1
|
Luppi AI, Rosas FE, Noonan MP, Mediano PAM, Kringelbach ML, Carhart-Harris RL, Stamatakis EA, Vernon AC, Turkheimer FE. Oxygen and the Spark of Human Brain Evolution: Complex Interactions of Metabolism and Cortical Expansion across Development and Evolution. Neuroscientist 2024; 30:173-198. [PMID: 36476177 DOI: 10.1177/10738584221138032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Scientific theories on the functioning and dysfunction of the human brain require an understanding of its development-before and after birth and through maturation to adulthood-and its evolution. Here we bring together several accounts of human brain evolution by focusing on the central role of oxygen and brain metabolism. We argue that evolutionary expansion of human transmodal association cortices exceeded the capacity of oxygen delivery by the vascular system, which led these brain tissues to rely on nonoxidative glycolysis for additional energy supply. We draw a link between the resulting lower oxygen tension and its effect on cytoarchitecture, which we posit as a key driver of genetic developmental programs for the human brain-favoring lower intracortical myelination and the presence of biosynthetic materials for synapse turnover. Across biological and temporal scales, this protracted capacity for neural plasticity sets the conditions for cognitive flexibility and ongoing learning, supporting complex group dynamics and intergenerational learning that in turn enabled improved nutrition to fuel the metabolic costs of further cortical expansion. Our proposed model delineates explicit mechanistic links among metabolism, molecular and cellular brain heterogeneity, and behavior, which may lead toward a clearer understanding of brain development and its disorders.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, UK
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
- Centre for Complexity Science, Imperial College London, London, UK
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - MaryAnn P Noonan
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychology, Queen Mary University of London, London, UK
- Department of Computing, Imperial College London, London, UK
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
2
|
Luppi AI, Girn M, Rosas FE, Timmermann C, Roseman L, Erritzoe D, Nutt DJ, Stamatakis EA, Spreng RN, Xing L, Huttner WB, Carhart-Harris RL. A role for the serotonin 2A receptor in the expansion and functioning of human transmodal cortex. Brain 2024; 147:56-80. [PMID: 37703310 DOI: 10.1093/brain/awad311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
Integrating independent but converging lines of research on brain function and neurodevelopment across scales, this article proposes that serotonin 2A receptor (5-HT2AR) signalling is an evolutionary and developmental driver and potent modulator of the macroscale functional organization of the human cerebral cortex. A wealth of evidence indicates that the anatomical and functional organization of the cortex follows a unimodal-to-transmodal gradient. Situated at the apex of this processing hierarchy-where it plays a central role in the integrative processes underpinning complex, human-defining cognition-the transmodal cortex has disproportionately expanded across human development and evolution. Notably, the adult human transmodal cortex is especially rich in 5-HT2AR expression and recent evidence suggests that, during early brain development, 5-HT2AR signalling on neural progenitor cells stimulates their proliferation-a critical process for evolutionarily-relevant cortical expansion. Drawing on multimodal neuroimaging and cross-species investigations, we argue that, by contributing to the expansion of the human cortex and being prevalent at the apex of its hierarchy in the adult brain, 5-HT2AR signalling plays a major role in both human cortical expansion and functioning. Owing to its unique excitatory and downstream cellular effects, neuronal 5-HT2AR agonism promotes neuroplasticity, learning and cognitive and psychological flexibility in a context-(hyper)sensitive manner with therapeutic potential. Overall, we delineate a dual role of 5-HT2ARs in enabling both the expansion and modulation of the human transmodal cortex.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, CB2 1SB, UK
- The Alan Turing Institute, London, NW1 2DB, UK
| | - Manesh Girn
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
| | - Fernando E Rosas
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
- Data Science Institute, Imperial College London, London, SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London, SW7 2AZ, UK
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David Erritzoe
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
3
|
Morris-Drake A, Cobb B, Kern JM, Radford AN. A positive effect of cumulative intergroup threat on reproductive success. Proc Biol Sci 2023; 290:20231853. [PMID: 37964527 PMCID: PMC10646463 DOI: 10.1098/rspb.2023.1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
Outgroup conflict is a powerful selective force across all social taxa. While it is well documented that individual outgroup contests can have a range of direct and indirect fitness consequences, the cumulative pressure of outgroup threats could also potentially impact reproductive success. Here, we use long-term life-history data from a wild population of dwarf mongooses (Helogale parvula) to investigate how intergroup interaction (IGI) rate might influence breeding and offspring survival. IGI rate did not predict the number of litters produced in a season or the inter-litter interval. Unexpectedly, IGI rate was positively associated with the number of pups alive three months after emergence from the breeding burrow. This was not due to a difference in how many pups emerged but because those in groups experiencing more IGIs had a higher survival likelihood post-emergence. Detailed natural observations revealed that both IGI occurrence and the threat of intergroup conflict led to more sentinel behaviour by adults, probably reducing the predation risk to young. Our results contrast the previously documented negative effects of outgroup interactions on reproductive success and highlight the need to assess cumulative threat, rather than just the impact of physical contests, when considering outgroup conflict as a social driver of fitness.
Collapse
Affiliation(s)
- Amy Morris-Drake
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Benjamin Cobb
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Julie M. Kern
- School of Environmental and Rural Science, University of New England, Armidale 2351, New South Wales, Australia
| | - Andrew N. Radford
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
4
|
Bugnyar T. Why are ravens smart? Exploring the social intelligence hypothesis. JOURNAL OF ORNITHOLOGY 2023; 165:15-26. [PMID: 38225936 PMCID: PMC10787684 DOI: 10.1007/s10336-023-02111-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 01/17/2024]
Abstract
Ravens and other corvids are renowned for their 'intelligence'. For long, this reputation has been based primarily on anecdotes but in the last decades experimental evidence for impressive cognitive skills has accumulated within and across species. While we begin to understand the building blocks of corvid cognition, the question remains why these birds have evolved such skills. Focusing on Northern Ravens Corvus corax, I here try to tackle this question by relating current hypotheses on brain evolution to recent empirical data on challenges faced in the birds' daily life. Results show that foraging ravens meet several assumptions for applying social intelligence: (1) they meet repeatedly at foraging sites, albeit individuals have different site preferences and vary in grouping dynamics; (1) foraging groups are structured by dominance rank hierarchies and social bonds; (3) individual ravens memorize former group members and their relationship valence over years, deduce third-party relationships and use their social knowledge in daily life by supporting others in conflicts and intervening in others' affiliations. Hence, ravens' socio-cognitive skills may be strongly shaped by the 'complex' social environment experienced as non-breeders.
Collapse
Affiliation(s)
- Thomas Bugnyar
- Department of Behavioral and Cognitive Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Konrad Lorenz Forschungsstelle, Core Faculty for Behavior and Cognition, University of Vienna, Fischerau 13, 4645 Grünau im Almtal, Austria
| |
Collapse
|
5
|
Dunbar RIM, Shultz S. Four errors and a fallacy: pitfalls for the unwary in comparative brain analyses. Biol Rev Camb Philos Soc 2023; 98:1278-1309. [PMID: 37001905 DOI: 10.1111/brv.12953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Comparative analyses are the backbone of evolutionary analysis. However, their record in producing a consensus has not always been good. This is especially true of attempts to understand the factors responsible for the evolution of large brains, which have been embroiled in an increasingly polarised debate over the past three decades. We argue that most of these disputes arise from a number of conceptual errors and associated logical fallacies that are the result of a failure to adopt a biological systems-based approach to hypothesis-testing. We identify four principal classes of error: a failure to heed Tinbergen's Four Questions when testing biological hypotheses, misapplying Dobzhansky's Dictum when testing hypotheses of evolutionary adaptation, poorly chosen behavioural proxies for underlying hypotheses, and the use of inappropriate statistical methods. In the interests of progress, we urge a more careful and considered approach to comparative analyses, and the adoption of a broader, rather than a narrower, taxonomic perspective.
Collapse
Affiliation(s)
- Robin I M Dunbar
- Department of Experimental Psychology, Anna Watts Building, University of Oxford, Oxford, OX2 6GG, UK
| | - Susanne Shultz
- Department of Earth and Environmental Sciences, Michael Smith Building, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
6
|
Lambert CT, Sahu PK, Sturdy CB, Guillette LM. Among-individual differences in auditory and physical cognitive abilities in zebra finches. Learn Behav 2022; 50:389-404. [PMID: 35583601 PMCID: PMC9116276 DOI: 10.3758/s13420-022-00520-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2022] [Indexed: 12/13/2022]
Abstract
Among-individual variation in performance on cognitive tasks is ubiquitous across species that have been examined, and understanding the evolution of cognitive abilities requires investigating among-individual variation because natural selection acts on individual differences. However, relatively little is known about the extent to which individual differences in cognition are determined by domain-specific compared with domain-general cognitive abilities. We examined individual differences in learning speed of zebra finches across seven different tasks to determine the extent of domain-specific versus domain-general learning abilities, as well as the relationship between learning speed and learning generalization. Thirty-two zebra finches completed a foraging board experiment that included visual and structural discriminations, and then these same birds went through an acoustic operant discrimination experiment that required discriminating between different natural categories of acoustic stimuli. We found evidence of domain-general learning abilities as birds' relative performance on the seven learning tasks was weakly repeatable and a principal components analysis found a first principal component that explained 36% of the variance in performance across tasks with all tasks loading unidirectionally on this component. However, the few significant correlations between tasks and high repeatability within each experiment suggest the potential for domain-specific abilities. Learning speed did not influence an individual's ability to generalize learning. These results suggest that zebra finch performance across visual, structural, and auditory learning relies upon some common mechanism; some might call this evidence of "general intelligence"(g), but it is also possible that this finding is due to other noncognitive mechanisms such as motivation.
Collapse
Affiliation(s)
- Connor T Lambert
- Department of Psychology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Prateek K Sahu
- Department of Psychology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Christopher B Sturdy
- Department of Psychology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Lauren M Guillette
- Department of Psychology, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
7
|
Search performance and octopamine neuronal signaling mediate parasitoid induced changes in Drosophila oviposition behavior. Nat Commun 2022; 13:4476. [PMID: 35918358 PMCID: PMC9345866 DOI: 10.1038/s41467-022-32203-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Making the appropriate responses to predation risk is essential for the survival of an organism; however, the underlying mechanisms are still largely unknown. Here, we find that Drosophila has evolved an adaptive strategy to manage the threat from its parasitoid wasp by manipulating the oviposition behavior. Through perception of the differences in host search performance of wasps, Drosophila is able to recognize younger wasps as a higher level of threat and consequently depress the oviposition. We further show that this antiparasitoid behavior is mediated by the regulation of the expression of Tdc2 and Tβh in the ventral nerve cord via LC4 visual projection neurons, which in turn leads to the dramatic reduction in octopamine and the resulting dysfunction of mature follicle trimming and rupture. Our study uncovers a detailed mechanism underlying the defensive behavior in insects that may advance our understanding of predator avoidance in animals.
Collapse
|
8
|
Braga Goncalves I, Morris-Drake A, Kennedy P, Radford AN. Fitness consequences of outgroup conflict. eLife 2022; 11:e74550. [PMID: 35833830 PMCID: PMC9282852 DOI: 10.7554/elife.74550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
In social species across the animal kingdom, conspecific outsiders threaten the valuable resources of groups and their members. This outgroup conflict is recognised as a powerful selection pressure, but we argue that studies explicitly quantifying the fitness consequences need to be broader in scope: more attention should be paid to delayed, cumulative, and third-party fitness consequences, not just those arising immediately to group members involved in physical contests. In the first part of this review, we begin by documenting how single contests can have survival and reproductive consequences either immediately or with a delay. Then, we step beyond contests to describe fitness consequences that can also result from interactions with cues of rival presence and the general landscape of outgroup threat, and beyond single interactions to describe cumulative effects of territorial pressure and elevated outgroup-induced stress. Using examples from a range of taxa, we discuss which individuals are affected negatively and positively, considering both interaction participants and third-party group members of the same or the next generation. In the second part of the review, we provide suggestions about how to move forward. We highlight the importance of considering how different types of outgroup conflict can generate different selection pressures and of investigating variation in fitness consequences within and between species. We finish by discussing the value of theoretical modelling and long-term studies of natural populations, experimental manipulations, and meta-analyses to develop further our understanding of this crucial aspect of sociality.
Collapse
Affiliation(s)
| | - Amy Morris-Drake
- School of Biological Sciences, University of BristolBristolUnited Kingdom
| | - Patrick Kennedy
- School of Biological Sciences, University of BristolBristolUnited Kingdom
| | - Andrew N Radford
- School of Biological Sciences, University of BristolBristolUnited Kingdom
| |
Collapse
|
9
|
Griebling HJ, Sluka CM, Stanton LA, Barrett LP, Bastos JB, Benson-Amram S. How technology can advance the study of animal cognition in the wild. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Morris-Drake A, Kennedy P, Braga Goncalves I, Radford AN. Variation between species, populations, groups and individuals in the fitness consequences of out-group conflict. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210148. [PMID: 35369741 PMCID: PMC8977661 DOI: 10.1098/rstb.2021.0148] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/02/2021] [Indexed: 12/30/2022] Open
Abstract
Out-group conflict is rife in the natural world, occurring from primates to ants. Traditionally, research on this aspect of sociality has focused on the interactions between groups and their conspecific rivals, investigating contest function and characteristics, which group members participate and what determines who wins. In recent years, however, there has been increasing interest in the consequences of out-group conflict. In this review, we first set the scene by outlining the fitness consequences that can arise immediately to contest participants, as well as a broader range of delayed, cumulative and third-party effects of out-group conflict on survival and reproductive success. For the majority of the review, we then focus on variation in these fitness consequences of out-group conflict, describing known examples both between species and between populations, groups and individuals of the same species. Throughout, we suggest possible reasons for the variation, provide examples from a diverse array of taxa, and suggest what is needed to advance this burgeoning area of social evolution. This article is part of the theme issue 'Intergroup conflict across taxa'.
Collapse
Affiliation(s)
- Amy Morris-Drake
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Patrick Kennedy
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Ines Braga Goncalves
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Andrew N. Radford
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
11
|
Shilovsky GA, Putyatina TS, Markov AV. Altruism and Phenoptosis as Programs Supported by Evolution. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1540-1552. [PMID: 34937533 PMCID: PMC8678581 DOI: 10.1134/s0006297921120038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022]
Abstract
Phenoptosis is a programmed death that has emerged in the process of evolution, sometimes taking the form of an altruistic program. In particular, it is believed to be a weapon against the spread of pandemics in the past and an obstacle in fighting pandemics in the present (COVID). However, on the evolutionary scale, deterministic death is not associated with random relationships (for example, bacteria with a particular mutation), but is a product of higher nervous activity or a consequence of established hierarchy that reaches its maximal expression in eusocial communities of Hymenoptera and highly social communities of mammals. Unlike a simple association of individuals, eusociality is characterized by the appearance of non-reproductive individuals as the highest form of altruism. In contrast to primitive programs for unicellular organisms, higher multicellular organisms are characterized by the development of behavior-based phenoptotic programs, especially in the case of reproduction-associated limitation of lifespan. Therefore, we can say that the development of altruism in the course of evolution of sociality leads in its extreme manifestation to phenoptosis. Development of mathematical models for the emergence of altruism and programmed death contributes to our understanding of mechanisms underlying these paradoxical counterproductive (harmful) programs. In theory, this model can be applied not only to insects, but also to other social animals and even to the human society. Adaptive death is an extreme form of altruism. We consider altruism and programmed death as programmed processes in the mechanistic and adaptive sense, respectively. Mechanistically, this is a program existing as a predetermined chain of certain responses, regardless of its adaptive value. As to its adaptive value (regardless of the degree of "phenoptoticity"), this is a characteristic of organisms that demonstrate high levels of kinship, social organization, and physical association typical for higher-order individuals, e.g., unicellular organisms forming colonies with some characteristics of multicellular animals or colonies of multicellular animals displaying features of supraorganisms.
Collapse
Affiliation(s)
- Gregory A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - Tatyana S Putyatina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Markov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
12
|
Morris-Drake A, Kern JM, Radford AN. Experimental evidence for delayed post-conflict management behaviour in wild dwarf mongooses. eLife 2021; 10:69196. [PMID: 34725038 PMCID: PMC8562999 DOI: 10.7554/elife.69196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
In many species, within-group conflict leads to immediate avoidance of potential aggressors or increases in affiliation, but no studies have investigated delayed post-conflict management behaviour. Here, we experimentally test that possibility using a wild but habituated population of dwarf mongooses (Helogale parvula). First, we used natural and playback-simulated foraging displacements to demonstrate that bystanders take notice of the vocalisations produced during such within-group conflict events but that they do not engage in any immediate post-conflict affiliative behaviour with the protagonists or other bystanders. We then used another playback experiment to assess delayed effects of within-group conflict on grooming interactions: we examined affiliative behaviour at the evening sleeping burrow, 30–60 min after the most recent simulated foraging displacement. Overall, fewer individuals groomed on evenings following an afternoon of simulated conflict, but those that did groomed more than on control evenings. Subordinate bystanders groomed with the simulated aggressor significantly less, and groomed more with one another, on conflict compared to control evenings. Our study provides experimental evidence that dwarf mongooses acoustically obtain information about within-group contests (including protagonist identity), retain that information, and use it to inform conflict-management decisions with a temporal delay. Social animals that live in groups often have disagreements over access to mates and food. Even fleeting in-group disputes can be costly, disrupting relationships, wasting time and energy, or causing injury if aggression escalates. So, much like humans, many social animals, including primates, birds and dogs, have evolved conflict management strategies to prevent and resolve in-group disagreements. In the immediate aftermath of a conflict, this usually involves changes in the interactions between those involved in the disagreement, or between bystander groupmates and either the victim or aggressor. Less is known about whether social animals can recall past disputes and if they can use conflict management strategies some time after a quarrel has occurred. That is, do aggressive interactions between groupmates influence later social decisions of bystanders in the group? To investigate, Morris-Drake et al. studied groups of wild dwarf mongooses (Helogale parvula) that have become accustomed to living alongside humans in Limpopo Province, South Africa. Dwarf mongooses live in groups of up to 30 individuals, with one dominant breeding pair and lower-ranked helpers. When disagreements arise over food, an aggressor growls deeply and hip-slams the victim away from their foraging patch, stealing the victim’s prey in the process. Victims often produce high-pitched squeals in retreat. Using recordings of these calls, Morris-Drake et al. devised a field experiment to investigate how mongooses responded to nearby conflicts between other group members. Recordings simulating a conflict over food were played to groups of foraging mongooses over the course of an afternoon, so that group members effectively heard what sounded like repeated squabbles between two out-of-sight individuals. Similar to natural conflicts, the mongooses did not engage in any obvious conflict management behaviour immediately after hearing these disputes. But when the group returned to their sleeping burrow that evening, subordinate group members shunned the perceived aggressors from grooming, a key social activity. This work provides evidence that dwarf mongooses keep tabs on conflicts that occur between groupmates. It shows these animals can extract information about conflicts from vocal cues alone and that bystanders use this information when making later social decisions impacting group dynamics. It also adds to growing evidence from baboons, monkeys and chimpanzees that social animals can remember past events and take these into account when interacting with groupmates.
Collapse
Affiliation(s)
- Amy Morris-Drake
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Julie M Kern
- School of Environmental and Rural Science, University of New England, Armidale, Australia
| | - Andrew N Radford
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
13
|
Robira B, Benhamou S, Masi S, Llaurens V, Riotte-Lambert L. Foraging efficiency in temporally predictable environments: is a long-term temporal memory really advantageous? ROYAL SOCIETY OPEN SCIENCE 2021; 8:210809. [PMID: 34567589 PMCID: PMC8456140 DOI: 10.1098/rsos.210809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Cognitive abilities enabling animals that feed on ephemeral but yearly renewable resources to infer when resources are available may have been favoured by natural selection, but the magnitude of the benefits brought by these abilities remains poorly known. Using computer simulations, we compared the efficiencies of three main types of foragers with different abilities to process temporal information, in spatially and/or temporally homogeneous or heterogeneous environments. One was endowed with a sampling memory, which stores recent experience about the availability of the different food types. The other two were endowed with a chronological or associative memory, which stores long-term temporal information about absolute times of these availabilities or delays between them, respectively. To determine the range of possible efficiencies, we also simulated a forager without temporal cognition but which simply targeted the closest and possibly empty food sources, and a perfectly prescient forager, able to know at any time which food source was effectively providing food. The sampling, associative and chronological foragers were far more efficient than the forager without temporal cognition in temporally predictable environments, and interestingly, their efficiencies increased with the level of temporal heterogeneity. The use of a long-term temporal memory results in a foraging efficiency up to 1.16 times better (chronological memory) or 1.14 times worse (associative memory) than the use of a simple sampling memory. Our results thus show that, for everyday foraging, a long-term temporal memory did not provide a clear benefit over a simple short-term memory that keeps track of the current resource availability. Long-term temporal memories may therefore have emerged in contexts where short-term temporal cognition is useless, i.e. when the anticipation of future environmental changes is strongly needed.
Collapse
Affiliation(s)
- Benjamin Robira
- Centre d'Ecologie Fonctionnelle et Evolutive, Université de Montpellier and CNRS, Montpellier, France
| | - Simon Benhamou
- Centre d'Ecologie Fonctionnelle et Evolutive, Université de Montpellier and CNRS, Montpellier, France
| | - Shelly Masi
- Eco-anthropologie, Muséum National d'Histoire Naturelle, CNRS, Université de Paris, Paris, France
| | - Violaine Llaurens
- Institut de Systématique, Evolution, Biodiversité, CNRS-École Pratique des Hautes Études, Muséum National d'Histoire Naturelle, Université Pierre-et-Marie-Curie, Paris, France
| | - Louise Riotte-Lambert
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|