1
|
Liljefors J, Almeida R, Rane G, Lundström JN, Herman P, Lundqvist M. Distinct functions for beta and alpha bursts in gating of human working memory. Nat Commun 2024; 15:8950. [PMID: 39419974 PMCID: PMC11486900 DOI: 10.1038/s41467-024-53257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Multiple neural mechanisms underlying gating to working memory have been proposed with divergent results obtained in human and animal studies. Previous findings from non-human primates suggest prefrontal beta frequency bursts as a correlate of transient inhibition during selective encoding. Human studies instead suggest a similar role for sensory alpha power fluctuations. To cast light on these discrepancies we employed a sequential working memory task with distractors for human participants. In particular, we examined their whole-brain electrophysiological activity in both alpha and beta bands with the same single-trial burst analysis earlier performed on non-human primates. Our results reconcile earlier findings by demonstrating that both alpha and beta bursts in humans correlate with the filtering and control of memory items, but with region and task-specific differences between the two rhythms. Occipital beta burst patterns were selectively modulated during the transition from sensory processing to memory retention whereas prefrontal and parietal beta bursts tracked sequence order and were proactively upregulated prior to upcoming target encoding. Occipital alpha bursts instead increased during the actual presentation of unwanted sensory stimuli. Source reconstruction additionally suggested the involvement of striatal and thalamic alpha and beta. Thus, specific whole-brain burst patterns correlate with different aspects of working memory control.
Collapse
Affiliation(s)
- Johan Liljefors
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Rita Almeida
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm University Brain Imaging Centre, Stockholm University, Stockholm, Sweden
| | - Gustaf Rane
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Johan N Lundström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
| | - Pawel Herman
- School of Electrical Engineering and Computer Science, and Digital Futures, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Mikael Lundqvist
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Miller JA, Constantinidis C. Timescales of learning in prefrontal cortex. Nat Rev Neurosci 2024; 25:597-610. [PMID: 38937654 DOI: 10.1038/s41583-024-00836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
The lateral prefrontal cortex (PFC) in humans and other primates is critical for immediate, goal-directed behaviour and working memory, which are classically considered distinct from the cognitive and neural circuits that support long-term learning and memory. Over the past few years, a reconsideration of this textbook perspective has emerged, in that different timescales of memory-guided behaviour are in constant interaction during the pursuit of immediate goals. Here, we will first detail how neural activity related to the shortest timescales of goal-directed behaviour (which requires maintenance of current states and goals in working memory) is sculpted by long-term knowledge and learning - that is, how the past informs present behaviour. Then, we will outline how learning across different timescales (from seconds to years) drives plasticity in the primate lateral PFC, from single neuron firing rates to mesoscale neuroimaging activity patterns. Finally, we will review how, over days and months of learning, dense local and long-range connectivity patterns in PFC facilitate longer-lasting changes in population activity by changing synaptic weights and recruiting additional neural resources to inform future behaviour. Our Review sheds light on how the machinery of plasticity in PFC circuits facilitates the integration of learned experiences across time to best guide adaptive behaviour.
Collapse
Affiliation(s)
- Jacob A Miller
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA.
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
3
|
Parto-Dezfouli M, Vanegas I, Zarei M, Nesse WH, Clark KL, Noudoost B. Prefrontal working memory signal primarily controls phase-coded information within extrastriate cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610140. [PMID: 39257783 PMCID: PMC11383686 DOI: 10.1101/2024.08.28.610140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In order to understand how prefrontal cortex provides the benefits of working memory (WM) for visual processing we examined the influence of WM on the representation of visual signals in V4 neurons in two macaque monkeys. We found that WM induces strong β oscillations in V4 and that the timing of action potentials relative to this oscillation reflects sensory information- i.e., a phase coding of visual information. Pharmacologically inactivating the Frontal Eye Field part of prefrontal cortex, we confirmed the necessity of prefrontal signals for the WM-driven boost in phase coding of visual information. Indeed, changes in the average firing rate of V4 neurons could be accounted for by WM-induced oscillatory changes. We present a network model to describe how WM signals can recruit sensory areas primarily by inducing oscillations within these areas and discuss the implications of these findings for a sensory recruitment theory of WM through coherence.
Collapse
Affiliation(s)
- Mohsen Parto-Dezfouli
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Isabel Vanegas
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, UT, United States
| | - Mohammad Zarei
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - William H. Nesse
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, UT, United States
| | - Kelsey L. Clark
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, UT, United States
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, UT, United States
- Lead
| |
Collapse
|
4
|
Roshanaei M, Bahmani Z, Clark K, Daliri MR, Noudoost B. Working memory expedites the processing of visual signals within the extrastriate cortex. iScience 2024; 27:110489. [PMID: 39100691 PMCID: PMC11295472 DOI: 10.1016/j.isci.2024.110489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/03/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024] Open
Abstract
Working memory is the ability to maintain information in the absence of sensory input. In this study, we investigated how working memory benefits processing in visual areas. Using a measure of phase consistency to detect the arrival time of visual signals to the middle temporal (MT) area, we assessed the impact of working memory on the speed of sensory processing. We recorded from MT neurons in two monkeys during a spatial working memory task with visual probes. When the memorized location closely matches the receptive field center of the recording site, visual input arrives sooner, but if the memorized location does not match the receptive field center then the arrival of visual information is delayed. Thus, working memory expedites the arrival of visual input in MT. These results reveal that even in the absence of firing rate changes, working memory can still benefit the processing of information within sensory areas.
Collapse
Affiliation(s)
- Majid Roshanaei
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, P.O. Box 16846-13114, Tehran, Iran
| | - Zahra Bahmani
- Department of Electrical & Computer Engineering, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Kelsey Clark
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Mohammad Reza Daliri
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, P.O. Box 16846-13114, Tehran, Iran
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
5
|
Hirabayashi T, Nagai Y, Hori Y, Hori Y, Oyama K, Mimura K, Miyakawa N, Iwaoki H, Inoue KI, Suhara T, Takada M, Higuchi M, Minamimoto T. Multiscale chemogenetic dissection of fronto-temporal top-down regulation for object memory in primates. Nat Commun 2024; 15:5369. [PMID: 38987235 PMCID: PMC11237144 DOI: 10.1038/s41467-024-49570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Visual object memory is a fundamental element of various cognitive abilities, and the underlying neural mechanisms have been extensively examined especially in the anterior temporal cortex of primates. However, both macroscopic large-scale functional network in which this region is embedded and microscopic neuron-level dynamics of top-down regulation it receives for object memory remains elusive. Here, we identified the orbitofrontal node as a critical partner of the anterior temporal node for object memory by combining whole-brain functional imaging during rest and a short-term object memory task in male macaques. Focal chemogenetic silencing of the identified orbitofrontal node downregulated both the local orbitofrontal and remote anterior temporal nodes during the task, in association with deteriorated mnemonic, but not perceptual, performance. Furthermore, imaging-guided neuronal recordings in the same monkeys during the same task causally revealed that orbitofrontal top-down modulation enhanced stimulus-selective mnemonic signal in individual anterior temporal neurons while leaving bottom-up perceptual signal unchanged. Furthermore, similar activity difference was also observed between correct and mnemonic error trials before silencing, suggesting its behavioral relevance. These multifaceted but convergent results provide a multiscale causal understanding of dynamic top-down regulation of the anterior temporal cortex along the ventral fronto-temporal network underpinning short-term object memory in primates.
Collapse
Affiliation(s)
- Toshiyuki Hirabayashi
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan.
| | - Yuji Nagai
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Yuki Hori
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Yukiko Hori
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Kei Oyama
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Koki Mimura
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Naohisa Miyakawa
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Haruhiko Iwaoki
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Ken-Ichi Inoue
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Tetsuya Suhara
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Masahiko Takada
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Makoto Higuchi
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Takafumi Minamimoto
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| |
Collapse
|
6
|
Hoffman SJ, Dotson NM, Lima V, Gray CM. The primate cortical LFP exhibits multiple spectral and temporal gradients and widespread task dependence during visual short-term memory. J Neurophysiol 2024; 132:206-225. [PMID: 38842507 PMCID: PMC11383615 DOI: 10.1152/jn.00264.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 06/05/2024] [Indexed: 06/07/2024] Open
Abstract
Although cognitive functions are hypothesized to be mediated by synchronous neuronal interactions in multiple frequency bands among widely distributed cortical areas, we still lack a basic understanding of the distribution and task dependence of oscillatory activity across the cortical map. Here, we ask how the spectral and temporal properties of the local field potential (LFP) vary across the primate cerebral cortex, and how they are modulated during visual short-term memory. We measured the LFP from 55 cortical areas in two macaque monkeys while they performed a visual delayed match to sample task. Analysis of peak frequencies in the LFP power spectra reveals multiple discrete frequency bands between 3 and 80 Hz that differ between the two monkeys. The LFP power in each band, as well as the sample entropy, a measure of signal complexity, display distinct spatial gradients across the cortex, some of which correlate with reported spine counts in cortical pyramidal neurons. Cortical areas can be robustly decoded using a small number of spectral and temporal parameters, and significant task-dependent increases and decreases in spectral power occur in all cortical areas. These findings reveal pronounced, widespread, and spatially organized gradients in the spectral and temporal activity of cortical areas. Task-dependent changes in cortical activity are globally distributed, even for a simple cognitive task.NEW & NOTEWORTHY We recorded extracellular electrophysiological signals from roughly the breadth and depth of a cortical hemisphere in nonhuman primates (NHPs) performing a visual memory task. Analyses of the band-limited local field potential (LFP) power displayed widespread, frequency-dependent cortical gradients in spectral power. Using a machine learning classifier, these features allowed robust cortical area decoding. Further task dependence in LFP power were found to be widespread, indicating large-scale gradients of LFP activity, and task-related activity.
Collapse
Affiliation(s)
- Steven J Hoffman
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana, United States
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States
| | - Nicholas M Dotson
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana, United States
- Salk Institute for Biological Studies, La Jolla, California, United States
| | - Vinicius Lima
- Aix Marseille Université, INSERM, Systems Neuroscience Institute, Marseille, France
| | - Charles M Gray
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana, United States
| |
Collapse
|
7
|
Hoffman SJ, Dotson NM, Lima V, Gray CM. The Primate Cortical LFP Exhibits Multiple Spectral and Temporal Gradients and Widespread Task-Dependence During Visual Short-Term Memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577843. [PMID: 38352585 PMCID: PMC10862751 DOI: 10.1101/2024.01.29.577843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Although cognitive functions are hypothesized to be mediated by synchronous neuronal interactions in multiple frequency bands among widely distributed cortical areas, we still lack a basic understanding of the distribution and task dependence of oscillatory activity across the cortical map. Here, we ask how the spectral and temporal properties of the local field potential (LFP) vary across the primate cerebral cortex, and how they are modulated during visual short-term memory. We measured the LFP from 55 cortical areas in two macaque monkeys while they performed a visual delayed match to sample task. Analysis of peak frequencies in the LFP power spectra reveals multiple discrete frequency bands between 3-80 Hz that differ between the two monkeys. The LFP power in each band, as well as the Sample Entropy, a measure of signal complexity, display distinct spatial gradients across the cortex, some of which correlate with reported spine counts in layer 3 pyramidal neurons. Cortical areas can be robustly decoded using a small number of spectral and temporal parameters, and significant task dependent increases and decreases in spectral power occur in all cortical areas. These findings reveal pronounced, widespread and spatially organized gradients in the spectral and temporal activity of cortical areas. Task-dependent changes in cortical activity are globally distributed, even for a simple cognitive task.
Collapse
Affiliation(s)
- Steven J Hoffman
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
- Current address: Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nicholas M Dotson
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
- Current address: Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Vinicius Lima
- Aix Marseille Université, INSERM, Systems Neuroscience Institute, Marseille, France
| | - Charles M Gray
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
8
|
Zhao Y, Zhong Y, Chen W, Chang S, Cao Q, Wang Y, Yang L. Ocular and neural genes jointly regulate the visuospatial working memory in ADHD children. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:14. [PMID: 37658396 PMCID: PMC10472596 DOI: 10.1186/s12993-023-00216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
OBJECTIVE Working memory (WM) deficits have frequently been linked to attention deficit hyperactivity disorder (ADHD). Despite previous studies suggested its high heritability, its genetic basis, especially in ADHD, remains unclear. The current study aimed to comprehensively explore the genetic basis of visual-spatial working memory (VSWM) in ADHD using wide-ranging genetic analyses. METHODS The current study recruited a cohort consisted of 802 ADHD individuals, all met DSM-IV ADHD diagnostic criteria. VSWM was assessed by Rey-Osterrieth complex figure test (RCFT), which is a widely used psychological test include four memory indexes: detail delayed (DD), structure delayed (SD), structure immediate (SI), detail immediate (DI). Genetic analyses were conducted at the single nucleotide polymorphism (SNP), gene, pathway, polygenic and protein network levels. Polygenic Risk Scores (PRS) were based on summary statistics of various psychiatric disorders, including ADHD, autism spectrum disorder (ASD), major depressive disorder (MDD), schizophrenia (SCZ), obsessive compulsive disorders (OCD), and substance use disorder (SUD). RESULTS Analyses at the single-marker level did not yield significant results (5E-08). However, the potential signals with P values less than E-05 and their mapped genes suggested the regulation of VSWM involved both ocular and neural system related genes, moreover, ADHD-related genes were also involved. The gene-based analysis found RAB11FIP1, whose encoded protein modulates several neurodevelopment processes and visual system, as significantly associated with DD scores (P = 1.96E-06, Padj = 0.036). Candidate pathway enrichment analyses (N = 53) found that forebrain neuron fate commitment significantly enriched in DD (P = 4.78E-04, Padj = 0.025), and dopamine transport enriched in SD (P = 5.90E-04, Padj = 0.031). We also observed a significant negative relationship between DD scores and ADHD PRS scores (P = 0.0025, Empirical P = 0.048). CONCLUSIONS Our results emphasized the joint contribution of ocular and neural genes in regulating VSWM. The study reveals a shared genetic basis between ADHD and VSWM, with GWAS indicating the involvement of ADHD-related genes in VSWM. Additionally, the PRS analysis identifies a significant relationship between ADHD-PRS and DD scores. Overall, our findings shed light on the genetic basis of VSWM deficits in ADHD, and may have important implications for future research and clinical practice.
Collapse
Affiliation(s)
- Yilu Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
| | - Yuanxin Zhong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Wei Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
| | - Qingjiu Cao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
| | - Yufeng Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
| | - Li Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China.
| |
Collapse
|
9
|
Comeaux P, Clark K, Noudoost B. A recruitment through coherence theory of working memory. Prog Neurobiol 2023; 228:102491. [PMID: 37393039 PMCID: PMC10530428 DOI: 10.1016/j.pneurobio.2023.102491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
The interactions between prefrontal cortex and other areas during working memory have been studied for decades. Here we outline a conceptual framework describing interactions between these areas during working memory, and review evidence for key elements of this model. We specifically suggest that a top-down signal sent from prefrontal to sensory areas drives oscillations in these areas. Spike timing within sensory areas becomes locked to these working-memory-driven oscillations, and the phase of spiking conveys information about the representation available within these areas. Downstream areas receiving these phase-locked spikes from sensory areas can recover this information via a combination of coherent oscillations and gating of input efficacy based on the phase of their local oscillations. Although the conceptual framework is based on prefrontal interactions with sensory areas during working memory, we also discuss the broader implications of this framework for flexible communication between brain areas in general.
Collapse
Affiliation(s)
- Phillip Comeaux
- Dept. of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Salt Lake City, UT 84112, USA; Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Kelsey Clark
- Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Behrad Noudoost
- Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
10
|
Jonikaitis D, Zhu S. Action space restructures visual working memory in prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553135. [PMID: 37645942 PMCID: PMC10462047 DOI: 10.1101/2023.08.13.553135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Visual working memory enables flexible behavior by decoupling sensory stimuli from behavioral actions. While previous studies have predominantly focused on the storage component of working memory, the role of future actions in shaping working memory remains unknown. To answer this question, we used two working memory tasks that allowed the dissociation of sensory and action components of working memory. We measured behavioral performance and neuronal activity in the macaque prefrontal cortex area, frontal eye fields. We show that the action space reshapes working memory, as evidenced by distinct patterns of memory tuning and attentional orienting between the two tasks. Notably, neuronal activity during the working memory period predicted future behavior and exhibited mixed selectivity in relation to the sensory space but linear selectivity relative to the action space. This linear selectivity was achieved through the rapid transformation from sensory to action space and was subsequently maintained as a stable cross-temporal population activity pattern. Combined, we provide direct physiological evidence of the action-oriented nature of frontal eye field neurons during memory tasks and demonstrate that the anticipation of behavioral outcomes plays a significant role in transforming and maintaining the contents of visual working memory.
Collapse
|
11
|
Basanisi R, Marche K, Combrisson E, Apicella P, Brovelli A. Beta Oscillations in Monkey Striatum Encode Reward Prediction Error Signals. J Neurosci 2023; 43:3339-3352. [PMID: 37015808 PMCID: PMC10162459 DOI: 10.1523/jneurosci.0952-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 02/22/2023] [Accepted: 03/17/2023] [Indexed: 04/06/2023] Open
Abstract
Reward prediction error (RPE) signals are crucial for reinforcement learning and decision-making as they quantify the mismatch between predicted and obtained rewards. RPE signals are encoded in the neural activity of multiple brain areas, such as midbrain dopaminergic neurons, prefrontal cortex, and striatum. However, it remains unclear how these signals are expressed through anatomically and functionally distinct subregions of the striatum. In the current study, we examined to which extent RPE signals are represented across different striatal regions. To do so, we recorded local field potentials (LFPs) in sensorimotor, associative, and limbic striatal territories of two male rhesus monkeys performing a free-choice probabilistic learning task. The trial-by-trial evolution of RPE during task performance was estimated using a reinforcement learning model fitted on monkeys' choice behavior. Overall, we found that changes in beta band oscillations (15-35 Hz), after the outcome of the animal's choice, are consistent with RPE encoding. Moreover, we provide evidence that the signals related to RPE are more strongly represented in the ventral (limbic) than dorsal (sensorimotor and associative) part of the striatum. To conclude, our results suggest a relationship between striatal beta oscillations and the evaluation of outcomes based on RPE signals and highlight a major contribution of the ventral striatum to the updating of learning processes.SIGNIFICANCE STATEMENT Reward prediction error (RPE) signals are crucial for reinforcement learning and decision-making as they quantify the mismatch between predicted and obtained rewards. Current models suggest that RPE signals are encoded in the neural activity of multiple brain areas, including the midbrain dopaminergic neurons, prefrontal cortex and striatum. However, it remains elusive whether RPEs recruit anatomically and functionally distinct subregions of the striatum. Our study provides evidence that RPE-related modulations in local field potential (LFP) power are dominant in the striatum. In particular, they are stronger in the rostro-ventral rather than the caudo-dorsal striatum. Our findings contribute to a better understanding of the role of striatal territories in reward-based learning and may be relevant for neuropsychiatric and neurologic diseases that affect striatal circuits.
Collapse
Affiliation(s)
- Ruggero Basanisi
- Institut de Neurosciences de la Timone, Aix Marseille Université, Unité Mixte de Recherche 7289 Centre National de la Recherche Scientifique, Marseille 13005, France
| | - Kevin Marche
- Institut de Neurosciences de la Timone, Aix Marseille Université, Unité Mixte de Recherche 7289 Centre National de la Recherche Scientifique, Marseille 13005, France
- Wellcome Center for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Etienne Combrisson
- Institut de Neurosciences de la Timone, Aix Marseille Université, Unité Mixte de Recherche 7289 Centre National de la Recherche Scientifique, Marseille 13005, France
| | - Paul Apicella
- Institut de Neurosciences de la Timone, Aix Marseille Université, Unité Mixte de Recherche 7289 Centre National de la Recherche Scientifique, Marseille 13005, France
| | - Andrea Brovelli
- Institut de Neurosciences de la Timone, Aix Marseille Université, Unité Mixte de Recherche 7289 Centre National de la Recherche Scientifique, Marseille 13005, France
| |
Collapse
|
12
|
Abdalaziz M, Redding ZV, Fiebelkorn IC. Rhythmic temporal coordination of neural activity prevents representational conflict during working memory. Curr Biol 2023; 33:1855-1863.e3. [PMID: 37100058 DOI: 10.1016/j.cub.2023.03.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/27/2023] [Accepted: 03/31/2023] [Indexed: 04/28/2023]
Abstract
Selective attention1 is characterized by alternating states associated with either attentional sampling or attentional shifting, helping to prevent functional conflicts by isolating function-specific neural activity in time.2,3,4,5 We hypothesized that such rhythmic temporal coordination might also help to prevent representational conflicts during working memory.6 Multiple items can be simultaneously held in working memory, and these items can be represented by overlapping neural populations.7,8,9 Traditional theories propose that the short-term storage of to-be-remembered items occurs through persistent neural activity,10,11,12 but when neurons are simultaneously representing multiple items, persistent activity creates a potential for representational conflicts. In comparison, more recent, "activity-silent" theories of working memory propose that synaptic changes also contribute to short-term storage of to-be-remembered items.13,14,15,16 Transient bursts in neural activity,17 rather than persistent activity, could serve to occasionally refresh these synaptic changes. Here, we used EEG and response times to test whether rhythmic temporal coordination helps to isolate neural activity associated with different to-be-remembered items, thereby helping to prevent representational conflicts. Consistent with this hypothesis, we report that the relative strength of different item representations alternates over time as a function of the frequency-specific phase. Although RTs were linked to theta (∼6 Hz) and beta (∼25 Hz) phases during a memory delay, the relative strength of item representations only alternated as a function of the beta phase. The present findings (1) are consistent with rhythmic temporal coordination being a general mechanism for preventing functional or representational conflicts during cognitive processes and (2) inform models describing the role of oscillatory dynamics in organizing working memory.13,18,19,20,21.
Collapse
Affiliation(s)
- Miral Abdalaziz
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14627, USA
| | - Zach V Redding
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14627, USA
| | - Ian C Fiebelkorn
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
13
|
Luo L, Chen J, Wu Q, Yuan B, Hu C, Yang T, Wei H, Li T. Prenatally VPA exposure is likely to cause autistic-like behavior in the rats offspring via TREM2 down-regulation to affect the microglial activation and synapse alterations. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104090. [PMID: 36870407 DOI: 10.1016/j.etap.2023.104090] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/17/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Microglial dysfunction has been reported in the valproic acid (VPA)-induced autism spectrum disorder (ASD) rat models. However, how does prenatal VPA exposure affect microglia remains to be elucidated. The triggering receptor expressed on myeloid cells 2 (TREM2) is revealed to be implicated in a range of microglia functions. However, reports on the association between TREM2 and VPA-induced ASD rat models are scarce. Our results showed that prenatal VPA exposure induced autistic-like behaviors, downregulated the levels of TREM2, up-regulated microglial activation, dysregulated microglial polarization, and altered synapse in offspring. TREM2 overexpression partly ameliorated microglia dysfunction and autistic-like behaviors in prenatal VPA-exposed rats. Our findings demonstrated that prenatally VPA exposure is likely to cause autistic-like behavior in the rat offspring via TREM2 down-regulation to affect the microglial activation, microglial polarization and synaptic pruning of microglia for the first time.
Collapse
Affiliation(s)
- Lijuan Luo
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Jie Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Qionghui Wu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Binlin Yuan
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Chaoqun Hu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Ting Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Hua Wei
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Department of Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Tingyu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Department of Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
14
|
A multimodal imaging-guided software for access to primate brains. Heliyon 2023; 9:e12675. [PMID: 36685404 PMCID: PMC9852658 DOI: 10.1016/j.heliyon.2022.e12675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Background Imaging-guided access to the brain has become a routine procedure for various research and clinical applications, including drug administration, neurophysiological recording, and sampling tissue. Therefore, open-source software is required to handle such datasets in these specific applications. New methods Here, we proposed an open-source tool utilizing different imaging modalities for automating the steps to access the brain. This tool provides means for easily calculating the coordination of the area of interest concerning a specific point of entry. The source and documentation are available at this link. Results We have used this software for three different applications: electrophysiological recording, drug infusion in the nonhuman primate brain, and guided biopsy procedure in the human brain. We performed a neural recording of two monkeys' prefrontal cortex and inferior temporal cortex using this software in submillimeter resolution. We also applied our procedure for infusion in the putamen and caudate nuclei in both hemispheres of another group of rhesus monkeys with histological proof in one animal. More so, we validated this software in the human subjects that underwent biopsy surgery with the commercial software used in human biopsy surgery. Comparison with existing methods Our software uses different imaging modalities by co-registering them. This will provide structural details of the skull and brain tissue. We can calculate each brain region's coordination at the point of entry by re-slicing the images. Atlas-based image segmentation were implemented in our software. Three mentioned applications of our software in neuroscience will be further discussed in this paper. Conclusion In our procedure, working with different imaging modalities provides a precise estimation of the specific region in the brain related to the location of implants or stereotaxic frames. There is no limitation to using metal implants in this procedure.
Collapse
|
15
|
Zhang W, Guo L, Liu D. Transcerebral information coordination in directional hippocampus-prefrontal cortex network during working memory based on bimodal neural electrical signals. Cogn Neurodyn 2022; 16:1409-1425. [PMID: 36408070 PMCID: PMC9666613 DOI: 10.1007/s11571-022-09792-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 11/03/2022] Open
Abstract
Working memory (WM) is a kind of advanced cognitive function, which requires the participation and cooperation of multiple brain regions. Hippocampus and prefrontal cortex are the main responsible brain regions for WM. Exploring information coordination between hippocampus and prefrontal cortex during WM is a frontier problem in cognitive neuroscience. In this paper, an advanced information theory analysis based on bimodal neural electrical signals (local field potentials, LFPs and spikes) was employed to characterize the transcerebral information coordination across the two brain regions. Firstly, LFPs and spikes were recorded simultaneously from rat hippocampus and prefrontal cortex during the WM task by using multi-channel in vivo recording technique. Then, from the perspective of information theory, directional hippocampus-prefrontal cortex networks were constructed by using transfer entropy algorithm based on spectral coherence between LFPs and spikes. Finally, transcerebral coordination of bimodal information at the brain-network level was investigated during acquisition and performance of the WM task. The results show that the transfer entropy in directional hippocampus-prefrontal cortex networks is related to the acquisition and performance of WM. During the acquisition of WM, the information flow, local information transmission ability and information transmission efficiency of the directional hippocampus-prefrontal networks increase over learning days. During the performance of WM, the transfer entropy from the hippocampus to prefrontal cortex plays a leading role for bimodal information coordination across brain regions and hippocampus has a driving effect on prefrontal cortex. Furthermore, bimodal information coordination in the hippocampus → prefrontal cortex network could predict WM during the successful performance of WM.
Collapse
Affiliation(s)
- Wei Zhang
- School of Information Engineering, Tianjin University of Commerce, Tianjin, 300134 China
| | - Lei Guo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Dongzhao Liu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130 China
| |
Collapse
|
16
|
Kody E, Diwadkar VA. Magnocellular and parvocellular contributions to brain network dysfunction during learning and memory: Implications for schizophrenia. J Psychiatr Res 2022; 156:520-531. [PMID: 36351307 DOI: 10.1016/j.jpsychires.2022.10.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
Memory deficits are core features of schizophrenia, and a central aim in biological psychiatry is to identify the etiology of these deficits. Scrutiny is naturally focused on the dorsolateral prefrontal cortex and the hippocampal cortices, given these structures' roles in memory and learning. The fronto-hippocampal framework is valuable but restrictive. Network-based underpinnings of learning and memory are substantially diverse and include interactions between hetero-modal and early sensory networks. Thus, a loss of fidelity in sensory information may impact memorial and cognitive processing in higher-order brain sub-networks, becoming a sensory source for learning and memory deficits. In this overview, we suggest that impairments in magno- and parvo-cellular visual pathways result in degraded inputs to core learning and memory networks. The ascending cascade of aberrant neural events significantly contributes to learning and memory deficits in schizophrenia. We outline the network bases of these effects, and suggest that any network perspectives of dysfunction in schizophrenia must assess the impact of impaired perceptual contributions. Finally, we speculate on how this framework enriches the space of biomarkers and expands intervention strategies to ameliorate this prototypical disconnection syndrome.
Collapse
Affiliation(s)
- Elizabeth Kody
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA.
| |
Collapse
|
17
|
Zhang P, Yan J, Liu Z, Yu H, Zhao R, Zhou Q. Extreme conditions affect neuronal oscillations of cerebral cortices in humans in the China Space Station and on Earth. Commun Biol 2022; 5:1041. [PMID: 36180522 PMCID: PMC9525319 DOI: 10.1038/s42003-022-04018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/21/2022] [Indexed: 02/06/2023] Open
Abstract
Rhythmical oscillations of neural populations can reflect working memory performance. However, whether neuronal oscillations of the cerebral cortex change in extreme environments, especially in a space station, remains unclear. Here, we recorded electroencephalography (EEG) signals when volunteers and astronauts were executing a memory task in extreme working conditions. Our experiments showed that two extreme conditions affect neuronal oscillations of the cerebral cortex and manifest in different ways. Lengthy periods of mental work impairs the gating mechanism formed by theta-gamma phase-amplitude coupling of two cortical areas, and sleep deprivation disrupts synaptic homeostasis, as reflected by the substantial increase in theta wave activity in the cortical frontal-central area. In addition, we excluded the possibility that nutritional supply or psychological situations caused decoupled theta-gamma phase-amplitude coupling or an imbalance in theta wave activity increase. Therefore, we speculate that the decoupled theta-gamma phase-amplitude coupling detected in astronauts results from their lengthy periods of mental work in the China Space Station. Furthermore, comparing preflight and inflight experiments, we find that long-term spaceflight and other hazards in the space station could worsen this decoupling evolution. This particular neuronal oscillation mechanism in the cerebral cortex could guide countermeasures for the inadaptability of humans working in spaceflight.
Collapse
Affiliation(s)
- Peng Zhang
- grid.64939.310000 0000 9999 1211School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China ,grid.64939.310000 0000 9999 1211Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 China
| | - Juan Yan
- grid.198530.60000 0000 8803 2373China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088 China
| | - Zhongqi Liu
- grid.64939.310000 0000 9999 1211School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China ,grid.64939.310000 0000 9999 1211Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 China
| | - Hongqiang Yu
- grid.418516.f0000 0004 1791 7464China Astronaut Research and Training Center, Beijing, 100193 China
| | - Rui Zhao
- grid.418516.f0000 0004 1791 7464China Astronaut Research and Training Center, Beijing, 100193 China
| | - Qianxiang Zhou
- grid.64939.310000 0000 9999 1211School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China ,grid.64939.310000 0000 9999 1211Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 China
| |
Collapse
|
18
|
Lim T, Kim M, Akbarian A, Kim J, Tresco PA, Zhang H. Conductive Polymer Enabled Biostable Liquid Metal Electrodes for Bioelectronic Applications. Adv Healthc Mater 2022; 11:e2102382. [PMID: 35112800 DOI: 10.1002/adhm.202102382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/14/2022] [Indexed: 12/11/2022]
Abstract
Gallium (Ga)-based liquid metal materials have emerged as a promising material platform for soft bioelectronics. Unfortunately, Ga has limited biostability and electrochemical performance under physiological conditions, which can hinder the implementation of its use in bioelectronic devices. Here, an effective conductive polymer deposition strategy on the liquid metal surface to improve the biostability and electrochemical performance of Ga-based liquid metals for use under physiological conditions is demonstrated. The conductive polymer [poly(3,4-ethylene dioxythiophene):tetrafluoroborate]-modified liquid metal surface significantly outperforms the liquid metal.based electrode in mechanical, biological, and electrochemical studies. In vivo action potential recordings in behaving nonhuman primate and invertebrate models demonstrate the feasibility of using liquid metal electrodes for high-performance neural recording applications. This is the first demonstration of single-unit neural recording using Ga-based liquid metal bioelectronic devices to date. The results determine that the electrochemical deposition of conductive polymer over liquid metal can improve the material properties of liquid metal electrodes for use under physiological conditions and open numerous design opportunities for next-generation liquid metal-based bioelectronics.
Collapse
Affiliation(s)
- Taehwan Lim
- Department of Chemical Engineering University of Utah Salt Lake City Utah 84112 USA
| | - Minju Kim
- Department of Mechanical Engineering University of Utah Salt Lake City Utah 84112 USA
| | - Amir Akbarian
- Department of Ophthalmology and Visual Science University of Utah Salt Lake City Utah 84112 USA
| | - Jungkyu Kim
- Department of Mechanical Engineering University of Utah Salt Lake City Utah 84112 USA
| | - Patrick A. Tresco
- Department of Biomedical Engineering University of Utah Salt Lake City Utah 84112 USA
| | - Huanan Zhang
- Department of Chemical Engineering University of Utah Salt Lake City Utah 84112 USA
| |
Collapse
|
19
|
Rezayat E, Clark K, Dehaqani MRA, Noudoost B. Dependence of Working Memory on Coordinated Activity Across Brain Areas. Front Syst Neurosci 2022; 15:787316. [PMID: 35095433 PMCID: PMC8792503 DOI: 10.3389/fnsys.2021.787316] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 11/15/2022] Open
Abstract
Neural signatures of working memory (WM) have been reported in numerous brain areas, suggesting a distributed neural substrate for memory maintenance. In the current manuscript we provide an updated review of the literature focusing on intracranial neurophysiological recordings during WM in primates. Such signatures of WM include changes in firing rate or local oscillatory power within an area, along with measures of coordinated activity between areas based on synchronization between oscillations. In comparing the ability of various neural signatures in any brain area to predict behavioral performance, we observe that synchrony between areas is more frequently and robustly correlated with WM performance than any of the within-area neural signatures. We further review the evidence for alteration of inter-areal synchrony in brain disorders, consistent with an important role for such synchrony during behavior. Additionally, results of causal studies indicate that manipulating synchrony across areas is especially effective at influencing WM task performance. Each of these lines of research supports the critical role of inter-areal synchrony in WM. Finally, we propose a framework for interactions between prefrontal and sensory areas during WM, incorporating a range of experimental findings and offering an explanation for the observed link between intra-areal measures and WM performance.
Collapse
Affiliation(s)
- Ehsan Rezayat
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Kelsey Clark
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Mohammad-Reza A. Dehaqani
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Cognitive Systems Laboratory, Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
- *Correspondence: Behrad Noudoost,
| |
Collapse
|