1
|
Lee J, Park J, Jung KH, Lee S, Lee JJ, Wooh S, Lee DW. Enhancing Resistance to Wetting Transition through the Concave Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409389. [PMID: 39358940 DOI: 10.1002/adma.202409389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/10/2024] [Indexed: 10/04/2024]
Abstract
Water-repellent superhydrophobic surfaces are ubiquitous in nature. The fundamental understanding of bio/bio-inspired structures facilitates practical applications surmounting metastable superhydrophobicity. Typically, the hierarchical structure and/or reentrant morphology have been employed hitherto to suppress the Cassie-Baxter to Wenzel transition (CWT). Herein, a new design concept is reported, an effect of concave structure, which is vital for the stable superhydrophobic surface. The thermodynamic and kinetic stabilities of the concave pillars are evaluated by continuous exposure to various hydrostatic pressures and sudden impacts of water droplets with various Weber numbers (We), comparing them to the standard superhydrophobic normal pillars. Specifically, the concave pillar exhibits reinforced impact resistance preventing CWT below a critical We of ≈27.6, which is ≈1.6 times higher than that of the normal pillar (≈17.0). Subsequently, the stability of underwater air film (plastron) is investigated at various hydrostatic pressures. The results show that convex air caps formed at the concave cavities generate downward Laplace pressure opposing the exerted hydrostatic pressure between the pillars, thus impeding the hydrostatic pressure-dependent underwater air diffusion. Hence, the effects of trapped air caps contributing to the stable Cassie-Baxter state can offer a pioneering strategy for the exploration and utilization of superhydrophobic surfaces.
Collapse
Affiliation(s)
- Jinhoon Lee
- Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Jinwoo Park
- Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Kwang Hui Jung
- Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Seunghyun Lee
- Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Jeong Jun Lee
- School of Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sanghyuk Wooh
- Department of Chemical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06794, Republic of Korea
| | - Dong Woog Lee
- Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| |
Collapse
|
2
|
Dhar M, Das A, Manna U. Deriving Superhydrophobicity Directly and Solely from Molecules: A Facile and Emerging Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19287-19303. [PMID: 39235959 DOI: 10.1021/acs.langmuir.4c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Nature-inspired superhydrophobic surfaces have gained significant attention due to their various potential applications. Artificial superhydrophobic surfaces were fabricated through co-optimization of topography and low-surface-energy chemistry. In the conventional approach, artificial superhydrophobic surfaces are developed through associating mostly polymer, metal, alloys, nanoparticles, microparticles, etc. and commonly encounter several challenges related to scalability, durability, and complex fabrication processes. In response to these challenges, molecule-based approaches have emerged as a promising alternative, providing several advantages such as prolonged shelf life of depositing solution, higher solvent compatibility, and a simple fabrication process. In this Perspective, we have provided a concise overview of traditional and molecule-based approaches to fabricating superhydrophobic surfaces, highlighting recent advancements and challenges. We have discussed various molecule-based strategies for tailoring water wettability, customizing mechanical properties, developing substrate-independent coatings, prolonging the shelf life of deposition solutions, and so on. Here, we have illustrated the potential of molecule-based approaches in overcoming existing limitations and its importance to diverse and prospective practical applications.
Collapse
Affiliation(s)
- Manideepa Dhar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039 India
| | - Avijit Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039 India
| | - Uttam Manna
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039 India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039 India
- Jyoti and Bhupat Mehta School of Health Science & Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039 India
| |
Collapse
|
3
|
Tao J, Liu Y, Li M, Li Z, Zhang Y, Song X, Yang Q, Guan F, Guo J. Robust Superhydrophobic Composite Fabric with Self-Healing and Chemical Durability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304894. [PMID: 38546002 DOI: 10.1002/smll.202304894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 03/12/2024] [Indexed: 08/09/2024]
Abstract
Superhydrophobic fabrics with multiple functions have become a research hotspot. However, it is challenging to make self-healing mechanically robust and eco-friendly superhydrophobic fabrics, which are limited by complex fabrication processes and excessive use of environmentally unfriendly solvents during fabrication. Herein, inspired by the secretion of a waxy substance from the surface of lotus leaves to restore water repellency, self-healing superhydrophobic composite fabrics (as-synthesized PA66/6-PET@Tico) are obtained by constructing a papillary TiO2 and tentacle-like fluorinated acrylate polymer (FCB015) coating on polyester-nylon composite fabrics using two-step hydrothermal method. The result indicates that PA66/6-PET@Tico with hierarchical micro/nanostructure exhibits excellent superhydrophobic and self-healing properties. Compared with FCB015 coated fabric, the contact angles (CA) of water and soybean oil rise to 172.2° and 166.8° from 137.4° and 98.8°, respectively. After mechanical abrasion, PA66/6-PET@Tico recovers a water contact angle (WCA) of 165.6° at room temperature. The WCA remains higher than 155° after 18 h of chemical corrosion. Furthermore, the bacterial inhibition rates of PA66/6-PET@Tico for Staphylococcus Aureus and Escherichia Coli are 99.90 and 98.38%, respectively. In this work, a new idea is proposed for designing a simple and effective self-healing superhydrophobic coating, expecting to promote the large-scale industrial production and application of functional surfaces.
Collapse
Affiliation(s)
- Jing Tao
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Yuanfa Liu
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Minghan Li
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Zheng Li
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Yihang Zhang
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Xuecui Song
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Qiang Yang
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Fucheng Guan
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Jing Guo
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
- Fiber Composite Material Innovation Center of Liaoning Province, Dalian, 116034, P. R. China
| |
Collapse
|
4
|
Jiang Y, Wan Z, Liu Q, Li X, Jiang B, Guo M, Fan P, Du S, Xu D, Liu C. Enhancing antibacterial properties of titanium implants through a novel Ag-TiO 2-OTS nanocomposite coating: a comprehensive study on resist-killing-disintegrate approach. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1609-1630. [PMID: 38652755 DOI: 10.1080/09205063.2024.2344332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
Titanium (Ti) implants are widely used in orthopedic and dental applications due to their excellent biocompatibility and mechanical properties. However, bacterial adhesion and subsequent biofilm formation on implant surfaces pose a significant risk of postoperative infections and complications. Conventional surface modifications often lack long-lasting antibacterial efficacy, necessitating the development of novel coatings with enhanced antimicrobial properties. This study aims to develop a novel Ag-TiO2-OTS (Silver-Titanium dioxide-Octadecyltrichlorosilane, ATO) nanocomposite coating, through a chemical plating method. By employing a 'resist-killing-disintegrate' approach, the coating is designed to inhibit bacterial adhesion effectively, and facilitate pollutant removal with lasting effects. Characterization of the coatings was performed using spectroscopy, electron microscopy, and contact angle analysis. Antibacterial efficacy, quantitatively evaluated against E. coli and S. aureus over 168 h, showed a significant reduction in bacterial adhesion by 76.6% and 66.5% respectively, and bacterial removal rates were up to 83.8% and 73.3% in comparison to uncoated Ti-base material. Additionally, antibacterial assays indicated that the ratio of the Lifshitz-van der Waals apolar component to electron donor surface energy components significantly influences bacterial adhesion and removal, underscoring a tunable parameter for optimizing antibacterial surfaces. Biocompatibility assessments with the L929 cell line revealed that the ATO coatings exhibited excellent biocompatibility, with minimal cytotoxicity and no significant impact on cell proliferation or apoptosis. The ATO coatings provided a multi-functionality surface that not only resists bacterial colonization but also possesses self-cleaning capabilities, thereby marking a substantial advancement in the development of antibacterial coatings for medical implants.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Chemical Biology, School of Pharmaceutical Science, Capital Medical University, Beijing, China
| | - Zhou Wan
- Department of Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Qi Liu
- Department of Chemical Biology, School of Pharmaceutical Science, Capital Medical University, Beijing, China
| | - Xinxin Li
- Department of Chemical Biology, School of Pharmaceutical Science, Capital Medical University, Beijing, China
| | - Bo Jiang
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing, China
| | - Mudan Guo
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing, China
| | - Pengjue Fan
- Chongqing Zhengbo Biotech Ltd, Chongqing, China
| | - Siyi Du
- Chongqing Nankai Secondary School, Chongqing, China
| | - Doudou Xu
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing, China
| | - Chen Liu
- Department of Chemical Biology, School of Pharmaceutical Science, Capital Medical University, Beijing, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, China
| |
Collapse
|
5
|
Zhang H, Wang BB, Wang X, Deng JW, Yan WM. Efficient Anti-Icing of a Stable PFA Coating for Wind Power Turbine Blades. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14724-14737. [PMID: 38956832 DOI: 10.1021/acs.langmuir.4c01935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Superhydrophobic coatings are increasingly recognized as a promising approach to enhancing power generation efficiency and prolonging the operational lifespan of wind turbines. In this research, a durable superhydrophobic perfluoroalkoxy alkane (PFA) coating was developed and specifically designed for spray application onto the surface of wind turbine blades. The PFA coating features a micronano hierarchical structure, exhibiting a high water contact angle of 167.0° and a low sliding angle of 1.7°. The optimal PFA coating exhibits stability and maintains a superhydrophobic performance during mechanical and chemical tests. The findings of this study establish a positive association between the surface energy of the coating and its effectiveness in anti-icing. The delayed icing time for the PFA-coated surface is 46.83 times longer than that of an uncoated surface, and the ice adhesion strength is only 1.875 kPa. Additionally, the PFA coating demonstrates remarkably high ice suppression efficiencies of 94.7 and 99.5% in anti-icing experiments at ambient temperatures of -6 and -10 °C, respectively. It is anticipated that this stable superhydrophobic PFA coating will be a candidate for anti-icing applications in wind turbine blades.
Collapse
Affiliation(s)
- He Zhang
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Bing-Bing Wang
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China
- Shenzhen Research Institute, Beijing Institute of Technology, Shenzhen 518057, China
| | - Xin Wang
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Jie-Wen Deng
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Wei-Mon Yan
- Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| |
Collapse
|
6
|
Ma J, Zhang C, Zhang P, Song J. One-step synthesis of functional slippery lubricated coating with substrate independence, anti-fouling property, fog collection, corrosion resistance, and icephobicity. J Colloid Interface Sci 2024; 664:228-237. [PMID: 38461789 DOI: 10.1016/j.jcis.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Ranging from industrial facilities to residential infrastructure, functional surfaces encompassing functionalities such as anti-fouling, fog collection, anti-corrosion, and anti-icing play a critical role in the daily lives of humans, but creating these surfaces is elusive. Bionic dewetting and liquid-infused surfaces have inspired the exploitation of functional surfaces. However, practical applications of these existing surfaces remain challenging because of their inherent shortcomings. In this study, we propose a novel functional slippery lubricated coating (FSLC) based on a simple blend of polysilazane (PSZ), silicone oil, and nano silica. This simple, nonfluorine based, and low-cost protocol promotes not only hierarchical micro-nano structure but also favorable surface chemistry, which facilitates robust silicone oil adhesion and excellent slippery properties (sliding angle: ∼1.6°) on various solid materials without extra processing or redundant treatments. The highly integrated competence of FSLC, characterized by robustness, durability, strong adhesion to substrates, and the ability for large-area preparation, render them ideal for practical production and application. The proposed FSLC holds outstanding application potentials for anti-fouling, self-cleaning, fog collection, anti-corrosion, and anti-icing functionalities.
Collapse
Affiliation(s)
- Jun Ma
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024, PR China; Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Chen Zhang
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024, PR China
| | - Peng Zhang
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Jinlong Song
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024, PR China.
| |
Collapse
|
7
|
Wu Z, Kang S, Liu Y, Wang P, Liu T, Bushra R, Khan MR, Guo J, Zhu W, Xiao H, Song J. Hydrostability, mechanical resilience, and biodegradability of paper straws fabricated through lignin-based polyurethane and chitosan binary emulsion bonding. Int J Biol Macromol 2024; 270:132155. [PMID: 38729462 DOI: 10.1016/j.ijbiomac.2024.132155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/05/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
This study focuses on enhancing the strength and water stability of paper straws through a novel approach involving a binary emulsion of lignin-based polyurethane and chitosan. Kraft lignin serves as the raw material for synthesizing a blocked waterborne polyurethane, subsequently combined with carboxylated chitosan to form a stable binary emulsion. The resulting emulsion, exhibiting remarkable stability over at least 6 months, is applied to the base paper. Following emulsion application, the paper undergoes torrefaction at 155 °C. This process deblocks isocyanate groups, enabling their reaction with hydroxyl groups on chitosan and fibers, ultimately forming ester bonds. This reaction significantly improves the mechanical strength and hydrophobicity of paper straws. The composite paper straws demonstrate exceptional mechanical properties, including a tensile strength of 47.21 MPa, Young's modulus of 4.33 GPa, and flexural strength of 32.38 MPa. Notably, its water stability is greatly enhanced, with a wet tensile strength of 40.66 MPa, surpassing commercial paper straws by 8 folds. Furthermore, the composite straw achieves complete biodegradability within 120 days, outperforming conventional paper straws in terms of environmental impact. This innovative solution presents a promising and sustainable alternative to plastic straws, addressing the urgent need for eco-friendly products.
Collapse
Affiliation(s)
- Zhenghong Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; School of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China
| | - Shaomin Kang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yena Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Peipei Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Tian Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Rani Bushra
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Wenyuan Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
8
|
Gao Y, Ge K, Zhang Z, Li Z, Hu S, Ji H, Li M, Feng H. Fine Optimization of Colloidal Photonic Crystal Structural Color for Physically Unclonable Multiplex Encryption and Anti-Counterfeiting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305876. [PMID: 38576190 PMCID: PMC11132029 DOI: 10.1002/advs.202305876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/28/2024] [Indexed: 04/06/2024]
Abstract
Robust anti-counterfeiting techniques aim for easy identification while remaining difficult to forge, especially for high-value items such as currency and passports. However, many existing anti-counterfeiting techniques rely on deterministic processes, resulting in loopholes for duplication and counterfeiting. Therefore, achieving high-level encryption and easy authentication through conventional anti-counterfeiting techniques has remained a significant challenge. To address this, this work proposes a solution that combined fluorescence and structural colors, creating a physically unclonable multiplex encryption system (PUMES). In this study, the physicochemical properties of colloidal photonic inks are systematically adjusted to construct a comprehensive printing phase diagram, revealing the printable region. Furthermore, the brightness and color saturation of inkjet-printed colloidal photonic crystal structural colors are optimized by controlling the substrate's hydrophobicity, printed droplet volume, and the addition of noble metals. Finally, fluorescence is incorporated to build PUMES, including macroscopic fluorescence and structural color patterns, as well as microscopic physically unclonable fluorescence patterns. The PUMES with intrinsic randomness and high encoding capacity are authenticated by a deep learning algorithm, which proved to be reliable and efficient under various observation conditions. This approach can provide easy identification and formidable resistance against counterfeiting, making it highly promising for the next-generation anti-counterfeiting of currency and passports.
Collapse
Affiliation(s)
- Yifan Gao
- Sauvage Laboratory for Smart MaterialsShenzhen Key Laboratory of Flexible Printed Electronics TechnologyHarbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Kongyu Ge
- Sauvage Laboratory for Smart MaterialsShenzhen Key Laboratory of Flexible Printed Electronics TechnologyHarbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Zhen Zhang
- Sauvage Laboratory for Smart MaterialsShenzhen Key Laboratory of Flexible Printed Electronics TechnologyHarbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Zhan Li
- Sauvage Laboratory for Smart MaterialsShenzhen Key Laboratory of Flexible Printed Electronics TechnologyHarbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Shaowei Hu
- State Key Laboratory of Advanced Welding and Joining (Shenzhen)Harbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Hongjun Ji
- State Key Laboratory of Advanced Welding and Joining (Shenzhen)Harbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Mingyu Li
- State Key Laboratory of Advanced Welding and Joining (Shenzhen)Harbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Huanhuan Feng
- Sauvage Laboratory for Smart MaterialsShenzhen Key Laboratory of Flexible Printed Electronics TechnologyHarbin Institute of Technology (Shenzhen)Shenzhen518000China
| |
Collapse
|
9
|
Tang Z, Xu B, Man X, Liu H. Bioinspired Superhydrophobic Fibrous Materials. SMALL METHODS 2024; 8:e2300270. [PMID: 37312429 DOI: 10.1002/smtd.202300270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Indexed: 06/15/2023]
Abstract
Natural fibers with robust water repellency play an important role in adapting organisms to various environments, which has inspired the development of artificial superhydrophobic fibrous materials with applications in self-cleaning, antifogging, water harvesting, heat exchanging, catalytic reactions, and microrobots. However, these highly textured surfaces (micro/nanotextured) suffer from frequent liquid penetration in high humidity and abrasion-induced destruction of the local environment. Herein, bioinspired superhydrophobic fibrous materials are reviewed from the perspective of the dimension scale of fibers. First, the fibrous dimension characteristics of several representative natural superhydrophobic fibrous systems are summarized, along with the mechanisms involved. Then, artificial superhydrophobic fibers are summarized, along with their various applications. Nanometer-scale fibers enable superhydrophobicity by minimizing the liquid-solid contact area. Micrometer-scale fibers are advantageous for enhancing the mechanical stability of superhydrophobicity. Micrometer-scale conical fibrous structures endow a Laplace force with a particular magnitude for self-removing condensed tiny dewdrops in highly humid air and stably trapping large air pockets underwater. Furthermore, several representative surface modification strategies for constructing superhydrophobic fibers are presented. In addition, several conventional applications of superhydrophobic systems are presented. It is anticipated that the review will inspire the design and fabrication of superhydrophobic fibrous systems.
Collapse
Affiliation(s)
- Zhongxue Tang
- School of Physics, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Bojie Xu
- Research Institute for Frontier Science, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Xingkun Man
- School of Physics, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Huan Liu
- Research Institute for Frontier Science, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| |
Collapse
|
10
|
Wang L, Shu L, Hu Q, Jiang X, Yang H, Wang H, Rao L. Mechanism of self-recovery of hydrophobicity after surface damage of lotus leaf. PLANT METHODS 2024; 20:47. [PMID: 38515129 PMCID: PMC10956192 DOI: 10.1186/s13007-024-01174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
The surfaces of lotus leaves with micro- and nano-waxy cuticle structures are superhydrophobic and possess a self-healing ability to regain hydrophobicity after damage. Inspired by this phenomenon, the problem of water-repellent coatings used in natural environments failing to perform after damage can be solved if these coatings are endowed with rapid self-repair and self-growth functions. However, there has been almost no exploration into the hydrophobicity self-repair process in lotus leaves. The changes in surface morphology during the hydrophobicity recovery process are not understood. There is a lack of research on the hydrophobicity recovery in lotus leaves. In this study, the damage and recovery experiments on lotus leaf surfaces were carried out in an artificial climate chamber, and the water repellency recovery process and typical water repellency roughness parameters regained time were obtained. Upon analyzing the differences in the recovery process of different damage types, the recovery mechanism after lotus leaf surface damage was obtained. Finally, it was found that the microscopic roughness determined the static contact angle (WCA) of the lotus leaf surface, and the nanoscopic roughness determined the rolling angle (SA). The dual factors of the recovery of the extruded epidermal tissue and the regeneration of the epidermal wax crystals determined the hydrophobicity recovery process in damaged lotus leaves.
Collapse
Affiliation(s)
- Li Wang
- Xuefeng Mountain Energy Equipment Safety National Observation and Research Station of Chongqing University, Chongqing, 400044, China
| | - Lichun Shu
- Xuefeng Mountain Energy Equipment Safety National Observation and Research Station of Chongqing University, Chongqing, 400044, China
| | - Qin Hu
- Xuefeng Mountain Energy Equipment Safety National Observation and Research Station of Chongqing University, Chongqing, 400044, China.
| | - Xingliang Jiang
- Xuefeng Mountain Energy Equipment Safety National Observation and Research Station of Chongqing University, Chongqing, 400044, China
| | - Hang Yang
- Xuefeng Mountain Energy Equipment Safety National Observation and Research Station of Chongqing University, Chongqing, 400044, China
| | - Huan Wang
- Xuefeng Mountain Energy Equipment Safety National Observation and Research Station of Chongqing University, Chongqing, 400044, China
| | - Lipeng Rao
- Xuefeng Mountain Energy Equipment Safety National Observation and Research Station of Chongqing University, Chongqing, 400044, China
| |
Collapse
|
11
|
Pramod T, Khazeber R, Athiyarath V, Sureshan KM. Topochemistry for Difficult Peptide-Polymer Synthesis: Single-Crystal-to-Single-Crystal Synthesis of an Isoleucine-Based Polymer, a Hydrophobic Coating Material. J Am Chem Soc 2024; 146:7257-7265. [PMID: 38253536 DOI: 10.1021/jacs.3c10779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Polymers of hydrophobic amino acids are predicted to be potential coating materials for the creation of hydrophobic surfaces. The oligopeptides of hydrophobic amino acids are called "difficult peptides"; as the name suggests, it is difficult to synthesize them by conventional methods. We circumvented this synthetic challenge by adopting topochemical azide-alkyne cycloaddition (TAAC) polymerization of a hydrophobic dipeptide monomer. We designed an Ile-based dipeptide, decorated with azide and alkyne, which arrange in the crystal in a head-to-tail fashion with the azide and alkyne of the adjacent molecules in a ready-to-react orientation. The monomer, on mild heating of its crystals, undergoes regiospecific TAAC polymerization to yield a 1,4-disubstituted-triazole-linked polymer in a single-crystal-to-single-crystal fashion. The solid obtained after evaporation of the monomer solution also maintained crystallinity and underwent regiospecific topochemical polymerization as in the case of crystals. This topochemical polymerization could be studied using different techniques such as FTIR, NMR, DSC, GPC, MALDI, PXRD, and SCXRD. Since the polymer is insoluble in common solvents and hence difficult to coat surfaces, the monomer was first sprayed and evaporated on various surfaces and polymerized on the surface. Such polymer-coated surfaces exhibited water contact angles of up to 134°, showing that this Ile-derived polymer is very hydrophobic and can potentially be used as a coating material for various applications.
Collapse
Affiliation(s)
- Thejus Pramod
- School of Chemistry, IISER Thiruvananthapuram, Maruthamala, Thiruvananthapuram 695551, India
| | - Ravichandran Khazeber
- School of Chemistry, IISER Thiruvananthapuram, Maruthamala, Thiruvananthapuram 695551, India
| | - Vignesh Athiyarath
- School of Chemistry, IISER Thiruvananthapuram, Maruthamala, Thiruvananthapuram 695551, India
| | - Kana M Sureshan
- School of Chemistry, IISER Thiruvananthapuram, Maruthamala, Thiruvananthapuram 695551, India
| |
Collapse
|
12
|
Zhang L, Reddy DO, Salomons TT, Oleschuk RD. Micro "Hyper-Channels" on Laser-Refined Cellulose Structures. SMALL METHODS 2024; 8:e2301164. [PMID: 38009774 DOI: 10.1002/smtd.202301164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 11/29/2023]
Abstract
Controlled liquid transportation is widely applied in both academia and industry. However, liquid transport applications are limited by parameters such as driving forces, precision, and velocity. Herein, a simple laser-refining technology is presented to produce micro "hyper-channels". A cellulose substrate is rendered hydrophobic through silanization and refined with a laser to produce both hierarchical nanostructures and a wettability contrast simultaneously. Such a method enables faster ("hyper"-channel) aqueous liquid transportation (≈25X, 50 mm s-1 ) compared to conventional methods. Complex patterns can be readily produced at different scales with spatial resolution as low as 50 µm. This technique also controls the refining depth on the thin paper substrate. Shallow channels can be fabricated on thin paper substrates that enable fluidic channel-crossover without liquid mixing. With certain parameters, the technique creates "portals" through the substrate, allowing trans-dimensional liquid transportation between two layers of a single sheet of substrate. The fluid throughput can be increased, while also permitting fluidic channel crossover without liquid mixing. By introducing multiple portals, the controlled fluid can transfer trans-dimensionally several times, enabling further fluidic complexity. The real-life utility of the method is demonstrated by creating a trans-dimensional microfluidic device for colorimetric detection.
Collapse
Affiliation(s)
- Lishen Zhang
- Department of Chemistry, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Daniel O Reddy
- Department of Chemistry, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Timothy T Salomons
- Department of Chemistry, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Richard D Oleschuk
- Department of Chemistry, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
13
|
Dhar M, Mishra C, Das A, Manna U. Polymerization of monomer aggregates for tailoring and patterning water wettability. Chem Commun (Camb) 2024; 60:444-447. [PMID: 38088028 DOI: 10.1039/d3cc05172b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
An approach of 'polymerization of monomers in its aggregated form' is unprecedentedly introduced to (i) tailor the water wettability of fibrous and porous substrates from hydrophobicity to superhydrophobicity, and (ii) associate patterned wettability. A solution of selected monomers-i.e., alkyl acrylate in a good solvent (indicating high solubility; ethanol) was transferred into a bad solvent (refers to poor solubility; water) to achieve a stable dispersion of monomer aggregates of size <1 μm for deposition on fibrous and porous substrates. Its photopolymerization provided a durable coating with the ability to tailor the water wettability from 134° to 153°. Furthermore, a spatially selective photopolymerization process yielded a patterned interface of superhydrophilicity and superhydrophobicity. Such a facile chemical approach with the ability to provide a durable coating embedded with tailored and patterned wettability would be useful for various potential applications.
Collapse
Affiliation(s)
- Manideepa Dhar
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Chittaranjan Mishra
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Avijit Das
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Kamrup, Assam 781039, India
- Jyoti and Bhupat Mehta School of Health Science and Technology, Indian Institute of Technology Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
14
|
Ma J, Song J. Multifunctional slippery photothermal coating. J Colloid Interface Sci 2024; 653:1548-1556. [PMID: 37806062 DOI: 10.1016/j.jcis.2023.09.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
Slippery liquid-infused porous surface (SLIPS) has shown significant application values in various areas and has been commonly obtained by injecting the water-immiscible lubricant into a low-surface-energy modified micro/nano-structured surface. Constrained by the availability of desirable structured substrates or simple preparation schemes, the exploration of SLIPS with multifunctionality and universality that is facile to fabricate and robust in realistic applications remains challenging. Herein, we propose a one-step, fluoride-free and unconventional protocol based on a one-pot reaction of polysilazane (PSZ), silicone oils and multiwalled carbon nanotubes (MWCNT), which creates not only the favorable micro/nano-scale physical structures and surface chemistry for the excellent slippery property (sliding angle < 3°) and robust lubricant retention, but also the superior photothermal responsiveness for the potential multifunctional applications. It has been demonstrated that the proposed multifunctional slippery photothermal coating (MSPC) displayed outstanding potential in corrosion resistance, droplet manipulation and anti/de-icing. We envision that the proposed strategy could be realized in the real-life applications.
Collapse
Affiliation(s)
- Jun Ma
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China; Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jinlong Song
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China; Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024, China.
| |
Collapse
|
15
|
Hou M, Jiang Z, Sun W, Chen Z, Chu F, Lai NC. Efficient Photothermal Anti-/Deicing Enabled by 3D Cu 2-x S Encapsulated Phase Change Materials Mixed Superhydrophobic Coatings. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310312. [PMID: 37991469 DOI: 10.1002/adma.202310312] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/16/2023] [Indexed: 11/23/2023]
Abstract
Photothermal superhydrophobic surfaces are one of the most promising anti-/deicing materials, yet they are limited by the low energy density and intermittent nature of solar energy. Here, a coupling solution based on microencapsulated phase change materials (MPCMs) that integrates photothermal effect and phase change thermal storage is proposed. Dual-shell octahedral MPCMs with Cu2 O as the first layer and 3D Cu2-x S as the second layer for the first time is designed. By morphology and phase manipulation of the Cu2-x S shell, the local surface plasmonic heating modulation of MPCMs is realized, and the MPCM reveals full-spectrum high absorption with a photothermal conversion efficiency up to 96.1%. The phase change temperature and enthalpy remain in good consistency after 200 cycles. Multifunctional photothermal phase-change superhydrophobic composite coatings are fabricated by combining the hydrolyzed and polycondensation products of octadecyl trichlorosilane and the dual-shell MPCM. The multifunctional coatings exhibit excellent anti-/deicing performance under low temperature and high humidity conditions. This work not only provides a new approach for the design of high-performance MPCMs but also opens up an avenue for the anti-icing application of photothermal phase-change superhydrophobic composite coatings.
Collapse
Affiliation(s)
- Mingtai Hou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zeyi Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Energy Saving and Emission Reduction of Metallurgical Industry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wen Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhenghao Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fuqiang Chu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Nien-Chu Lai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Engineering Research Center of Energy Saving and Environmental Protection, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
16
|
Hyer AP, McMillin RE, Ferri JK. The shape of things to come: Axisymmetric drop shape analysis using deep learning. J Colloid Interface Sci 2024; 653:1188-1195. [PMID: 37793245 DOI: 10.1016/j.jcis.2023.09.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
HYPOTHESIS In the traditional approach to Axisymmetric Drop Shape Analysis (ADSA), the determination of surface tension or interfacial tension is constrained by computational speed and image quality. By implementing a machine learning-based approach, particularly using a convolutional neural network (CNN), it is posited that analysis of pendant drop images can be both faster and more accurate. EXPERIMENTS A CNN model was trained and used to predict the surface tension of drop images. The performance of our CNN model was compared to the traditional ADSA, i.e. direct numerical integration, in terms of precision, computational speed, and robustness in dealing with images of varying quality. Additionally, the ability of the CNN model to predict other drop properties such as Volume and Surface Area was evaluated. FINDINGS Our CNN demonstrated a significant enhancement in experimental fit precision, predicting surface tension with an accuracy of (+/-) 1.22×10-1 mN/m and at a speed of 1.50 ms-1, outpacing the traditional method by more than 5×103 times. The model maintained an average surface tension error of 2.42×10-1 mN/m even for experimental images with challenges such as misalignment and poor focus. The CNN model also demonstrated showcased a high degree of accuracy in determining other drop properties.
Collapse
Affiliation(s)
- Andres P Hyer
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 Main Street, Richmond, 23220, VA, United States
| | - Robert E McMillin
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 Main Street, Richmond, 23220, VA, United States
| | - James K Ferri
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 Main Street, Richmond, 23220, VA, United States.
| |
Collapse
|
17
|
Hu Z, Chu F, Shan H, Wu X, Dong Z, Wang R. Understanding and Utilizing Droplet Impact on Superhydrophobic Surfaces: Phenomena, Mechanisms, Regulations, Applications, and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310177. [PMID: 38069449 DOI: 10.1002/adma.202310177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/13/2023] [Indexed: 12/19/2023]
Abstract
Droplet impact is a ubiquitous liquid behavior that closely tied to human life and production, making indispensable impacts on the big world. Nature-inspired superhydrophobic surfaces provide a powerful platform for regulating droplet impact dynamics. The collision between classic phenomena of droplet impact and the advanced manufacture of superhydrophobic surfaces is lighting up the future. Accurately understanding, predicting, and tailoring droplet dynamic behaviors on superhydrophobic surfaces are progressive steps to integrate the droplet impact into versatile applications and further improve the efficiency. In this review, the progress on phenomena, mechanisms, regulations, and applications of droplet impact on superhydrophobic surfaces, bridging the gap between droplet impact, superhydrophobic surfaces, and engineering applications are comprehensively summarized. It is highlighted that droplet contact and rebound are two focal points, and their fundamentals and dynamic regulations on elaborately designed superhydrophobic surfaces are discussed in detail. For the first time, diverse applications are classified into four categories according to the requirements for droplet contact and rebound. The remaining challenges are also pointed out and future directions to trigger subsequent research on droplet impact from both scientific and applied perspectives are outlined. The review is expected to provide a general framework for understanding and utilizing droplet impact.
Collapse
Affiliation(s)
- Zhifeng Hu
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fuqiang Chu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - He Shan
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaomin Wu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruzhu Wang
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
18
|
Gu W, Xia Y, Li L, Zhang Y, Wu X, Gu L, Ji Y, Wang W, Deng W, Lv X, Wang X, Yu X, Zhang Y. Damage Tolerance of Superhydrophobic Coatings with Binary Cooperative Cells for Water Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307561. [PMID: 37967348 DOI: 10.1002/smll.202307561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Indexed: 11/17/2023]
Abstract
Multifunction superhydrophobic coatings that facilitate water harvesting are attractive for addressing the daunting water crisis, yet, they are caught in a double bind when their durability is considered, as durable coatings will require both tough micro-textures to survive concentrated stress and high-surface-energy chemistry to form chemical bonds within the matrix. To date, a universal bulk-phase coating that combines multifunctionality, ultra-durability, and fabrication feasibility remains challenging. Here, a binary cooperative cell design is reported that can solve the contradiction between the multifunctionality and durability requirements of superhydrophobic coatings. In this strategy, mechanochemically tailored cells with releasable nanoseeds are infused in the common matrix, which serves both as a versatile chemical bridge to achieve strong bonds within the coating building blocks, and as an instantaneous self-repairing generator to improve durability. Such a strategy significantly boosted the wear resistance and outdoor stability of the coatings by over 30-100 and 18 folds, respectively, compared with conventional coatings. The coating is applied to the sustainable application, i.e., enhancing the water collection efficiency by at least 1000% even after harsh abrasion. The strategy will broaden the vision in handling the dilemma properties among functional coatings and promote the application of superhydrophobic coatings in extreme environments.
Collapse
Affiliation(s)
- Wancheng Gu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
- The 723 Institute of CSSC, Yangzhou, 225101, P. R. China
| | - Yage Xia
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Long Li
- The 723 Institute of CSSC, Yangzhou, 225101, P. R. China
| | - Yu Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Xuequn Wu
- The 723 Institute of CSSC, Yangzhou, 225101, P. R. China
| | - Linwei Gu
- The 723 Institute of CSSC, Yangzhou, 225101, P. R. China
| | - Yanzheng Ji
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Wei Wang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Weilin Deng
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Xinyu Lv
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Xikui Wang
- School of Mechanical Engineering, Guizhou University, Guiyang, 550025, P. R. China
| | - Xinquan Yu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Youfa Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
19
|
Zhang N, Gao C, Meng L, Tang X. Preparation and characterization of carnauba wax-based particle with hierarchical structure and its use as hydrophobic coating for chitosan films. Carbohydr Polym 2023; 319:121224. [PMID: 37567700 DOI: 10.1016/j.carbpol.2023.121224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023]
Abstract
To improve the hydrophobicity of polysaccharide-based films, hydrophobic carnauba wax-based particles were prepared by Pickering emulsion. The influence of the different size of the particles on the structure and hydrophobicity of the chitosan coating films were investigated. The results showed that micro-scale particles (average particle size 25.04 μm) with nano-scale (5-10 nm) TiO2 uniformly distributed on the surface of the particles were formed by Pickering emulsion. The chitosan coating films showed higher contact angle and lower sliding angle compared to the control due to the hierarchical structure, hydrophobicity and arrangement of the particles. In addition, the small particle (23-48 μm) coating film showed higher hydrophobicity than the large particle coating film (48-70 μm) due to the small particle size and the formation of more small gaps. The gaps were conducive to form "air cushion" which reduced the contact area between water and the coating films and thus increased contact angle and decreased sliding angle. The coating films showed high chemical stability and low residual rates of liquid food. The results suggest that Pickering emulsion is an effective method to create wax-based particles with hierarchical structure and the particles have potential to be used as hydrophobic coating materials.
Collapse
Affiliation(s)
- Ni Zhang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Chengcheng Gao
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Linghan Meng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaozhi Tang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
20
|
Li L, Wei J, Zhang J, Li B, Yang Y, Zhang J. Challenges and strategies for commercialization and widespread practical applications of superhydrophobic surfaces. SCIENCE ADVANCES 2023; 9:eadj1554. [PMID: 37862425 PMCID: PMC10588945 DOI: 10.1126/sciadv.adj1554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/20/2023] [Indexed: 10/22/2023]
Abstract
Superhydrophobic (SH) surfaces have progressed rapidly in fundamental research over the past 20 years, but their practical applications lag far behind. In this perspective, we first present the findings of a survey on the current state of SH surfaces including fundamental research, patenting, and commercialization. On the basis of the survey and our experience, this perspective explores the challenges and strategies for commercialization and widespread practical applications of SH surfaces. The comprehensive performances, preparation methods, and application scenarios of SH surfaces are the major constraints. These challenges should be addressed simultaneously, and the actionable strategies are provided. We then highlight the standard test methods of the comprehensive performances including mechanical stability, impalement resistance, and weather resistance. Last, the prospects of SH surfaces in the future are discussed. We anticipate that SH surfaces may be widely commercialized and used in practical applications around the year 2035 through combination of the suggested strategies and input from both academia and industry.
Collapse
Affiliation(s)
- Lingxiao Li
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P.R. China
| | - Jinfei Wei
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P.R. China
| | - Junping Zhang
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Bucheng Li
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P.R. China
| | - Yanfei Yang
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P.R. China
| | - Jiaojiao Zhang
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P.R. China
| |
Collapse
|
21
|
Sheraz M, Choi B, Kim J. Enhancing Textile Water Repellency with Octadecyltrichlorosilane (OTS) and Hollow Silica Nanoparticles. Polymers (Basel) 2023; 15:4065. [PMID: 37896310 PMCID: PMC10610727 DOI: 10.3390/polym15204065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Superhydrophobic coatings have attracted substantial attention owing to their potential application in various industries. Conventional textiles used in daily life are prone to staining with water and household liquids, necessitating the development of water-repellent and stain-resistant coatings. In this study, we fabricated a highly water-repellent superhydrophobic PET fabric by using an eco-friendly water-based coating process. Fluorine-free octadecyltrichlorosilane (OTS) solutions with various wt.% of hollow silica (HS) nanoparticles were used to produce a superhydrophobic surface via a facile dip coating method. Our findings revealed that the incorporation of HS nanoparticles substantially increased the water contact angle, with higher concentrations resulting in enhanced water repellency and increased surface roughness. The treated fabrics had a remarkable water contact angle of 152.4° ± 0.8°, demonstrating their superhydrophobic fiber surface. In addition, the durability of these superhydrophobic properties was investigated via a laundry procedure, which showed that the fabrics maintained their water repellency even after 20 laundering cycles. EDX and XRD analyses confirmed that the morphological evaluations did not reveal any substantial structural alterations. Significantly, the fibers maintained their strength and durability throughout the testing, enduring only minor hollow SiO2 nanoparticle loss. This eco-friendly and cost-effective method holds great potential for application in apparel and other industries, offering an effective solution to resist water stains and improve performance in various contexts.
Collapse
Affiliation(s)
- Mahshab Sheraz
- Advanced Textile R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea; (M.S.); (B.C.)
| | - Byul Choi
- Advanced Textile R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea; (M.S.); (B.C.)
| | - Juran Kim
- Advanced Textile R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea; (M.S.); (B.C.)
- HYU-KITECH Joint Department, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| |
Collapse
|
22
|
Gao C, Zhang L, Hou Y, Zheng Y. A UV-Resistant Heterogeneous Wettability-Patterned Surface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304080. [PMID: 37442804 DOI: 10.1002/adma.202304080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023]
Abstract
Preparing UV-resistant heterogeneous wettability patterns is critical for the practical application of surfaces with heterogeneous wettability. However, combining UV-resistant superhydrophobic and superhydrophilic materials on heterogeneous surfaces is challenging. Inspired by the structure of cell membranes, a UV-resistant heterogeneous wettability-patterned surface (UPS) is designed via laser ablation of the coating of multilayer structures. UV-resistant superhydrophobic silica patterns can be created in situ on surfaces covered with superhydrophilic TiO2 nanoparticles. The UV resistance time of the UPS with a TiO2 -based surface is more than two orders of magnitude higher than that obtained with other surface molecular modification methods that require a mask. The cell-membrane-like structure of the UPS regulates the migration of internal siloxane chain segments in the hydrophilic and hydrophobic regions of the surface. The UPS enables efficient patterning of functional materials under UV irradiation, controlling the wetting behavior of liquids in open-air systems. Furthermore, its heterogeneous wettability remains stable even after 50 h of intense UV irradiation (365 nm, 500 mW cm-2 ). These UV-resistant heterogeneous wettability patterned surfaces will likely be applied in microfluidics, cell culture, energy conversion, and water collection in the future.
Collapse
Affiliation(s)
- Chunlei Gao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P.R. China
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, P.R. China
| | - Lei Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P.R. China
| | - Yongping Hou
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P.R. China
| | - Yongmei Zheng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P.R. China
| |
Collapse
|
23
|
Gu W, Li W, Zhang Y, Xia Y, Wang Q, Wang W, Liu P, Yu X, He H, Liang C, Ban Y, Mi C, Yang S, Liu W, Cui M, Deng X, Wang Z, Zhang Y. Ultra-durable superhydrophobic cellular coatings. Nat Commun 2023; 14:5953. [PMID: 37741844 PMCID: PMC10517967 DOI: 10.1038/s41467-023-41675-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023] Open
Abstract
Developing versatile, scalable, and durable coatings that resist the accretion of matters (liquid, vapor, and solid phases) in various operating environments is important to industrial applications, yet has proven challenging. Here, we report a cellular coating that imparts liquid-repellence, vapor-imperviousness, and solid-shedding capabilities without the need for complicated structures and fabrication processes. The key lies in designing basic cells consisting of rigid microshells and releasable nanoseeds, which together serve as a rigid shield and a bridge that chemically bonds with matrix and substrate. The durability and strong resistance to accretion of different matters of our cellular coating are evidenced by strong anti-abrasion, enhanced anti-corrosion against saltwater over 1000 h, and maintaining dry in complicated phase change conditions. The cells can be impregnated into diverse matrixes for facile mass production through scalable spraying. Our strategy provides a generic design blueprint for engineering ultra-durable coatings for a wide range of applications.
Collapse
Affiliation(s)
- Wancheng Gu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Wanbo Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China.
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Yu Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yage Xia
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Qiaoling Wang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Wei Wang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Ping Liu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Xinquan Yu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Hui He
- School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Caihua Liang
- School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Youxue Ban
- School of Civil Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Changwen Mi
- School of Civil Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Sha Yang
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Wei Liu
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Miaomiao Cui
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Xu Deng
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, P. R. China.
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China.
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, P. R. China.
| | - Youfa Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China.
| |
Collapse
|
24
|
Dhar M, Kara UI, Das S, Xu Y, Mandal S, Dupont RL, Boerner EC, Chen B, Yao Y, Wang X, Manna U. Design of a self-cleanable multilevel anticounterfeiting interface through covalent chemical modulation. MATERIALS HORIZONS 2023; 10:2204-2214. [PMID: 37000456 DOI: 10.1039/d3mh00180f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Counterfeit products have posed a significant threat to consumers safety and the global economy. To address this issue, extensive studies have been exploring the use of coatings with unclonable, microscale features for authentication purposes. However, the ease of readout, and the stability of these features against water, deposited dust, and wear, which are required for practical use, remain challenging. Here we report a novel class of chemically functionalizable coatings with a combination of a physically unclonable porous topography and distinct physiochemical properties (e.g., fluorescence, water wettability, and water adhesion) obtained through orthogonal chemical modifications (i.e., 1,4-conjugate addition reaction and Schiff-base reaction at ambient conditions). Unprecedentedly, a self-cleanable and physically unclonable coating is introduced to develop a multilevel anticounterfeiting interface. We demonstrate that the authentication of the fluorescent porous topography can be verified using deep learning. More importantly, the spatially selective chemical modifications can be read with the naked eye via underwater exposure and UV light illumination. Overall, the results reported in this work provide a facile basis for designing functional surfaces capable of independent and multilevel decryption of authenticity.
Collapse
Affiliation(s)
- Manideepa Dhar
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Ufuoma I Kara
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Supriya Das
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Yang Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Sohini Mandal
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Robert L Dupont
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Eric C Boerner
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Boyuan Chen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Yuxing Yao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Xiaoguang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
- Sustainability Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Kamrup, Assam 781039, India
- Centre for Nanotechnology, School of Health Science and Technology, Indian Institute of Technology Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
25
|
Zhang L, Wang J, Fan Y, Wang Y. Coacervate-Enhanced Deposition of Sprayed Pesticide on Hydrophobic/Superhydrophobic Abaxial Leaf Surfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300270. [PMID: 37078792 PMCID: PMC10288258 DOI: 10.1002/advs.202300270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Indexed: 05/03/2023]
Abstract
Deposition of high-speed droplets on inverted surfaces is important to many fundamental scientific principles and technological applications. For example, in pesticide spraying to target pests and diseases emerging on abaxial side of leaves, the downward rebound and gravity of the droplets make the deposition exceedingly difficult on hydrophobic/superhydrophobic leaf underside, causing serious pesticide waste and environmental pollution. Here, a series of bile salt/cationic surfactant coacervates are developed to attain efficient deposition on the inverted surfaces of diverse hydrophobic/superhydrophobic characteristics. The coacervates have abundant nanoscale hydrophilic/hydrophobic domains and intrinsic network-like microstructures, which endow them with efficient encapsulation of various solutes and strong adhesion to surface micro/nanostructures. Thus, the coacervates with low viscosity achieve high-efficient deposition on superhydrophobic abaxial-side of tomato leaves and inverted artificial surfaces with a water contact angle from 170° to 124°, much better than that of commercial agricultural adjuvants. Intriguingly, the compactness of network-like structures dominantly controls adhesion force and deposition efficiency, and the most crowded one leads to the most efficient deposition. The tunable coacervates can help comprehensively understand the complex dynamic deposition, and provide innovative carriers for depositing sprayed pesticides on abaxial and adaxial sides of leaves, thereby potentially reducing pesticide use and promoting sustainable agriculture.
Collapse
Affiliation(s)
- Liangchen Zhang
- CAS Key Laboratory of Colloid Interface and Chemical ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesBeijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100190P. R. China
| | - Jie Wang
- CAS Key Laboratory of Colloid Interface and Chemical ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesBeijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100190P. R. China
| | - Yaxun Fan
- CAS Key Laboratory of Colloid Interface and Chemical ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesBeijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Yilin Wang
- CAS Key Laboratory of Colloid Interface and Chemical ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesBeijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100190P. R. China
| |
Collapse
|
26
|
Li M, Cao Y, Zhang X. Hierarchically Structured Nanoparticle-Free Omniphobic Membrane for High-Performance Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5841-5851. [PMID: 36989064 DOI: 10.1021/acs.est.2c07880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The functional loss of membranes caused by pore wetting, mineral scaling, or structural instability is a critical challenge in membrane distillation (MD), which primarily hinders its practical applications. Herein, we propose a novel and facile strategy to fabricate omniphobic membranes with exceptionally robust MD performance. Specifically, a substrate with a hierarchical re-entrant architecture was constructed via spray-water-assisted non-solvent-induced phase separation (SWNIPS), followed by a direct fluorinated surface decoration via "thiol-ene" click chemistry. Deionized (DI) water contact angle measurements revealed an ultrahigh surface water contact angle (166.8 ± 1.8°) and an ultralow sliding angle (3.6 ± 1.1°) of the resultant membrane. Destructive abrasion cycle and ultrasonication tests confirmed its structural robustness. Moreover, the membrane possessed excellent wetting resistance, as evidenced by the prevention of membrane pore penetration by all low-surface-tension testing liquids, allowing stable long-term MD operation to treat brine wastewater with a surfactant content of 0.6 mM. In a desalination experiment using shale gas wastewater, the omniphobic membrane exhibited robust MD performance, achieving a high water recovery ratio of ∼60% without apparent changes in water flux and permeate conductivity over the entire membrane process. Overall, our study paves the way for a nanoparticle-free methodology for the scalable fabrication of high-performance MD membranes with surface omniphobicity and structural robustness in hypersaline wastewater treatment.
Collapse
Affiliation(s)
- Meng Li
- Laboratory of New Membrane Materials, Ministry of Industry and Information Technology; School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Yang Cao
- Customs Targeting Bureau, Nanjing Customs District, Nanjing 210001, China
| | - Xuan Zhang
- Laboratory of New Membrane Materials, Ministry of Industry and Information Technology; School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
27
|
Wei X, Niu X. Recent Advances in Superhydrophobic Surfaces and Applications on Wood. Polymers (Basel) 2023; 15:polym15071682. [PMID: 37050296 PMCID: PMC10097333 DOI: 10.3390/polym15071682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Superhydrophobic substances were favored in wood protection. Superhydrophobic treatment of wood is of great significance for improving the service life of wood and expanding its application fields, such as improving dimensional stability, durability, UV stability, and reducing wetting. The superhydrophobic phenomenon is attributed to the interaction of micro/nano hierarchical structure and low surface energy substances of the wood surface. This is the common method for obtaining superhydrophobic wood. The article introduces the common preparation methods of superhydrophobic wood material coatings and their mechanisms. These techniques include lithography, sol–gel methods, graft copolymerization, chemical vapor deposition, etc. The latest research progress of superhydrophobic wood material coatings application at domestic and overseas is reviewed, and the current status of superhydrophobic coating application in wood materials and construction is summarized. Finally, superhydrophobic on wood in the field of applied research is presented, and the development trend in the field of functional improvement of wood is foreseen.
Collapse
|
28
|
Li W, Chan CW, Li Z, Siu SY, Chen S, Sun H, Liu Z, Wang Y, Hu C, Pugno NM, Zare RN, Wu H, Ren K. All-perfluoropolymer, nonlinear stability-assisted monolithic surface combines topology-specific superwettability with ultradurability. Innovation (N Y) 2023; 4:100389. [PMID: 36895759 PMCID: PMC9988671 DOI: 10.1016/j.xinn.2023.100389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Developing versatile and robust surfaces that mimic the skins of living beings to regulate air/liquid/solid matter is critical for many bioinspired applications. Despite notable achievements, such as in the case of developing robust superhydrophobic surfaces, it remains elusive to realize simultaneously topology-specific superwettability and multipronged durability owing to their inherent tradeoff and the lack of a scalable fabrication method. Here, we present a largely unexplored strategy of preparing an all-perfluoropolymer (Teflon), nonlinear stability-assisted monolithic surface for efficient regulating matters. The key to achieving topology-specific superwettability and multilevel durability is the geometric-material mechanics design coupling superwettability stability and mechanical strength. The versatility of the surface is evidenced by its manufacturing feasibility, multiple-use modes (coating, membrane, and adhesive tape), long-term air trapping in 9-m-deep water, low-fouling droplet transportation, and self-cleaning of nanodirt. We also demonstrate its multilevel durability, including strong substrate adhesion, mechanical robustness, and chemical stability, all of which are needed for real-world applications.
Collapse
Affiliation(s)
- Wanbo Li
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.,School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chiu-Wing Chan
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Zeyu Li
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Sin-Yung Siu
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Siyu Chen
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Han Sun
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Zeyu Liu
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Yisu Wang
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Chong Hu
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Nicola Maria Pugno
- Department of Civil, Environmental and Mechanical Engineering, Laboratory of Bio-Inspired, Bionic, Nano, Meta Materials and Mechanics, Università di Trento, 38100 Trento, Italy.,School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Hongkai Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Kangning Ren
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.,State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR 999077, China.,HKBU Institute of Research and Continuing Education, Shenzhen 518057, China
| |
Collapse
|
29
|
Nguyen NB, Ly NH, Tran HN, Son SJ, Joo SW, Vasseghian Y, Osman SM, Luque R. Transparent Oil-Water Separating Spiky SiO 2 Nanoparticle Supramolecular Polymer Superhydrophobic Coatings. SMALL METHODS 2023; 7:e2201257. [PMID: 36683199 DOI: 10.1002/smtd.202201257] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
A potential application of spiky SiO2 nanoparticles (NPs) with tubular and rough surfaces is investigated as superhydrophobic coatings, for their unique transparent, fluorinate-free, and environmentally friendly properties. This study demonstrates a facile method for the successful fabrication of superhydrophobic coatings and SiO2 @polydimethylsiloxane (PDMS) using spiky SiO2 NPs, N-coordinated boroxines, and PDMS. Combined with spray coating technology, this method of superhydrophobic coating can be simply applied to both hydrophilic and hydrophobic surfaces, including wood, fabric, glass, metal, sponge, and paper. The nanocomposite coating on the glass surface showed both excellent superhydrophobicity and high transparency, with a contact angle of 165.4 ± 1.0° and 96.93% transmittance at 550 nm, respectively. SiO2 @PDMS-modified glass substrate is found to be resilient to UV irradiation, water, and high temperature treatments at ambient conditions. Experimental data demonstrated that the simple but effective combination of N-boroxine-PDMS and spiky SiO2 NPs produces a layered coating material that exhibits many good integrated surface properties, including stability, transparency, superhydrophobicity, and oil-water separation.
Collapse
Affiliation(s)
| | - Nguyên Hoàng Ly
- Department of Chemistry, Gachon University, Seongnam, 13120, South Korea
| | - Huynh Nhu Tran
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea
| | - Sang Jun Son
- Department of Chemistry, Gachon University, Seongnam, 13120, South Korea
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea
- University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Sameh M Osman
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (C-3), Cordoba, 14014, Spain
- Peoples Friendship University of Russia (RUDN University), Moscow, 117198, Russian Federation
| |
Collapse
|
30
|
Alimohammadzadeh R, Sanhueza I, Córdova A. Design and fabrication of superhydrophobic cellulose nanocrystal films by combination of self-assembly and organocatalysis. Sci Rep 2023; 13:3157. [PMID: 36823204 PMCID: PMC9950148 DOI: 10.1038/s41598-023-29905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Cellulose nanocrystals, which have unique properties of high aspect ratio, high surface area, high mechanical strength, and a liquid crystalline nature, constitute a renewable nanomaterial with great potential for several uses (e.g., composites, films and barriers). However, their intrinsic hydrophilicity results in materials that are moisture sensitive and exhibit poor water stability. This limits their use and competitiveness as a sustainable alternative against fossil-based materials/plastics in packaging, food storage, construction and materials application, which cause contamination in our oceans and environment. To make cellulose nanocrystal films superhydrophobic, toxic chemicals such as fluorocarbons are typically attached to their surfaces. Hence, there is a pressing need for environmentally friendly alternatives for their modification and acquiring this important surface property. Herein, we describe the novel creation of superhydrophobic, fluorocarbon-free and transparent cellulose nanocrystal films with functional groups by a bioinspired combination of self-assembly and organocatalytic surface modification at the nanoscale using food approved organic acid catalysts. The resulting film-surface is superhydrophobic (water contact angle > 150°) and has self-cleaning properties (the lotus effect). In addition, the superhydrophobic cellulose nanocrystal films have excellent water stability and significantly decreased oxygen permeability at high relative humidity with oxygen transmission rates better than those of commonly used plastics.
Collapse
Affiliation(s)
- Rana Alimohammadzadeh
- Department of Natural Science and Technology, Mid Sweden University, Holmgatan 10, 851 70, Sundsvall, Sweden
| | - Italo Sanhueza
- Department of Natural Science and Technology, Mid Sweden University, Holmgatan 10, 851 70, Sundsvall, Sweden
| | - Armando Córdova
- Department of Natural Science and Technology, Mid Sweden University, Holmgatan 10, 851 70, Sundsvall, Sweden.
| |
Collapse
|
31
|
Sun Y, Liu R, Xu J, Sun Y, Gong J, Long L. A durable and environmental friendly superhydrophobic coatings with
self‐cleaning
,
anti‐fouling
performance for liquid‐food residue reduction. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Yingchun Sun
- Research Institute of Wood Industry Chinese Academy of Forestry Beijing China
| | - Ru Liu
- Research Institute of Wood Industry Chinese Academy of Forestry Beijing China
| | - Jianfeng Xu
- Research Institute of Wood Industry Chinese Academy of Forestry Beijing China
| | - Yuhui Sun
- Research Institute of Wood Industry Chinese Academy of Forestry Beijing China
| | - Jingya Gong
- Research Institute of Wood Industry Chinese Academy of Forestry Beijing China
| | - Ling Long
- Research Institute of Wood Industry Chinese Academy of Forestry Beijing China
| |
Collapse
|
32
|
Zhao W, Wang Y, Han M, Xu J, Tam KC. Surface Modification, Topographic Design and Applications of Superhydrophobic Systems. Chemistry 2022; 28:e202202657. [PMID: 36315127 DOI: 10.1002/chem.202202657] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Indexed: 11/27/2022]
Abstract
Superhydrophobic surfaces with expanded wetting behaviors, like tunable adhesion, hybrid surface hydrophobicity and smart hydrophobic switching have attracted increasing attention due to their broad applications. Herein, the construction methods, mechanisms and advanced applications of special superhydrophobicity are reviewed, and hydro/superhydrophobic modifications are categorized and discussed based on their surface chemistry, and topographic design. The formation and maintenance of special superhydrophobicity in the metastable state are also examined and explored. In addition, particular attention is paid to the use of special wettability in various applications, such as membrane distillation, droplet-based electricity generators and anti-fogging surfaces. Finally, the challenges for practical applications and future research directions are discussed.
Collapse
Affiliation(s)
- Weinan Zhao
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Yi Wang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Mei Han
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Jiaxin Xu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Kam Chiu Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
33
|
Zhu H, Liu J, Lu X, Wang D, Geng T, Feng L, Liang D, Ma X, Hu Z. Wettability and anticorrosion behavior of organic-inorganic hybrid superhydrophobic epoxy coatings containing triazine corrosion inhibitor loaded in mesoporous molecular sieve. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Peng Y, Shang J, Liu C, Zhao S, Huang C, Bai Y, Li Y. A universal replica molding strategy based on natural bio-templates for fabrication of robust superhydrophobic surfaces. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Zhang R, Wei J, Tian N, Liang W, Zhang J. Facile Preparation of Robust Superamphiphobic Coatings on Complex Substrates via Nonsolvent-Induced Phase Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49047-49058. [PMID: 36281879 DOI: 10.1021/acsami.2c11985] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Superamphiphobic surfaces have great potential in many fields but often suffer from complicated, expensive, and time-consuming preparation methods, difficulty in applying them on complex substrates, and low stability. Herein, we show a facile fabrication of robust superamphiphobic coatings on complex substrates. A stock suspension was prepared by nonsolvent-induced phase separation of a silicone-modified polyurethane (Si-PU) adhesive containing fluorinated silica (FD-silica) nanoparticles. Then, superamphiphobic surfaces could be easily fabricated via dip coating in the suspension. The influences of phase separation and Si-PU/FD-silica ratio on the wettability and morphology of the coatings were studied. The coatings feature a microscale dense and nanoscale rough texture due to phase separation and rapid solvent evaporation, which enhances the stability by forming strong linkages among the nanoparticles while achieving high superamphiphobicity by trapping air stably in the nanopores. Consequently, the coatings show excellent static/dynamic superamphiphobicity, superior impalement resistance, and good mechanical, chemical, thermal, and UV aging stability. Additionally, the coatings have good anti-icing performance as demonstrated by the greatly extended water freezing time and weakened ice adhesion force in both simulated and real conditions.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Jinfei Wei
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Ning Tian
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Weidong Liang
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Junping Zhang
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
36
|
Wang Z, Yao D, He Z, Liu Y, Wang H, Zheng Y. Fabrication of Durable, Chemically Stable, Self-Healing Superhydrophobic Fabrics Utilizing Gellable Fluorinated Block Copolymer for Multifunctional Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48106-48122. [PMID: 36240508 DOI: 10.1021/acsami.2c12895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Limited durability and complex materials restrict the application of superhydrophobic fabrics in daily life. In this work, gellable fluorinated block copolymer poly(dodecafluoroheptyl methacrylate)-block-poly(3-(triethoxysilyl)propyl methacrylate) (PDFMA-b-PTEPM) was used to fabricate adhesive-free superhydrophobic poly(ethylene terephthalate) (PET) fabrics via a simple dip-coating technology and sol-gel reaction. The growth of silica nanoparticles builds up a rough hierarchical structure and provides sol-gel reaction sites of PTEPM segments. The grafting of block copolymer significantly reduced the surface free energy of the fabrics, resulting in an excellent superhydrophobicity with a water contact angle of 160.2°. Benefiting from extensive chemical bond grafting and cross-linking of the PTEPM segment, the fabric exhibits excellent durability in mechanical abrasion, chemical treatment, and washing. The coating has withstood 50 sandpaper abrasion cycles and 400 soft friction cycles and can maintain superhydrophobic properties in various solvents, freezing and a wide pH range. These superhydrophobic fabrics with a long life span possess self-cleaning, anti-icing, oil-water separation, and self-healing capabilities. The multifunctional fabrics developed in this study are durable and easy to produce, possessing the potential for applications in industry and daily life.
Collapse
Affiliation(s)
- Zehao Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi710129, People's Republic of China
| | - Dongdong Yao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi710129, People's Republic of China
| | - Zhongjie He
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi710129, People's Republic of China
| | - Yisong Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi710129, People's Republic of China
| | - Hongni Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi710129, People's Republic of China
| | - Yaping Zheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi710129, People's Republic of China
| |
Collapse
|
37
|
Zhang Q, Bai X, Li Y, Zhang X, Tian D, Jiang L. Ultrastable Super-Hydrophobic Surface with an Ordered Scaly Structure for Decompression and Guiding Liquid Manipulation. ACS NANO 2022; 16:16843-16852. [PMID: 36222751 DOI: 10.1021/acsnano.2c06749] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Directional droplet manipulation is very crucial in microfluidics, intelligent liquid management, etc. However, excessive liquid pressure tends to destroy the solid-gas-liquid (SAL) composite interface, creating a highly adhesive surface, which is not conducive to liquid transport. Herein, we propose a strategy to enhance the surface durability, in which the surface cannot withstand liquid pressure only by "blocking" but must instead guide liquid transport for "decompression". Learning from the water resistance of water strider legs and the drag reduction of shark skin, we present a continuous integrated system to obtain an ultrastable super-hydrophobic surface with a highly ordered scaly structure via a liquid flow-induced alignment method for lossless unidirectional liquid transport. The nonwetting scaly structure can both buffer liquid pressure and drive droplet motion to further reduce the vertical pressure of the liquid. Moreover, droplets can be manipulated unidirectionally using a voice. This work could aid in manufacturing scalable anisotropic micro-nanostructure surfaces, which inspires efforts in realizing lossless continuous liquid control on demand and related microfluidic applications.
Collapse
Affiliation(s)
- Qiuya Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing100191, P. R. China
- School of Physics, Beihang University, Beijing100191, P. R. China
| | - Xiuhui Bai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing100191, P. R. China
| | - Yan Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing100191, P. R. China
| | - Xiaofang Zhang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing100083, P. R. China
| | - Dongliang Tian
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing100191, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing100191, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing100191, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing100191, P. R. China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100191, P. R. China
| |
Collapse
|
38
|
He X, Zhang K, Xiong X, Li Y, Wan X, Chen Z, Wang Y, Xu X, Liu M, Jiang Y, Wang S. Prediction of the Lotus Effect on Solid Surfaces by Machine Learning. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203264. [PMID: 36070429 DOI: 10.1002/smll.202203264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Superhydrophobic surfaces with the "lotus effect" have wide applications in daily life and industry, such as self-cleaning, anti-freezing, and anti-corrosion. However, it is difficult to reliably predict whether a designed superhydrophobic surface has the "lotus effect" by traditional theoretical models due to complex surface topographies. Here, a reliable machine learning (ML) model to accurately predict the "lotus effect" of solid surfaces by designing a set of descriptors about nano-scale roughness and micro-scale topographies in addition to the surface hydrophobic modification is demonstrated. Geometrical and mathematical descriptors combined with gray level cooccurrence matrices (GLCM) offer a feasible solution to the puzzle of accurate descriptions of complex topographies. Furthermore, the "black box" is opened by feature importance and Shapley-additive-explanations (SHAP) analysis to extract waterdrop adhesion trends on superhydrophobic surfaces. The accurate prediction on as-fabricated superhydrophobic surfaces strongly affirms the extensionality of the ML model. This approach can be easily generalized to screen solid surfaces with other properties.
Collapse
Affiliation(s)
- Xiao He
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kaihua Zhang
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xianghui Xiong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuepeng Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xizi Wan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zijia Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Yixuan Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuetao Xu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mingqian Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ying Jiang
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
39
|
Xie X, Chen X, Levkin PA, Feng W. A Reactive Superhydrophobic Platform for Living Photolithography. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203619. [PMID: 35839120 DOI: 10.1002/adma.202203619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Superhydrophobic surfaces with regional functions have widespread applications in biotechnology, diagnostic applications, and micro-chemical synthesis and analysis. However, owing to their chemical inertness, superhydrophobic surfaces with chemical reactivity are difficult to achieve. Superhydrophobic surfaces that can be further modified with varied densities and expanded species of the functional moieties are not readily available. In this study, a single-step approach to achieve a reactive superhydrophobic surface is reported, on which chemical grafting of a library of molecules can be carried out through surface-initiated atom-transfer radical addition or surface-initiated atom-transfer radical polymerization. The excellent spatial and temporal controllability of these chemical processes under visible light enables us to take advantage of programmed liquid-crystal-display (LCD) or Digital Light Processing (DLP) photolithography systems to effortlessly regulate the location, density, and species of the functional molecules on the reactive superhydrophobic surface. The distinctive properties of this surface will provide new insight into intelligent superhydrophobic material development and practical applications, such as aqueous/oil microdroplets array, multi-anti-counterfeiting labels and integrated microfluidic reactors with enzymes for chemical logic learning.
Collapse
Affiliation(s)
- Xinjian Xie
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xinghao Chen
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Pavel A Levkin
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Wenqian Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
40
|
Robust Superhydrophobic Coating with Mullite Fiber Framework. COATINGS 2022. [DOI: 10.3390/coatings12071037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Superhydrophobic surfaces have received increasing attention due to their excellent water repellency, but the fragile stability of superhydrophobic coatings has been a huge hindrance to their applications. In this work, we constructed a layer of mullite fibers on the surface of a ceramic substrate using high-temperature molten salt. Then, we obtained a superhydrophobic surface with a contact angle greater than 150° via soaking the sample with an alcoholic sol containing modified particles. On the one hand, this interlaced three-dimensional fiber structure increases the surface area and roughness, providing more locations for attaching superhydrophobic particles, as well as improving the water repellency. On the other hand, this fiber layer has a height difference, which protects the superhydrophobic particles attached at lower positions, and when an external object contacts the surface, it gives priority to the stable mullite fibers, reducing the direct contact between superhydrophobic particles and external objects and improving the stability of the superhydrophobic coating. After abrasion with sandpaper, the sample with the mullite fiber layer showed excellent stability compared to the samples without the fiber layer, indicating the significant protective effect of the fiber layer. This paper provides a potential method to enhance the stability of superhydrophobic ceramic surfaces.
Collapse
|
41
|
Wang H, Chen R, Zhang F, Yu Z, Wang Y, Tang Z, Yang L, Tang X, Xiong B. Superhydrophobic Paper-Based Microfluidic Field-Effect Transistor Biosensor Functionalized with Semiconducting Single-Walled Carbon Nanotube and DNAzyme for Hypocalcemia Diagnosis. Int J Mol Sci 2022; 23:ijms23147799. [PMID: 35887147 PMCID: PMC9318675 DOI: 10.3390/ijms23147799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/06/2023] Open
Abstract
Hypocalcemia is caused by a sharp decline in blood calcium concentration after dairy cow calving, which can lead to various diseases or even death. It is necessary to develop an inexpensive, easy-to-operate, reliable sensor to diagnose hypocalcemia. The cellulose-paper-based microfluidic field-effect biosensor is promising for point-of-care, but it has poor mechanical strength and a short service life after exposure to an aqueous solution. Octadecyltrichlorosilane (OTS), as a popular organosilane derivative, can improve the hydrophobicity of cellulose paper to overcome the shortage of cellulose paper. In this work, OTS was used to produce the superhydrophobic cellulose paper that enhances the mechanical strength and short service life of MFB, and a microfluidic field-effect biosensor (MFB) with semiconducting single-walled carbon nanotubes (SWNTs) and DNAzyme was then developed for the Ca2+ determination. Pyrene carboxylic acid (PCA) attached to SWNTs through a non-covalent π-π stacking interaction provided a carboxyl group that can bond with an amino group of DNAzyme. Two DNAzymes with different sensitivities were designed by changing the sequence length and cleavage site, which were functionalized with SPFET/SWNTs-PCA to form Dual-MFB, decreasing the interference of impurities in cow blood. After optimizing the detecting parameters, Dual-MFB could determine the Ca2+ concentration in the range of 25 μM to 5 mM, with a detection limit of 10.7 μM. The proposed Dual-MFB was applied to measure Ca2+ concentration in cow blood, which provided a new method to diagnose hypocalcemia after dairy cow calving.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (R.C.); (F.Z.); (Z.Y.); (Y.W.); (Z.T.); (L.Y.)
| | - Ruipeng Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (R.C.); (F.Z.); (Z.Y.); (Y.W.); (Z.T.); (L.Y.)
| | - Fan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (R.C.); (F.Z.); (Z.Y.); (Y.W.); (Z.T.); (L.Y.)
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhixue Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (R.C.); (F.Z.); (Z.Y.); (Y.W.); (Z.T.); (L.Y.)
| | - Yue Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (R.C.); (F.Z.); (Z.Y.); (Y.W.); (Z.T.); (L.Y.)
| | - Zhonglin Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (R.C.); (F.Z.); (Z.Y.); (Y.W.); (Z.T.); (L.Y.)
| | - Liang Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (R.C.); (F.Z.); (Z.Y.); (Y.W.); (Z.T.); (L.Y.)
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (R.C.); (F.Z.); (Z.Y.); (Y.W.); (Z.T.); (L.Y.)
- Correspondence: (X.T.); (B.X.)
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (R.C.); (F.Z.); (Z.Y.); (Y.W.); (Z.T.); (L.Y.)
- Correspondence: (X.T.); (B.X.)
| |
Collapse
|
42
|
Liu S, Chen K, Salim A, Li J, Bottone D, Seeger S. Printable and Versatile Superhydrophobic Paper via Scalable Nonsolvent Armor Strategy. ACS NANO 2022; 16:9442-9451. [PMID: 35611949 PMCID: PMC9245351 DOI: 10.1021/acsnano.2c02382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Despite great scientific and industrial interest in waterproof cellulosic paper, its real world application is hindered by complicated and costly fabrication processes, limitations in scale-up production, and use of organic solvents. Furthermore, simultaneously achieving nonwetting properties and printability on paper surfaces still remains a technical and chemical challenge. Herein, we demonstrate a nonsolvent strategy for scalable and fast fabrication of waterproofing paper through in situ surface engineering with polysilsesquioxane nanorods (PSNRs). Excellent superhydrophobicity is attained on the functionalized paper surface with a water contact angle greater than 160°. Notably, the engineered paper features outstanding printability and writability, as well as greatly enhanced strength and integrity upon prolonged exposure to water (tensile strength ≈ 9.0 MPa). Additionally, the PSNRs concurrently armor paper-based printed items and artwork with waterproofing, self-cleaning, and antimicrobial functionalities without compromising their appearance, readability, and mechanical properties. We also demonstrate that the engineered paper holds the additional advantages of easy processing, low cost, and mechanochemical robustness, which makes it particularly promising for real world applications.
Collapse
|
43
|
Effect of Solvent on Superhydrophobicity Behavior of Tiles Coated with Epoxy/PDMS/SS. Polymers (Basel) 2022; 14:polym14122406. [PMID: 35745983 PMCID: PMC9230667 DOI: 10.3390/polym14122406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
Superhydrophobic coatings are widely applied in various applications due to their water-repelling characteristics. However, producing a durable superhydrophobic coating with less harmful low surface materials and solvents remains a challenge. Therefore, the aim of this work is to study the effects of three different solvents in preparing a durable and less toxic superhydrophobic coating containing polydimethylsiloxane (PDMS), silica solution (SS), and epoxy resin (DGEBA). A simple sol-gel method was used to prepare a superhydrophobic coating, and a spray-coating technique was employed to apply the superhydrophobic coating on tile substrates. The coated tile substrates were characterized for water contact angle (WCA) and tilting angle (TA) measurements, Field-Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). Among 3 types of solvent (acetone, hexane, and isopropanol), a tile sample coated with isopropanol-added solution acquires the highest water contact angle of 152 ± 2° with a tilting angle of 7 ± 2° and a surface roughness of 21.80 nm after UV curing for 24 h. The peel off test showed very good adherence of the isopropanol-added solution coating on tiles. A mechanism for reactions that occur in the best optimized solvent is proposed.
Collapse
|
44
|
Zhao Y, Yan C, Hou T, Dou H, Shen H. Multifunctional Ti 3C 2T x MXene-Based Composite Coatings with Superhydrophobic Anti-icing and Photothermal Deicing Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26077-26087. [PMID: 35608175 DOI: 10.1021/acsami.2c07087] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although advances in industrial products have brought convenience to our lives, severe weather has increased the safety risks to industrial facilities. Considerable efforts have been made to develop high-performance superhydrophobic anti-icing coatings. Nevertheless, designing a functional coating with both anti-icing properties and self-deicing remains a major challenge. Here, we propose a design strategy to exploit a photothermal superhydrophobic multifunctional coating with excellent anti-icing and deicing properties based on MXene by high-temperature sintering and layer-by-layer coating. Specifically, poly(tetrafluoroethylene) (PTFE) particles provide low surface energy and binding effects. Room-temperature-vulcanized silicone rubber (RTV) enhances the dispersion of the composite particles and the adhesion of the functional coating to a glass substrate. Furthermore, the functional coatings constructed with MXene exhibit outstanding photothermal effects, imparting excellent superhydrophobicity (CA = 160.18°, SA = 1.8°) and efficient photothermal conversion (equilibrium temperature of 109.3 °C). An anti-icing/deicing test is simulated to confirm their efficient anti-icing/deicing performance in practical applications. Overall, the functional coatings designed in this work can be applied in real industrial facilities.
Collapse
Affiliation(s)
- Yushun Zhao
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China
| | - Cheng Yan
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China
| | - Tianqi Hou
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China
| | - Hongli Dou
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China
| | - Hao Shen
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
45
|
Gu W, Wang W, Jiao X, Deng W, Xia Y, Yu X, Zhang Y. Waterborne superamphiphobic coatings with network structure for enhancing mechanical durability. RSC Adv 2022; 12:16510-16516. [PMID: 35754893 PMCID: PMC9168828 DOI: 10.1039/d2ra02853k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Superamphiphobic coatings may significantly change the wettability of a substrate, and so are attractive for applications in aero/marine engineering, biotechnology, and heat transfer. However, the coatings are caught in a double bind when their durability is considered, as they are vulnerable to mechanical abrasion. Meanwhile, the wide use of organic solvents for preparing the coatings generates environmental pollution. Here, we present a waterborne superamphiphobic coating through one-step spraying that repels a wide range of liquids. By tailoring the repellence of the nano-silica to waterborne resin, a network structure is constructed to protect the embedded nano-silica from damage. Thus, the coatings are durable against 725 cycles of friction tester abrasion under a load of 250 g, showing a significant improvement in the mechanical durability by 3-25 times. Moreover, our coating also shows excellent comprehensive durability, including resistance to oil-flow erosion, falling sand impact, chemical attack, thermal treatment, etc. This strategy can be introduced to various waterborne resins, demonstrating its universality, and may offer a new insight to design sustainable superamphiphobic coatings for long-term practical applications.
Collapse
Affiliation(s)
- Wancheng Gu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University Nanjing 211189 PR China
| | - Wei Wang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University Nanjing 211189 PR China
| | - Xuan Jiao
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University Nanjing 211189 PR China
| | - Weilin Deng
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University Nanjing 211189 PR China
| | - Yage Xia
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University Nanjing 211189 PR China
| | - Xinquan Yu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University Nanjing 211189 PR China
| | - Youfa Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University Nanjing 211189 PR China
| |
Collapse
|
46
|
Facile Construction and Fabrication of a Superhydrophobic and Super Oleophilic Stainless Steel Mesh for Separation of Water and Oil. NANOMATERIALS 2022; 12:nano12101661. [PMID: 35630883 PMCID: PMC9147946 DOI: 10.3390/nano12101661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022]
Abstract
The fluoride-free fabrication of superhydrophobic materials for the separation of oil/water mixtures has received widespread attention because of frequent offshore oil exploration and chemical leakage. In recent years, oil/water separation materials, based on metal meshes, have drawn much attention, with significant advantages in terms of their high mechanical strength, easy availability, and long durability. However, it is still challenging to prepare superhydrophobic metal meshes with high-separation capacity, low costs, and high recyclability for dealing with oil–water separation. In this work, a superhydrophobic and super oleophilic stainless steel mesh (SSM) was successfully prepared by anchoring Fe2O3 nanoclusters (Fe2O3-NCs) on SSM via the in-situ flame synthesis method and followed by further modification with octadecyltrimethoxysilane (OTS). The as-prepared SSM with Fe2O3-NCs and OTS (OTS@Fe2O3-NCs@SSM) was confirmed by a field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectrometer (XPS), and X-ray diffractometer (XRD). The oil–water separation capacity of the sample was also measured. The results show that the interlaced and dense Fe2O3-NCs, composed of Fe2O3 nanoparticles, were uniformly coated on the surface of the SSM after the immerging-burning process. Additionally, a compact self-assembled OTS layer with low surface energy is coated on the surface of Fe2O3-NCs@SSM, leading to the formation of OTS@Fe2O3-NCs@SSM. The prepared OTS@Fe2O3-NCs@SSM shows excellent superhydrophobicity, with a water static contact angle of 151.3°. The separation efficiencies of OTS@Fe2O3-NCs@SSM for the mixtures of oil/water are all above 98.5%, except for corn oil/water (97.5%) because of its high viscosity. Moreover, the modified SSM exhibits excellent stability and recyclability. This work provides a facile approach for the preparation of superhydrophobic and super oleophilic metal meshes, which will lead to advancements in their large-scale applications on separating oil/water mixtures.
Collapse
|
47
|
Xu L, Wang W, Zhang L, Wang D, Zhang A. Ultrasensitive and Recyclable Multifunctional Superhydrophobic Sensor Membrane for Underwater Applications, Weather Monitoring, and Wastewater Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21623-21635. [PMID: 35471018 DOI: 10.1021/acsami.2c01345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although flexible sensors have attracted considerable attention in emerging fields, including wearable electronics and soft robotics, their stability must be considered in practical applications, especially the effects of external factors on the sensing performance. Herein, a recyclable flexible sensor with superhydrophobicity and a highly sensitive strain response was developed by combining electrospinning and ultrasonication anchoring techniques. The constructed hierarchical network structure is composed of the fluorine-free superhydrophobic multiwalled carbon nanotubes and a porous elastomer membrane substrate reinforced by nanoparticles. The obtained sensor exhibited exceptional strain-sensing performance in terms of ultrahigh sensitivity (maximum gauge factor of 12 172.46), a fast response time of 80 ms, and excellent durability (10 000 cycles). Based on these outstanding merits, the strain sensor can detect various human motions without being interfered with by harsh environments. Moreover, superhydrophobic membranes can be combined with electronic devices for weather monitoring and underwater sensing. Noteworthily, damaged sensors can be quickly dissolved by a small amount of cyclohexane, enabling material recovery. The recyclable multifunctional membranes could reduce the potential pollution to the environment and show highly promising applications in complex environments.
Collapse
Affiliation(s)
- Liqiang Xu
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Weiwen Wang
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Lun Zhang
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Dong Wang
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Aimin Zhang
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
48
|
Novel fabrication of hydrophobic/oleophilic human hair fiber for efficient oil/water separation through one-pot dip-coating synthesis route. Sci Rep 2022; 12:7632. [PMID: 35538093 PMCID: PMC9090757 DOI: 10.1038/s41598-022-11511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/26/2022] [Indexed: 11/08/2022] Open
Abstract
Frequent oil spill accidents and industrial wastewater discharge has always been one of the most severe worldwide environmental problems. To cope with this problem, many fluorine-containing and high-cost materials with superwettability have been extensively applied for oil-water separation, which hinders its large-scale application. In this work, a novel human hair fiber (HHF)-polymerized octadecylsiloxane (PODS) fiber was fabricated with a facile one-pot dip-coating synthesis approach, inspired by the self-assembly performance and hydrophobicity of OTS modification. The benefits of prominent hydrophobic/lipophilic behavior lie in the low surface energy, and a rough PODS coating was rationally adhered on the surface of HHF. Driven solely by gravity and capillary force, the HHF-PODS showed excellent oil/water separation efficiency (> 99.0%) for a wide range of heavy and light oil/water mixtures. In addition, HHF-PODS demonstrated durability toward different harsh environments like alkaline, acid, and salty solutions.
Collapse
|
49
|
Tang J, Zou R, Zhang X, Zhong Y, Li M, Feng Y, Wei X, Wang J. Combination of Universal Chemical Deposition and Unique Liquid Etching for the Design of Superhydrophobic Aramid Paper with Bioinspired Multiscale Hierarchical Dendritic Structure. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4791-4807. [PMID: 35029108 DOI: 10.1021/acsami.1c24513] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is urgent and significant for the further development of superhydrophobic materials to exploit a facile, low-cost, scalable, and eco-friendly method for the manufacture of superhydrophobic materials with self-cleaning, antifouling, directional transportation, and other characteristics. Herein, an outstanding superhydrophobic material composed of a flexible microconvex aramid paper substrate, micron-scale cone-shaped copper, micro-nanoscale dendritic copper oxide, and hydrophobic copper stearate film has been successfully constructed through delicate architectural design and a convenient preparation approach. Based on the microstructure evolution and composition analysis results, it is revealed that the cone-shaped copper was etched into a dendritic copper oxide structure step by step from the top to bottom and from the outside to inside in an alkaline liquid environment. Moreover, by virtue of the compositional features and structural characteristics, the constructed superhydrophobic material showcased a high contact angle (CA), low sliding angle (SA), high porosity, low surface free energy, and adhesion work. Meanwhile, the dendritic microstructure analysis, the calculation of solid-liquid interfacial tension, and the force analysis of water droplets jointly revealed the mechanism of the bounce and merged bounce of water droplets. Finally, this superhydrophobic material has the functions of self-cleaning, antifouling, and directional transportation, especially by controlling the deformation of the material to realize the transportation of water droplets in a specified direction.
Collapse
Affiliation(s)
- Jianbin Tang
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Ruiqing Zou
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Xin Zhang
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Yun Zhong
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Mengyao Li
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Yujia Feng
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Xinpeng Wei
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Jian Wang
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| |
Collapse
|
50
|
Chen F, Wang Y, Tian Y, Zhang D, Song J, Crick CR, Carmalt CJ, Parkin IP, Lu Y. Robust and durable liquid-repellent surfaces. Chem Soc Rev 2022; 51:8476-8583. [DOI: 10.1039/d0cs01033b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review provides a comprehensive summary of characterization, design, fabrication, and application of robust and durable liquid-repellent surfaces.
Collapse
Affiliation(s)
- Faze Chen
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Yaquan Wang
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Yanling Tian
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Dawei Zhang
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Jinlong Song
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Colin R. Crick
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Claire J. Carmalt
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Ivan P. Parkin
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Yao Lu
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|