paris.Nord-Université Paris Cité, Saint-Louis Hospital, Service Hématologie Séniors, Paris, France
| | - Raphael Margueron
- Institut Curie, Paris Sciences Lettres Research University, Sorbonne University, INSERM U934, UMR3215, Paris, France
| | - Michel Wassef
- Institut Curie, Paris Sciences Lettres Research University, Sorbonne University, INSERM U934, UMR3215, Paris, France
| | - Samar Alsafadi
- Institut Curie, PSL Research University, Sorbonne University, INSERM U830, DNA repair and uveal melanoma, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France
| | - Nicolas Chapuis
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Olivier Kosmider
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Eric Solary
- Institut Gustave Roussy, INSERM 1287, Université Paris Saclay, Villejuif, France
| | - Angelos Constantinou
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Marc-Henri Stern
- Institut Curie, PSL Research University, Sorbonne University, INSERM U830, DNA repair and uveal melanoma, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France
| | - Nathalie Droin
- Institut Gustave Roussy, INSERM 1287, Université Paris Saclay, Villejuif, France
| | - Benoit Palancade
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Benoit Miotto
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA, USA
| | - Michaela Fontenay
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France.
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France.
- Laboratoire d'excellence du Globule Rouge GR-Ex, Université Paris Cité, Paris, France.
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France.
| |
Collapse
|
21
|
Liang HT, Yan JY, Yao HJ, Zhang XN, Xing ZM, Liu L, Chen YQ, Li GR, Huang J, He YD, Zheng KW. G-quadruplexes on chromosomal DNA negatively regulates topoisomerase 1 activity. Nucleic Acids Res 2024; 52:2142-2156. [PMID: 38340342 PMCID: PMC10954455 DOI: 10.1093/nar/gkae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/03/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Human DNA topoisomerase 1 (Top1) is a crucial enzyme responsible for alleviating torsional stress on DNA during transcription and replication, thereby maintaining genome stability. Previous researches had found that non-working Top1 interacted extensively with chromosomal DNA in human cells. However, the reason for its retention on chromosomal DNA remained unclear. In this study, we discovered a close association between Top1 and chromosomal DNA, specifically linked to the presence of G-quadruplex (G4) structures. G4 structures, formed during transcription, trap Top1 and hinder its ability to relax neighboring DNAs. Disruption of the Top1-G4 interaction using G4 ligand relieved the inhibitory effect of G4 on Top1 activity, resulting in a further reduction of R-loop levels in cells. Additionally, the activation of Top1 through the use of a G4 ligand enhanced the toxicity of Top1 inhibitors towards cancer cells. Our study uncovers a negative regulation mechanism of human Top1 and highlights a novel pathway for activating Top1.
Collapse
Affiliation(s)
- Hui-ting Liang
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Jiang-yu Yan
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Hao-jun Yao
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Xue-nan Zhang
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Zhi-ming Xing
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Lin Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yao-qing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Guo-rui Li
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Jing Huang
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Yi-de He
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Ke-wei Zheng
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| |
Collapse
|
22
|
Valenzisi P, Marabitti V, Pichierri P, Franchitto A. WRNIP1 prevents transcription-associated genomic instability. eLife 2024; 12:RP89981. [PMID: 38488661 PMCID: PMC10942783 DOI: 10.7554/elife.89981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
R-loops are non-canonical DNA structures that form during transcription and play diverse roles in various physiological processes. Disruption of R-loop homeostasis can lead to genomic instability and replication impairment, contributing to several human diseases, including cancer. Although the molecular mechanisms that protect cells against such events are not fully understood, recent research has identified fork protection factors and DNA damage response proteins as regulators of R-loop dynamics. In this study, we identify the Werner helicase-interacting protein 1 (WRNIP1) as a novel factor that counteracts transcription-associated DNA damage upon replication perturbation. Loss of WRNIP1 leads to R-loop accumulation, resulting in collisions between the replisome and transcription machinery. We observe co-localization of WRNIP1 with transcription/replication complexes and R-loops after replication perturbation, suggesting its involvement in resolving transcription-replication conflicts. Moreover, WRNIP1-deficient cells show impaired replication restart from transcription-induced fork stalling. Notably, transcription inhibition and RNase H1 overexpression rescue all the defects caused by loss of WRNIP1. Importantly, our findings highlight the critical role of WRNIP1 ubiquitin-binding zinc finger (UBZ) domain in preventing pathological persistence of R-loops and limiting DNA damage, thereby safeguarding genome integrity.
Collapse
Affiliation(s)
- Pasquale Valenzisi
- Section of Mechanisms Biomarkers and Models, Department of Environment and Health, Istituto Superiore di SanitaRomeItaly
| | - Veronica Marabitti
- Section of Mechanisms Biomarkers and Models, Department of Environment and Health, Istituto Superiore di SanitaRomeItaly
| | - Pietro Pichierri
- Section of Mechanisms Biomarkers and Models, Department of Environment and Health, Istituto Superiore di SanitaRomeItaly
| | - Annapaola Franchitto
- Section of Mechanisms Biomarkers and Models, Department of Environment and Health, Istituto Superiore di SanitaRomeItaly
| |
Collapse
|
23
|
Graham E, Esashi F. DNA strand breaks at centromeres: Friend or foe? Semin Cell Dev Biol 2024; 156:141-151. [PMID: 37872040 DOI: 10.1016/j.semcdb.2023.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Centromeres are large structural regions in the genomic DNA, which are essential for accurately transmitting a complete set of chromosomes to daughter cells during cell division. In humans, centromeres consist of highly repetitive α-satellite DNA sequences and unique epigenetic components, forming large proteinaceous structures required for chromosome segregation. Despite their biological importance, there is a growing body of evidence for centromere breakage across the cell cycle, including periods of quiescence. In this review, we provide an up-to-date examination of the distinct centromere environments at different stages of the cell cycle, highlighting their plausible contribution to centromere breakage. Additionally, we explore the implications of these breaks on centromere function, both in terms of negative consequences and potential positive effects.
Collapse
Affiliation(s)
- Emily Graham
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
24
|
Hidmi O, Oster S, Monin J, Aqeilan RI. TOP1 and R-loops facilitate transcriptional DSBs at hypertranscribed cancer driver genes. iScience 2024; 27:109082. [PMID: 38375218 PMCID: PMC10875566 DOI: 10.1016/j.isci.2024.109082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/26/2023] [Accepted: 01/28/2024] [Indexed: 02/21/2024] Open
Abstract
DNA double-stranded breaks (DSBs) pose a significant threat to genomic integrity, and their generation during essential cellular processes like transcription remains poorly understood. In this study, we employ several techniques to map DSBs, R-loops, and topoisomerase 1 cleavage complex (TOP1cc) to comprehensively investigate the interplay between transcription, DSBs, topoisomerase 1 (TOP1), and R-loops. Our findings reveal the presence of DSBs at highly expressed genes enriched with TOP1 and R-loops. Remarkably, transcription-associated DSBs at these loci are significantly reduced upon depletion of R-loops and TOP1, uncovering the pivotal roles of TOP1 and R-loops in transcriptional DSB formation. By elucidating the intricate interplay between TOP1cc trapping, R-loops, and DSBs, our study provides insights into the mechanisms underlying transcription-associated genomic instability. Moreover, we establish a link between transcriptional DSBs and early molecular changes driving cancer development, highlighting the distinct etiology and molecular characteristics of driver mutations compared to passenger mutations.
Collapse
Affiliation(s)
- Osama Hidmi
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sara Oster
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jonathan Monin
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rami I. Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Cyprus Cancer Research Institute (CCRI), Nicosia, Cyprus
| |
Collapse
|
25
|
Pinto LM, Pailas A, Bondarchenko M, Sharma AB, Neumann K, Rizzo AJ, Jeanty C, Nicot N, Racca C, Graham MK, Naughton C, Liu Y, Chen CL, Meakin PJ, Gilbert N, Britton S, Meeker AK, Heaphy CM, Larminat F, Van Dyck E. DAXX promotes centromeric stability independently of ATRX by preventing the accumulation of R-loop-induced DNA double-stranded breaks. Nucleic Acids Res 2024; 52:1136-1155. [PMID: 38038252 PMCID: PMC10853780 DOI: 10.1093/nar/gkad1141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Maintaining chromatin integrity at the repetitive non-coding DNA sequences underlying centromeres is crucial to prevent replicative stress, DNA breaks and genomic instability. The concerted action of transcriptional repressors, chromatin remodelling complexes and epigenetic factors controls transcription and chromatin structure in these regions. The histone chaperone complex ATRX/DAXX is involved in the establishment and maintenance of centromeric chromatin through the deposition of the histone variant H3.3. ATRX and DAXX have also evolved mutually-independent functions in transcription and chromatin dynamics. Here, using paediatric glioma and pancreatic neuroendocrine tumor cell lines, we identify a novel ATRX-independent function for DAXX in promoting genome stability by preventing transcription-associated R-loop accumulation and DNA double-strand break formation at centromeres. This function of DAXX required its interaction with histone H3.3 but was independent of H3.3 deposition and did not reflect a role in the repression of centromeric transcription. DAXX depletion mobilized BRCA1 at centromeres, in line with BRCA1 role in counteracting centromeric R-loop accumulation. Our results provide novel insights into the mechanisms protecting the human genome from chromosomal instability, as well as potential perspectives in the treatment of cancers with DAXX alterations.
Collapse
Affiliation(s)
- Lia M Pinto
- DNA Repair and Chemoresistance Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Communication, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Alexandros Pailas
- DNA Repair and Chemoresistance Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Communication, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Max Bondarchenko
- DNA Repair and Chemoresistance Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Communication, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Abhishek Bharadwaj Sharma
- DNA Repair and Chemoresistance Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
| | - Katrin Neumann
- DNA Repair and Chemoresistance Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
| | - Anthony J Rizzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Céline Jeanty
- DNA Repair and Chemoresistance Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
| | - Nathalie Nicot
- Translational Medicine Operations Hub, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Carine Racca
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), 31077 Toulouse Cedex 4, France
| | - Mindy K Graham
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Catherine Naughton
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 1QY, UK
| | - Yaqun Liu
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75248 Paris Cedex 05, France
| | - Chun-Long Chen
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75248 Paris Cedex 05, France
| | - Paul J Meakin
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Nick Gilbert
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 1QY, UK
| | - Sébastien Britton
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), 31077 Toulouse Cedex 4, France
| | - Alan K Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Christopher M Heaphy
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Florence Larminat
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), 31077 Toulouse Cedex 4, France
| | - Eric Van Dyck
- DNA Repair and Chemoresistance Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
| |
Collapse
|
26
|
Jayakumar S, Patel M, Boulet F, Aziz H, Brooke GN, Tummala H, Pradeepa MM. PSIP1/LEDGF reduces R-loops at transcription sites to maintain genome integrity. Nat Commun 2024; 15:361. [PMID: 38191578 PMCID: PMC10774266 DOI: 10.1038/s41467-023-44544-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024] Open
Abstract
R-loops that accumulate at transcription sites pose a persistent threat to genome integrity. PSIP1 is a chromatin protein associated with transcriptional elongation complex, possesses histone chaperone activity, and is implicated in recruiting RNA processing and DNA repair factors to transcription sites. Here, we show that PSIP1 interacts with R-loops and other proteins involved in R-loop homeostasis, including PARP1. Genome-wide mapping of PSIP1, R-loops and γ-H2AX in PSIP1-depleted human and mouse cell lines revealed an accumulation of R-loops and DNA damage at gene promoters in the absence of PSIP1. R-loop accumulation causes local transcriptional arrest and transcription-replication conflict, leading to DNA damage. PSIP1 depletion increases 53BP1 foci and reduces RAD51 foci, suggesting altered DNA repair choice. Furthermore, PSIP1 depletion increases the sensitivity of cancer cells to PARP1 inhibitors and DNA-damaging agents that induce R-loop-induced DNA damage. These findings provide insights into the mechanism through which PSIP1 maintains genome integrity at the site of transcription.
Collapse
Affiliation(s)
- Sundarraj Jayakumar
- Blizard Institute; Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Bhabha Atomic Research Centre, Mumbai, India
| | - Manthan Patel
- Blizard Institute; Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fanny Boulet
- Blizard Institute; Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Hadicha Aziz
- Blizard Institute; Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Greg N Brooke
- School of Life Sciences, University of Essex, Colchester, UK
| | - Hemanth Tummala
- Blizard Institute; Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Madapura M Pradeepa
- Blizard Institute; Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
27
|
Kumar C, Remus D. Looping out of control: R-loops in transcription-replication conflict. Chromosoma 2024; 133:37-56. [PMID: 37419963 PMCID: PMC10771546 DOI: 10.1007/s00412-023-00804-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Transcription-replication conflict is a major cause of replication stress that arises when replication forks collide with the transcription machinery. Replication fork stalling at sites of transcription compromises chromosome replication fidelity and can induce DNA damage with potentially deleterious consequences for genome stability and organismal health. The block to DNA replication by the transcription machinery is complex and can involve stalled or elongating RNA polymerases, promoter-bound transcription factor complexes, or DNA topology constraints. In addition, studies over the past two decades have identified co-transcriptional R-loops as a major source for impairment of DNA replication forks at active genes. However, how R-loops impede DNA replication at the molecular level is incompletely understood. Current evidence suggests that RNA:DNA hybrids, DNA secondary structures, stalled RNA polymerases, and condensed chromatin states associated with R-loops contribute to the of fork progression. Moreover, since both R-loops and replication forks are intrinsically asymmetric structures, the outcome of R-loop-replisome collisions is influenced by collision orientation. Collectively, the data suggest that the impact of R-loops on DNA replication is highly dependent on their specific structural composition. Here, we will summarize our current understanding of the molecular basis for R-loop-induced replication fork progression defects.
Collapse
Affiliation(s)
- Charanya Kumar
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Dirk Remus
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA.
| |
Collapse
|
28
|
Heuzé J, Kemiha S, Barthe A, Vilarrubias AT, Aouadi E, Aiello U, Libri D, Lin Y, Lengronne A, Poli J, Pasero P. RNase H2 degrades toxic RNA:DNA hybrids behind stalled forks to promote replication restart. EMBO J 2023; 42:e113104. [PMID: 37855233 PMCID: PMC10690446 DOI: 10.15252/embj.2022113104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
R-loops represent a major source of replication stress, but the mechanism by which these structures impede fork progression remains unclear. To address this question, we monitored fork progression, arrest, and restart in Saccharomyces cerevisiae cells lacking RNase H1 and H2, two enzymes responsible for degrading RNA:DNA hybrids. We found that while RNase H-deficient cells could replicate their chromosomes normally under unchallenged growth conditions, their replication was impaired when exposed to hydroxyurea (HU) or methyl methanesulfonate (MMS). Treated cells exhibited increased levels of RNA:DNA hybrids at stalled forks and were unable to generate RPA-coated single-stranded (ssDNA), an important postreplicative intermediate in resuming replication. Similar impairments in nascent DNA resection and ssDNA formation at HU-arrested forks were observed in human cells lacking RNase H2. However, fork resection was fully restored by addition of triptolide, an inhibitor of transcription that induces RNA polymerase degradation. Taken together, these data indicate that RNA:DNA hybrids not only act as barriers to replication forks, but also interfere with postreplicative fork repair mechanisms if not promptly degraded by RNase H.
Collapse
Affiliation(s)
- Jonathan Heuzé
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Samira Kemiha
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Antoine Barthe
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Alba Torán Vilarrubias
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Elyès Aouadi
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Umberto Aiello
- Université Paris Cité, CNRS, Institut Jacques MonodParisFrance
- Department of GeneticsStanford UniversityStanfordCAUSA
| | - Domenico Libri
- Université Paris Cité, CNRS, Institut Jacques MonodParisFrance
- Present address:
Institut de Génétique Moléculaire de MontpellierUniversité de Montpellier, CNRSMontpellierFrance
| | - Yea‐Lih Lin
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Armelle Lengronne
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Jérôme Poli
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
- Institut Universitaire de France (IUF)ParisFrance
| | - Philippe Pasero
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| |
Collapse
|
29
|
Li Q, Zhou J, Li S, Zhang W, Du Y, Li K, Wang Y, Sun Q. DNA polymerase ε harmonizes topological states and R-loops formation to maintain genome integrity in Arabidopsis. Nat Commun 2023; 14:7763. [PMID: 38012183 PMCID: PMC10682485 DOI: 10.1038/s41467-023-43680-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/16/2023] [Indexed: 11/29/2023] Open
Abstract
Genome topology is tied to R-loop formation and genome stability. However, the regulatory mechanism remains to be elucidated. By establishing a system to sense the connections between R-loops and genome topology states, we show that inhibiting DNA topoisomerase 1 (TOP1i) triggers the global increase of R-loops (called topoR-loops) and DNA damages, which are exacerbated in the DNA damage repair-compromised mutant atm. A suppressor screen identifies a mutation in POL2A, the catalytic subunit of DNA polymerase ε, rescuing the TOP1i-induced topoR-loop accumulation and genome instability in atm. Importantly we find that a highly conserved junction domain between the exonuclease and polymerase domains in POL2A is required for modulating topoR-loops near DNA replication origins and facilitating faithful DNA replication. Our results suggest that DNA replication acts in concert with genome topological states to fine-tune R-loops and thereby maintain genome integrity, revealing a likely conserved regulatory mechanism of TOP1i resistance in chemotherapy for ATM-deficient cancers.
Collapse
Affiliation(s)
- Qin Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jincong Zhou
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Shuai Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Weifeng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yingxue Du
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Kuan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Yingxiang Wang
- College of Life Science, South China Agricultural University, Guangdong Laboratory for Lingnan Morden Agriculture, Guangzhou, 510642, China
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| |
Collapse
|
30
|
Abstract
Transcription and replication both require large macromolecular complexes to act on a DNA template, yet these machineries cannot simultaneously act on the same DNA sequence. Conflicts between the replication and transcription machineries (transcription-replication conflicts, or TRCs) are widespread in both prokaryotes and eukaryotes and have the capacity to both cause DNA damage and compromise complete, faithful replication of the genome. This review will highlight recent studies investigating the genomic locations of TRCs and the mechanisms by which they may be prevented, mitigated, or resolved. We address work from both model organisms and mammalian systems but predominantly focus on multicellular eukaryotes owing to the additional complexities inherent in the coordination of replication and transcription in the context of cell type-specific gene expression and higher-order chromatin organization.
Collapse
Affiliation(s)
- Liana Goehring
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA;
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA;
| | - Duncan J Smith
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA;
| |
Collapse
|
31
|
Bradley L, Savage KI. 'From R-lupus to cancer': Reviewing the role of R-loops in innate immune responses. DNA Repair (Amst) 2023; 131:103581. [PMID: 37832251 DOI: 10.1016/j.dnarep.2023.103581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Cells possess an inherent and evolutionarily conserved ability to detect and respond to the presence of foreign and pathological 'self' nucleic acids. The result is the stimulation of innate immune responses, signalling to the host immune system that defence mechanisms are necessary to protect the organism. To date, there is a vast body of literature describing innate immune responses to various nucleic acid species, including dsDNA, ssDNA and ssRNA etc., however, there is limited information available on responses to R-loops. R-loops are 3-stranded nucleic acid structures that form during transcription, upon DNA damage and in various other settings. Emerging evidence suggests that innate immune responses may also exist for the detection of R-loop related nucleic acid structures, implicating R-loops as drivers of inflammatory states. In this review, we aim to summarise the evidence indicating that R-loops are immunogenic species that can trigger innate immune responses in physiological and pathological settings and discuss the implications of this in the study of various diseases and therapeutic development.
Collapse
Affiliation(s)
- Leanne Bradley
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Rd, Belfast, United Kingdom
| | - Kienan I Savage
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Rd, Belfast, United Kingdom.
| |
Collapse
|
32
|
Duardo RC, Guerra F, Pepe S, Capranico G. Non-B DNA structures as a booster of genome instability. Biochimie 2023; 214:176-192. [PMID: 37429410 DOI: 10.1016/j.biochi.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Non-canonical secondary structures (NCSs) are alternative nucleic acid structures that differ from the canonical B-DNA conformation. NCSs often occur in repetitive DNA sequences and can adopt different conformations depending on the sequence. The majority of these structures form in the context of physiological processes, such as transcription-associated R-loops, G4s, as well as hairpins and slipped-strand DNA, whose formation can be dependent on DNA replication. It is therefore not surprising that NCSs play important roles in the regulation of key biological processes. In the last years, increasing published data have supported their biological role thanks to genome-wide studies and the development of bioinformatic prediction tools. Data have also highlighted the pathological role of these secondary structures. Indeed, the alteration or stabilization of NCSs can cause the impairment of transcription and DNA replication, modification in chromatin structure and DNA damage. These events lead to a wide range of recombination events, deletions, mutations and chromosomal aberrations, well-known hallmarks of genome instability which are strongly associated with human diseases. In this review, we summarize molecular processes through which NCSs trigger genome instability, with a focus on G-quadruplex, i-motif, R-loop, Z-DNA, hairpin, cruciform and multi-stranded structures known as triplexes.
Collapse
Affiliation(s)
- Renée C Duardo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Federico Guerra
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Simona Pepe
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
33
|
Fragkos M, Choleza M, Papadopoulou P. The Role of γH2AX in Replication Stress-induced Carcinogenesis: Possible Links and Recent Developments. CANCER DIAGNOSIS & PROGNOSIS 2023; 3:639-648. [PMID: 37927801 PMCID: PMC10619570 DOI: 10.21873/cdp.10266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023]
Abstract
Cancer is a condition characterized by genomic instability and gross chromosomal aberrations. The inability of the cell to timely and efficiently complete its replication cycle before entering mitosis is one of the most common causes of DNA damage and carcinogenesis. Phosphorylation of histone 2AX (H2AX) on S139 (γH2AX) is an indispensable step in the response to DNA damage, as it is required for the assembly of repair factors at the sites of damage. γH2AX is also a marker of DNA replication stress, mainly due to fork collapse that often follows prolonged replication stalling or repair of arrested forks, which involves the generation of DNA breaks. Although the role of γH2AX in the repair of DNA breaks has been well defined, the function of γH2AX in replicative stress remains unclear. In this review, we present the recent advances in the field of replication stress, and highlight a novel function for γH2AX that is independent of its role in the response to DNA damage. We discuss studies that support a role for γΗ2ΑΧ early in the response to replicative stress, which does not involve the repair of DNA breaks. We also highlight recent data proposing that γH2AX acts as a chromatin remodeling component, implicated in the efficient resolution of stalled replication forks. Understanding the mechanism by which γH2AX enables cellular recovery after replication stress will allow identification of novel cancer biomarkers, as well as new targets for cancer therapies.
Collapse
Affiliation(s)
- Michalis Fragkos
- Department of Science and Mathematics, Deree-The American College of Greece, Athens, Greece
| | - Maria Choleza
- Department of Science and Mathematics, Deree-The American College of Greece, Athens, Greece
| | - Paraskevi Papadopoulou
- Department of Science and Mathematics, Deree-The American College of Greece, Athens, Greece
| |
Collapse
|
34
|
Bayona-Feliu A, Herrera-Moyano E, Badra-Fajardo N, Galván-Femenía I, Soler-Oliva ME, Aguilera A. The chromatin network helps prevent cancer-associated mutagenesis at transcription-replication conflicts. Nat Commun 2023; 14:6890. [PMID: 37898641 PMCID: PMC10613258 DOI: 10.1038/s41467-023-42653-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023] Open
Abstract
Genome instability is a feature of cancer cells, transcription being an important source of DNA damage. This is in large part associated with R-loops, which hamper replication, especially at head-on transcription-replication conflicts (TRCs). Here we show that TRCs trigger a DNA Damage Response (DDR) involving the chromatin network to prevent genome instability. Depletion of the key chromatin factors INO80, SMARCA5 and MTA2 results in TRCs, fork stalling and R-loop-mediated DNA damage which mostly accumulates at S/G2, while histone H3 Ser10 phosphorylation, a mark of chromatin compaction, is enriched at TRCs. Strikingly, TRC regions show increased mutagenesis in cancer cells with signatures of homologous recombination deficiency, transcription-coupled nucleotide excision repair (TC-NER) and of the AID/APOBEC cytidine deaminases, being predominant at head-on collisions. Thus, our results support that the chromatin network prevents R-loops and TRCs from genomic instability and mutagenic signatures frequently associated with cancer.
Collapse
Affiliation(s)
- Aleix Bayona-Feliu
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092, Seville, Spain.
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain.
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Emilia Herrera-Moyano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Nibal Badra-Fajardo
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092, Seville, Spain
| | - Iván Galván-Femenía
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - María Eugenia Soler-Oliva
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092, Seville, Spain.
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain.
| |
Collapse
|
35
|
Krishnan R, Lapierre M, Gautreau B, Nixon KCJ, El Ghamrasni S, Patel P, Hao J, Yerlici V, Guturi K, St-Germain J, Mateo F, Saad A, Algouneh A, Earnshaw R, Shili D, Seitova A, Miller J, Khosraviani N, Penn A, Ho B, Sanchez O, Hande MP, Masson JY, Brown G, Alaoui-Jamali M, Reynolds J, Arrowsmith C, Raught B, Pujana M, Mekhail K, Stewart G, Hakem A, Hakem R. RNF8 ubiquitylation of XRN2 facilitates R-loop resolution and restrains genomic instability in BRCA1 mutant cells. Nucleic Acids Res 2023; 51:10484-10505. [PMID: 37697435 PMCID: PMC10602868 DOI: 10.1093/nar/gkad733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023] Open
Abstract
Breast cancer linked with BRCA1/2 mutations commonly recur and resist current therapies, including PARP inhibitors. Given the lack of effective targeted therapies for BRCA1-mutant cancers, we sought to identify novel targets to selectively kill these cancers. Here, we report that loss of RNF8 significantly protects Brca1-mutant mice against mammary tumorigenesis. RNF8 deficiency in human BRCA1-mutant breast cancer cells was found to promote R-loop accumulation and replication fork instability, leading to increased DNA damage, senescence, and synthetic lethality. Mechanistically, RNF8 interacts with XRN2, which is crucial for transcription termination and R-loop resolution. We report that RNF8 ubiquitylates XRN2 to facilitate its recruitment to R-loop-prone genomic loci and that RNF8 deficiency in BRCA1-mutant breast cancer cells decreases XRN2 occupancy at R-loop-prone sites, thereby promoting R-loop accumulation, transcription-replication collisions, excessive genomic instability, and cancer cell death. Collectively, our work identifies a synthetic lethal interaction between RNF8 and BRCA1, which is mediated by a pathological accumulation of R-loops.
Collapse
Affiliation(s)
- Rehna Krishnan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Mariah Lapierre
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Brandon Gautreau
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Kevin C J Nixon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Samah El Ghamrasni
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Parasvi S Patel
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Ontario M5G 1L7, Canada
| | - Jun Hao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - V Talya Yerlici
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Francesca Mateo
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Amine Saad
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Arash Algouneh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Rebecca Earnshaw
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Duan Shili
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Alma Seitova
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Joshua Miller
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Negin Khosraviani
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Adam Penn
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Brandon Ho
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Otto Sanchez
- Ontario Tech University, 2000 Simcoe Street North Oshawa, Ontario L1G 0C5, Canada
| | - M Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Axis; Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, 9 McMahon, Québec City, Québec G1R 2J6, Canada
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Moulay Alaoui-Jamali
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - John J Reynolds
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Cheryl Arrowsmith
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Ontario M5G 1L7, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Ontario M5G 1L7, Canada
| | - Miguel A Pujana
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Anne Hakem
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Razqallah Hakem
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Medical Biophysics, University of Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
36
|
de Vivo A, Song H, Lee Y, Tirado-Class N, Sanchez A, Westerheide S, Dungrawala H, Kee Y. OTUD5 limits replication fork instability by organizing chromatin remodelers. Nucleic Acids Res 2023; 51:10467-10483. [PMID: 37713620 PMCID: PMC10602872 DOI: 10.1093/nar/gkad732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/01/2023] [Accepted: 08/25/2023] [Indexed: 09/17/2023] Open
Abstract
Proper regulation of replication fork progression is important for genomic maintenance. Subverting the transcription-induced conflicts is crucial in preserving the integrity of replication forks. Various chromatin remodelers, such as histone chaperone and histone deacetylases are known to modulate replication stress, but how these factors are organized or collaborate are not well understood. Here we found a new role of the OTUD5 deubiquitinase in limiting replication stress. We found that OTUD5 is recruited to replication forks, and its depletion causes replication fork stress. Through its C-terminal disordered tail, OTUD5 assembles a complex containing FACT, HDAC1 and HDAC2 at replication forks. A cell line engineered to specifically uncouple FACT interaction with OTUD5 exhibits increases in FACT loading onto chromatin, R-loop formation, and replication fork stress. OTUD5 mediates these processes by recruiting and stabilizing HDAC1 and HDAC2, which decreases H4K16 acetylation and FACT recruitment. Finally, proteomic analysis revealed that the cells with deficient OTUD5-FACT interaction activates the Fanconi Anemia pathway for survival. Altogether, this study identified a new interaction network among OTUD5-FACT-HDAC1/2 that limits transcription-induced replication stress.
Collapse
Affiliation(s)
- Angelo de Vivo
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, FL 33647, USA
| | - Hongseon Song
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno-Joongang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Yujin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno-Joongang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Neysha Tirado-Class
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, FL 33647, USA
| | - Anthony Sanchez
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, FL 33647, USA
| | - Sandy Westerheide
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, FL 33647, USA
| | - Huzefa Dungrawala
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, FL 33647, USA
| | - Younghoon Kee
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, FL 33647, USA
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno-Joongang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| |
Collapse
|
37
|
Cameron DP, Grosser J, Ladigan S, Kuzin V, Iliopoulou E, Wiegard A, Benredjem H, Jackson K, Liffers ST, Lueong S, Cheung PF, Vangala D, Pohl M, Viebahn R, Teschendorf C, Wolters H, Usta S, Geng K, Kutter C, Arsenian-Henriksson M, Siveke JT, Tannapfel A, Schmiegel W, Hahn SA, Baranello L. Coinhibition of topoisomerase 1 and BRD4-mediated pause release selectively kills pancreatic cancer via readthrough transcription. SCIENCE ADVANCES 2023; 9:eadg5109. [PMID: 37831776 PMCID: PMC10575591 DOI: 10.1126/sciadv.adg5109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
Pancreatic carcinoma lacks effective therapeutic strategies resulting in poor prognosis. Transcriptional dysregulation due to alterations in KRAS and MYC affects initiation, development, and survival of this tumor type. Using patient-derived xenografts of KRAS- and MYC-driven pancreatic carcinoma, we show that coinhibition of topoisomerase 1 (TOP1) and bromodomain-containing protein 4 (BRD4) synergistically induces tumor regression by targeting promoter pause release. Comparing the nascent transcriptome with the recruitment of elongation and termination factors, we found that coinhibition of TOP1 and BRD4 disrupts recruitment of transcription termination factors. Thus, RNA polymerases transcribe downstream of genes for hundreds of kilobases leading to readthrough transcription. This occurs during replication, perturbing replisome progression and inducing DNA damage. The synergistic effect of TOP1 + BRD4 inhibition is specific to cancer cells leaving normal cells unaffected, highlighting the tumor's vulnerability to transcriptional defects. This preclinical study provides a mechanistic understanding of the benefit of combining TOP1 and BRD4 inhibitors to treat pancreatic carcinomas addicted to oncogenic drivers of transcription and replication.
Collapse
Affiliation(s)
- Donald P. Cameron
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jan Grosser
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Swetlana Ladigan
- Ruhr University Bochum, Faculty of Medicine, Department of Molecular GI Oncology, Bochum, Germany
- Ruhr University Bochum, Knappschaftskrankenhaus, Department of Internal Medicine, Bochum, Germany
| | - Vladislav Kuzin
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Evanthia Iliopoulou
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anika Wiegard
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hajar Benredjem
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kathryn Jackson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sven T. Liffers
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Smiths Lueong
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Phyllis F. Cheung
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Deepak Vangala
- Ruhr University Bochum, Faculty of Medicine, Department of Molecular GI Oncology, Bochum, Germany
- Ruhr University Bochum, Knappschaftskrankenhaus, Department of Internal Medicine, Bochum, Germany
| | - Michael Pohl
- Ruhr University Bochum, Knappschaftskrankenhaus, Department of Internal Medicine, Bochum, Germany
| | - Richard Viebahn
- Ruhr University Bochum, Knappschaftskrankenhaus, Department of Surgery, Bochum, Germany
| | | | - Heiner Wolters
- Department of Visceral and General Surgery, St. Josef-Hospital, Dortmund, Germany
| | - Selami Usta
- Department of Visceral and General Surgery, St. Josef-Hospital, Dortmund, Germany
| | - Keyi Geng
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | | | - Jens T. Siveke
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | | | - Wolff Schmiegel
- Ruhr University Bochum, Knappschaftskrankenhaus, Department of Internal Medicine, Bochum, Germany
| | - Stephan A. Hahn
- Ruhr University Bochum, Faculty of Medicine, Department of Molecular GI Oncology, Bochum, Germany
| | - Laura Baranello
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Lim G, Hwang S, Yu K, Kang JY, Kang C, Hohng S. Translocating RNA polymerase generates R-loops at DNA double-strand breaks without any additional factors. Nucleic Acids Res 2023; 51:9838-9848. [PMID: 37638763 PMCID: PMC10570047 DOI: 10.1093/nar/gkad689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023] Open
Abstract
The R-loops forming around DNA double-strand breaks (DSBs) within actively transcribed genes play a critical role in the DSB repair process. However, the mechanisms underlying R-loop formation at DSBs remain poorly understood, with diverse proposed models involving protein factors associated with RNA polymerase (RNAP) loading, pausing/backtracking or preexisting transcript RNA invasion. In this single-molecule study using Escherichia coli RNAP, we discovered that transcribing RNAP alone acts as a highly effective DSB sensor, responsible for generation of R-loops upon encountering downstream DSBs, without requiring any additional factors. The R-loop formation efficiency is greatly influenced by DNA end structures, ranging here from 2.8% to 73%, and notably higher on sticky ends with 3' or 5' single-stranded overhangs compared to blunt ends without any overhangs. The R-loops extend unidirectionally upstream from the DSB sites and can reach the transcription start site, interfering with ongoing-round transcription. Furthermore, the extended R-loops can persist and maintain their structures, effectively preventing the efficient initiation of subsequent transcription rounds. Our results are consistent with the bubble extension model rather than the 5'-end invasion model or the middle insertion model. These discoveries provide valuable insights into the initiation of DSB repair on transcription templates across bacteria, archaea and eukaryotes.
Collapse
Affiliation(s)
- Gunhyoung Lim
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungha Hwang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Kilwon Yu
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jin Young Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Changwon Kang
- Department of Biological Sciences, and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
39
|
Heuzé J, Lin YL, Lengronne A, Poli J, Pasero P. Impact of R-loops on oncogene-induced replication stress in cancer cells. C R Biol 2023; 346:95-105. [PMID: 37779381 DOI: 10.5802/crbiol.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 10/03/2023]
Abstract
Replication stress is an alteration in the progression of replication forks caused by a variety of events of endogenous or exogenous origin. In precancerous lesions, this stress is exacerbated by the deregulation of oncogenic pathways, which notably disrupts the coordination between replication and transcription, and leads to genetic instability and cancer development. It is now well established that transcription can interfere with genome replication in different ways, such as head-on collisions between polymerases, accumulation of positive DNA supercoils or formation of R-loops. These structures form during transcription when nascent RNA reanneals with DNA behind the RNA polymerase, forming a stable DNA:RNA hybrid. In this review, we discuss how these different cotranscriptional processes disrupt the progression of replication forks and how they contribute to genetic instability in cancer cells.
Collapse
|
40
|
Rousseau V, Einig E, Jin C, Horn J, Riebold M, Poth T, Jarboui MA, Flentje M, Popov N. Trim33 masks a non-transcriptional function of E2f4 in replication fork progression. Nat Commun 2023; 14:5143. [PMID: 37612308 PMCID: PMC10447549 DOI: 10.1038/s41467-023-40847-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
Replicative stress promotes genomic instability and tumorigenesis but also presents an effective therapeutic endpoint, rationalizing detailed analysis of pathways that control DNA replication. We show here that the transcription factor E2f4 recruits the DNA helicase Recql to facilitate progression of DNA replication forks upon drug- or oncogene-induced replicative stress. In unperturbed cells, the Trim33 ubiquitin ligase targets E2f4 for degradation, limiting its genomic binding and interactions with Recql. Replicative stress blunts Trim33-dependent ubiquitination of E2f4, which stimulates transient Recql recruitment to chromatin and facilitates recovery of DNA synthesis. In contrast, deletion of Trim33 induces chronic genome-wide recruitment of Recql and strongly accelerates DNA replication under stress, compromising checkpoint signaling and DNA repair. Depletion of Trim33 in Myc-overexpressing cells leads to accumulation of replication-associated DNA damage and delays Myc-driven tumorigenesis. We propose that the Trim33-E2f4-Recql axis controls progression of DNA replication forks along transcriptionally active chromatin to maintain genome integrity.
Collapse
Affiliation(s)
- Vanessa Rousseau
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076, Tübingen, Germany
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str 2, 97080, Würzburg, Germany
- Interfaculty Institute for Biochemistry, University Hospital Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| | - Elias Einig
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076, Tübingen, Germany
| | - Chao Jin
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076, Tübingen, Germany
| | - Julia Horn
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str 2, 97080, Würzburg, Germany
- Wakenitzmauer 3, 23552, Lübeck, Germany
| | - Mathias Riebold
- Department of Gastroenterology, Gastrointestinal Oncology, Hepatology, Infectiology, and Geriatry, University Hospital Tübingen, Otfried-Müller-Str 12, 72076, Tübingen, Germany
| | - Tanja Poth
- Center for Model System and Comparative Pathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Mohamed-Ali Jarboui
- Core Facility for Medical Bioanalytics, Proteomics Platform Tübingen (PxP), Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str 7, 72076, Tübingen, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str 2, 97080, Würzburg, Germany
| | - Nikita Popov
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076, Tübingen, Germany.
| |
Collapse
|
41
|
Suzuki MM, Iijima K, Ogami K, Shinjo K, Murofushi Y, Xie J, Wang X, Kitano Y, Mamiya A, Kibe Y, Nishimura T, Ohka F, Saito R, Sato S, Kobayashi J, Yao R, Miyata K, Kataoka K, Suzuki HI, Kondo Y. TUG1-mediated R-loop resolution at microsatellite loci as a prerequisite for cancer cell proliferation. Nat Commun 2023; 14:4521. [PMID: 37607907 PMCID: PMC10444773 DOI: 10.1038/s41467-023-40243-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/19/2023] [Indexed: 08/24/2023] Open
Abstract
Oncogene-induced DNA replication stress (RS) and consequent pathogenic R-loop formation are known to impede S phase progression. Nonetheless, cancer cells continuously proliferate under such high-stressed conditions through incompletely understood mechanisms. Here, we report taurine upregulated gene 1 (TUG1) long noncoding RNA (lncRNA), which is highly expressed in many types of cancers, as an important regulator of intrinsic R-loop in cancer cells. Under RS conditions, TUG1 is rapidly upregulated via activation of the ATR-CHK1 signaling pathway, interacts with RPA and DHX9, and engages in resolving R-loops at certain loci, particularly at the CA repeat microsatellite loci. Depletion of TUG1 leads to overabundant R-loops and enhanced RS, leading to substantial inhibition of tumor growth. Our data reveal a role of TUG1 as molecule important for resolving R-loop accumulation in cancer cells and suggest targeting TUG1 as a potent therapeutic approach for cancer treatment.
Collapse
Affiliation(s)
- Miho M Suzuki
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kenta Iijima
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
- Laboratory Animal Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Koichi Ogami
- Division of Molecular Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Keiko Shinjo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yoshiteru Murofushi
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Jingqi Xie
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Xuebing Wang
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yotaro Kitano
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Akira Mamiya
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yuji Kibe
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Tatsunori Nishimura
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Shinya Sato
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Junya Kobayashi
- School of Health Sciences at Narita, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686, Japan
| | - Ryoji Yao
- Department of Cell Biology, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tono-machi, Kawasaki-ku, Kanagawa, 210-0821, Japan
- Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroshi I Suzuki
- Division of Molecular Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
- Institute for Glyco-core Research (iGCORE), Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
- Institute for Glyco-core Research (iGCORE), Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
42
|
Wu T, Hou H, Dey A, Bachu M, Chen X, Wisniewski J, Kudoh F, Chen C, Chauhan S, Xiao H, Pan R, Ozato K. BRD4 directs mitotic cell division by inhibiting DNA damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547436. [PMID: 37546888 PMCID: PMC10401944 DOI: 10.1101/2023.07.02.547436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BRD4 binds to acetylated histones to regulate transcription and drive cancer cell proliferation. However, the role of BRD4 in normal cell growth remains to be elucidated. Here we investigated the question by using mouse embryonic fibroblasts with conditional Brd4 knockout (KO). We found that Brd4KO cells grow more slowly than wild type cells: they do not complete replication, fail to achieve mitosis, and exhibit extensive DNA damage throughout all cell cycle stages. BRD4 was required for expression of more than 450 cell cycle genes including genes encoding core histones and centromere/kinetochore proteins that are critical for genome replication and chromosomal segregation. Moreover, we show that many genes controlling R-loop formation and DNA damage response (DDR) require BRD4 for expression. Finally, BRD4 constitutively occupied genes controlling R-loop, DDR and cell cycle progression. We suggest that BRD4 epigenetically marks those genes and serves as a master regulator of normal cell growth.
Collapse
|
43
|
Elsakrmy N, Cui H. R-Loops and R-Loop-Binding Proteins in Cancer Progression and Drug Resistance. Int J Mol Sci 2023; 24:ijms24087064. [PMID: 37108225 PMCID: PMC10138518 DOI: 10.3390/ijms24087064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
R-loops are three-stranded DNA/RNA hybrids that form by the annealing of the mRNA transcript to its coding template while displacing the non-coding strand. While R-loop formation regulates physiological genomic and mitochondrial transcription and DNA damage response, imbalanced R-loop formation can be a threat to the genomic integrity of the cell. As such, R-loop formation is a double-edged sword in cancer progression, and perturbed R-loop homeostasis is observed across various malignancies. Here, we discuss the interplay between R-loops and tumor suppressors and oncogenes, with a focus on BRCA1/2 and ATR. R-loop imbalances contribute to cancer propagation and the development of chemotherapy drug resistance. We explore how R-loop formation can cause cancer cell death in response to chemotherapeutics and be used to circumvent drug resistance. As R-loop formation is tightly linked to mRNA transcription, their formation is unavoidable in cancer cells and can thus be explored in novel cancer therapeutics.
Collapse
Affiliation(s)
- Noha Elsakrmy
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Haissi Cui
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
44
|
Brison O, Gnan S, Azar D, Koundrioukoff S, Melendez-Garcia R, Kim SJ, Schmidt M, El-Hilali S, Jaszczyszyn Y, Lachages AM, Thermes C, Chen CL, Debatisse M. Mistimed origin licensing and activation stabilize common fragile sites under tight DNA-replication checkpoint activation. Nat Struct Mol Biol 2023; 30:539-550. [PMID: 37024657 DOI: 10.1038/s41594-023-00949-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/28/2023] [Indexed: 04/08/2023]
Abstract
Genome integrity requires replication to be completed before chromosome segregation. The DNA-replication checkpoint (DRC) contributes to this coordination by inhibiting CDK1, which delays mitotic onset. Under-replication of common fragile sites (CFSs), however, escapes surveillance, resulting in mitotic chromosome breaks. Here we asked whether loose DRC activation induced by modest stresses commonly used to destabilize CFSs could explain this leakage. We found that tightening DRC activation or CDK1 inhibition stabilizes CFSs in human cells. Repli-Seq and molecular combing analyses showed a burst of replication initiations implemented in mid S-phase across a subset of late-replicating sequences, including CFSs, while the bulk genome was unaffected. CFS rescue and extra-initiations required CDC6 and CDT1 availability in S-phase, implying that CDK1 inhibition permits mistimed origin licensing and firing. In addition to delaying mitotic onset, tight DRC activation therefore supports replication completion of late origin-poor domains at risk of under-replication, two complementary roles preserving genome stability.
Collapse
Affiliation(s)
- Olivier Brison
- CNRS UMR 9019, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Gif-sur-Yvette, France
| | - Stefano Gnan
- Curie Institute, PSL Research University, CNRS UMR 3244, Paris, France
- Sorbonne University, Paris, France
| | - Dana Azar
- Curie Institute, PSL Research University, CNRS UMR 3244, Paris, France
- Sorbonne University, Paris, France
- Laboratoire Biodiversité et Génomique Fonctionnelle, Faculté des Sciences, Université Saint-Joseph, Beirut, Lebanon
| | - Stéphane Koundrioukoff
- CNRS UMR 9019, Gustave Roussy Institute, Villejuif, France
- Sorbonne University, Paris, France
| | - Rodrigo Melendez-Garcia
- CNRS UMR 9019, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Gif-sur-Yvette, France
| | - Su-Jung Kim
- CNRS UMR 9019, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Gif-sur-Yvette, France
| | - Mélanie Schmidt
- CNRS UMR 9019, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Gif-sur-Yvette, France
| | - Sami El-Hilali
- Curie Institute, PSL Research University, CNRS UMR 3244, Paris, France
- Sorbonne University, Paris, France
- Villefranche sur mer Developmental Biology Laboratory, CNRS UMR7009, Villefranche-sur-Mer, France
| | - Yan Jaszczyszyn
- Paris-Saclay University, Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198CNRS, CEA, Paris-Sud University, Gif-sur-Yvette, France
| | - Anne-Marie Lachages
- Curie Institute, PSL Research University, CNRS UMR 3244, Paris, France
- UTCBS, CNRS UMR 8258/ INSERM U 1267, Sorbonne-Paris-Cité University, Paris, France
| | - Claude Thermes
- Paris-Saclay University, Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198CNRS, CEA, Paris-Sud University, Gif-sur-Yvette, France
| | - Chun-Long Chen
- Curie Institute, PSL Research University, CNRS UMR 3244, Paris, France
- Sorbonne University, Paris, France
| | - Michelle Debatisse
- CNRS UMR 9019, Gustave Roussy Institute, Villejuif, France.
- Sorbonne University, Paris, France.
| |
Collapse
|
45
|
Stoy H, Zwicky K, Kuster D, Lang KS, Krietsch J, Crossley MP, Schmid JA, Cimprich KA, Merrikh H, Lopes M. Direct visualization of transcription-replication conflicts reveals post-replicative DNA:RNA hybrids. Nat Struct Mol Biol 2023; 30:348-359. [PMID: 36864174 PMCID: PMC10023573 DOI: 10.1038/s41594-023-00928-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/23/2023] [Indexed: 03/04/2023]
Abstract
Transcription-replication collisions (TRCs) are crucial determinants of genome instability. R-loops were linked to head-on TRCs and proposed to obstruct replication fork progression. The underlying mechanisms, however, remained elusive due to the lack of direct visualization and of non-ambiguous research tools. Here, we ascertained the stability of estrogen-induced R-loops on the human genome, visualized them directly by electron microscopy (EM), and measured R-loop frequency and size at the single-molecule level. Combining EM and immuno-labeling on locus-specific head-on TRCs in bacteria, we observed the frequent accumulation of DNA:RNA hybrids behind replication forks. These post-replicative structures are linked to fork slowing and reversal across conflict regions and are distinct from physiological DNA:RNA hybrids at Okazaki fragments. Comet assays on nascent DNA revealed a marked delay in nascent DNA maturation in multiple conditions previously linked to R-loop accumulation. Altogether, our findings suggest that TRC-associated replication interference entails transactions that follow initial R-loop bypass by the replication fork.
Collapse
Affiliation(s)
- Henriette Stoy
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Katharina Zwicky
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Danina Kuster
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Kevin S Lang
- Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
| | - Jana Krietsch
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Magdalena P Crossley
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonas A Schmid
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Houra Merrikh
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
46
|
Saha S, Pommier Y. R-loops, type I topoisomerases and cancer. NAR Cancer 2023; 5:zcad013. [PMID: 37600974 PMCID: PMC9984992 DOI: 10.1093/narcan/zcad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
R-loops are abundant and dynamic structures ubiquitously present in human cells both in the nuclear and mitochondrial genomes. They form in cis in the wake of transcription complexes and in trans apart from transcription complexes. In this review, we focus on the relationship between R-loops and topoisomerases, and cancer genomics and therapies. We summarize the topological parameters associated with the formation and resolution of R-loops, which absorb and release high levels of genomic negative supercoiling (Sc-). We review the deleterious consequences of excessive R-loops and rationalize how human type IA (TOP3B) and type IB (TOP1) topoisomerases regulate and resolve R-loops in coordination with helicase and RNase H enzymes. We also review the drugs (topoisomerase inhibitors, splicing inhibitors, G4 stabilizing ligands) and cancer predisposing genes (BRCA1/2, transcription, and splicing genes) known to induce R-loops, and whether stabilizing R-loops and thereby inducing genomic damage can be viewed as a strategy for cancer treatment.
Collapse
Affiliation(s)
- Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
47
|
Liu Y, Wu X, d'Aubenton-Carafa Y, Thermes C, Chen CL. OKseqHMM: a genome-wide replication fork directionality analysis toolkit. Nucleic Acids Res 2023; 51:e22. [PMID: 36629249 PMCID: PMC9976876 DOI: 10.1093/nar/gkac1239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
During each cell division, tens of thousands of DNA replication origins are co-ordinately activated to ensure the complete duplication of the human genome. However, replication fork progression can be challenged by many factors, including co-directional and head-on transcription-replication conflicts (TRC). Head-on TRCs are more dangerous for genome integrity. To study the direction of replication fork movement and TRCs, we developed a bioinformatics toolkit called OKseqHMM (https://github.com/CL-CHEN-Lab/OK-Seq, https://doi.org/10.5281/zenodo.7428883). Then, we used OKseqHMM to analyse a large number of datasets obtained by Okazaki fragment sequencing to directly measure the genome-wide replication fork directionality (RFD) and to accurately predict replication initiation and termination at a fine resolution in organisms including yeast, mouse and human. We also successfully applied our analysis to other genome-wide sequencing techniques that also contain RFD information (e.g. eSPAN, TrAEL-seq). Our toolkit can be used to predict replication initiation and fork progression direction genome-wide in a wide range of cell models and growth conditions. Comparing the replication and transcription directions allows identifying loci at risk of TRCs, particularly head-on TRCs, and investigating their role in genome instability by checking DNA damage data, which is of prime importance for human health.
Collapse
Affiliation(s)
- Yaqun Liu
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3244, Dynamics of Genetic Information, 75005 Paris, France
| | - Xia Wu
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3244, Dynamics of Genetic Information, 75005 Paris, France
| | - Yves d'Aubenton-Carafa
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Claude Thermes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Chun-Long Chen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3244, Dynamics of Genetic Information, 75005 Paris, France
| |
Collapse
|
48
|
RNA:DNA hybrids from Okazaki fragments contribute to establish the Ku-mediated barrier to replication-fork degradation. Mol Cell 2023; 83:1061-1074.e6. [PMID: 36868227 DOI: 10.1016/j.molcel.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/09/2022] [Accepted: 02/04/2023] [Indexed: 03/05/2023]
Abstract
Nonhomologous end-joining (NHEJ) factors act in replication-fork protection, restart, and repair. Here, we identified a mechanism related to RNA:DNA hybrids to establish the NHEJ factor Ku-mediated barrier to nascent strand degradation in fission yeast. RNase H activities promote nascent strand degradation and replication restart, with a prominent role of RNase H2 in processing RNA:DNA hybrids to overcome the Ku barrier to nascent strand degradation. RNase H2 cooperates with the MRN-Ctp1 axis to sustain cell resistance to replication stress in a Ku-dependent manner. Mechanistically, the need of RNaseH2 in nascent strand degradation requires the primase activity that allows establishing the Ku barrier to Exo1, whereas impairing Okazaki fragment maturation reinforces the Ku barrier. Finally, replication stress induces Ku foci in a primase-dependent manner and favors Ku binding to RNA:DNA hybrids. We propose a function for the RNA:DNA hybrid originating from Okazaki fragments in controlling the Ku barrier specifying nuclease requirement to engage fork resection.
Collapse
|
49
|
Boddu PC, Gupta A, Roy R, De La Pena Avalos B, Herrero AO, Neuenkirchen N, Zimmer J, Chandhok N, King D, Nannya Y, Ogawa S, Lin H, Simon M, Dray E, Kupfer G, Verma AK, Neugebauer KM, Pillai MM. Transcription elongation defects link oncogenic splicing factor mutations to targetable alterations in chromatin landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530019. [PMID: 36891287 PMCID: PMC9994134 DOI: 10.1101/2023.02.25.530019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Transcription and splicing of pre-messenger RNA are closely coordinated, but how this functional coupling is disrupted in human disease remains unexplored. Here, we investigated the impact of non-synonymous mutations in SF3B1 and U2AF1, two commonly mutated splicing factors in cancer, on transcription. We find that the mutations impair RNA Polymerase II (RNAPII) transcription elongation along gene bodies leading to transcription-replication conflicts, replication stress and altered chromatin organization. This elongation defect is linked to disrupted pre-spliceosome assembly due to impaired association of HTATSF1 with mutant SF3B1. Through an unbiased screen, we identified epigenetic factors in the Sin3/HDAC complex, which, when modulated, normalize transcription defects and their downstream effects. Our findings shed light on the mechanisms by which oncogenic mutant spliceosomes impact chromatin organization through their effects on RNAPII transcription elongation and present a rationale for targeting the Sin3/HDAC complex as a potential therapeutic strategy. GRAPHICAL ABSTRACT HIGHLIGHTS Oncogenic mutations of SF3B1 and U2AF1 cause a gene-body RNAPII elongation defectRNAPII transcription elongation defect leads to transcription replication conflicts, DNA damage response, and changes to chromatin organization and H3K4me3 marksThe transcription elongation defect is linked to disruption of the early spliceosome formation through impaired interaction of HTATSF1 with mutant SF3B1.Changes to chromatin organization reveal potential therapeutic strategies by targeting the Sin3/HDAC pathway.
Collapse
|
50
|
Zhao Y, Simon M, Seluanov A, Gorbunova V. DNA damage and repair in age-related inflammation. Nat Rev Immunol 2023; 23:75-89. [PMID: 35831609 PMCID: PMC10106081 DOI: 10.1038/s41577-022-00751-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 02/07/2023]
Abstract
Genomic instability is an important driver of ageing. The accumulation of DNA damage is believed to contribute to ageing by inducing cell death, senescence and tissue dysfunction. However, emerging evidence shows that inflammation is another major consequence of DNA damage. Inflammation is a hallmark of ageing and the driver of multiple age-related diseases. Here, we review the evidence linking DNA damage, inflammation and ageing, highlighting how premature ageing syndromes are associated with inflammation. We discuss the mechanisms by which DNA damage induces inflammation, such as through activation of the cGAS-STING axis and NF-κB activation by ATM. The triggers for activation of these signalling cascades are the age-related accumulation of DNA damage, activation of transposons, cellular senescence and the accumulation of persistent R-loops. We also discuss how epigenetic changes triggered by DNA damage can lead to inflammation and ageing via redistribution of heterochromatin factors. Finally, we discuss potential interventions against age-related inflammation.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY, USA.,Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Matthew Simon
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA. .,Department of Medicine, University of Rochester, Rochester, NY, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA. .,Department of Medicine, University of Rochester, Rochester, NY, USA.
| |
Collapse
|