1
|
Ren J, Li J, Chen S, Liu Y, Ta D. Unveiling the potential of ultrasound in brain imaging: Innovations, challenges, and prospects. ULTRASONICS 2025; 145:107465. [PMID: 39305556 DOI: 10.1016/j.ultras.2024.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/30/2024] [Accepted: 09/08/2024] [Indexed: 11/12/2024]
Abstract
Within medical imaging, ultrasound serves as a crucial tool, particularly in the realms of brain imaging and disease diagnosis. It offers superior safety, speed, and wider applicability compared to Magnetic Resonance Imaging (MRI) and X-ray Computed Tomography (CT). Nonetheless, conventional transcranial ultrasound applications in adult brain imaging face challenges stemming from the significant acoustic impedance contrast between the skull bone and soft tissues. Recent strides in ultrasound technology encompass a spectrum of advancements spanning tissue structural imaging, blood flow imaging, functional imaging, and image enhancement techniques. Structural imaging methods include traditional transcranial ultrasound techniques and ultrasound elastography. Transcranial ultrasound assesses the structure and function of the skull and brain, while ultrasound elastography evaluates the elasticity of brain tissue. Blood flow imaging includes traditional transcranial Doppler (TCD), ultrafast Doppler (UfD), contrast-enhanced ultrasound (CEUS), and ultrasound localization microscopy (ULM), which can be used to evaluate the velocity, direction, and perfusion of cerebral blood flow. Functional ultrasound imaging (fUS) detects changes in cerebral blood flow to create images of brain activity. Image enhancement techniques include full waveform inversion (FWI) and phase aberration correction techniques, focusing on more accurate localization and analysis of brain structures, achieving more precise and reliable brain imaging results. These methods have been extensively studied in clinical animal models, neonates, and adults, showing significant potential in brain tissue structural imaging, cerebral hemodynamics monitoring, and brain disease diagnosis. They represent current hotspots and focal points of ultrasound medical research. This review provides a comprehensive summary of recent developments in brain imaging technologies and methods, discussing their advantages, limitations, and future trends, offering insights into their prospects.
Collapse
Affiliation(s)
- Jiahao Ren
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Jian Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Shili Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Yang Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China; International Institute for Innovative Design and Intelligent Manufacturing of Tianjin University in Zhejiang, Shaoxing 312000, China.
| | - Dean Ta
- School of Information Science and Technology, Fudan University, Shanghai 200433, China.
| |
Collapse
|
2
|
Qiang Y, Huang W, Liang W, Liu R, Han X, Pan Y, Wang N, Yu Y, Zhang Z, Sun L, Qiu W. An adaptive spatiotemporal filter for ultrasound localization microscopy based on density canopy clustering. ULTRASONICS 2024; 144:107446. [PMID: 39213718 DOI: 10.1016/j.ultras.2024.107446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/07/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Ultrasound Localization Microscopy (ULM) facilitates structural and hemodynamic imaging of microvessels with a resolution of tens of micrometers. In ULM, the extraction of effective microbubble signals is crucial for image quality. Singular Value Decomposition (SVD) is currently the most prevalent method for microbubble signal extraction in ULM. Most existing ULM studies employ a fixed SVD filter threshold using empirical values which will lead to imaging quality degradation due to the insufficient separation of blood signals. In this study, we propose an adaptive and non-threshold SVD filter based on canopy-density clustering, termed DCC-SVD. This filter automatically classifies the components of the SVD based on the density of their spatiotemporal features, eliminating the need for parameter selection. In in vitro tube phantom, DCC-SVD demonstrated its ability to adaptive separation of blood and bubble signal at varying microbubble concentrations and flow rates. We compared the proposed DCC-SVD method with the Block-match 3D (BM3D) filter and a classical adaptive method called spatial similarity matrix (SSM), using concentration-variable in vivo rat brain data, as well as open-source rat kidney and mouse tumor datasets. The proposed DCC-SVD improved the global spatial resolution by approximately 4 μm from 30.39 μm to 26.02 μm. It also captured vessel structure absent in images obtained by other methods and yielded a smoother vessel intensity profile, making it a promising spatiotemporal filter for ULM imaging.
Collapse
Affiliation(s)
- Yu Qiang
- The Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wenyue Huang
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Wenjie Liang
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Rong Liu
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xuan Han
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yue Pan
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ningyuan Wang
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanyan Yu
- Department of Biomedical Engineering, Shenzhen University, Shenzhen, China.
| | - Zhiqiang Zhang
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China.
| | - Lei Sun
- The Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Weibao Qiu
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
3
|
Guo Y, Lin Z, Fan Z, Tian X. Epileptic brain network mechanisms and neuroimaging techniques for the brain network. Neural Regen Res 2024; 19:2637-2648. [PMID: 38595282 PMCID: PMC11168515 DOI: 10.4103/1673-5374.391307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/08/2023] [Accepted: 11/22/2023] [Indexed: 04/11/2024] Open
Abstract
Epilepsy can be defined as a dysfunction of the brain network, and each type of epilepsy involves different brain-network changes that are implicated differently in the control and propagation of interictal or ictal discharges. Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice. An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tractography, diffusion kurtosis imaging-based fiber tractography, fiber ball imaging-based tractography, electroencephalography, functional magnetic resonance imaging, magnetoencephalography, positron emission tomography, molecular imaging, and functional ultrasound imaging have been extensively used to delineate epileptic networks. In this review, we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy, and extensively analyze the imaging mechanisms, advantages, limitations, and clinical application ranges of each technique. A greater focus on emerging advanced technologies, new data analysis software, a combination of multiple techniques, and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.
Collapse
Affiliation(s)
- Yi Guo
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Zhonghua Lin
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Zhen Fan
- Department of Geriatrics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Xin Tian
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Wallois F, Moghimi S. Revisiting the functional monitoring of brain development in premature neonates. A new direction in clinical care and research. Semin Fetal Neonatal Med 2024:101556. [PMID: 39528364 DOI: 10.1016/j.siny.2024.101556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The first 1000 days of life are of paramount importance for neonatal development. Premature newborns are exposed early to the external environment, modifying the fetal exposome and leading to overexposure in some sensory domains and deprivation in others. The resulting neurodevelopmental effects may persist throughout the individual's lifetime. Several neonatal neuromonitoring techniques can be used to investigate neural mechanisms in early postnatal development. EEG is the most widely used, as it is easy to perform, even at the patient's bedside. It is not expensive and provides information with a high temporal resolution and relatively good spatial resolution when performed in high-density mode. Functional near-infrared spectroscopy (fNIRS), a technique for monitoring vascular network dynamics, can also be used at the patient's bedside. It is not expensive and has a good spatial resolution at the cortical surface. These two techniques can be combined for simultaneous monitoring of the neuronal and vascular networks in premature newborns, providing insight into neurodevelopment before term. However, the extent to which more general conclusions about fetal development can be drawn from findings for premature neonates remains unclear due to considerable differences in environmental and medical situations. Fetal MEG (fMEG, as an alternative to EEG for preterm infants) and fMRI (as an alternative to fNIRS for preterm infants) can also be used to investigate fetal neurodevelopment on a trimester-specific basis. These techniques should be used for validation purposes as they are the only tools available for evaluating neuronal dysfunction in the fetus at the time of the gene-environment interactions influencing transient neuronal progenitor populations in brain structures. But what do these techniques tell us about early neurodevelopment? We address this question here, from two points of view. We first discuss spontaneous neural activity and its electromagnetic and hemodynamic correlates. We then explore the effects of stimulating the immature developing brain with information from exogenous sources, reviewing the available evidence concerning the characteristics of electromagnetic and hemodynamic responses. Once the characteristics of the correlates of neural dynamics have been determined, it will be essential to evaluate their possible modulation in the context of disease and in at-risk populations. Evidence can be collected with various neuroimaging techniques targeting both spontaneous and exogenously driven neural activity. A multimodal approach combining the neuromonitoring of different functional compartments (neuronal and vascular) is required to improve our understanding of the normal functioning and dysfunction of the brain and to identify neurobiomarkers for predicting the neurodevelopmental outcome of premature neonate and fetus. Such an approach would provide a framework for exploring early neurodevelopment, paving the way for the development of tools for earlier diagnosis in these vulnerable populations, thereby facilitating preventive, rescue and reparative neurotherapeutic interventions.
Collapse
Affiliation(s)
- Fabrice Wallois
- Inserm U 1105, Department of Pediatric Clinical Neurophysiology, University Hospital, Amiens, France; Inserm U 1105, Multimodal Analysis of Brain Function Research Group (GRAMFC), Université de Picardie, Amiens, France.
| | - Sahar Moghimi
- Inserm U 1105, Multimodal Analysis of Brain Function Research Group (GRAMFC), Université de Picardie, Amiens, France
| |
Collapse
|
5
|
Zhao Y, Zhang J, Yu H, Hou X, Zhang J. Noninvasive microvascular imaging in newborn rats using high-frequency ultrafast ultrasound. Neuroimage 2024; 297:120738. [PMID: 39009248 DOI: 10.1016/j.neuroimage.2024.120738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024] Open
Abstract
Ultrasound imaging stands as the predominant modality for neonatal health assessment, with recent advancements in ultrafast Doppler (μDoppler) technology offering significant promise in fields such as neonatal brain imaging. Combining μDoppler with high-frequency ultrasound (HF-μDoppler) presents a potential efficient avenue to enhance in vivo microvascular imaging in small animals, notably newborn rats, a crucial preclinical animal model for neonatal disease and development research. It is necessary to verify the imaging performance of HF-μDoppler in preclinical trials. This study investigates the microvascular imaging capabilities of HF-μDoppler using a 30 MHz high-frequency linear array probe in newborn rats. Results demonstrate the clarity of cerebral microvascular imaging in rats aged 1 to 7 postnatal days, extending to whole-body microvascular imaging, encompassing the central nervous system, including the brain and spinal cord. In conclusion, HF-μDoppler technology emerges as a reliable imaging tool, offering a new perspective for preclinical investigations into neonatal diseases and development.
Collapse
Affiliation(s)
- Yunlong Zhao
- Department of Pediatrics, Peking University First Hospital, Beijing, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jiabin Zhang
- College of Future Technology, Peking University, Beijing, China.
| | - Hao Yu
- College of Engineering, Peking University, Beijing, China
| | - Xinlin Hou
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; College of Engineering, Peking University, Beijing, China
| |
Collapse
|
6
|
Agyeman KA, Lee DJ, Russin J, Kreydin EI, Choi W, Abedi A, Lo YT, Cavaleri J, Wu K, Edgerton VR, Liu C, Christopoulos VN. Functional ultrasound imaging of the human spinal cord. Neuron 2024; 112:1710-1722.e3. [PMID: 38458198 DOI: 10.1016/j.neuron.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/03/2023] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Utilizing the first in-human functional ultrasound imaging (fUSI) of the spinal cord, we demonstrate the integration of spinal functional responses to electrical stimulation. We record and characterize the hemodynamic responses of the spinal cord to a neuromodulatory intervention commonly used for treating pain and increasingly used for the restoration of sensorimotor and autonomic function. We found that the hemodynamic response to stimulation reflects a spatiotemporal modulation of the spinal cord circuitry not previously recognized. Our analytical capability offers a mechanism to assess blood flow changes with a new level of spatial and temporal precision in vivo and demonstrates that fUSI can decode the functional state of spinal networks in a single trial, which is of fundamental importance for developing real-time closed-loop neuromodulation systems. This work is a critical step toward developing a vital technique to study spinal cord function and effects of clinical neuromodulation.
Collapse
Affiliation(s)
- K A Agyeman
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | - D J Lee
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - J Russin
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - E I Kreydin
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA; Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - W Choi
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - A Abedi
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Y T Lo
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - J Cavaleri
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - K Wu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - V R Edgerton
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA.
| | - C Liu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA; Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| | - V N Christopoulos
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA; Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
7
|
Nyayapathi N, Zheng E, Zhou Q, Doyley M, Xia J. Dual-modal Photoacoustic and Ultrasound Imaging: from preclinical to clinical applications. FRONTIERS IN PHOTONICS 2024; 5:1359784. [PMID: 39185248 PMCID: PMC11343488 DOI: 10.3389/fphot.2024.1359784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Photoacoustic imaging is a novel biomedical imaging modality that has emerged over the recent decades. Due to the conversion of optical energy into the acoustic wave, photoacoustic imaging offers high-resolution imaging in depth beyond the optical diffusion limit. Photoacoustic imaging is frequently used in conjunction with ultrasound as a hybrid modality. The combination enables the acquisition of both optical and acoustic contrasts of tissue, providing functional, structural, molecular, and vascular information within the same field of view. In this review, we first described the principles of various photoacoustic and ultrasound imaging techniques and then classified the dual-modal imaging systems based on their preclinical and clinical imaging applications. The advantages of dual-modal imaging were thoroughly analyzed. Finally, the review ends with a critical discussion of existing developments and a look toward the future.
Collapse
Affiliation(s)
- Nikhila Nyayapathi
- Electrical and Computer Engineering, University of Rochester, Rochester, New York, 14627
| | - Emily Zheng
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, 14226
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90007
| | - Marvin Doyley
- Electrical and Computer Engineering, University of Rochester, Rochester, New York, 14627
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, 14226
| |
Collapse
|
8
|
Jiang L, Chu H, Yu J, Su X, Liu J, Wu H, Wang F, Zong Y, Wan M. Clutter filtering of angular domain data for contrast-free ultrafast microvascular imaging. Phys Med Biol 2023; 69:015006. [PMID: 38041871 DOI: 10.1088/1361-6560/ad11a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/01/2023] [Indexed: 12/04/2023]
Abstract
Objective. Contrast-free microvascular imaging is clinically valuable for the assessment of physiological status and the early diagnosis of diseases. Effective clutter filtering is essential for microvascular visualization without contrast enhancement. Singular value decomposition (SVD)-based spatiotemporal filter has been widely used to suppress clutter. However, clinical real-time imaging relies on short ensembles (dozens of frames), which limits the implementation of SVD filtering due to the large error of eigen-correlated estimations and high dependence on optimal threshold when used in such ensembles.Approach. To address the above challenges of imaging in short ensembles, two optimized filters of angular domain data are proposed in this paper: grouped angle SVD (GA-SVD) and angular-coherence-based higher-order SVD (AC-HOSVD). GA-SVD applies SVD to the concatenation of all angular data to improve clutter rejection performance in short ensembles, while AC-HOSVD applies HOSVD to the angular data tensor and utilizes angular coherence in addition to spatial and temporal features for filtering. Feasible threshold selection strategies in each feature space are provided. The clutter rejection performance of the proposed filters and SVD was evaluated with Doppler phantom andin vivostudies at different cases. Moreover, the robustness of the filters was explored under wrong singular value threshold estimation, and their computational complexity was studied.Main results. Qualitative and quantitative results indicated that GA-SVD and AC-HOSVD can effectively improve clutter rejection performance in short ensembles, especially AC-HOSVD. Notably, the proposed methods using 20 frames had similar image quality to SVD using 100 frames.In vivostudies showed that compared to SVD, GA-SVD increased the signal-to-noise-ratio (SNR) by 6.03 dB on average, and AC-HOSVD increased the SNR by 8.93 dB on average. Furthermore, AC-HOSVD remained better power Doppler image quality under non-optimal thresholds, followed by GA-SVD.Significance. The proposed filters can greatly enhance contrast-free microvascular visualization in short ensembles and have potential for different clinical translations due to the performance differences.
Collapse
Affiliation(s)
- Liyuan Jiang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hanbing Chu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jianjun Yu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xiao Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jiacheng Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Haitao Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Feiqian Wang
- Ultrasound Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Yujin Zong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
9
|
Soloukey S, Collée E, Verhoef L, Satoer DD, Dirven CMF, Bos EM, Schouten JW, Generowicz BS, Mastik F, De Zeeuw CI, Koekkoek SKE, Vincent AJPE, Smits M, Kruizinga P. Human brain mapping using co-registered fUS, fMRI and ESM during awake brain surgeries: A proof-of-concept study. Neuroimage 2023; 283:120435. [PMID: 37914090 DOI: 10.1016/j.neuroimage.2023.120435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/15/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023] Open
Abstract
Accurate, depth-resolved functional imaging is key in both understanding and treatment of the human brain. A new sonography-based imaging technique named functional Ultrasound (fUS) uniquely combines high sensitivity with submillimeter-subsecond spatiotemporal resolution available in large fields-of-view. In this proof-of-concept study we show that: (A) fUS reveals the same eloquent regions as found by fMRI while concomitantly visualizing in-vivo microvascular morphology underlying these functional hemodynamics and (B) fUS-based functional maps are confirmed by Electrocortical Stimulation Mapping (ESM), the current gold-standard in awake neurosurgical practice. This unique cross-modality experiment was performed using motor, visual and language-related functional tasks in patients undergoing awake brain tumor resection. The current work serves as an important milestone towards further maturity of fUS as well as a novel avenue to increase our understanding of hemodynamics-based functional brain imaging.
Collapse
Affiliation(s)
- S Soloukey
- Department of Neuroscience, Erasmus MC, Wytemaweg 80 3015 CN, Rotterdam 3015 CN, the Netherlands; Department of Neurosurgery, Erasmus MC, Rotterdam 3015 CN, the Netherlands
| | - E Collée
- Department of Neurosurgery, Erasmus MC, Rotterdam 3015 CN, the Netherlands
| | - L Verhoef
- Department of Neuroscience, Erasmus MC, Wytemaweg 80 3015 CN, Rotterdam 3015 CN, the Netherlands
| | - D D Satoer
- Department of Neurosurgery, Erasmus MC, Rotterdam 3015 CN, the Netherlands
| | - C M F Dirven
- Department of Neurosurgery, Erasmus MC, Rotterdam 3015 CN, the Netherlands
| | - E M Bos
- Department of Neurosurgery, Erasmus MC, Rotterdam 3015 CN, the Netherlands
| | - J W Schouten
- Department of Neurosurgery, Erasmus MC, Rotterdam 3015 CN, the Netherlands
| | - B S Generowicz
- Department of Neuroscience, Erasmus MC, Wytemaweg 80 3015 CN, Rotterdam 3015 CN, the Netherlands
| | - F Mastik
- Department of Neuroscience, Erasmus MC, Wytemaweg 80 3015 CN, Rotterdam 3015 CN, the Netherlands
| | - C I De Zeeuw
- Department of Neuroscience, Erasmus MC, Wytemaweg 80 3015 CN, Rotterdam 3015 CN, the Netherlands; Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam 1105 BA, the Netherlands
| | - S K E Koekkoek
- Department of Neuroscience, Erasmus MC, Wytemaweg 80 3015 CN, Rotterdam 3015 CN, the Netherlands
| | - A J P E Vincent
- Department of Neurosurgery, Erasmus MC, Rotterdam 3015 CN, the Netherlands
| | - M Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam 3015 CN, the Netherlands
| | - P Kruizinga
- Department of Neuroscience, Erasmus MC, Wytemaweg 80 3015 CN, Rotterdam 3015 CN, the Netherlands.
| |
Collapse
|
10
|
Henneicke S, Meuth SG, Schreiber S. [Cerebral Small Vessel Disease: Advances in Understanding its Pathophysiology]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2023; 91:494-502. [PMID: 38081163 DOI: 10.1055/a-2190-8957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Sporadic cerebral small vessel disease determines age- and vascular-risk-factor-related processes of the small brain vasculature. The underlying pathology develops in a stage-dependent manner - probably over decades - often already starting in midlife. Endothelial and pericyte activation precedes blood-brain barrier leaks, extracellular matrix remodeling and neuroinflammation, which ultimately result in bleeds, synaptic and neural dysfunction. Hemodynamic compromise of the small vessel walls promotes perivascular drainage failure and accumulation of neurotoxic waste products in the brain. Clinical diagnosis is mainly based on magnetic resonance imaging according to the Standards for Reporting Vascular Changes on Neuroimaging 2. Cerebral amyloid angiopathy is particularly stratified according to the Boston v2.0 criteria. Small vessel disease of the brain could be clinically silent, or manifested through a heterogeneous spectrum of diseases, where cognitive decline and stroke-related symptoms are the most common ones. Prevention and therapy are centered around vascular risk factor control, physically and cognitively enriched life style and, presumably, maintenance of a good sleep quality, which promotes sufficient perivascular drainage. Prevention of ischemic stroke through anticoagulation that carries at the same time an increased risk for large brain hemorrhages - particularly in the presence of disseminated cortical superficial siderosis - remains one of the main challenges. The cerebral small vessel disease field is rapidly evolving, focusing on the establishment of early disease stage imaging and biofluid biomarkers of neurovascular unit remodeling and the compromise of perivascular drainage. New prevention and therapy strategies will correspondingly center around the dedicated targeting of, e. g., cellular small vessel wall and perivascular tissue structures. Growing knowledge about brain microvasculature bridging neuroimmunological, neurovascular and neurodegenerative fields might lead to a rethink about apparently separate disease entities and the development of overarching concepts for a common line of prevention and treatment for several diseases.
Collapse
Affiliation(s)
- Solveig Henneicke
- Neurologie, Otto-von-Guericke-Universität Magdeburg Medizinische Fakultät, Magdeburg, Germany
| | | | - Stefanie Schreiber
- Neurologie, Otto-von-Guericke-Universität Magdeburg Medizinische Fakultät, Magdeburg, Germany
| |
Collapse
|
11
|
Hikishima K, Tsurugizawa T, Kasahara K, Hayashi R, Takagi R, Yoshinaka K, Nitta N. Functional ultrasound reveals effects of MRI acoustic noise on brain function. Neuroimage 2023; 281:120382. [PMID: 37734475 DOI: 10.1016/j.neuroimage.2023.120382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
Loud acoustic noise from the scanner during functional magnetic resonance imaging (fMRI) can affect functional connectivity (FC) observed in the resting state, but the exact effect of the MRI acoustic noise on resting state FC is not well understood. Functional ultrasound (fUS) is a neuroimaging method that visualizes brain activity based on relative cerebral blood volume (rCBV), a similar neurovascular coupling response to that measured by fMRI, but without the audible acoustic noise. In this study, we investigated the effects of different acoustic noise levels (silent, 80 dB, and 110 dB) on FC by measuring resting state fUS (rsfUS) in awake mice in an environment similar to fMRI measurement. Then, we compared the results to those of resting state fMRI (rsfMRI) conducted using an 11.7 Tesla scanner. RsfUS experiments revealed a significant reduction in FC between the retrosplenial dysgranular and auditory cortexes (0.56 ± 0.07 at silence vs 0.05 ± 0.05 at 110 dB, p=.01) and a significant increase in FC anticorrelation between the infralimbic and motor cortexes (-0.21 ± 0.08 at silence vs -0.47 ± 0.04 at 110 dB, p=.017) as acoustic noise increased from silence to 80 dB and 110 dB, with increased consistency of FC patterns between rsfUS and rsfMRI being found with the louder noise conditions. Event-related auditory stimulation experiments using fUS showed strong positive rCBV changes (16.5% ± 2.9% at 110 dB) in the auditory cortex, and negative rCBV changes (-6.7% ± 0.8% at 110 dB) in the motor cortex, both being constituents of the brain network that was altered by the presence of acoustic noise in the resting state experiments. Anticorrelation between constituent brain regions of the default mode network (such as the infralimbic cortex) and those of task-positive sensorimotor networks (such as the motor cortex) is known to be an important feature of brain network antagonism, and has been studied as a biological marker of brain disfunction and disease. This study suggests that attention should be paid to the acoustic noise level when using rsfMRI to evaluate the anticorrelation between the default mode network and task-positive sensorimotor network.
Collapse
Affiliation(s)
- Keigo Hikishima
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan; Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinwa 904-0495, Japan.
| | - Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8568, Japan
| | - Kazumi Kasahara
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8568, Japan
| | - Ryusuke Hayashi
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8568, Japan
| | - Ryo Takagi
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan
| | - Kiyoshi Yoshinaka
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan
| | - Naotaka Nitta
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan
| |
Collapse
|
12
|
Hikishima K, Tsurugizawa T, Kasahara K, Takagi R, Yoshinaka K, Nitta N. Brain-wide mapping of resting-state networks in mice using high-frame rate functional ultrasound. Neuroimage 2023; 279:120297. [PMID: 37500027 DOI: 10.1016/j.neuroimage.2023.120297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023] Open
Abstract
Functional ultrasound (fUS) imaging is a method for visualizing deep brain activity based on cerebral blood volume changes coupled with neural activity, while functional MRI (fMRI) relies on the blood-oxygenation-level-dependent signal coupled with neural activity. Low-frequency fluctuations (LFF) of fMRI signals during resting-state can be measured by resting-state fMRI (rsfMRI), which allows functional imaging of the whole brain, and the distributions of resting-state network (RSN) can then be estimated from these fluctuations using independent component analysis (ICA). This procedure provides an important method for studying cognitive and psychophysiological diseases affecting specific brain networks. The distributions of RSNs in the brain-wide area has been reported primarily by rsfMRI. RSNs using rsfMRI are generally computed from the time-course of fMRI signals for more than 5 min. However, a recent dynamic functional connectivity study revealed that RSNs are still not perfectly stable even after 10 min. Importantly, fUS has a higher temporal resolution and stronger correlation with neural activity compared with fMRI. Therefore, we hypothesized that fUS applied during the resting-state for a shorter than 5 min would provide similar RSNs compared to fMRI. High temporal resolution rsfUS data were acquired at 10 Hz in awake mice. The quality of the default mode network (DMN), a well-known RSN, was evaluated using signal-noise separation (SNS) applied to different measurement durations of rsfUS. The results showed that the SNS did not change when the measurement duration was increased to more than 210 s. Next, we measured short-duration rsfUS multi-slice measurements in the brain-wide area. The results showed that rsfUS with the short duration succeeded in detecting RSNs distributed in the brain-wide area consistent with RSNs detected by 11.7-T MRI under awake conditions (medial prefrontal cortex and cingulate cortex in the anterior DMN, retrosplenial cortex and visual cortex in the posterior DMN, somatosensory and motor cortexes in the lateral cortical network, thalamus, dorsal hippocampus, and medial cerebellum), confirming the reliability of the RSNs detected by rsfUS. However, bilateral RSNs located in the secondary somatosensory cortex, ventral hippocampus, auditory cortex, and lateral cerebellum extracted from rsfUS were different from the unilateral RSNs extracted from rsfMRI. These findings indicate the potential of rsfUS as a method for analyzing functional brain networks and should encourage future research to elucidate functional brain networks and their relationships with disease model mice.
Collapse
Affiliation(s)
- Keigo Hikishima
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan; Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan.
| | - Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Kazumi Kasahara
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Ryo Takagi
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Kiyoshi Yoshinaka
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Naotaka Nitta
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| |
Collapse
|
13
|
Agyeman K, McCarty T, Multani H, Mattingly K, Koziar K, Chu J, Liu C, Kokkoni E, Christopoulos V. Task-based functional neuroimaging in infants: a systematic review. Front Neurosci 2023; 17:1233990. [PMID: 37655006 PMCID: PMC10466897 DOI: 10.3389/fnins.2023.1233990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023] Open
Abstract
Background Infancy is characterized by rapid neurological transformations leading to consolidation of lifelong function capabilities. Studying the infant brain is crucial for understanding how these mechanisms develop during this sensitive period. We review the neuroimaging modalities used with infants in stimulus-induced activity paradigms specifically, for the unique opportunity the latter provide for assessment of brain function. Methods Conducted a systematic review of literature published between 1977-2021, via a comprehensive search of four major databases. Standardized appraisal tools and inclusion/exclusion criteria were set according to the PRISMA guidelines. Results Two-hundred and thirteen papers met the criteria of the review process. The results show clear evidence of overall cumulative growth in the number of infant functional neuroimaging studies, with electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) to be the most utilized and fastest growing modalities with behaving infants. However, there is a high level of exclusion rates associated with technical limitations, leading to limited motor control studies (about 6 % ) in this population. Conclusion Although the use of functional neuroimaging modalities with infants increases, there are impediments to effective adoption of existing technologies with this population. Developing new imaging modalities and experimental designs to monitor brain activity in awake and behaving infants is vital.
Collapse
Affiliation(s)
- Kofi Agyeman
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Tristan McCarty
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Harpreet Multani
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Kamryn Mattingly
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Katherine Koziar
- Orbach Science Library, University of California, Riverside, Riverside, CA, United States
| | - Jason Chu
- Division of Neurosurgery, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, United States
| | - Charles Liu
- USC Neurorestoration Center, University of Southern California, Los Angeles, CA, United States
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, United States
| | - Elena Kokkoni
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Vassilios Christopoulos
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
14
|
Nayak R, Lee J, Sotoudehnia S, Chang SY, Fatemi M, Alizad A. Mapping Pharmacologically Evoked Neurovascular Activation and Its Suppression in a Rat Model of Tremor Using Functional Ultrasound: A Feasibility Study. SENSORS (BASEL, SWITZERLAND) 2023; 23:6902. [PMID: 37571686 PMCID: PMC10422538 DOI: 10.3390/s23156902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Functional ultrasound (fUS), an emerging hemodynamic-based functional neuroimaging technique, is especially suited to probe brain activity and primarily used in animal models. Increasing use of pharmacological models for essential tremor extends new research to the utilization of fUS imaging in such models. Harmaline-induced tremor is an easily provoked model for the development of new therapies for essential tremor (ET). Furthermore, harmaline-induced tremor can be suppressed by the same classic medications used for essential tremor, which leads to the utilization of this model for preclinical testing. However, changes in local cerebral activities under the effect of tremorgenic doses of harmaline have not been completely investigated. In this study, we explored the feasibility of fUS imaging for visualization of cerebral activation and deactivation associated with harmaline-induced tremor and tremor-suppressing effects of propranolol. The spatial resolution of fUS using a high frame rate imaging enabled us to visualize time-locked and site-specific changes in cerebral blood flow associated with harmaline-evoked tremor. Intraperitoneal administration of harmaline generated significant neural activity changes in the primary motor cortex and ventrolateral thalamus (VL Thal) regions during tremor and then gradually returned to baseline level as tremor subsided with time. To the best of our knowledge, this is the first functional ultrasound study to show the neurovascular activation of harmaline-induced tremor and the therapeutic suppression in a rat model. Thus, fUS can be considered a noninvasive imaging method for studying neuronal activities involved in the ET model and its treatment.
Collapse
Affiliation(s)
- Rohit Nayak
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Jeyeon Lee
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Setayesh Sotoudehnia
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| |
Collapse
|
15
|
Brinker ST, Yoon K, Benveniste H. Global sonication of the human intracranial space via a jumbo planar transducer. ULTRASONICS 2023; 134:107062. [PMID: 37343366 DOI: 10.1016/j.ultras.2023.107062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023]
Abstract
Contrary to conditioning a Focused Ultrasound (FUS) beam to sonicate a localized region of the human brain, the goal of this investigation was to explore the prospect of distributing homogeneous ultrasound energy over the entire brain space with a large cranium-wide ultrasound beam. Recent ultrasound preclincal studies utilizing large or whole brain stimulation regions create a demand for expanding the treatment envelope of transcranial pulsed-low intensity ultrasound towards Global Brain Sonication (GBS) for potential human investigation. Here, we conduct ultrasound field characterizations when transmitting pulsed ultrasound through human skull specimens using a 1-3 piezocomposite planar transducer operating at 464 kHz with an active single-element surface of 30 × 30 cm. Through computational simulation and hydrophone scanning methodology, ultrasound wave behavior and dose homogeneity in the brain space were evaluated under various trajectories of sonication using the planar transducer. Clinically relevant pulse parameters used for transcranial therapeutic ultrasound applications were used in the experiments. Simulations and empirical testing revealed that dose homogeneity and acoustic intensity over the brain space are influenced by sonication trajectory, skull lens effects, and acoustic wave reflections. The transducer can emit a spatial peak pulse average intensity of 4.03 W/cm2 (0.24 MPa) measured in the free-field at 464 kHz with electrical power of 1 kW. The simulation showed that approximately 99 % of the cranial volume was exposed with <30 % of the maximum external acoustic intensity being transmitted into the skull. The transmission loss across all sonication trajectories is similar to previously reported FUS studies. A marker for GBS dose homogeneity is introduced to score the ultrasound pressure field uniformity in the intracranial space. Results of this study identify the initial challenges of exposing the entire human brain space with ultrasound using a large cranium-wide sonication beam intended for global brain therapeutic modulation.
Collapse
Affiliation(s)
- Spencer T Brinker
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA.
| | - Kyungho Yoon
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, Seoul, South Korea
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
16
|
Schwarz S, Brevis Nuñez F, Dürr NR, Brassel F, Schlunz-Hendann M, Feldkamp A, Rosenbaum T, Felderhoff-Müser U, Schulz K, Dohna-Schwake C, Bruns N. Doppler Ultrasound Flow Reversal in the Superior Sagittal Sinus to Detect Cerebral Venous Congestion in Vein of Galen Malformation. AJNR Am J Neuroradiol 2023; 44:707-715. [PMID: 37230540 PMCID: PMC10249685 DOI: 10.3174/ajnr.a7891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND PURPOSE Vein of Galen malformation is a rare congenital cerebrovascular malformation. In affected patients, increased cerebral venous pressure constitutes an important etiologic factor for the development of brain parenchymal damage. The aim of this study was to investigate the potential of serial cerebral venous Doppler measurements to detect and monitor increased cerebral venous pressure. MATERIALS AND METHODS This was a retrospective monocentric analysis of ultrasound examinations within the first 9 months of life in patients with vein of Galen malformation admitted at <28 days of life. Categorization of perfusion waveforms in the superficial cerebral sinus and veins into 6 patterns was based on antero- and retrograde flow components. We performed an analysis of flow profiles across time and correlation with disease severity, clinical interventions, and congestion damage on cerebral MR imaging. RESULTS The study included 44 Doppler ultrasound examinations of the superior sagittal sinus and 36 examinations of the cortical veins from 7 patients. Doppler flow profiles before interventional therapy correlated with disease severity determined by the Bicêtre Neonatal Evaluation Score (Spearman ρ = -0.97, P = < .001). At this time, 4 of 7 patients (57.1%) showed a retrograde flow component in the superior sagittal sinus, whereas after embolization, none of the 6 treated patients presented with a retrograde flow component. Only patients with a high retrograde flow component (equal or more than one-third retrograde flow, n = 2) showed severe venous congestion damage on cerebral MR imaging. CONCLUSIONS Flow profiles in the superficial cerebral sinus and veins appear to be a useful tool to noninvasively detect and monitor cerebral venous congestion in vein of Galen malformation.
Collapse
Affiliation(s)
- S Schwarz
- From the Clinic for Pediatrics and Adolescent Medicine (S.S., F.B.N., A.F., T.R.)
| | - F Brevis Nuñez
- From the Clinic for Pediatrics and Adolescent Medicine (S.S., F.B.N., A.F., T.R.)
| | - N R Dürr
- Clinic for Radiology and Neuroradiology (N.R.D., F.B., M.S.-H., K.S.)
| | - F Brassel
- Clinic for Radiology and Neuroradiology (N.R.D., F.B., M.S.-H., K.S.)
- Center for Pediatric Interventional Radiology/Neuroradiology and Interventional Treatment of Vascular Malformations (F.B.), Sana Clinics Duisburg, Duisburg, Germany
| | - M Schlunz-Hendann
- Clinic for Radiology and Neuroradiology (N.R.D., F.B., M.S.-H., K.S.)
| | - A Feldkamp
- From the Clinic for Pediatrics and Adolescent Medicine (S.S., F.B.N., A.F., T.R.)
| | - T Rosenbaum
- From the Clinic for Pediatrics and Adolescent Medicine (S.S., F.B.N., A.F., T.R.)
| | - U Felderhoff-Müser
- Clinic for Pediatrics I (U.F.-M., C.D.-S., N.B.)
- Centre for Translational Neuro- and Behavioural Sciences (U.F.-M., C.D.-S., N.B.), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - K Schulz
- Clinic for Radiology and Neuroradiology (N.R.D., F.B., M.S.-H., K.S.)
| | - C Dohna-Schwake
- Clinic for Pediatrics I (U.F.-M., C.D.-S., N.B.)
- Centre for Translational Neuro- and Behavioural Sciences (U.F.-M., C.D.-S., N.B.), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - N Bruns
- Clinic for Pediatrics I (U.F.-M., C.D.-S., N.B.)
- Centre for Translational Neuro- and Behavioural Sciences (U.F.-M., C.D.-S., N.B.), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
17
|
Kim G, Rabut C, Ling B, Shapiro M, Daraio C. Microscale acoustic metamaterials as conformal sonotransparent skull prostheses. RESEARCH SQUARE 2023:rs.3.rs-2743580. [PMID: 37214802 PMCID: PMC10197820 DOI: 10.21203/rs.3.rs-2743580/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Functional ultrasound imaging enables sensitive, high-resolution imaging of neural activity in freely behaving animals and human patients. However, the skull acts as an aberrating and absorbing layer for sound waves, leading to most functional ultrasound experiments being conducted after skull removal. In pre-clinical settings, craniotomies are often covered with a polymethylpentene film, which offers limited longitudinal imaging, due to the film's poor conformability, and limited mechanical protection, due to the film's low stiffness. Here, we introduce a skull replacement consisting of a microstructured, conformal acoustic window based on mechanical metamaterials, designed to offer high stiffness-to-density ratio and sonotransparency. We test the acoustic window in vivo, via terminal and survival experiments on small animals. Long-term biocompatibility and lasting signal sensitivity are demonstrated over a long period of time (> 4 months) by conducting ultrasound imaging in mouse models implanted with the metamaterial skull prosthesis.
Collapse
|
18
|
Jarmund AH, Pedersen SA, Torp H, Dudink J, Nyrnes SA. A Scoping Review of Cerebral Doppler Arterial Waveforms in Infants. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:919-936. [PMID: 36732150 DOI: 10.1016/j.ultrasmedbio.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Cerebral Doppler ultrasound has been an important tool in pediatric diagnostics and prognostics for decades. Although the Doppler spectrum can provide detailed information on cerebral perfusion, the measured spectrum is often reduced to simple numerical parameters. To help pediatric clinicians recognize the visual characteristics of disease-associated Doppler spectra and identify possible areas for future research, a scoping review of primary studies on cerebral Doppler arterial waveforms in infants was performed. A systematic search in three online bibliographic databases yielded 4898 unique records. Among these, 179 studies included cerebral Doppler spectra for at least five infants below 1 y of age. The studies describe variations in the cerebral waveforms related to physiological changes (43%), pathology (62%) and medical interventions (40%). Characteristics were typically reported as resistance index (64%), peak systolic velocity (43%) or end-diastolic velocity (39%). Most studies focused on the anterior (59%) and middle (42%) cerebral arteries. Our review highlights the need for a more standardized terminology to describe cerebral velocity waveforms and for precise definitions of Doppler parameters. We provide a list of reporting variables that may facilitate unambiguous reports. Future studies may gain from combining multiple Doppler parameters to use more of the information encoded in the Doppler spectrum, investigating the full spectrum itself and using the possibilities for long-term monitoring with Doppler ultrasound.
Collapse
Affiliation(s)
- Anders Hagen Jarmund
- Department of Circulation and Medical Imaging (ISB), NTNU-Norwegian University of Science and Technology, Trondheim, Norway.
| | - Sindre Andre Pedersen
- Library Section for Research Support, Data and Analysis, NTNU University Library, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Hans Torp
- Department of Circulation and Medical Imaging (ISB), NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Siri Ann Nyrnes
- Department of Circulation and Medical Imaging (ISB), NTNU-Norwegian University of Science and Technology, Trondheim, Norway; Children's Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
19
|
Xiao T, Dong X, Lu Y, Zhou W. High-Resolution and Multidimensional Phenotypes Can Complement Genomics Data to Diagnose Diseases in the Neonatal Population. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:204-215. [PMID: 37197647 PMCID: PMC10110825 DOI: 10.1007/s43657-022-00071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 05/19/2023]
Abstract
Advances in genomic medicine have greatly improved our understanding of human diseases. However, phenome is not well understood. High-resolution and multidimensional phenotypes have shed light on the mechanisms underlying neonatal diseases in greater details and have the potential to optimize clinical strategies. In this review, we first highlight the value of analyzing traditional phenotypes using a data science approach in the neonatal population. We then discuss recent research on high-resolution, multidimensional, and structured phenotypes in neonatal critical diseases. Finally, we briefly introduce current technologies available for the analysis of multidimensional data and the value that can be provided by integrating these data into clinical practice. In summary, a time series of multidimensional phenome can improve our understanding of disease mechanisms and diagnostic decision-making, stratify patients, and provide clinicians with optimized strategies for therapeutic intervention; however, the available technologies for collecting multidimensional data and the best platform for connecting multiple modalities should be considered.
Collapse
Affiliation(s)
- Tiantian Xiao
- Division of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai, 201102 China
- Department of Neonatology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000 China
| | - Xinran Dong
- Center for Molecular Medicine, Pediatric Research Institute, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, 201102 China
| | - Yulan Lu
- Center for Molecular Medicine, Pediatric Research Institute, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, 201102 China
| | - Wenhao Zhou
- Division of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai, 201102 China
- Center for Molecular Medicine, Pediatric Research Institute, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, 201102 China
| |
Collapse
|
20
|
Aguet J, Fakhari N, Nguyen M, Mertens L, Szabo E, Ertl-Wagner B, Crawford L, Haller C, Barron D, Baranger J, Villemain O. Impact of cardiopulmonary bypass on cerebrovascular autoregulation assessed by ultrafast ultrasound imaging. J Physiol 2023; 601:1077-1093. [PMID: 36779673 DOI: 10.1113/jp284070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/03/2023] [Indexed: 02/14/2023] Open
Abstract
Newborns with congenital heart disease undergoing cardiac surgery are at risk of neurodevelopmental impairment with limited understanding of the impact of intra-operative cardiopulmonary bypass (CPB), deep hypothermia and selective cerebral perfusion on the brain. We hypothesized that a novel ultrasound technique, ultrafast power Doppler (UPD), can assess variations of cerebral blood volume (CBV) in neonates undergoing cardiac surgery requiring CPB. UPD was performed before, during and after surgery in newborns with hypoplastic left heart syndrome undergoing a Norwood operation. We found that global CBV was not significantly different between patients and controls (P = 0.98) and between pre- and post-surgery (P = 0.62). UPD was able to monitor changes in CBV throughout surgery, revealing regional differences in CBV during hypothermia during which CBV correlated with CPB flow rate (R2 = 0.52, P = 0.021). Brain injury on post-operative magnetic resonance imaging was observed in patients with higher maximum variation in CBV. Our findings suggest that UPD can quantify global and regional brain perfusion variation during neonatal cardiac surgery with this first intra-operative application demonstrating an association between CBV and CPB flow rate, suggesting loss of autoregulation. Therefore, the measurement of CBV by UPD could enable optimization of cerebral perfusion during cardiac surgery in neonates. KEY POINTS: The impact of cardiopulmonary bypass (CPB) on the neonatal brain undergoing cardiac surgery is poorly understood. Ultrafast power Doppler (UPD) quantifies cerebral blood volume (CBV), a surrogate of brain perfusion. CBV varies throughout CPB surgery and is associated with variation of the bypass pump flow rate during deep hypothermia. Association between CBV and bypass pump flow rate suggests loss of cerebrovascular autoregulatory processes. Quantitative monitoring of cerebral perfusion by UPD could provide a direct parameter to optimize CPB flow rate.
Collapse
Affiliation(s)
- Julien Aguet
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Nikan Fakhari
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Pediatrics, Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Minh Nguyen
- Department of Pediatrics, Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Luc Mertens
- Department of Pediatrics, Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Elod Szabo
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Anesthesia and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Birgit Ertl-Wagner
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Lynn Crawford
- Department of Surgery, Division of Cardiovascular Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christoph Haller
- Department of Surgery, Division of Cardiovascular Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - David Barron
- Department of Surgery, Division of Cardiovascular Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Jérôme Baranger
- Department of Pediatrics, Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Olivier Villemain
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Pediatrics, Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Soloukey S, Vincent AJPE, Smits M, De Zeeuw CI, Koekkoek SKE, Dirven CMF, Kruizinga P. Functional imaging of the exposed brain. Front Neurosci 2023; 17:1087912. [PMID: 36845427 PMCID: PMC9947297 DOI: 10.3389/fnins.2023.1087912] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
When the brain is exposed, such as after a craniotomy in neurosurgical procedures, we are provided with the unique opportunity for real-time imaging of brain functionality. Real-time functional maps of the exposed brain are vital to ensuring safe and effective navigation during these neurosurgical procedures. However, current neurosurgical practice has yet to fully harness this potential as it pre-dominantly relies on inherently limited techniques such as electrical stimulation to provide functional feedback to guide surgical decision-making. A wealth of especially experimental imaging techniques show unique potential to improve intra-operative decision-making and neurosurgical safety, and as an added bonus, improve our fundamental neuroscientific understanding of human brain function. In this review we compare and contrast close to twenty candidate imaging techniques based on their underlying biological substrate, technical characteristics and ability to meet clinical constraints such as compatibility with surgical workflow. Our review gives insight into the interplay between technical parameters such sampling method, data rate and a technique's real-time imaging potential in the operating room. By the end of the review, the reader will understand why new, real-time volumetric imaging techniques such as functional Ultrasound (fUS) and functional Photoacoustic Computed Tomography (fPACT) hold great clinical potential for procedures in especially highly eloquent areas, despite the higher data rates involved. Finally, we will highlight the neuroscientific perspective on the exposed brain. While different neurosurgical procedures ask for different functional maps to navigate surgical territories, neuroscience potentially benefits from all these maps. In the surgical context we can uniquely combine healthy volunteer studies, lesion studies and even reversible lesion studies in in the same individual. Ultimately, individual cases will build a greater understanding of human brain function in general, which in turn will improve neurosurgeons' future navigational efforts.
Collapse
Affiliation(s)
- Sadaf Soloukey
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Department of Neurosurgery, Erasmus MC, Rotterdam, Netherlands
| | | | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam, Netherlands
| | | | | | | |
Collapse
|
22
|
Baud O, Arzounian D, Bourel-Ponchel E. Continuous monitoring of neonatal cortical activity: A major step forward. Cell Rep Med 2022; 3:100864. [PMID: 36543112 PMCID: PMC9798015 DOI: 10.1016/j.xcrm.2022.100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Montazeri Moghadam et al.1 report an automated algorithm to visually convert EEG recordings to real-time quantified interpretations of EEG in neonates. The resulting measure of the brain state of the newborn (BSN) bridges several gaps in neurocritical care monitoring.
Collapse
Affiliation(s)
- Olivier Baud
- University Hospitals of Geneva, 1205 Geneva, Switzerland,Corresponding author
| | - Dorothée Arzounian
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Emilie Bourel-Ponchel
- Pediatric Clinical Neurophysiology Department UMR1105, Amiens-Picardie University Hospital, Amiens, France
| |
Collapse
|
23
|
Erol A, Soloukey C, Generowicz B, van Dorp N, Koekkoek S, Kruizinga P, Hunyadi B. Deconvolution of the Functional Ultrasound Response in the Mouse Visual Pathway Using Block-Term Decomposition. Neuroinformatics 2022; 21:247-265. [PMID: 36378467 PMCID: PMC10085969 DOI: 10.1007/s12021-022-09613-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2022] [Indexed: 11/16/2022]
Abstract
Functional ultrasound (fUS) indirectly measures brain activity by detecting changes in cerebral blood volume following neural activation. Conventional approaches model such functional neuroimaging data as the convolution between an impulse response, known as the hemodynamic response function (HRF), and a binarized representation of the input signal based on the stimulus onsets, the so-called experimental paradigm (EP). However, the EP may not characterize the whole complexity of the activity-inducing signals that evoke the hemodynamic changes. Furthermore, the HRF is known to vary across brain areas and stimuli. To achieve an adaptable framework that can capture such dynamics of the brain function, we model the multivariate fUS time-series as convolutive mixtures and apply block-term decomposition on a set of lagged fUS autocorrelation matrices, revealing both the region-specific HRFs and the source signals that induce the hemodynamic responses. We test our approach on two mouse-based fUS experiments. In the first experiment, we present a single type of visual stimulus to the mouse, and deconvolve the fUS signal measured within the mouse brain's lateral geniculate nucleus, superior colliculus and visual cortex. We show that the proposed method is able to recover back the time instants at which the stimulus was displayed, and we validate the estimated region-specific HRFs based on prior studies. In the second experiment, we alter the location of the visual stimulus displayed to the mouse, and aim at differentiating the various stimulus locations over time by identifying them as separate sources.
Collapse
Affiliation(s)
- Aybüke Erol
- Circuits and Systems (CAS), Department of Microelectronics, Delft University of Technology, Mekelweg 5, Delft, 2628 CD, The Netherlands.
| | - Chagajeg Soloukey
- Center for Ultrasound and Brain imaging at Erasmus MC (CUBE), Department of Neuroscience, Erasmus Medical Center, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Bastian Generowicz
- Center for Ultrasound and Brain imaging at Erasmus MC (CUBE), Department of Neuroscience, Erasmus Medical Center, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Nikki van Dorp
- Center for Ultrasound and Brain imaging at Erasmus MC (CUBE), Department of Neuroscience, Erasmus Medical Center, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Sebastiaan Koekkoek
- Center for Ultrasound and Brain imaging at Erasmus MC (CUBE), Department of Neuroscience, Erasmus Medical Center, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Pieter Kruizinga
- Center for Ultrasound and Brain imaging at Erasmus MC (CUBE), Department of Neuroscience, Erasmus Medical Center, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Borbála Hunyadi
- Circuits and Systems (CAS), Department of Microelectronics, Delft University of Technology, Mekelweg 5, Delft, 2628 CD, The Netherlands
| |
Collapse
|
24
|
Morisset C, Dizeux A, Larrat B, Selingue E, Boutin H, Picaud S, Sahel JA, Ialy-Radio N, Pezet S, Tanter M, Deffieux T. Retinal functional ultrasound imaging (rfUS) for assessing neurovascular alterations: a pilot study on a rat model of dementia. Sci Rep 2022; 12:19515. [PMID: 36376408 PMCID: PMC9663720 DOI: 10.1038/s41598-022-23366-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Fifty million people worldwide are affected by dementia, a heterogeneous neurodegenerative condition encompassing diseases such as Alzheimer's, vascular dementia, and Parkinson's. For them, cognitive decline is often the first marker of the pathology after irreversible brain damage has already occurred. Researchers now believe that structural and functional alterations of the brain vasculature could be early precursors of the diseases and are looking at how functional imaging could provide an early diagnosis years before irreversible clinical symptoms. In this preclinical pilot study, we proposed using functional ultrasound (fUS) on the retina to assess neurovascular alterations non-invasively, bypassing the skull limitation. We demonstrated for the first time the use of functional ultrasound in the retina and applied it to characterize the retinal hemodynamic response function in vivo in rats following a visual stimulus. We then demonstrated that retinal fUS could measure robust neurovascular coupling alterations between wild-type rats and TgF344-AD rat models of Alzheimer's disease. We observed an average relative increase in blood volume of 21% in the WT versus 37% for the TG group (p = 0.019). As a portable, non-invasive and inexpensive technique, rfUS is a promising functional screening tool in clinics for dementia years before symptoms.
Collapse
Affiliation(s)
- Clementine Morisset
- grid.440907.e0000 0004 1784 3645Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Alexandre Dizeux
- grid.440907.e0000 0004 1784 3645Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Benoit Larrat
- grid.457334.20000 0001 0667 2738NeuroSpin, Institut Des Sciences du Vivant Frédéric Joliot, Commissariat À L’Energie Atomique Et Aux Energies Alternatives (CEA), CNRS, Université Paris-Saclay, 91191 Gif-Sur-Yvette, France
| | - Erwan Selingue
- grid.457334.20000 0001 0667 2738NeuroSpin, Institut Des Sciences du Vivant Frédéric Joliot, Commissariat À L’Energie Atomique Et Aux Energies Alternatives (CEA), CNRS, Université Paris-Saclay, 91191 Gif-Sur-Yvette, France
| | - Herve Boutin
- grid.5379.80000000121662407Faculty of Biology, Medicine and Health, School of Biological Sciences Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, M13 9PL UK ,grid.5379.80000000121662407Wolfson Molecular Imaging Centre, University of Manchester, 27 Palatine Road, Manchester, M20 3LJ UK ,grid.462482.e0000 0004 0417 0074Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester, UK
| | - Serge Picaud
- grid.418241.a0000 0000 9373 1902Institut de La Vision, Sorbonne Université, INSERM, CNRS, 17 Rue Moreau, 75012 Paris, France
| | - Jose-Alain Sahel
- grid.418241.a0000 0000 9373 1902Institut de La Vision, Sorbonne Université, INSERM, CNRS, 17 Rue Moreau, 75012 Paris, France ,grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ,grid.417888.a0000 0001 2177 525XDepartment of Ophthalmology and Vitreo-Retinal Diseases, Fondation Ophtalmologique Rothschild, 75019 Paris, France
| | - Nathalie Ialy-Radio
- grid.440907.e0000 0004 1784 3645Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Sophie Pezet
- grid.440907.e0000 0004 1784 3645Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Mickael Tanter
- grid.440907.e0000 0004 1784 3645Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Thomas Deffieux
- grid.440907.e0000 0004 1784 3645Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| |
Collapse
|
25
|
Soloukey S, Verhoef L, Jan van Doormaal P, Generowicz BS, Dirven CMF, De Zeeuw CI, Koekkoek SKE, Kruizinga P, Vincent AJPE, Schouten JW. High-resolution micro-Doppler imaging during neurosurgical resection of an arteriovenous malformation: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2022; 4:CASE22177. [PMID: 36345205 PMCID: PMC9644416 DOI: 10.3171/case22177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Given the high-risk nature of arteriovenous malformation (AVM) resections, accurate pre- and intraoperative imaging of the vascular morphology is a crucial component that may contribute to successful surgical results. Surprisingly, current gold standard imaging techniques for surgical guidance of AVM resections are mostly preoperative, lacking the necessary flexibility to cater to intraoperative changes. Micro-Doppler imaging is a unique high-resolution technique relying on high frame rate ultrasound and subsequent Doppler processing of microvascular hemodynamics. In this paper the authors report the first application of intraoperative, coregistered magnetic resonance/computed tomograpy, micro-Doppler imaging during the neurosurgical resection of an AVM in the parietal lobe. OBSERVATIONS The authors applied intraoperative two-dimensional and three-dimensional (3D) micro-Doppler imaging during resection and were able to identify key anatomical features including draining veins, supplying arteries and microvasculature in the nidus itself. Compared to the corresponding preoperative 3D-digital subtraction angiography (DSA) image, the micro-Doppler images could delineate vascular structures and visualize hemodynamics with higher, submillimeter scale detail, even at significant depths (>5 cm). Additionally, micro-Doppler imaging revealed unique microvascular morphology of surrounding healthy vasculature. LESSONS The authors conclude that micro-Doppler imaging in its current form has clear potential as an intraoperative counterpart to preoperative contrast-dependent DSA, and the microvascular details it provides could build new ground to further study cerebrovascular pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | | | - Chris I. De Zeeuw
- Departments of Neuroscience
- Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
Polese D, Riccio ML, Fagioli M, Mazzetta A, Fagioli F, Parisi P, Fagioli M. The Newborn's Reaction to Light as the Determinant of the Brain's Activation at Human Birth. Front Integr Neurosci 2022; 16:933426. [PMID: 36118115 PMCID: PMC9478760 DOI: 10.3389/fnint.2022.933426] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Developmental neuroscience research has not yet fully unveiled the dynamics involved in human birth. The trigger of the first breath, often assumed to be the marker of human life, has not been characterized nor has the process entailing brain modification and activation at birth been clarified yet. To date, few researchers only have investigated the impact of the extrauterine environment, with its strong stimuli, on birth. This ‘hypothesis and theory' article assumes the role of a specific stimulus activating the central nervous system (CNS) at human birth. This stimulus must have specific features though, such as novelty, efficacy, ubiquity, and immediacy. We propose light as a robust candidate for the CNS activation via the retina. Available data on fetal and neonatal neurodevelopment, in particular with reference to retinal light-responsive pathways, will be examined together with the GABA functional switch, and the subplate disappearance, which, at an experimental level, differentiate the neonatal brain from the fetal brain. In this study, we assume how a very rapid activation of retinal photoreceptors at birth initiates a sudden brain shift from the prenatal pattern of functions to the neonatal setup. Our assumption implies the presence of a photoreceptor capable of capturing and transducing light/photon stimulus, transforming it into an effective signal for the activation of new brain functions at birth. Opsin photoreception or, more specifically, melanopsin-dependent photoreception, which is provided by intrinsically photosensitive retinal ganglion cells (ipRGCs), is considered as a valid candidate. Although what is assumed herein cannot be verified in humans based on knowledge available so far, proposing an important and novel function can trigger a broad range of diversified research in different domains, from neurophysiology to neurology and psychiatry.
Collapse
Affiliation(s)
- Daniela Polese
- PhD Program on Sensorineural Plasticity, Department of Neuroscience, Mental Health and Sensory Organs NESMOS, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
- *Correspondence: Daniela Polese
| | | | - Marcella Fagioli
- Department of Mental Health, National Health System ASL Rome 1, Rome, Italy
| | - Alessandro Mazzetta
- PhD Program on Neuroscience, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Francesca Fagioli
- Department of Mental Health, National Health System ASL Rome 1, Rome, Italy
| | - Pasquale Parisi
- Chair of Pediatrics, Department of Neuroscience, Mental Health and Sensory Organs NESMOS, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
27
|
Mozaffarzadeh M, Verschuur DJE, Verweij MD, de Jong N, Renaud G. Accelerated 2-D Real-Time Refraction-Corrected Transcranial Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2599-2610. [PMID: 35797321 DOI: 10.1109/tuffc.2022.3189600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In a recent study, we proposed a technique to correct aberration caused by the skull and reconstruct a transcranial B-mode image with a refraction-corrected synthetic aperture imaging (SAI) scheme. Given a sound speed map, the arrival times were calculated using a fast marching technique (FMT), which solves the Eikonal equation and, therefore, is computationally expensive for real-time imaging. In this article, we introduce a two-point ray tracing method, based on Fermat's principle, for fast calculation of the travel times in the presence of a layered aberrator in front of the ultrasound probe. The ray tracing method along with the reconstruction technique is implemented on a graphical processing unite (GPU). The point spread function (PSF) in a wire phantom image reconstructed with the FMT and the GPU implementation was studied with numerical synthetic data and experiments with a bone-mimicking plate and a sagittally cut human skull. The numerical analysis showed that the error on travel times is less than 10% of the ultrasound temporal period at 2.5 MHz. As a result, the lateral resolution was not significantly degraded compared with images reconstructed with FMT-calculated travel times. The results using the synthetic, bone-mimicking plate, and skull dataset showed that the GPU implementation causes a lateral/axial localization error of 0.10/0.20, 0.15/0.13, and 0.26/0.32 mm compared with a reference measurement (no aberrator in front of the ultrasound probe), respectively. For an imaging depth of 70 mm, the proposed GPU implementation allows reconstructing 19 frames/s with full synthetic aperture (96 transmission events) and 32 frames/s with multiangle plane wave imaging schemes (with 11 steering angles) for a pixel size of [Formula: see text]. Finally, refraction-corrected power Doppler imaging is demonstrated with a string phantom and a bone-mimicking plate placed between the probe and the moving string. The proposed approach achieves a suitable frame rate for clinical scanning while maintaining the image quality.
Collapse
|
28
|
Biomarker und Neuromonitoring zur Entwicklungsprognose nach perinataler Hirnschädigung. Monatsschr Kinderheilkd 2022; 170:688-703. [PMID: 35909417 PMCID: PMC9309449 DOI: 10.1007/s00112-022-01542-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
Abstract
Das sich entwickelnde Gehirn ist in der Perinatalperiode besonders empfindlich für eine Vielzahl von Insulten, wie z. B. Extremfrühgeburtlichkeit und perinatale Asphyxie. Ihre Komplikationen können zu lebenslangen neurokognitiven, sensorischen und psychosozialen Einschränkungen führen; deren Vorhersage bleibt eine Herausforderung. Eine Schlüsselfunktion kommt der möglichst exakten Identifikation von Hirnläsionen und funktionellen Störungen zu. Die Prädiktion stützt sich auf frühe diagnostische Verfahren und die klinische Erfassung der Meilensteine der Entwicklung. Zur klinischen Diagnostik und zum Neuromonitoring in der Neonatal- und frühen Säuglingsperiode stehen bildgebende Verfahren zur Verfügung. Hierzu zählen zerebrale Sonographie, MRT am errechneten Termin, amplitudenintegriertes (a)EEG und/oder klassisches EEG, Nah-Infrarot-Spektroskopie, General Movements Assessment und die frühe klinische Nachuntersuchung z. B. mithilfe der Hammersmith Neonatal/Infant Neurological Examination. Innovative Biomarker und -muster (Omics) sowie (epi)genetische Prädispositionen sind Gegenstand wissenschaftlicher Untersuchungen. Neben der Erfassung klinischer Risiken kommt psychosozialen Faktoren im Umfeld des Kindes eine entscheidende Rolle zu. Eine möglichst akkurate Prognose ist mit hohem Aufwand verbunden, jedoch zur gezielten Beratung der Familien und der Einleitung von frühen Interventionen, insbesondere vor dem Hintergrund der hohen Plastizität des sich entwickelnden Gehirns, von großer Bedeutung. Diese Übersichtsarbeit fokussiert die Charakterisierung der oben genannten Verfahren und ihrer Kombinationsmöglichkeiten. Zudem wird ein Ausblick gegeben, wie innovative Techniken in Zukunft die Prädiktion der Entwicklung und Nachsorge dieser Kinder vereinfachen können.
Collapse
|
29
|
Renaudin N, Demené C, Dizeux A, Ialy-Radio N, Pezet S, Tanter M. Functional ultrasound localization microscopy reveals brain-wide neurovascular activity on a microscopic scale. Nat Methods 2022; 19:1004-1012. [PMID: 35927475 PMCID: PMC9352591 DOI: 10.1038/s41592-022-01549-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 06/14/2022] [Indexed: 12/02/2022]
Abstract
The advent of neuroimaging has increased our understanding of brain function. While most brain-wide functional imaging modalities exploit neurovascular coupling to map brain activity at millimeter resolutions, the recording of functional responses at microscopic scale in mammals remains the privilege of invasive electrophysiological or optical approaches, but is mostly restricted to either the cortical surface or the vicinity of implanted sensors. Ultrasound localization microscopy (ULM) has achieved transcranial imaging of cerebrovascular flow, up to micrometre scales, by localizing intravenously injected microbubbles; however, the long acquisition time required to detect microbubbles within microscopic vessels has so far restricted ULM application mainly to microvasculature structural imaging. Here we show how ULM can be modified to quantify functional hyperemia dynamically during brain activation reaching a 6.5-µm spatial and 1-s temporal resolution in deep regions of the rat brain.
Collapse
Affiliation(s)
- Noémi Renaudin
- Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Charlie Demené
- Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Alexandre Dizeux
- Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Nathalie Ialy-Radio
- Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Sophie Pezet
- Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Mickael Tanter
- Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France.
| |
Collapse
|
30
|
Abstract
Functional ultrasound (fUS) is a neuroimaging method that uses ultrasound to track changes in cerebral blood volume as an indirect readout of neuronal activity at high spatiotemporal resolution. fUS is capable of imaging head-fixed or freely behaving rodents and of producing volumetric images of the entire mouse brain. It has been applied to many species, including primates and humans. Now that fUS is reaching maturity, it is being adopted by the neuroscience community. However, the nature of the fUS signal and the different implementations of fUS are not necessarily accessible to nonspecialists. This review aims to introduce these ultrasound concepts to all neuroscientists. We explain the physical basis of the fUS signal and the principles of the method, present the state of the art of its hardware implementation, and give concrete examples of current applications in neuroscience. Finally, we suggest areas for improvement during the next few years.
Collapse
Affiliation(s)
- Gabriel Montaldo
- Neuro-Electronics Research Flanders, Vlaams Instituut voor Biotechnologie, and Interuniversity Microelectronics Centre, Leuven, Belgium;
| | - Alan Urban
- Neuro-Electronics Research Flanders, Vlaams Instituut voor Biotechnologie, and Interuniversity Microelectronics Centre, Leuven, Belgium; .,Department of Neuroscience, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Emilie Macé
- Brain-Wide Circuits for Behavior Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany.,Current address: Max Planck Institute for Biological Intelligence, In Foundation, Martinsried, Germany;
| |
Collapse
|
31
|
Di Ianni T, Airan RD. Deep-fUS: A Deep Learning Platform for Functional Ultrasound Imaging of the Brain Using Sparse Data. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1813-1825. [PMID: 35108201 PMCID: PMC9247015 DOI: 10.1109/tmi.2022.3148728] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Functional ultrasound (fUS) is a rapidly emerging modality that enables whole-brain imaging of neural activity in awake and mobile rodents. To achieve sufficient blood flow sensitivity in the brain microvasculature, fUS relies on long ultrasound data acquisitions at high frame rates, posing high demands on the sampling and processing hardware. Here we develop an image reconstruction method based on deep learning that significantly reduces the amount of data necessary while retaining imaging performance. We trained convolutional neural networks to learn the power Doppler reconstruction function from sparse sequences of ultrasound data with compression factors of up to 95%. High-quality images from in vivo acquisitions in rats were used for training and performance evaluation. We demonstrate that time series of power Doppler images can be reconstructed with sufficient accuracy to detect the small changes in cerebral blood volume (~10%) characteristic of task-evoked cortical activation, even though the network was not formally trained to reconstruct such image series. The proposed platform may facilitate the development of this neuroimaging modality in any setting where dedicated hardware is not available or in clinical scanners.
Collapse
|
32
|
Meyer-Baese L, Watters H, Keilholz S. Spatiotemporal patterns of spontaneous brain activity: a mini-review. NEUROPHOTONICS 2022; 9:032209. [PMID: 35434180 PMCID: PMC9005199 DOI: 10.1117/1.nph.9.3.032209] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The brain exists in a state of constant activity in the absence of any external sensory input. The spatiotemporal patterns of this spontaneous brain activity have been studied using various recording and imaging techniques. This has enabled considerable progress to be made in elucidating the cellular and network mechanisms that are involved in the observed spatiotemporal dynamics. This mini-review outlines different spatiotemporal dynamic patterns that have been identified in four commonly used modalities: electrophysiological recordings, optical imaging, functional magnetic resonance imaging, and electroencephalography. Signal sources for each modality, possible sources of the observed dynamics, and future directions are also discussed.
Collapse
Affiliation(s)
- Lisa Meyer-Baese
- Emory University, Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | | | - Shella Keilholz
- Emory University, Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| |
Collapse
|
33
|
Luhmann HJ, Kanold PO, Molnár Z, Vanhatalo S. Early brain activity: Translations between bedside and laboratory. Prog Neurobiol 2022; 213:102268. [PMID: 35364141 PMCID: PMC9923767 DOI: 10.1016/j.pneurobio.2022.102268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 01/29/2023]
Abstract
Neural activity is both a driver of brain development and a readout of developmental processes. Changes in neuronal activity are therefore both the cause and consequence of neurodevelopmental compromises. Here, we review the assessment of neuronal activities in both preclinical models and clinical situations. We focus on issues that require urgent translational research, the challenges and bottlenecks preventing translation of biomedical research into new clinical diagnostics or treatments, and possibilities to overcome these barriers. The key questions are (i) what can be measured in clinical settings versus animal experiments, (ii) how do measurements relate to particular stages of development, and (iii) how can we balance practical and ethical realities with methodological compromises in measurements and treatments.
Collapse
Affiliation(s)
- Heiko J. Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz, Germany.,Correspondence:, , ,
| | - Patrick O. Kanold
- Department of Biomedical Engineering and Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, 720 Rutland Avenue / Miller 379, Baltimore, MD 21205, USA.,Correspondence:, , ,
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
| | - Sampsa Vanhatalo
- BABA Center, Departments of Physiology and Clinical Neurophysiology, Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
34
|
Mozaffarzadeh M, Verschuur E, Verweij MD, Daeichin V, De Jong N, Renaud G. Refraction-Corrected Transcranial Ultrasound Imaging Through the Human Temporal Window Using a Single Probe. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1191-1203. [PMID: 35100111 DOI: 10.1109/tuffc.2022.3148121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transcranial ultrasound imaging (TUI) is a diagnostic modality with numerous applications, but unfortunately, it is hindered by phase aberration caused by the skull. In this article, we propose to reconstruct a transcranial B-mode image with a refraction-corrected synthetic aperture imaging (SAI) scheme. First, the compressional sound velocity of the aberrator (i.e., the skull) is estimated using the bidirectional headwave technique. The medium is described with four layers (i.e., lens, water, skull, and water), and a fast marching method calculates the travel times between individual array elements and image pixels. Finally, a delay-and-sum algorithm is used for image reconstruction with coherent compounding. The point spread function (PSF) in a wire phantom image and reconstructed with the conventional technique (using a constant sound speed throughout the medium), and the proposed method was quantified with numerical synthetic data and experiments with a bone-mimicking plate and a human skull, compared with the PSF achieved in a ground truth image of the medium without the aberrator (i.e., the bone plate or skull). A phased-array transducer (P4-1, ATL/Philips, 2.5 MHz, 96 elements, pitch = 0.295 mm) was used for the experiments. The results with the synthetic signals, the bone-mimicking plate, and the skull indicated that the proposed method reconstructs the scatterers with an average lateral/axial localization error of 0.06/0.14 mm, 0.11/0.13 mm, and 1.0/0.32 mm, respectively. With the human skull, an average contrast ratio (CR) and full-width-half-maximum (FWHM) of 37.1 dB and 1.75 mm were obtained with the proposed approach, respectively. This corresponds to an improvement of CR and FWHM by 7.1 dB and 36% compared with the conventional method, respectively. These numbers were 12.7 dB and 41% with the bone-mimicking plate.
Collapse
|
35
|
Guérineau NC, Campos P, Le Tissier PR, Hodson DJ, Mollard P. Cell Networks in Endocrine/Neuroendocrine Gland Function. Compr Physiol 2022; 12:3371-3415. [PMID: 35578964 DOI: 10.1002/cphy.c210031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reproduction, growth, stress, and metabolism are determined by endocrine/neuroendocrine systems that regulate circulating hormone concentrations. All these systems generate rhythms and changes in hormone pulsatility observed in a variety of pathophysiological states. Thus, the output of endocrine/neuroendocrine systems must be regulated within a narrow window of effective hormone concentrations but must also maintain a capacity for plasticity to respond to changing physiological demands. Remarkably most endocrinologists still have a "textbook" view of endocrine gland organization which has emanated from 20th century histological studies on thin 2D tissue sections. However, 21st -century technological advances, including in-depth 3D imaging of specific cell types have vastly changed our knowledge. We now know that various levels of multicellular organization can be found across different glands, that organizational motifs can vary between species and can be modified to enhance or decrease hormonal release. This article focuses on how the organization of cells regulates hormone output using three endocrine/neuroendocrine glands that present different levels of organization and complexity: the adrenal medulla, with a single neuroendocrine cell type; the anterior pituitary, with multiple intermingled cell types; and the pancreas with multiple intermingled cell types organized into distinct functional units. We give an overview of recent methodologies that allow the study of the different components within endocrine systems, particularly their temporal and spatial relationships. We believe the emerging findings about network organization, and its impact on hormone secretion, are crucial to understanding how homeostatic regulation of endocrine axes is carried out within endocrine organs themselves. © 2022 American Physiological Society. Compr Physiol 12:3371-3415, 2022.
Collapse
Affiliation(s)
| | - Pauline Campos
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Paul R Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.,COMPARE University of Birmingham and University of Nottingham Midlands, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Patrice Mollard
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
36
|
Functional ultrasound imaging: A useful tool for functional connectomics? Neuroimage 2021; 245:118722. [PMID: 34800662 DOI: 10.1016/j.neuroimage.2021.118722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/15/2021] [Accepted: 11/10/2021] [Indexed: 12/28/2022] Open
Abstract
Functional ultrasound (fUS) is a hemodynamic-based functional neuroimaging technique, primarily used in animal models, that combines a high spatiotemporal resolution, a large field of view, and compatibility with behavior. These assets make fUS especially suited to interrogating brain activity at the systems level. In this review, we describe the technical capabilities offered by fUS and discuss how this technique can contribute to the field of functional connectomics. First, fUS can be used to study intrinsic functional connectivity, namely patterns of correlated activity between brain regions. In this area, fUS has made the most impact by following connectivity changes in disease models, across behavioral states, or dynamically. Second, fUS can also be used to map brain-wide pathways associated with an external event. For example, fUS has helped obtain finer descriptions of several sensory systems, and uncover new pathways implicated in specific behaviors. Additionally, combining fUS with direct circuit manipulations such as optogenetics is an attractive way to map the brain-wide connections of defined neuronal populations. Finally, technological improvements and the application of new analytical tools promise to boost fUS capabilities. As brain coverage and the range of behavioral contexts that can be addressed with fUS keep on increasing, we believe that fUS-guided connectomics will only expand in the future. In this regard, we consider the incorporation of fUS into multimodal studies combining diverse techniques and behavioral tasks to be the most promising research avenue.
Collapse
|
37
|
Nouhoum M, Ferrier J, Osmanski BF, Ialy-Radio N, Pezet S, Tanter M, Deffieux T. A functional ultrasound brain GPS for automatic vascular-based neuronavigation. Sci Rep 2021; 11:15197. [PMID: 34312477 PMCID: PMC8313708 DOI: 10.1038/s41598-021-94764-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022] Open
Abstract
Recent advances in ultrasound imaging triggered by transmission of ultrafast plane waves have rendered functional ultrasound (fUS) imaging a valuable neuroimaging modality capable of mapping cerebral vascular networks, but also for the indirect capture of neuronal activity with high sensitivity thanks to the neurovascular coupling. However, the expansion of fUS imaging is still limited by the difficulty to identify cerebral structures during experiments based solely on the Doppler images and the shape of the vessels. In order to tackle this challenge, this study introduces the vascular brain positioning system (BPS), a GPS of the brain. The BPS is a whole-brain neuronavigation system based on the on-the-fly automatic alignment of ultrafast ultrasensitive transcranial Power Doppler volumic images to common templates such as the Allen Mouse Brain Common Coordinates Framework. This method relies on the online registration of the complex cerebral vascular fingerprint of the studied animal to a pre-aligned reference vascular atlas, thus allowing rapid matching and identification of brain structures. We quantified the accuracy of the automatic registration using super-resolution vascular images obtained at the microscopic scale using Ultrasound Localization Microscopy and found a positioning error of 44 µm and 96 µm for intra-animal and inter-animal vascular registration, respectively. The proposed BPS approach outperforms the manual vascular landmark recognition performed by expert neuroscientists (inter-annotator errors of 215 µm and 259 µm). Using the online BPS approach coupled with the Allen Atlas, we demonstrated the capability of the system to position itself automatically over chosen anatomical structures and to obtain corresponding functional activation maps even in complex oblique planes. Finally, we show that the system can be used to acquire and estimate functional connectivity matrices automatically. The proposed functional ultrasound on-the-fly neuronavigation approach allows automatic brain navigation and could become a key asset to ensure standardized experiments and protocols for non-expert and expert researchers.
Collapse
Affiliation(s)
- M Nouhoum
- Physics for Medicine, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Research University, 17 rue Moreau, Paris, France
- Iconeus, 6 rue Jean Calvin, Paris, France
| | - J Ferrier
- Iconeus, 6 rue Jean Calvin, Paris, France
| | | | - N Ialy-Radio
- Physics for Medicine, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Research University, 17 rue Moreau, Paris, France
| | - S Pezet
- Physics for Medicine, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Research University, 17 rue Moreau, Paris, France
| | - M Tanter
- Physics for Medicine, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Research University, 17 rue Moreau, Paris, France
| | - T Deffieux
- Physics for Medicine, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Research University, 17 rue Moreau, Paris, France.
| |
Collapse
|
38
|
Baranger J, Villemain O, Wagner M, Vargas-Gutierrez M, Seed M, Baud O, Ertl-Wagner B, Aguet J. Brain perfusion imaging in neonates. NEUROIMAGE-CLINICAL 2021; 31:102756. [PMID: 34298475 PMCID: PMC8319803 DOI: 10.1016/j.nicl.2021.102756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/21/2021] [Accepted: 07/03/2021] [Indexed: 02/07/2023]
Abstract
MRI is the modality of choice to image and quantify cerebral perfusion. Imaging of neonatal brain perfusion is possible using MRI and ultrasound. Novel ultrafast ultrasound imaging allows for excellent spatiotemporal resolution. Understanding cerebral hemodynamic changes of neonatal adaptation is key.
Abnormal variations of the neonatal brain perfusion can result in long-term neurodevelopmental consequences and cerebral perfusion imaging can play an important role in diagnostic and therapeutic decision-making. To identify at-risk situations, perfusion imaging of the neonatal brain must accurately evaluate both regional and global perfusion. To date, neonatal cerebral perfusion assessment remains challenging. The available modalities such as magnetic resonance imaging (MRI), ultrasound imaging, computed tomography (CT), near-infrared spectroscopy or nuclear imaging have multiple compromises and limitations. Several promising methods are being developed to achieve better diagnostic accuracy and higher robustness, in particular using advanced MRI and ultrasound techniques. The objective of this state-of-the-art review is to analyze the methodology and challenges of neonatal brain perfusion imaging, to describe the currently available modalities, and to outline future perspectives.
Collapse
Affiliation(s)
- Jérôme Baranger
- Department of Pediatrics, Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Translation Medicine Department, SickKids Research Institute, Toronto, Ontario, Canada
| | - Olivier Villemain
- Department of Pediatrics, Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Translation Medicine Department, SickKids Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Matthias Wagner
- Department of Diagnostic Imaging, Division of Neuroradiology, The Hospital for Sick Children, Toronto, Canada
| | | | - Mike Seed
- Department of Pediatrics, Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Translation Medicine Department, SickKids Research Institute, Toronto, Ontario, Canada; Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada
| | - Olivier Baud
- Division of Neonatology and Pediatric Intensive Care, Children's University Hospital of Geneva and University of Geneva, Geneva, Switzerland
| | - Birgit Ertl-Wagner
- Department of Diagnostic Imaging, Division of Neuroradiology, The Hospital for Sick Children, Toronto, Canada
| | - Julien Aguet
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
39
|
Deffieux T, Demené C, Tanter M. Functional Ultrasound Imaging: A New Imaging Modality for Neuroscience. Neuroscience 2021; 474:110-121. [PMID: 33727073 DOI: 10.1016/j.neuroscience.2021.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022]
Abstract
Ultrasound sensitivity to slow blood flow motion gained two orders of magnitude in the last decade thanks to the advent of ultrafast ultrasound imaging at thousands of frames per second. In neuroscience, this access to small cerebral vessels flow led to the introduction of ultrasound as a new and full-fledged neuroimaging modality. Much as functional MRI or functional optical imaging, functional Ultrasound (fUS) takes benefit of the neurovascular coupling. Its ease of use, portability, spatial and temporal resolution makes it an attractive tool for functional imaging of brain activity in preclinical imaging. A large and fast-growing number of studies in a wide variety of small to large animal models have demonstrated its potential for neuroscience research. Beyond preclinical imaging, first proof of concept applications in humans are promising and proved a clear clinical interest in particular in human neonates, per-operative surgery, or even for the development of non-invasive brain machine interfaces.
Collapse
Affiliation(s)
- Thomas Deffieux
- Institute of Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Université Recherche, Paris, France.
| | - Charlie Demené
- Institute of Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Université Recherche, Paris, France
| | - Mickael Tanter
- Institute of Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Université Recherche, Paris, France
| |
Collapse
|