1
|
Li X, Xia C, Jin Z, He Q. Ascorbate/methionine-based CH 4 delivery nanomedicine for tumor-targeted therapy. Biomaterials 2025; 316:123002. [PMID: 39675143 DOI: 10.1016/j.biomaterials.2024.123002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
Methane (CH4) is identified to be an emerging anti-inflammation and anti-cancer molecule with high bio-safety, but the targeted delivery of CH4 is a thorny challenge. Herein, we propose a CH4 delivery strategy based on an intratumoral H2O2-triggered cascade reaction of ascorbic acid (AA)/methionine (Met), and have constructed a new nanomedicine (AMN) for tumor-targeted CH4 therapy. Encouragingly, AMN realizes the effective tumor-targeted delivery and intratumoral H2O2-responsive release of CH4, and exhibits significant anti-cancer effects and high bio-safety. Mechanistically, we have discovered that intratumoral released CH4 can not only induce the apoptosis of 4T1 tumor cells by inhibiting their mitochondrial metabolism, but also activate tumor immunotherapy by reprogramming tumor-associated macrophages (TAMs) phenotype (M2 to M1). The combination of the above anti-cancer pathways by virtue of tumor-targeted CH4 delivery makes contribution to outstanding anti-cancer efficacy of AMN. The proposed CH4 delivery strategy opens a new window for safe and effective tumor therapy.
Collapse
Affiliation(s)
- Xiaoyu Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China; Shenzhen Research Institute, Shanghai Jiao Tong University, Shenzhen, 518057, China; Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chao Xia
- Shenzhen Research Institute, Shanghai Jiao Tong University, Shenzhen, 518057, China; Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhaokui Jin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Qianjun He
- Shenzhen Research Institute, Shanghai Jiao Tong University, Shenzhen, 518057, China; Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Jiang J, Lu Y, Zheng X, Xie M, Jauković A, Gao M, Zheng H. Engineering probiotic biohydrogen micro-factories to initiate reductive stress for boosting tumor vulnerability. Biomaterials 2025; 314:122892. [PMID: 39426122 DOI: 10.1016/j.biomaterials.2024.122892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Disruption of redox homeostasis profoundly affects cellular metabolism and activities. While oxidative stress is extensively studied in cancer therapies, research on reductive stress remains in its infancy. Molecular hydrogen (H2), a well-known antioxidant, holds significant potential to induce reductive stress due to its strong antioxidative properties, making it a promising candidate for cancer therapy. However, it remains a major challenge to develop a sustainable H2 delivery system in vivo. Herein, we designed a micro-factory by engineering a gel-based microcapsule that encapsulates Enterobacter aerogenes, a.k.a. probiotic biohydrogen microcapsules (PBMCs), enabling the sustained H2 generation within tumor microenvironment. Notably, PBMCs effectively suppressed the proliferation of eight tumor cell lines as well as drug-resistant cancer cells. The prolonged H2 release from PBMCs induced reductive stress, as evidenced by a significant increase in the GSH/GSSG ratio in 4T1 cells. Moreover, PBMCs displayed significant antitumor effects in breast, melanoma and liver cancer models. The inhibition of PI3K-AKT pathway and the activation of MAPK pathway were identified as key mechanisms responsible for inducing tumor cell cycle arrest and apoptosis. The PBMCs also exhibited synergistic effects in combination with chemotherapeutics, resulting in robust inhibitions of preinvasive carcinoma growth and commonly associated pulmonary metastasis. Overall, our study introduces an innovative strategy to manipulate reductive stress in the tumor microenvironment through in situ H2 generation, thereby enhancing tumor vulnerability.
Collapse
Affiliation(s)
- Jie Jiang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yuhao Lu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Xinyi Zheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Maomao Xie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Aleksandra Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, PBOX 102, 11129, Belgrade, 11000, Serbia
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
3
|
Gu L, Li X, Chen G, Yang H, Qian H, Pan J, Miao Y, Li Y. A glutathione-activated bismuth-gallic acid metal-organic framework nano-prodrug for enhanced sonodynamic therapy of breast tumor. J Colloid Interface Sci 2025; 679:214-223. [PMID: 39362146 DOI: 10.1016/j.jcis.2024.09.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Sonodynamic therapy is a promising, noninvasive, and precise tumor treatment that leverages sonosensitizers to generate cytotoxic reactive oxygen species during ultrasound stimulation. Gallic acid (GA), a natural polyphenol, possesses certain anti-tumor properties, but exhibits significant toxicity toward normal cells, limiting its application in cancer treatment. To overcome this issue, we synthesized a bismuth-gallic acid (BGA), coordinated metal-organic framework (MOF) nano-prodrug. Upon encountering glutathione (GSH), BGA gradually dissociated and depleted GSH, releasing GA, which had anti-tumor effects. As an MOF with semiconductor properties, BGA primarily produced superoxide anion radical upon ultrasound excitation. After the release of GA, GA generated superoxide anion radical and further produced high toxic singlet oxygen under ultrasound stimulation, while further oxidizing and consuming GSH, enhancing sonocatalytic performance. Additionally, the released GA induced cell cycle arrest, ultimately leading to apoptosis. Our results revealed that BGA, as a GSH-activated, metal-polyphenol MOF nano-prodrug, showed potential for use in breast tumor sonodynamic therapy, providing a novel strategy for precise tumor treatment.
Collapse
Affiliation(s)
- Liping Gu
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueyu Li
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guobo Chen
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Han Yang
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Huihui Qian
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junjie Pan
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
4
|
Zhang Y, Deng X, Xia L, Liang J, Chen M, Xu X, Chen W, Ding J, Yu C, Liu L, Xiang Y, Lin Y, Duan F, Feng W, Chen Y, Gao X. Living Therapeutics for Synergistic Hydrogen-Photothermal Cancer Treatment by Photosynthetic Bacteria. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408807. [PMID: 39495651 PMCID: PMC11714200 DOI: 10.1002/advs.202408807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Indexed: 11/06/2024]
Abstract
Hydrogen gas (H2) therapy, recognized for its inherent biosafety, holds significant promise as an anti-cancer strategy. However, the efficacy of H2 treatment modalities is compromised by their reliance on systemic gas administration or chemical reactions generation, which suffers from low efficiency, poor targeting, and suboptimal utilization. In this study, living therapeutics are employed using photosynthetic bacteria Rhodobacter sphaeroides for in situ H2 production combined with near-infrared (NIR) mediated photothermal therapy. Living R. sphaeroides exhibits strong absorption in the NIR spectrum, effectively converting light energy into thermal energy while concurrently generating H2. This dual functionality facilitates the targeted induction of tumor cell death and substantially reduces collateral damage to adjacent normal tissues. The findings reveal that integrating hydrogen therapy with photothermal effects, mediated through photosynthetic bacteria, provides a robust, dual-modality approach that enhances the overall efficacy of tumor treatments. This living therapeutic strategy not only leverages the therapeutic potential of both hydrogen and photothermal therapeutic modalities but also protects healthy tissues, marking a significant advancement in cancer therapy techniques.
Collapse
Affiliation(s)
- Yingyi Zhang
- Department of PharmacologySchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
- Key Laboratory of Quantitative Synthetic BiologyShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academic of ScienceShenzhen518000P. R. China
| | - Xiaolian Deng
- Department of PharmacologySchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
- Key Laboratory of Quantitative Synthetic BiologyShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academic of ScienceShenzhen518000P. R. China
| | - Lili Xia
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Jianghui Liang
- Department of PharmacologySchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Meng Chen
- Key Laboratory of Quantitative Synthetic BiologyShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academic of ScienceShenzhen518000P. R. China
| | - Xiaoling Xu
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityZhejiang310016P. R. China
- Key laboratory for accurate diagnosis and treatment of abdominal infection in Zhejiang provinceSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityZhejiang310016P. R. China
| | - Wei Chen
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityZhejiang310016P. R. China
- Key laboratory for accurate diagnosis and treatment of abdominal infection in Zhejiang provinceSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityZhejiang310016P. R. China
| | - Jianwei Ding
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117585Singapore
| | - Chengjie Yu
- Department of PharmacologySchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Limei Liu
- Department of PharmacologySchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
- Key Laboratory of Quantitative Synthetic BiologyShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academic of ScienceShenzhen518000P. R. China
| | - Yang Xiang
- Department of PharmacologySchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
- Key Laboratory of Quantitative Synthetic BiologyShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academic of ScienceShenzhen518000P. R. China
| | - Yiliang Lin
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117585Singapore
| | - Fangfang Duan
- Department of PharmacologySchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Wei Feng
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Xiang Gao
- Key Laboratory of Quantitative Synthetic BiologyShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academic of ScienceShenzhen518000P. R. China
| |
Collapse
|
5
|
Hu P, Lin L, Chen G, Liu D, Guo H, Xiao M, Zhong Z, Yang G, Xu B, Huang D, Peng S, Li Y, Zhang Y, Huang T, Zhang F. Hydrogen-Generating Magnesium Alloy Seed Strand Sensitizes Solid Tumors to Iodine-125 Brachytherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2412263. [PMID: 39656877 DOI: 10.1002/advs.202412263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Radioactive iodine-125 (125I) seed implantation, a brachytherapy technique, effectively kills tumor cells via X-rays and gamma rays, serving as an alternative therapeutic option following the failure of frontline treatments for various solid tumors. However, tumor radioresistance limits its efficacy. Hydrogen gas has anticancer properties and can enhance the efficacy of immunotherapy. However, its role in radiotherapy sensitization has rarely been reported. Many current hydrogen delivery methods involve hydrogen-generating nanomaterials, such as magnesium-based nanomaterials. This study introduces an AZ31 magnesium alloy 125I seed strand (termed AMASS) with pH-dependent slow-release hydrogen characteristics and excellent mechanical properties. AMASS can be implanted into tumors via minimally invasive surgery, releasing hydrogen around the 125I seeds. In vitro experiments showed that hydrogen from AMASS degradation significantly inhibited tumor proliferation, increased apoptosis, disrupted redox homeostasis and mitochondrial membrane potential, reduced adenosine triphosphate levels, and induced DNA damage due to 125I radiation. In mouse xenograft and rabbit liver tumor models, hydrogen from AMASS showed superior therapeutic effects compared with 125I seeds alone, with no noticeable side effects. In addition, AMASS has a uniform radiation dose distribution and simple implantation. Therefore, hydrogen from AMASS enhanced 125I seed efficacy, supporting the further promotion and application of 125I seed implantation in cancer therapy.
Collapse
Affiliation(s)
- Pan Hu
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Letao Lin
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Guanyu Chen
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Dengyao Liu
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Huanqing Guo
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Meigui Xiao
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zhihui Zhong
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Guang Yang
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Bingchen Xu
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Dongcun Huang
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Sheng Peng
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yong Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, P. R. China
| | - Yanling Zhang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Tao Huang
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Fujun Zhang
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| |
Collapse
|
6
|
Wang Y, Ma K, Kang M, Yan D, Niu N, Yan S, Sun P, Zhang L, Sun L, Wang D, Tan H, Tang BZ. A new era of cancer phototherapy: mechanisms and applications. Chem Soc Rev 2024; 53:12014-12042. [PMID: 39494674 DOI: 10.1039/d4cs00708e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The past decades have witnessed great strides in phototherapy as an experimental option or regulation-approved treatment in numerous cancer indications. Of particular interest is nanoscale photosensitizer-based phototherapy, which has been established as a prominent candidate for advanced tumor treatment by virtue of its high efficacy and safety. Despite considerable research progress on materials, methods and devices in nanoscale photosensitizing agent-based phototherapy, their mechanisms of action are not always clear, which impedes their practical application in cancer treatment. Hence, from a new perspective, this review elaborates the working mechanisms, involving impairment and moderation effects, of diverse phototherapies on cells, organelles, organs, and tissues. Furthermore, the most current available phototherapy modalities are categorized as photodynamic, photothermal, photo-immune, photo-gas, and radio therapies in this review. A comprehensive understanding of the inferiority and superiority of various phototherapies will facilitate the advent of a new era of cancer phototherapy.
Collapse
Affiliation(s)
- Yuanwei Wang
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Ke Ma
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Miaomiao Kang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Dingyuan Yan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Niu Niu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Saisai Yan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Panpan Sun
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Luzhi Zhang
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Lijie Sun
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen, (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
7
|
Jia S, Ma H, Gao S, Yang L, Sun Q. Thermoelectric Materials and Devices for Advanced Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405019. [PMID: 39392147 DOI: 10.1002/smll.202405019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Thermoelectrics (TEs), enabling the direct conversion between heat and electrical energy, have demonstrated extensive application potential in biomedical fields. Herein, the mechanism of the TE effect, recent developments in TE materials, and the biocompatibility assessment of TE materials are provided. In addition to the fundamentals of TEs, a timely and comprehensive review of the recent progress of advanced TE materials and their applications is presented, including wearable power generation, personal thermal management, and biosensing. In addition, the new-emerged medical applications of TE materials in wound healing, disease treatment, antimicrobial therapy, and anti-cancer therapy are thoroughly reviewed. Finally, the main challenges and future possibilities are outlined for TEs in biomedical fields, as well as their material selection criteria for specific application scenarios. Together, these advancements can provide innovative insights into the development of TEs for broader applications in biomedical fields.
Collapse
Affiliation(s)
- Shiyu Jia
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huangshui Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan, 610017, China
| | - Qiang Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
8
|
Liao Y, Wang D, Gu C, Wang X, Zhu S, Zheng Z, Zhang F, Yan J, Gu Z. A cuproptosis nanocapsule for cancer radiotherapy. NATURE NANOTECHNOLOGY 2024; 19:1892-1902. [PMID: 39300223 DOI: 10.1038/s41565-024-01784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Residual tumours that persist after radiotherapy often develop acquired radiation resistance, increasing the risk of recurrence and metastasis while providing obstacles to re-irradiation. Using samples from patients and experimental mice, we discovered that FDX1 and LIAS, key regulators of cuproptosis, were up-regulated in residual tumours following radiotherapy, conferring the increased sensitivity to cuproptosis. Therefore, we proposed a novel radiosensitization strategy focused on cuproptosis, using a copper-containing nanocapsule-like polyoxometalate as a paradigm. In an initial demonstration, we showed that the nanocapsule released copper ions in a controlled manner upon exposure to ionizing radiation. Furthermore, radiation-triggered cuproptosis overcame acquired radiation resistance even at clinically relevant radiation doses and activated a robust abscopal effect, with a 40% cure rate in both radioresistant and re-irradiation tumour models. Collectively, targeting cuproptosis is a compelling strategy for addressing acquired radiation resistance, optimizing the local antitumour effects of radiotherapy while simultaneously activating systemic antitumour immunity.
Collapse
Affiliation(s)
- You Liao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Dongmei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Chenglu Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xue Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Ziye Zheng
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fuquan Zhang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junfang Yan
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Sabu A, Kandel M, Sarma RR, Ramesan L, Roy E, Sharmila R, Chiu HC. Heterojunction semiconductor nanocatalysts as cancer theranostics. APL Bioeng 2024; 8:041502. [PMID: 39381587 PMCID: PMC11459490 DOI: 10.1063/5.0223718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
Cancer nanotechnology is a promising area of cross-disciplinary research aiming to develop facile, effective, and noninvasive strategies to improve cancer diagnosis and treatment. Catalytic therapy based on exogenous stimulus-responsive semiconductor nanomaterials has shown its potential to address the challenges under the most global medical needs. Semiconductor nanocatalytic therapy is usually triggered by the catalytic action of hot electrons and holes during local redox reactions within the tumor, which represent the response of nontoxic semiconductor nanocatalysts to pertinent internal or external stimuli. However, careful architecture design of semiconductor nanocatalysts has been the major focus since the catalytic efficiency is often limited by facile hot electron/hole recombination. Addressing these challenges is vital for the progress of cancer catalytic therapy. In recent years, diverse strategies have been developed, with heterojunctions emerging as a prominent and extensively explored method. The efficiency of charge separation under exogenous stimulation can be heightened by manipulating the semiconducting performance of materials through heterojunction structures, thereby enhancing catalytic capabilities. This review summarizes the recent applications of exogenous stimulus-responsive semiconducting nanoheterojunctions for cancer theranostics. The first part of the review outlines the construction of different heterojunction types. The next section summarizes recent designs, properties, and catalytic mechanisms of various semiconductor heterojunctions in tumor therapy. The review concludes by discussing the challenges and providing insights into their prospects within this dynamic and continuously evolving field of research.
Collapse
Affiliation(s)
- Arjun Sabu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Manoj Kandel
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ritwick Ranjan Sarma
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Lakshminarayan Ramesan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ekta Roy
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ramalingam Sharmila
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
10
|
Jia X, Wang Y, Qiao Y, Jiang X, Li J. Nanomaterial-based regulation of redox metabolism for enhancing cancer therapy. Chem Soc Rev 2024; 53:11590-11656. [PMID: 39431683 DOI: 10.1039/d4cs00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Altered redox metabolism is one of the hallmarks of tumor cells, which not only contributes to tumor proliferation, metastasis, and immune evasion, but also has great relevance to therapeutic resistance. Therefore, regulation of redox metabolism of tumor cells has been proposed as an attractive therapeutic strategy to inhibit tumor growth and reverse therapeutic resistance. In this respect, nanomedicines have exhibited significant therapeutic advantages as intensively reported in recent studies. In this review, we would like to summarize the latest advances in nanomaterial-assisted strategies for redox metabolic regulation therapy, with a focus on the regulation of redox metabolism-related metabolite levels, enzyme activity, and signaling pathways. In the end, future expectations and challenges of such emerging strategies have been discussed, hoping to enlighten and promote their further development for meeting the various demands of advanced cancer therapies. It is highly expected that these therapeutic strategies based on redox metabolism regulation will play a more important role in the field of nanomedicine.
Collapse
Affiliation(s)
- Xiaodan Jia
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Wang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Qiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiue Jiang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jinghong Li
- Beijing Institute of Life Science and Technology, Beijing 102206, P. R. China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
11
|
Li J, Wang G, Wen Z, Sun S, Han Z, Yang Y, Wu J, Pei Z, Liu L, Chen Y, Cheng L. Modulating the Electronic Structure of MnNi 2S 3 Nanoelectrodes to Activate Pyroptosis for Electrocatalytic Hydrogen-Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412925. [PMID: 39400361 DOI: 10.1002/adma.202412925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Indexed: 10/15/2024]
Abstract
Hydrogen (H2) therapy has demonstrated antitumor effect, but the therapeutic efficacy is restricted by the low solubility and nontarget delivery of H2. Electrolysis of H2O by electrocatalysts sustainably releases enormous amounts of H2 and inspires the precise delivery of H2 for tumor therapy. Herein, manganese-doped Ni2S3 nanoelectrodes (MnNi2S3 NEs) are designed for the electrocatalytic delivery of H2 and the activation of antitumor immunity to effectively potentiate H2-immunotherapy. Ni atoms featuring empty 3d orbitals reduce the initial energy barrier of the hydrogen evolution reaction (HER) by promoting the adsorption of H2O. Moreover, Mn atoms with different electronegativity modulate the electronic structure of Ni atoms and facilitate the desorption of the generated H2, thus enhancing the HER activity of the MnNi2S3 NEs. Based on the high HER activity, controllable delivery of H2 for electrocatalytic hydrogen therapy (EHT) is achieved in a voltage-dependent manner. Mechanistically, MnNi2S3 NE-mediated EHT induces mitochondrial dysfunction and oxidative stress, which subsequently activates pyroptosis through the typical ROS/caspase-1/GSDMD signaling pathway. Furthermore, MnNi2S3 NE-mediated EHT enhances the infiltration of CD8+ T lymphocytes into tumors and reverses the immunosuppressive microenvironment. This work demonstrates an electrocatalyst with high HER activity for synergistic gas-immunotherapy, which may spark electrocatalyst-based tumor therapy strategies.
Collapse
Affiliation(s)
- Jingrui Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Gang Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zhaoyu Wen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Shumin Sun
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zhihui Han
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yuqi Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Jie Wu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zifan Pei
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Luyao Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Youdong Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Liang Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
12
|
Zhang H, Guan S, Wang L, Zhang M, Wang Z, Dai Z. Optical Fiber-Enabled In Situ Photocatalytic Hydrogen Generation for Infiltrating Tumor Therapy in Brain. Adv Healthc Mater 2024; 13:e2401817. [PMID: 38885531 DOI: 10.1002/adhm.202401817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/11/2024] [Indexed: 06/20/2024]
Abstract
In addition to repressing proliferation, inhibiting the infiltration of tumor cells is an important strategy to improve the treatment of malignant tumors. Herein, a photocatalyst (pCNMC@Pt) is designed by sequentially assembling manganese dioxide, chlorin e6, and platinum (Pt) nanoparticles onto protonated graphitic carbon nitride. With the help of a Z-scheme structure and near-infrared (NIR) photosensitizer, pCNMC@Pt is capable of responding to NIR light to generate large amounts of hydrogen (H2). Taking lactic acid in the tumor microenvironment as a sacrificial reagent, H2 therapy initiated by the NIR photocatalyst remarkably impedes the growth of glioblastoma (GBM). More importantly, it is found that H2 can suppress the stemness of glioma stem cells, curbing both proliferation and infiltration of GBM. Furthermore, since pCNMC@Pt and light source are precisely co-localized through a self-built loading and illumination system, GBM in mouse brains can be efficiently treated, providing an alternative gas therapy approach to cure infiltrating tumors.
Collapse
Affiliation(s)
- Hang Zhang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Shujuan Guan
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Lei Wang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Min Zhang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhaoyin Wang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhihui Dai
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
13
|
Yang X, Li C, Ge M, Li X, Zhao W, Guo H, Nie H, Liu J. Mn(II)-Aloe-Emodin Nanoscale Coordination Polymer Enhances Ferroptosis by Synergistically Enhancing Reactive Oxygen Species Generation via the Nrf2-GPX4 Axis. Adv Healthc Mater 2024; 13:e2400474. [PMID: 38875525 DOI: 10.1002/adhm.202400474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/14/2024] [Indexed: 06/16/2024]
Abstract
Ferroptosis induction is particularly promising for cancer therapy when the apoptosis pathway is compromised. Current strategies in nanomedicine for inducing ferroptosis primarily focus on promoting the accumulation of reactive oxygen species (ROS). However, the presence of intracellular antioxidants, such as nuclear factor erythroid 2-related factor 2 (Nrf2), can limit the effectiveness of such therapy by activating detoxification systems and eliminating ROS. To overcome this challenge, we developed a synergistic ferroptosis-inducing agent by modifying manganese (Mn2+)-1,8-dihydroxy-3-hydroxymethyl-anthraquinone (aloe-emodin, AE) with polyvinyl pyrrolidone (PVP) to create nanoparticles (MAP NPs). In the tumor microenvironment, these NPs degraded and released AE and Mn(II), facilitating the generation of ROS and Mn(IV) through a Fenton-like reaction between hydrogen peroxide (H2O2) and Mn(II). Mn(IV) subsequently interacts with glutathione (GSH) to induce a cyclic catalytic effect, and the depletion of GSH diminished the activation of glutathione-dependent peroxidase 4 (GPX4). Furthermore, AE inhibits the activity of Nrf2 and depleted GSH, thereby synergistically enhancing antitumor efficacy. Here it is demonstrated that MAP NPs effectively generate a robust ROS storm within tumor cells, suggesting that high-performance ferroptosis therapy is effective. Additionally, the inclusion of Mn(II) in the MAP NPs enables real-time monitoring of therapeutic efficacy via magnetic resonance T1-weighted contrast imaging.
Collapse
Affiliation(s)
- Xiaoxin Yang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Chang Li
- Department of Radiology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Mengjun Ge
- Department of Biomedical Sciences College of Biology, Hunan University, Changsha, 410011, China
| | - Xiaoying Li
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Wei Zhao
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Hu Guo
- Siemens Healthineers MR Application China, Changsha, 410000, China
| | - Hemin Nie
- Department of Biomedical Sciences College of Biology, Hunan University, Changsha, 410011, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, 410011, China
| |
Collapse
|
14
|
Zhang Y, Hua T, Huang X, Gu R, Chu R, Hu Y, Ye S, Yang M. Photodynamic therapy of severe hemorrhagic shock on yolk-shell MoS 2 nanoreactors. RSC Adv 2024; 14:32533-32541. [PMID: 39411261 PMCID: PMC11475463 DOI: 10.1039/d4ra04157g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/07/2024] [Indexed: 10/19/2024] Open
Abstract
Ischemia-reperfusion injury resulting from severe hemorrhagic shock continues to cause substantial damage to human health and impose a significant economic burden. In this study, we designed an Au-loaded yolk-shell MoS2 nanoreactor (Au@MoS2) that regulates cellular homeostasis. In vitro experiments validated the efficacy of the nanomaterial in reducing intracellular reactive oxygen species (ROS) production during hypoxia and reoxygenation, and had great cell biocompatibility, Au@MoS2. The antioxidant properties of the nanoreactors contributed to the elimination of ROS (over twofold scavenging ratio for ROS). In vivo results demonstrate that Au@MoS2 (54.88% of reduction) alleviates hyperlactatemia and reduces ischemia-reperfusion injury in rats subjected to severe hemorrhagic shock, compared to MoS2 (26.32% of reduction) alone. In addition, no discernible toxic side effects were observed in the rats throughout the experiment, underscoring the considerable promise of the nanoreactor for clinical trials. The mechanism involves catalyzing the degradation of endogenous lactic acid on the Au@MoS2 nanoreactor under 808 nm light, thereby alleviating ischemia-reperfusion injury. This work proposes a new selective strategy for the treatment of synergistic hemorrhagic shock.
Collapse
Affiliation(s)
- Yijun Zhang
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University Hefei Anhui 230001 China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University Hefei Anhui 230001 China
| | - Tianfeng Hua
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University Hefei Anhui 230001 China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University Hefei Anhui 230001 China
| | - Xiaoyi Huang
- School of Materials and Chemistry, Anhui Agricultural University Hefei Anhui 230036 China
- College of Animal Science and Technology, Anhui Agricultural University Hefei Anhui 230036 China
| | - Rongrong Gu
- School of Materials and Chemistry, Anhui Agricultural University Hefei Anhui 230036 China
- College of Animal Science and Technology, Anhui Agricultural University Hefei Anhui 230036 China
| | - Ruixi Chu
- School of Materials and Chemistry, Anhui Agricultural University Hefei Anhui 230036 China
- College of Animal Science and Technology, Anhui Agricultural University Hefei Anhui 230036 China
| | - Yan Hu
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University Hefei Anhui 230001 China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University Hefei Anhui 230001 China
| | - Sheng Ye
- School of Materials and Chemistry, Anhui Agricultural University Hefei Anhui 230036 China
| | - Min Yang
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University Hefei Anhui 230001 China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University Hefei Anhui 230001 China
| |
Collapse
|
15
|
Xu M, Wu G, You Q, Chen X. The Landscape of Smart Biomaterial-Based Hydrogen Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401310. [PMID: 39166484 PMCID: PMC11497043 DOI: 10.1002/advs.202401310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/19/2024] [Indexed: 08/23/2024]
Abstract
Hydrogen (H2) therapy is an emerging, novel, and safe therapeutic modality that uses molecular hydrogen for effective treatment. However, the impact of H2 therapy is limited because hydrogen molecules predominantly depend on the systemic administration of H2 gas, which cannot accumulate at the lesion site with high concentration, thus leading to limited targeting and utilization. Biomaterials are developed to specifically deliver H2 and control its release. In this review, the development process, stimuli-responsive release strategies, and potential therapeutic mechanisms of biomaterial-based H2 therapy are summarized. H2 therapy. Specifically, the produced H2 from biomaterials not only can scavenge free radicals, such as reactive oxygen species (ROS) and lipid peroxidation (LPO), but also can inhibit the danger factors of initiating diseases, including pro-inflammatory cytokines, adenosine triphosphate (ATP), and heat shock protein (HSP). In addition, the released H2 can further act as signal molecules to regulate key pathways for disease treatment. The current opportunities and challenges of H2-based therapy are discussed, and the future research directions of biomaterial-based H2 therapy for clinical applications are emphasized.
Collapse
Affiliation(s)
- Min Xu
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Gege Wu
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| | - Qing You
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| |
Collapse
|
16
|
Wang D, Yuan F, Deng X, Liu Q, Shi W, Wang X. Sub-Nanosheet Induced Inverse Growth of Negative Valency Au Clusters for Tumor Treatment by Enhanced Oxidative Stress. Angew Chem Int Ed Engl 2024; 63:e202410649. [PMID: 38965041 DOI: 10.1002/anie.202410649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Cluster aggregation states are thermodynamically favored at the subnanoscale, for which an inverse growth from nanoparticles to clusters may be realized on subnanometer supports. Herein, we develop Au-polyoxometalate-layered double hydroxide (Au-POM-LDH) sub-1 nm nanosheets (Sub-APL) based on the above strategy, where sub-1 nm Au clusters with negative valence are generated by the in situ disintegration of Au nanoparticles on POM-LDH supports. Sub-1 nm Au clusters with ultrahigh surface atom ratios exhibit remarkable efficiency for glutathione (GSH) depletion. The closely connected sub-1 nm Au with negative valence and POM hetero-units can promote the separation of hole-electrons, resulting in the enhanced reactive oxygen species (ROS) generation under ultrasound (US). Besides, the reversible redox of Mo in POM is able to deplete GSH and trigger chemodynamic therapy (CDT) simultaneously, further enhancing the oxidative stress. Consequently, the Sub-APL present 2-fold ROS generation under US and 7-fold GSH depletion compared to the discrete Au and POM-LDH mixture. Therefore, the serious imbalance of redox in the TME caused by the sharp increase of ROS and rapid decrease of GSH leads to death of tumor ultimately.
Collapse
Affiliation(s)
- Dong Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Feng Yuan
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xuliang Deng
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300387, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
17
|
Lu X, Yu X, Li B, Sun X, Cheng L, Kai Y, Zhou H, Tian Y, Li D. Harnessing Metal-Organic Frameworks for NIR-II Light-Driven Multiphoton Photocatalytic Water Splitting in Hydrogen Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405643. [PMID: 39119878 PMCID: PMC11481200 DOI: 10.1002/advs.202405643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Indexed: 08/10/2024]
Abstract
The construction of near-infrared (NIR) light-activated hydrogen-producing materials that enable the controlled generation and high-concentration release of hydrogen molecules in deep tumor tissues and enhance the effects of hydrogen therapy holds significant scientific importance. To address the key technical challenge of low-efficiency oxidation-reduction reactions for narrow-bandgap photocatalytic materials, this work proposes an innovative approach for the controllable fabrication of multiphoton photocatalytic materials to overcome the limitations imposed by traditional near-infrared photocatalysts with "narrow-bandgap" constraints. Herein, an NIR-responsive multiphoton photocatalyst, ZrTc-Co, is developed by utilizing a post-synthetic coordination modification strategy to introduce hydrogenation active site CoII into a multiphoton responsive MOF (ZrTc). The results reveal that with the introduction of the CoII site, electron-hole recombination can be efficiently suppressed, thus promoting the efficiency of hydrogen evolution reaction. In addition, the integration of CoII can effectively enhance charge transfer and improve static hyperpolarizability, which endows ZrTc-Co with excellent multiphoton absorption. Moreover, hyaluronic acid modification endows ZrTc-Co with cancer cell-specific targeting characteristics, laying the foundation for tumor-specific elimination. Collectively, the proposed findings present a strategy for constructing NIR-II light-mediated hydrogen therapeutic agents for deep tumor elimination.
Collapse
Affiliation(s)
- Xin Lu
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| | - Xinlei Yu
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| | - Bo Li
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| | - Xianshun Sun
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| | - Longjiu Cheng
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| | - YuanZhong Kai
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| | - Hongping Zhou
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| | - Yupeng Tian
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| | - Dandan Li
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| |
Collapse
|
18
|
Huang Y, Wei H, Feng H, Tian F, Zheng Q, Deng Z. An endogenous oxygen self-supplied nanoplatform with GSH-depleted and NIR-II triggered electron-hole separation for enhanced photocatalytic anti-tumor therapy. Phys Chem Chem Phys 2024; 26:23386-23392. [PMID: 39212464 DOI: 10.1039/d4cp02554g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The use of artificial enzymes and light energy in photocatalytic therapy, a developing drug-free therapeutic approach, can treat malignant tumors in vivo. However, the relatively deficient oxygen concentration in the tumor microenvironment (TME) restrains their further tumor treatment capability. Herein, a novel nanoplatform with Cu7S4@Au nanocatalyst coated by MnO2 was successfully designed. After 1064 nm light irradiation, the designed nanocatalyst can promote the separation of light generated electron-hole pairs, resulting in ROS generation and tumor cell apoptosis. The MnO2 shelled nanoplatform can function as a TME-responsive oxygen self-supplied producer to improve photocatalyst treatment and GSH depletion. In summary, the designed novel nanoplatform shows efficient inhibition of tumor growth via GSH depletion and synergistic photocatalytic therapy, which is of great significance for improving the clinical tumor treatment effect.
Collapse
Affiliation(s)
- Yao Huang
- School of Physics and Electronic-Electrical Engineering, Xiangnan University, Chenzhou 423000, China
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Hanlin Wei
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Hui Feng
- Changsha Environmental Protection College, Hunan Province, Changsha 410082, China
| | - Fengyu Tian
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Qi Zheng
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China.
| | - Zhiming Deng
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
19
|
Zhang L, Li B, Duan W, Sun X, Kai Y, Zhou H, Tian Y, Li D. Dramatically Enhancing Multiphoton Harvesting Metal-Organic Frameworks for NIR-II Photocatalysis through Functional Regulation of Octupolar Molecules. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47348-47356. [PMID: 39223076 DOI: 10.1021/acsami.4c12028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The development of effective multiphoton absorption (MPA) materials for near-infrared (NIR) light-driven photocatalysis holds great significance. In this study, we incorporated two multibranched cyclometallated iridium(III) modules with varying degrees of conjugation onto MPA-inert metal-organic frameworks (MOFs) to active MPA performance. Subsequently, the MOFs were further modified with Co(II) and hyaluronic acid (HA) to fabricate MINCH and MISCH, respectively. By introducing octupolar molecules and expanding the conjugation, MISCH exhibited a larger MPA cross section for efficient NIR light absorption and improved carrier transfer, leading to outstanding NIR light-driven multiphoton photocatalytic hydrogen production. Moreover, the HA modification enabled MISCH to achieve specific multiphoton photocatalytic hydrogen therapy for cancer cells. This study provides valuable insights into constructing highly active MPA materials for NIR light-driven photocatalysis, presenting a potential platform for hydrogen therapy in tumor treatment.
Collapse
Affiliation(s)
- Luling Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Wenyao Duan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xianshun Sun
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Yuanzhong Kai
- School of Life Sciences, Anhui University, Hefei 230601, P. R. China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Yupeng Tian
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Dandan Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
20
|
Wu S, Wang Q, Du J, Zhu L, Yang F, Lu J, Li X, Li Y, Cui J, Miao Y. Bi-Pt Heterojunction Cascade Reaction Platform for Sono-Immunotherapy of Tumors via PANoptosis and Ferroptosis. Adv Healthc Mater 2024:e2401697. [PMID: 39235389 DOI: 10.1002/adhm.202401697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/23/2024] [Indexed: 09/06/2024]
Abstract
Sonodynamic therapy (SDT) represents a promising, noninvasive, and precise treatment modality for tumors, demonstrating significant potential in clinical applications. However, the efficiency of sonosensitizers in generating reactive oxygen species (ROS) is often limited by rapid electron-hole recombination. In this study, BiF3@BiOI is synthesized via a co-precipitation method, followed by in-situ reduction to decorate it with Pt nanoparticles, resulting in BiF3@BiOI@Pt-PVP (BBP) nanocomposite for enhancing SDT efficacy. The formation of the BiF3@BiOI heterojunction enhances charge separation ability. The decoration of Pt nanoparticles narrows the bandgap and alters the band positions and Fermi level of BBP, which can effectively mitigate the rapid recombination of electron-hole pairs and facilitate a cascade reaction of ROS, thereby improving ROS generation efficiency with ultrasound excitation. Additionally, bismuth ions in BBP and the generated holes consume glutathione, exacerbating cellular oxidative damage, and triggering PANoptosis and ferroptosis. Furthermore, Pt nanoparticles demonstrate peroxidase-like activity, catalyzing endogenous hydrogen peroxide to oxygen. These functions are helpful against tumors for alleviating hypoxic conditions, reshaping the microenvironment, modulating immune cell infiltration capacity, and enhancing the efficacy of immunotherapy. The dual strategy of forming heterojunctions and sensitization with noble metals effectively enhances the efficacy of sono-catalytic therapy-induced immune activation in tumor treatment.
Collapse
Affiliation(s)
- Sijia Wu
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Qian Wang
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jun Du
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lejin Zhu
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Fujun Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Jiacheng Lu
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xueyu Li
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jingtao Cui
- Bismuth Industry Development Center, Hunan Shizhuyuan Nonferrous Metals Co. Ltd., Chenzhou, 423037, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
21
|
Yu J, Gao Y, Zhang W, Wang P, Fang Y, Yang L. Localized surface plasmon resonance (LSPR) excitation on single silver nanoring with nanoscale surface roughness. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124405. [PMID: 38718746 DOI: 10.1016/j.saa.2024.124405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024]
Abstract
With the expansion of the application of high-sensitivity Surface-enhanced Raman scattering (SERS) technique, micro SERS-active substrates with rich optical properties and high-level functions are desired. In this study, silver nanorings with nanoscale surface roughness were fabricated as a new type of enclosed quasi-2D micro-SERS-active substrate. Highly-crystalline spherical and hemispherical silver nanoprotrusions were densely and uniformly distributed over the entire surface of the nanorings. The SERS signals were significantly enhanced on the roughened silver nanorings which were mainly derived from the maximal localized surface plasmon resonance (LSPR) points at the junctions between adjacent coupled nanoprotrusions on the roughened nanorings. The mapping image shows a uniform and intense LSPR enhancement over the nanorings, owing to the uniform and dense distribution of silver nanoprotrusions and the resulting uniform distribution of maximal LSPR points on the roughened nanorings. The dark-field spectra further indicated that the single roughened silver nanoring had significant LSPR enhancement, a wide LSPR frequency-range response, and adaptability for SERS enhancement. Notably, both the measured and simulated results demonstrate that the maximal LSPR enhancement at the junctions between the nanoprotrusions, which are distributed on the inner surface of the silver nanoring, is higher than that on the outer surface because of the plasmon-focusing effect of the enclosed silver nanoring, which leads to the lateral asymmetrical distribution of LSPR intensity, indicating more LSPR and SERS features. These results indicate that single roughened silver nanorings exhibit excellent performance as a new type of enclosed quasi-2D silver nanoring micro-SERS-active substrate, microzone LSPR catalysis, and micro/nanodevices.
Collapse
Affiliation(s)
- Jianhai Yu
- Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Department of Physics, Capital Normal University, Beijing 100048, China
| | - Yanan Gao
- Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Department of Physics, Capital Normal University, Beijing 100048, China
| | - Wenzheng Zhang
- Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Department of Physics, Capital Normal University, Beijing 100048, China
| | - Peijie Wang
- Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Department of Physics, Capital Normal University, Beijing 100048, China
| | - Yan Fang
- Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Department of Physics, Capital Normal University, Beijing 100048, China.
| | - Longkun Yang
- Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Department of Physics, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
22
|
Liu X, Li M, Woo S. Subcellular Drug Distribution: Exploring Organelle-Specific Characteristics for Enhanced Therapeutic Efficacy. Pharmaceutics 2024; 16:1167. [PMID: 39339204 PMCID: PMC11434838 DOI: 10.3390/pharmaceutics16091167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The efficacy and potential toxicity of drug treatments depends on the drug concentration at its site of action, intricately linked to its distribution within diverse organelles of mammalian cells. These organelles, including the nucleus, endosome, lysosome, mitochondria, endoplasmic reticulum, Golgi apparatus, lipid droplets, exosomes, and membrane-less structures, create distinct sub-compartments within the cell, each with unique biological features. Certain structures within these sub-compartments possess the ability to selectively accumulate or exclude drugs based on their physicochemical attributes, directly impacting drug efficacy. Under pathological conditions, such as cancer, many cells undergo dynamic alterations in subcellular organelles, leading to changes in the active concentration of drugs. A mechanistic and quantitative understanding of how organelle characteristics and abundance alter drug partition coefficients is crucial. This review explores biological factors and physicochemical properties influencing subcellular drug distribution, alongside strategies for modulation to enhance efficacy. Additionally, we discuss physiologically based computational models for subcellular drug distribution, providing a quantifiable means to simulate and predict drug distribution at the subcellular level, with the potential to optimize drug development strategies.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14214-8033, USA;
| | - Miaomiao Li
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210-1267, USA;
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14214-8033, USA;
| |
Collapse
|
23
|
Jiang Z, Ainiwaer M, Liu J, Ying B, Luo F, Sun X. Hydrogen therapy: recent advances and emerging materials. Biomater Sci 2024; 12:4136-4154. [PMID: 39021349 DOI: 10.1039/d4bm00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Hydrogen therapy, leveraging its selective attenuation of hydroxyl radicals (˙OH) and ONOO-, has emerged as a pivotal pathophysiological modulator with antioxidant, anti-inflammatory, and antiapoptotic attributes. Hydrogen therapy has been extensively studied both preclinically and clinically, especially in diseases with an inflammatory nature. Despite the substantial progress, challenges persist in achieving high hydrogen concentrations in target lesions, especially in cancer treatment. A notable breakthrough lies in water/acid reactive materials, offering enhanced hydrogen generation and sustained release potential. However, limitations include hydrogen termination upon material depletion and reduced bioavailability at targeted lesions. To overcome these challenges, catalytic materials like photocatalytic and sonocatalytic materials have surfaced as promising solutions. With enhanced permeability and retention effects, these materials exhibit targeted delivery and sustained stimuli-reactive hydrogen release. The future of hydrogen therapy hinges on continuous exploration and modification of catalytic materials. Researchers are urged to prioritize improved catalytic efficiency, enhanced lesion targeting effects, and heightened biosafety and biocompatibility in future development.
Collapse
Affiliation(s)
- Zheng Jiang
- Department of Otolaryngology, Head and Neck surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Mailudan Ainiwaer
- Department of Otolaryngology, Head and Neck surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jun Liu
- Department of Otolaryngology, Head and Neck surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Fengming Luo
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuping Sun
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| |
Collapse
|
24
|
Malik AQ, Jabeen T, Lokhande PE, Kumar D, Awasthi S, Pandey SK, Mubarak NM, Abnisa F. Molecularly imprinted Ag 2S quantum dots with high photocatalytic activity for dye removal: Experimental and DFT insights. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121889. [PMID: 39053374 DOI: 10.1016/j.jenvman.2024.121889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Molecular imprinted polymers (MIPs) were developed by carrying out the cocktail solution of Template ((Salata, 2004)-Gingerol), monomer, crosslinker, and Ag2S Quantum Dots (QDs) by ex-situ dissolved in an appropriate solvent, resulting in an efficient crosslinked polymer composite. Degradation of Alizarin red S (ARS) dye and yellowish sunset (SY) azo dye under visible light irradiation was reported first time by the introduction of prepared MIPs composite. In this research, the result shows efficient photocatalyt activity of Ag2S-MIPs composite for the degradation of AR and SY dye with degradation% (80%) and (84%) in the aqueous wastewater. The degradation efficiency of the Ag2S-MIPs composite and the Ag2S QD associated with non-imprinted polymers (NIPs) (i.e.Ag2S-NIPs composite) were calculated by using different parameters such as catalyst dose, pH value, optimum time and concentration variation and the observations are evocative. Moreover, the density functional theory (DFT) approach was also used to analyze the structural, stability/energetics, and electronic features of the organic-inorganic hybrid composites of the Ag2S QD with the MIPs based on (Salata, 2004)-gingerol extract. The proposed QD and MIPs (EGDMA and (Salata, 2004)-Gingerol) composite model has been detected to be the most stable because it shows the largest binding energy (BE) among the three chosen composite models. It was found out that imprinted polymers were superior in enhancing the degradation of dyes when compared to non imprinted polymers. Introducing MIPs into the valence band accelerates the catalysis properties to stabilize newly fashioned excitons that are basically generated as a result of light excitation in presence of Ag2S Quantum Dots (QDs) and molecular imprinted polymer (MIPs). Motivation behind this work is to address the challenges related to environmental pollution causing by organic dyes. These toxins are known to cause diverse symptoms (e.g., skin irritation, eye infection, respiratory disorders, and even cancer) once exposed through ingestion and inhalation. Through incorporation of Ag2S QD into MIP,the purpose of this research is to enhance the selectivity, specificity and photocatalytic activity for dyes and that work holds a potential towards environmental remediation by developing a cost effective and sustainable method for controlling pollution in water.
Collapse
Affiliation(s)
- Azad Qayoom Malik
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Tabinda Jabeen
- Department of Structural Chemistry and Spectroscopy, Universitat Leipzig, 04103, Leipzig, Germany
| | - Prasad Eknath Lokhande
- Advanced Physics Laboratory, Department of Physics, Savitribai Phule Pune University, Pune, India
| | - Deepak Kumar
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Shikha Awasthi
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur, 303007, Rajasthan, India.
| | - Sarvesh Kumar Pandey
- Department of Chemistry, Maulana Azad National Institute of Technology Bhopal, Bhopal, 462003, Madhya Pradesh, India.
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam; Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Faisal Abnisa
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| |
Collapse
|
25
|
Meng X, Liu Z, Deng L, Yang Y, Zhu Y, Sun X, Hao Y, He Y, Fu J. Hydrogen Therapy Reverses Cancer-Associated Fibroblasts Phenotypes and Remodels Stromal Microenvironment to Stimulate Systematic Anti-Tumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401269. [PMID: 38757665 PMCID: PMC11267370 DOI: 10.1002/advs.202401269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/02/2024] [Indexed: 05/18/2024]
Abstract
Tumor microenvironment (TME) plays an important role in the tumor progression. Among TME components, cancer-associated fibroblasts (CAFs) show multiple tumor-promoting effects and can induce tumor immune evasion and drug-resistance. Regulating CAFs can be a potential strategy to augment systemic anti-tumor immunity. Here, the study observes that hydrogen treatment can alleviate intracellular reactive oxygen species of CAFs and reshape CAFs' tumor-promoting and immune-suppressive phenotypes. Accordingly, a controllable and TME-responsive hydrogen therapy based on a CaCO3 nanoparticles-coated magnesium system (Mg-CaCO3) is developed. The hydrogen therapy by Mg-CaCO3 can not only directly kill tumor cells, but also inhibit pro-tumor and immune suppressive factors in CAFs, and thus augment immune activities of CD4+ T cells. As implanted in situ, Mg-CaCO3 can significantly suppress tumor growth, turn the "cold" primary tumor into "hot", and stimulate systematic anti-tumor immunity, which is confirmed by the bilateral tumor transplantation models of "cold tumor" (4T1 cells) and "hot tumor" (MC38 cells). This hydrogen therapy system reverses immune suppressive phenotypes of CAFs, thus providing a systematic anti-tumor immune stimulating strategy by remodeling tumor stromal microenvironment.
Collapse
Affiliation(s)
- Xiaoyan Meng
- Department of Oral Maxillofacial & Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- College of StomatologyNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Jiao Tong UniversityShanghai200011P. R. China
| | - Zhonglong Liu
- Department of Oral Maxillofacial & Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- College of StomatologyNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Jiao Tong UniversityShanghai200011P. R. China
| | - Liang Deng
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Clinical and Translational Research Center for 3D Printing TechnologyShanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized MedicineShanghai200011P. R. China
| | - Yangzi Yang
- Department of Orthopedic SurgerySpine CenterChangzheng HospitalNavy Medical UniversityNo. 415 Fengyang RoadShanghai200003P. R. China
| | - Yingchun Zhu
- Key Laboratory of Inorganic Coating MaterialsShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Xiaoying Sun
- College of SciencesShanghai UniversityShanghai200444P. R. China
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Clinical and Translational Research Center for 3D Printing TechnologyShanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized MedicineShanghai200011P. R. China
| | - Yue He
- Department of Oral Maxillofacial & Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- College of StomatologyNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Jiao Tong UniversityShanghai200011P. R. China
| | - Jingke Fu
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Clinical and Translational Research Center for 3D Printing TechnologyShanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized MedicineShanghai200011P. R. China
| |
Collapse
|
26
|
Jin Z, Jiang L, He Q. Critical learning from industrial catalysis for nanocatalytic medicine. Nat Commun 2024; 15:3857. [PMID: 38719843 PMCID: PMC11079063 DOI: 10.1038/s41467-024-48319-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Systematical and critical learning from industrial catalysis will bring inspiration for emerging nanocatalytic medicine, but the relevant knowledge is quite limited so far. In this review, we briefly summarize representative catalytic reactions and corresponding catalysts in industry, and then distinguish the similarities and differences in catalytic reactions between industrial and medical applications in support of critical learning, deep understanding, and rational designing of appropriate catalysts and catalytic reactions for various medical applications. Finally, we summarize/outlook the present and potential translation from industrial catalysis to nanocatalytic medicine. This review is expected to display a clear picture of nanocatalytic medicine evolution.
Collapse
Affiliation(s)
- Zhaokui Jin
- Medical Center on Aging, Ruijin Hospital; Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510182, China
| | - Lingdong Jiang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Qianjun He
- Medical Center on Aging, Ruijin Hospital; Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
27
|
Moslehi MH, Eslami M, Ghadirian M, Nateq K, Ramavandi B, Nasseh N. Photocatalytic decomposition of metronidazole by zinc hexaferrite coated with bismuth oxyiodide magnetic nanocomposite: Advanced modelling and optimization with artificial neural network. CHEMOSPHERE 2024; 356:141770. [PMID: 38554866 DOI: 10.1016/j.chemosphere.2024.141770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/10/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
The objective of the present study was to employ a green synthesis method to produce a sustainable ZnFe12O19/BiOI nanocomposite and evaluate its efficacy in the photocatalytic degradation of metronidazole (MNZ) from aqueous media. An artificial neural network (ANN) model was developed to predict the performance of the photocatalytic degradation process using experimental data. More importantly, sensitivity analysis was conducted to explore the relationship between MNZ degradation and various experimental parameters. The elimination of MNZ was assessed under different operational parameters, including pH, contaminant concentration, nanocomposite dosage, and retention time. The outcomes exhibited high a desirability performance of the ANN model with a coefficient correlation (R2) of 0.99. Under optimized circumstances, the MNZ elimination efficiency, as well as the reduction in chemical oxygen demand (COD) and total organic carbon (TOC), reached 92.71%, 70.23%, and 55.08%, respectively. The catalyst showed the ability to be regenerated 8 times with only a slight decrease in its photocatalytic activity. Furthermore, the experimental data obtained demonstrated a good agreement with the predictions of the ANN model. As a result, this study fabricated the ZnFe12O19/BiOI nanocomposite, which gave potential implication value in the effective decontamination of pharmaceutical compounds.
Collapse
Affiliation(s)
| | - Mostafa Eslami
- Mechanical Engineering Department, University of Tehran, Iran
| | | | - Kasra Nateq
- Department of Chemical Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Negin Nasseh
- Department of Health Education and Promotion, School of Health, Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
28
|
Dash P, Panda PK, Su C, Lin YC, Sakthivel R, Chen SL, Chung RJ. Near-infrared-driven upconversion nanoparticles with photocatalysts through water-splitting towards cancer treatment. J Mater Chem B 2024; 12:3881-3907. [PMID: 38572601 DOI: 10.1039/d3tb01066j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Water splitting is promising, especially for energy and environmental applications; however, there are limited studies on the link between water splitting and cancer treatment. Upconversion nanoparticles (UCNPs) can be used to convert near-infrared (NIR) light to ultraviolet (UV) or visible (Vis) light and have great potential for biomedical applications because of their profound penetration ability, theranostic approaches, low self-fluorescence background, reduced damage to biological tissue, and low toxicity. UCNPs with photocatalytic materials can enhance the photocatalytic activities that generate a shorter wavelength to increase the tissue penetration depth in the biological microenvironment under NIR light irradiation. Moreover, UCNPs with a photosensitizer can absorb NIR light and convert it into UV/vis light and emit upconverted photons, which excite the photoinitiator to create H2, O2, and/or OH˙ via water splitting processes when exposed to NIR irradiation. Therefore, combining UCNPs with intensified photocatalytic and photoinitiator materials may be a promising therapeutic approach for cancer treatment. This review provides a novel strategy for explaining the principles and mechanisms of UCNPs and NIR-driven UCNPs with photocatalytic materials through water splitting to achieve therapeutic outcomes for clinical applications. Moreover, the challenges and future perspectives of UCNP-based photocatalytic materials for water splitting for cancer treatment are discussed in this review.
Collapse
Affiliation(s)
- Pranjyan Dash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
| | - Pradeep Kumar Panda
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City 32003, Taiwan
| | - Chaochin Su
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- ZhongSun Co., LTD, New Taipei City 220031, Taiwan
| | - Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
| | - Sung-Lung Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| |
Collapse
|
29
|
Yuan M, Yang L, Yang Z, Ma Z, Ma J, Liu Z, Ma P, Cheng Z, Maleki A, Lin J. Fabrication of Interface Engineered S-Scheme Heterojunction Nanocatalyst for Ultrasound-Triggered Sustainable Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308546. [PMID: 38342609 PMCID: PMC11022741 DOI: 10.1002/advs.202308546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/28/2023] [Indexed: 02/13/2024]
Abstract
In order to establish a set of perfect heterojunction designs and characterization schemes, step-scheme (S-scheme) BiOBr@Bi2S3 nanoheterojunctions that enable the charge separation and expand the scope of catalytic reactions, aiming to promote the development and improvement of heterojunction engineering is developed. In this kind of heterojunction system, the Fermi levels mediate the formation of the internal electric field at the interface and guide the recombination of the weak redox carriers, while the strong redox carriers are retained. Thus, these high-energy electrons and holes are able to catalyze a variety of substrates in the tumor microenvironment, such as the reduction of oxygen and carbon dioxide to superoxide radicals and carbon monoxide (CO), and the oxidation of H2O to hydroxyl radicals, thus achieving sonodynamic therapy and CO combined therapy. Mechanistically, the generated reactive oxygen species and CO damage DNA and inhibit cancer cell energy levels, respectively, to synergistically induce tumor cell apoptosis. This study provides new insights into the realization of high efficiency and low toxicity in catalytic therapy from a unique perspective of materials design. It is anticipated that this catalytic therapeutic method will garner significant interest in the sonocatalytic nanomedicine field.
Collapse
Affiliation(s)
- Meng Yuan
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Ling Yang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Zhuang Yang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Zhizi Ma
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Jie Ma
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Zhendong Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Ziyong Cheng
- Key Laboratory of Superlight Materials and Surface TechnologyMinistry of EducationCollege of Materials Science and Chemical EngineeringHarbin Engineering UniversityHarbin150001China
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)and Department of Pharmaceutical Nanotechnology (School of pharmacy)Zanjan University of Medical SciencesZanjan4513956184Iran
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| |
Collapse
|
30
|
Wu J, Zheng X, Lin W, Chen L, Wu ZS. Persistent Targeting DNA Nanocarrier Made of 3D Structural Unit Assembled from Only One Basic Multi-Palindromic Oligonucleotide for Precise Gene Cancer Therapy. Adv Healthc Mater 2024; 13:e2303865. [PMID: 38289018 DOI: 10.1002/adhm.202303865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/19/2024] [Indexed: 02/13/2024]
Abstract
Construction of a simple, reconfigurable, and stimuli-responsive DNA nanocarrier remains a technical challenge. In this contribution, by designing three palindromic fragments, a simplest four-sticky end-contained 3D structural unit (PS-unit) made of two same DNA components is proposed. Via regulating the rotation angle of central longitudinal axis of PS-unit, the oriented assembly of one-component spherical architecture is accomplished with high efficiency. Introduction of an aptamer and sticky tail warehouse into one component creates a size-change-reversible targeted siRNA delivery nanovehicle. Volume swelling of 20 nm allows one carrier to load 1987 siPLK1s. Once entering cancer cells and responding to glutathione (GSH) stimuli, siPLK1s are almost 100% released and original size of nanovehicle is restored, inhibiting the expression of PLK1 protein and substantially suppressing tumor growth (superior to commercial transfection agents) in tumor-bearing mice without systemic toxicity.
Collapse
Affiliation(s)
- Jingting Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoqi Zheng
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Wenqing Lin
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Linhuan Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
31
|
Wu X, Zhou Z, Li K, Liu S. Nanomaterials-Induced Redox Imbalance: Challenged and Opportunities for Nanomaterials in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308632. [PMID: 38380505 PMCID: PMC11040387 DOI: 10.1002/advs.202308632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Cancer cells typically display redox imbalance compared with normal cells due to increased metabolic rate, accumulated mitochondrial dysfunction, elevated cell signaling, and accelerated peroxisomal activities. This redox imbalance may regulate gene expression, alter protein stability, and modulate existing cellular programs, resulting in inefficient treatment modalities. Therapeutic strategies targeting intra- or extracellular redox states of cancer cells at varying state of progression may trigger programmed cell death if exceeded a certain threshold, enabling therapeutic selectivity and overcoming cancer resistance to radiotherapy and chemotherapy. Nanotechnology provides new opportunities for modulating redox state in cancer cells due to their excellent designability and high reactivity. Various nanomaterials are widely researched to enhance highly reactive substances (free radicals) production, disrupt the endogenous antioxidant defense systems, or both. Here, the physiological features of redox imbalance in cancer cells are described and the challenges in modulating redox state in cancer cells are illustrated. Then, nanomaterials that regulate redox imbalance are classified and elaborated upon based on their ability to target redox regulations. Finally, the future perspectives in this field are proposed. It is hoped this review provides guidance for the design of nanomaterials-based approaches involving modulating intra- or extracellular redox states for cancer therapy, especially for cancers resistant to radiotherapy or chemotherapy, etc.
Collapse
Affiliation(s)
- Xumeng Wu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
| | - Ziqi Zhou
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Kai Li
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Shaoqin Liu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| |
Collapse
|
32
|
Li M, Jiang H, Hu P, Shi J. Nanocatalytic Anti-Tumor Immune Regulation. Angew Chem Int Ed Engl 2024; 63:e202316606. [PMID: 38212843 DOI: 10.1002/anie.202316606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/30/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Immunotherapy has brought a new dawn for human being to defeat cancer. Although existing immunotherapy regimens (CAR-T, etc.) have made breakthroughs in the treatments of hematological cancer and few solid tumors such as melanoma, the therapeutic efficacy on most solid tumors is still far from being satisfactory. In recent years, the researches on tumor immunotherapy based on nanocatalytic materials are under rapid development, and significant progresses have been made. Nanocatalytic medicine has been demonstrated to be capable of overcoming the limitations of current clinicnal treatments by using toxic chemodrugs, and exhibits highly attractive advantages over traditional therapies, such as the enhanced and sustained therapeutic efficacy based on the durable catalytic activity, remarkably reduced harmful side-effects without using traditional toxic chemodrugs, and so on. Most recently, nanocatalytic medicine has been introduced in the immune-regulation for disease treatments, especially, in the immunoactivation for tumor therapies. This article presents the most recent progresses in immune-response activations by nanocatalytic medicine-initiated chemical reactions for tumor immunotherapy, and elucidates the mechanism of nanocatalytic medicines in regulating anti-tumor immunity. By reviewing the current research progress in the emerging field, this review will further highlight the great potential and broad prospects of nanocatalysis-based anti-tumor immune-therapeutics.
Collapse
Affiliation(s)
- Mingyuan Li
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P R. China
| | - Han Jiang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P R. China
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine, Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, P. R. China
| | - Jianlin Shi
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P R. China
| |
Collapse
|
33
|
Tang Y, Li Y, Li B, Song W, Qi G, Tian J, Huang W, Fan Q, Liu B. Oxygen-independent organic photosensitizer with ultralow-power NIR photoexcitation for tumor-specific photodynamic therapy. Nat Commun 2024; 15:2530. [PMID: 38514624 PMCID: PMC10957938 DOI: 10.1038/s41467-024-46768-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment but has limitations due to its dependence on oxygen and high-power-density photoexcitation. Here, we report polymer-based organic photosensitizers (PSs) through rational PS skeleton design and precise side-chain engineering to generate •O2- and •OH under oxygen-free conditions using ultralow-power 808 nm photoexcitation for tumor-specific photodynamic ablation. The designed organic PS skeletons can generate electron-hole pairs to sensitize H2O into •O2- and •OH under oxygen-free conditions with 808 nm photoexcitation, achieving NIR-photoexcited and oxygen-independent •O2- and •OH production. Further, compared with commonly used alkyl side chains, glycol oligomer as the PS side chain mitigates electron-hole recombination and offers more H2O molecules around the electron-hole pairs generated from the hydrophobic PS skeletons, which can yield 4-fold stronger •O2- and •OH production, thus allowing an ultralow-power photoexcitation to yield high PDT effect. Finally, the feasibility of developing activatable PSs for tumor-specific photodynamic therapy in female mice is further demonstrated under 808 nm irradiation with an ultralow-power of 15 mW cm-2. The study not only provides further insights into the PDT mechanism but also offers a general design guideline to develop an oxygen-independent organic PS using ultralow-power NIR photoexcitation for tumor-specific PDT.
Collapse
Affiliation(s)
- Yufu Tang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Yuanyuan Li
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Bowen Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Wentao Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Guobin Qi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Jianwu Tian
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China.
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
34
|
Wu X, Li Y, Wen M, Xie Y, Zeng K, Liu YN, Chen W, Zhao Y. Nanocatalysts for modulating antitumor immunity: fabrication, mechanisms and applications. Chem Soc Rev 2024; 53:2643-2692. [PMID: 38314836 DOI: 10.1039/d3cs00673e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Immunotherapy harnesses the inherent immune system in the body to generate systemic antitumor immunity, offering a promising modality for defending against cancer. However, tumor immunosuppression and evasion seriously restrict the immune response rates in clinical settings. Catalytic nanomedicines can transform tumoral substances/metabolites into therapeutic products in situ, offering unique advantages in antitumor immunotherapy. Through catalytic reactions, both tumor eradication and immune regulation can be simultaneously achieved, favoring the development of systemic antitumor immunity. In recent years, with advancements in catalytic chemistry and nanotechnology, catalytic nanomedicines based on nanozymes, photocatalysts, sonocatalysts, Fenton catalysts, electrocatalysts, piezocatalysts, thermocatalysts and radiocatalysts have been rapidly developed with vast applications in cancer immunotherapy. This review provides an introduction to the fabrication of catalytic nanomedicines with an emphasis on their structures and engineering strategies. Furthermore, the catalytic substrates and state-of-the-art applications of nanocatalysts in cancer immunotherapy have also been outlined and discussed. The relationships between nanostructures and immune regulating performance of catalytic nanomedicines are highlighted to provide a deep understanding of their working mechanisms in the tumor microenvironment. Finally, the challenges and development trends are revealed, aiming to provide new insights for the future development of nanocatalysts in catalytic immunotherapy.
Collapse
Affiliation(s)
- Xianbo Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yuqing Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Mei Wen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yongting Xie
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Ke Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
35
|
Chen G, Gu L, Liu Y, Du J, Qi Q, Miao Q, Wu J, Miao Y, Li Y. Topology-regulated nanocatalysts for ferroptosis-mediated cancer phototherapy. J Colloid Interface Sci 2024; 656:320-331. [PMID: 37995402 DOI: 10.1016/j.jcis.2023.11.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/30/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
Ferroptosis-mediated tumor treatment is constrained by the absence of single-component, activatable multifunctional inducers. Given this, a topological synthesis strategy is employed to develop an efficient bismuth-based semiconductor nano-photocatalyst (Bi2O3:S) for tumor ferroptosis therapy. Photo-excited electrons can participate in the reduction reaction to produce harmful reactive oxygen species (ROS) when exposed to near-infrared light. Meanwhile, photo-excited holes can contribute to the oxidation reaction to utilize extra glutathione (GSH) in tumors. In the acidic tumor microenvironment, bismuth ions generated from Bi2O3:S may further cooperate with GSH to amplify oxidative stress damage and achieve biodegradation. Both promote ferroptosis by downregulating glutathione peroxidase 4 (GPX4) expression. Besides, sulfur doping optimizes its near-infrared light-induced photothermal conversion efficiency, benefiting its therapeutic effect. Thus, bismuth ions and holes synergistically drive photo-activable ferroptosis in this nanoplatform, opening up new avenues for tumor therapy.
Collapse
Affiliation(s)
- Guobo Chen
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Liping Gu
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yongtian Liu
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Du
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qingwen Qi
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qing Miao
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Jingxiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
36
|
Yao S, Wu Q, Wang S, Zhao Y, Wang Z, Hu Q, Li L, Liu H. Self-Driven Electric Field Control of Orbital Electrons in AuPd Alloy Nanoparticles for Cancer Catalytic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307087. [PMID: 37802973 DOI: 10.1002/smll.202307087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/14/2023] [Indexed: 10/08/2023]
Abstract
The free radical generation efficiency of nanozymes in cancer therapy is crucial, but current methods fall short. Alloy nanoparticles (ANs) hold promise for improving catalytic performance due to their inherent electronic effect, but there are limited ways to modulate this effect. Here, a self-driven electric field (E) system utilizing triboelectric nanogenerator (TENG) and AuPd ANs with glucose oxidase (GOx)-like, catalase (CAT)-like, and peroxidase (POD)-like activities is presented to enhance the treatment of 4T1 breast cancer in mice. The E stimulation from TENG enhances the orbital electrons of AuPd ANs, resulting in increased CAT-like, GOx-like, and POD-like activities. Meanwhile, the catalytic cascade reaction of AuPd ANs is further amplified after catalyzing the production of H2 O2 from the GOx-like activities. This leads to 89.5% tumor inhibition after treatment. The self-driven E strategy offers a new way to enhance electronic effects and improve cascade catalytic therapeutic performance of AuPd ANs in cancer therapy.
Collapse
Affiliation(s)
- Shuncheng Yao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Qingyuan Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shaobo Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Yunchao Zhao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Zhuo Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Quanhong Hu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
37
|
Yang C, Zhang J, Chang M, Tan J, Yuan M, Bian Y, Liu B, Liu Z, Wang M, Ding B, Ma P, Lin J. NIR-Activatable Heterostructured Nanoadjuvant CoP/NiCoP Executing Lactate Metabolism Interventions for Boosted Photocatalytic Hydrogen Therapy and Photoimmunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308774. [PMID: 37917791 DOI: 10.1002/adma.202308774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/01/2023] [Indexed: 11/04/2023]
Abstract
Near-infrared (NIR) laser-induced photoimmunotherapy has aroused great interest due to its intrinsic noninvasiveness and spatiotemporal precision, while immune evasion evoked by lactic acid (LA) accumulation severely limits its clinical outcomes. Although several metabolic interventions have been devoted to ameliorate immunosuppression, intracellular residual LA still remains a potential energy source for oncocyte proliferation. Herein, an immunomodulatory nanoadjuvant based on a yolk-shell CoP/NiCoP (CNCP) heterostructure loaded with the monocarboxylate transporter 4 inhibitor fluvastatin sodium (Flu) is constructed to concurrently relieve immunosuppression and elicit robust antitumor immunity. Under NIR irradiation, CNCP heterojunctions exhibit superior photothermal performance and photocatalytic production of reactive oxygen species and hydrogen. The continuous heat then facilitates Flu release to restrain LA exudation from tumor cells, whereas cumulative LA can be depleted as a hole scavenger to improve photocatalytic efficiency. Subsequently, potentiated photocatalytic therapy can not only initiate systematic immunoreaction, but also provoke severe mitochondrial dysfunction and disrupt the energy supply for heat shock protein synthesis, in turn realizing mild photothermal therapy. Consequently, LA metabolic remodeling endows an intensive cascade treatment with an optimal safety profile to effectually suppress tumor proliferation and metastasis, which offers a new paradigm for the development of metabolism-regulated immunotherapy.
Collapse
Affiliation(s)
- Chunzheng Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiashi Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Mengyu Chang
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jia Tan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yulong Bian
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Bin Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhendong Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Meifang Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
38
|
Babu B, Stoltz SA, Mittal A, Pawar S, Kolanthai E, Coathup M, Seal S. Inorganic Nanoparticles as Radiosensitizers for Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2873. [PMID: 37947718 PMCID: PMC10647410 DOI: 10.3390/nano13212873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Nanotechnology has expanded what can be achieved in our approach to cancer treatment. The ability to produce and engineer functional nanoparticle formulations to elicit higher incidences of tumor cell radiolysis has resulted in substantial improvements in cancer cell eradication while also permitting multi-modal biomedical functionalities. These radiosensitive nanomaterials utilize material characteristics, such as radio-blocking/absorbing high-Z atomic number elements, to mediate localized effects from therapeutic irradiation. These materials thereby allow subsequent scattered or emitted radiation to produce direct (e.g., damage to genetic materials) or indirect (e.g., protein oxidation, reactive oxygen species formation) damage to tumor cells. Using nanomaterials that activate under certain physiologic conditions, such as the tumor microenvironment, can selectively target tumor cells. These characteristics, combined with biological interactions that can target the tumor environment, allow for localized radio-sensitization while mitigating damage to healthy cells. This review explores the various nanomaterial formulations utilized in cancer radiosensitivity research. Emphasis on inorganic nanomaterials showcases the specific material characteristics that enable higher incidences of radiation while ensuring localized cancer targeting based on tumor microenvironment activation. The aim of this review is to guide future research in cancer radiosensitization using nanomaterial formulations and to detail common approaches to its treatment, as well as their relations to commonly implemented radiotherapy techniques.
Collapse
Affiliation(s)
- Balaashwin Babu
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
| | - Samantha Archer Stoltz
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Agastya Mittal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Shreya Pawar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
| | - Melanie Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA;
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Nanoscience Technology Center, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
39
|
Ding H, Ren F, Liu P, Feng Y, Ma X, Shen Z, Shi Q, Xu M, Li W, Chen H. Cu 2+ -Anchored Carbon Nano-Photocatalysts for Visible Water Splitting to Boost Hydrogen Cuproptosis. Angew Chem Int Ed Engl 2023; 62:e202311549. [PMID: 37715322 DOI: 10.1002/anie.202311549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/17/2023]
Abstract
Both hydrogen (H2 ) and copper ions (Cu+ ) can be used as anti-cancer treatments. However, the continuous generation of H2 molecules and Cu+ in specific sites of tumors is challenging. Here we anchored Cu2+ on carbon photocatalyst (Cu@CDCN) to allow the continuous generation of H2 and hydrogen peroxide (H2 O2 ) in tumors using the two-electron process of visible water splitting. The photocatalytic process also generated redox-active Cu-carbon centers. Meanwhile, the Cu2+ residues reacted with H2 O2 (the obstacle to the photocatalytic process) to accelerate the two-electron process of water splitting and cuprous ion (Cu+ ) generation, in which the Cu2+ residue promoted a pro-oxidant effect with glutathione through metal-reducing actions. Both H2 and Cu+ induced mitochondrial dysfunction and intracellular redox homeostasis destruction, which enabled hydrogen therapy and cuproptosis to inhibit cancer cell growth and suppress tumor growth. Our research is the first attempt to integrate hydrogen therapy and cuproptosis using metal-enhanced visible solar water splitting in nanomedicine, which may provide a safe and effective cancer treatment.
Collapse
Affiliation(s)
- Haizhen Ding
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Fangfang Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Peifei Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Yushuo Feng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Xiaoqian Ma
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Zhiyang Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Qianqian Shi
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Mengjiao Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Wenle Li
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Hongmin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
40
|
Nayak V, Patra S, Singh KR, Ganguly B, Kumar DN, Panda D, Maurya GK, Singh J, Majhi S, Sharma R, Pandey SS, Singh RP, Kerry RG. Advancement in precision diagnosis and therapeutic for triple-negative breast cancer: Harnessing diagnostic potential of CRISPR-cas & engineered CAR T-cells mediated therapeutics. ENVIRONMENTAL RESEARCH 2023; 235:116573. [PMID: 37437865 DOI: 10.1016/j.envres.2023.116573] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Cancer is characterized by uncontrolled cell growth, disrupted regulatory pathways, and the accumulation of genetic mutations. These mutations across different types of cancer lead to disruptions in signaling pathways and alterations in protein expression related to cellular growth and proliferation. This review highlights the AKT signaling cascade and the retinoblastoma protein (pRb) regulating cascade as promising for novel nanotheranostic interventions. Through synergizing state-of-the-art gene editing tools like the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas system with nanomaterials and targeting AKT, there is potential to enhance cancer diagnostics significantly. Furthermore, the integration of modified CAR-T cells into multifunctional nanodelivery systems offers a promising approach for targeted cancer inhibition, including the eradication of cancer stem cells (CSCs). Within the context of highly aggressive and metastatic Triple-negative Breast Cancer (TNBC), this review specifically focuses on devising innovative nanotheranostics. For both pre-clinical and post-clinical TNBC detection, the utilization of the CRISPR-Cas system, guided by RNA (gRNA) and coupled with a fluorescent reporter specifically designed to detect TNBC's mutated sequence, could be promising. Additionally, a cutting-edge approach involving the engineering of TNBC-specific iCAR and syn-Notch CAR T-cells, combined with the co-delivery of a hybrid polymeric nano-liposome encapsulating a conditionally replicative adenoviral vector (CRAdV) against CSCs, could present an intriguing intervention strategy. This review thus paves the way for exciting advancements in the field of nanotheranostics for the treatment of TNBC and beyond.
Collapse
Affiliation(s)
- Vinayak Nayak
- Indian Council of Agricultural Research- National Institute on Foot and Mouth Disease- International Center for Foot and Mouth Disease, Bhubaneswar, Odisha, India
| | - Sushmita Patra
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai 410210, India
| | - Kshitij Rb Singh
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Japan.
| | - Bristy Ganguly
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Das Nishant Kumar
- PG Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | - Deepak Panda
- PG Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | - Ganesh Kumar Maurya
- Zoology Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sanatan Majhi
- PG Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shyam S Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Japan.
| | - Ravindra Pratap Singh
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India.
| | - Rout George Kerry
- PG Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India.
| |
Collapse
|
41
|
Cao S, Long Y, Xiao S, Deng Y, Ma L, Adeli M, Qiu L, Cheng C, Zhao C. Reactive oxygen nanobiocatalysts: activity-mechanism disclosures, catalytic center evolutions, and changing states. Chem Soc Rev 2023; 52:6838-6881. [PMID: 37705437 DOI: 10.1039/d3cs00087g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Benefiting from low costs, structural diversities, tunable catalytic activities, feasible modifications, and high stability compared to the natural enzymes, reactive oxygen nanobiocatalysts (RONBCs) have become dominant materials in catalyzing and mediating reactive oxygen species (ROS) for diverse biomedical and biological applications. Decoding the catalytic mechanism and structure-reactivity relationship of RONBCs is critical to guide their future developments. Here, this timely review comprehensively summarizes the recent breakthroughs and future trends in creating and decoding RONBCs. First, the fundamental classification, activity, detection method, and reaction mechanism for biocatalytic ROS generation and elimination have been systematically disclosed. Then, the merits, modulation strategies, structure evolutions, and state-of-art characterisation techniques for designing RONBCs have been briefly outlined. Thereafter, we thoroughly discuss different RONBCs based on the reported major material species, including metal compounds, carbon nanostructures, and organic networks. In particular, we offer particular insights into the coordination microenvironments, bond interactions, reaction pathways, and performance comparisons to disclose the structure-reactivity relationships and mechanisms. In the end, the future challenge and perspectives for RONBCs are also carefully summarised. We envision that this review will provide a comprehensive understanding and guidance for designing ROS-catalytic materials and stimulate the wide utilisation of RONBCs in diverse biomedical and biological applications.
Collapse
Affiliation(s)
- Sujiao Cao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yanping Long
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Sutong Xiao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Yuting Deng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Lang Ma
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Mohsen Adeli
- Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Li Qiu
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Changsheng Zhao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
42
|
Zhang T, Pan Y, Suo M, Lyu M, Lam JWY, Jin Z, Ning S, Tang BZ. Photothermal-Triggered Sulfur Oxide Gas Therapy Augments Type I Photodynamic Therapy for Potentiating Cancer Stem Cell Ablation and Inhibiting Radioresistant Tumor Recurrence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304042. [PMID: 37559173 PMCID: PMC10582409 DOI: 10.1002/advs.202304042] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Indexed: 08/11/2023]
Abstract
Despite advances in cancer therapy, the existence of self-renewing cancer stem cells (CSC) can lead to tumor recurrence and radiation resistance, resulting in treatment failure and high mortality in patients. To address this issue, a near-infrared (NIR) laser-induced synergistic therapeutic platform has been developed by incorporating aggregation-induced emission (AIE)-active phototheranostic agents and sulfur dioxide (SO2 ) prodrug into a biocompatible hydrogel, namely TBH, to suppress malignant CSC growth. Outstanding hydroxyl radical (·OH) generation and photothermal effect of the AIE phototheranostic agent actualizes Type I photodynamic therapy (PDT) and photothermal therapy through 660 nm NIR laser irradiation. Meanwhile, a large amount of SO2 is released from the SO2 prodrug in thermo-sensitive TBH gel, which depletes upregulated glutathione in CSC and consequentially promotes ·OH generation for PDT enhancement. Thus, the resulting TBH hydrogel can diminish CSC under 660 nm laser irradiation and finally restrain tumor recurrence after radiotherapy (RT). In comparison, the tumor in the mice that were only treated with RT relapsed rapidly. These findings reveal a double-boosting ·OH generation protocol, and the synergistic combination of AIE-mediated PDT and gas therapy provides a novel strategy for inhibiting CSC growth and cancer recurrence after RT, which presents great potential for clinical treatment.
Collapse
Affiliation(s)
- Tianfu Zhang
- School of Biomedical EngineeringGuangzhou Medical UniversityGuangzhou510182China
- Department of Chemistrythe Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstructionand Guangdong‐Hong Kong‐Macro Joint Laboratory of Optoelectronic and Magnetic Functional MaterialsThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong999077China
| | - You Pan
- Guangxi Medical University Cancer HospitalNanning530000China
| | - Meng Suo
- School of Biomedical EngineeringGuangzhou Medical UniversityGuangzhou510182China
| | - Meng Lyu
- Department of Gastrointestinal Surgery & Department of GeriatricsShenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdong518020China
| | - Jacky Wing Yip Lam
- Department of Chemistrythe Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstructionand Guangdong‐Hong Kong‐Macro Joint Laboratory of Optoelectronic and Magnetic Functional MaterialsThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong999077China
| | - Zhaokui Jin
- School of Biomedical EngineeringGuangzhou Medical UniversityGuangzhou510182China
| | - Shipeng Ning
- Guangxi Medical University Cancer HospitalNanning530000China
| | - Ben Zhong Tang
- Department of Chemistrythe Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstructionand Guangdong‐Hong Kong‐Macro Joint Laboratory of Optoelectronic and Magnetic Functional MaterialsThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong999077China
- School of Science and EngineeringShenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong KongShenzhenGuangdong518172China
| |
Collapse
|
43
|
Wu A, Jiang L, Xia C, Xu Q, Zhou B, Jin Z, He Q, Guo J. Ultrasound-Driven Piezoelectrocatalytic Immunoactivation of Deep Tumor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303016. [PMID: 37587791 PMCID: PMC10558630 DOI: 10.1002/advs.202303016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/04/2023] [Indexed: 08/18/2023]
Abstract
Tumor heterogeneity makes routine drugs difficult to penetrate solid tumors, limiting their therapy efficacies. Based on high tissue penetrability of hydrogen molecules (H2 ) and ultrasound (US) and the immunomodulation effects of H2 and lactic acid (LA), this work proposes a novel strategy of US-driven piezoelectrocatalytic tumor immunoactivation for high-efficacy therapy of deep tumors by piezoelectrocatalytic hydrogen generation and LA deprivation. A kind of US-responsive piezoelectric SnS nanosheets (SSN) is developed to realize US-triggered local hydrogen production and simultaneous LA deprivation in deep tumors. The proof-of-concept experiments which are executed on an orthotopic liver cancer model have verified that intratumoral SSN-medicated piezoelectrocatalytically generated H2 liberates effector CD8+ T cells from the immunosuppression of tumor cells through down-regulating PD-L1 over-expression, and simultaneous LA deprivation activates CD8+ T cells by inhibiting regulatory T cells, efficiently co-activating tumor immunity and achieving a high outcome of liver tumor therapy with complete tumor eradication and 100% mice survival. The proposed strategy of US-driven piezoelectrocatalytic tumor immunoactivation opens a safe and efficient pathway for deep tumor therapy.
Collapse
Affiliation(s)
- Anbang Wu
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong UniversityShanghai200233China
- School of Biomedical EngineeringShenzhen University Medical SchoolShenzhenGuangdong518060China
| | - Lingdong Jiang
- School of Biomedical EngineeringShenzhen University Medical SchoolShenzhenGuangdong518060China
- College of PharmacyShenzhen Technology UniversityShenzhen518118China
| | - Chao Xia
- School of Biomedical EngineeringShenzhen University Medical SchoolShenzhenGuangdong518060China
| | - Qingqing Xu
- School of Biomedical EngineeringShenzhen University Medical SchoolShenzhenGuangdong518060China
| | - Bin Zhou
- School of Biomedical EngineeringShenzhen University Medical SchoolShenzhenGuangdong518060China
| | - Zhaokui Jin
- School of Biomedical EngineeringShenzhen University Medical SchoolShenzhenGuangdong518060China
| | - Qianjun He
- School of Biomedical EngineeringShenzhen University Medical SchoolShenzhenGuangdong518060China
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen ScienceSchool of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Jinxiao Guo
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong UniversityShanghai200233China
| |
Collapse
|
44
|
Zhang T, Cheng Q, Lei JH, Wang B, Chang Y, Liu Y, Xing G, Deng C, Tang Z, Qu S. Constructing Oxygen-Related Defects in Carbon Nanodots with Janus Optical Properties: Noninvasive NIR Fluorescent Imaging and Effective Photocatalytic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302705. [PMID: 37216626 DOI: 10.1002/adma.202302705] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Noninvasive fluorescence (FL) imaging and high-performance photocatalytic therapy (PCT) are opposing optical properties that are difficult to combine in a single material system. Herein, a facile approach to introducing oxygen-related defects in carbon dots (CDs) via post-oxidation with 2-iodoxybenzoic acid is reported, in which some nitrogen atoms are substituted by oxygen atoms. Unpaired electrons in these oxygen-related defects rearrange the electronic structure of the oxidized CDs (ox-CDs), resulting in an emerging near-infrared (NIR) absorption band. These defects not only contribute to enhanced NIR bandgap emission but also act as trappers for photoexcited electrons to promote efficient charge separation on the surface, leading to abundant photo-generated holes on the ox-CDs surface under visible-light irradiation. Under white LED torch irradiation, the photo-generated holes oxidize hydroxide to hydroxyl radicals in the acidification of the aqueous solution. In contrast, no hydroxyl radicals are detected in the ox-CDs aqueous solution under 730 nm laser irradiation, indicating noninvasive NIR FL imaging potential. Utilizing the Janus optical properties of the ox-CDs, the in vivo NIR FL imaging of sentinel lymph nodes around tumors and efficient photothermal enhanced tumor PCT are demonstrated.
Collapse
Affiliation(s)
- Tesen Zhang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999078, China
| | - Quansheng Cheng
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999078, China
| | - Josh Haipeng Lei
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MOE Frontier Science Centre for Precision Oncology, Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Bingzhe Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999078, China
| | - Yifu Chang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999078, China
| | - Yupeng Liu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999078, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999078, China
- MOE Frontier Science Centre for Precision Oncology, Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Chuxia Deng
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MOE Frontier Science Centre for Precision Oncology, Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999078, China
- MOE Frontier Science Centre for Precision Oncology, Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Songnan Qu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999078, China
- MOE Frontier Science Centre for Precision Oncology, Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, 999078, China
| |
Collapse
|
45
|
Jiang X, Yang M, Fang Y, Yang Z, Dai X, Gu P, Feng W, Chen Y. A Photo-Activated Thermoelectric Catalyst for Ferroptosis-/Pyroptosis-Boosted Tumor Nanotherapy. Adv Healthc Mater 2023; 12:e2300699. [PMID: 37086391 DOI: 10.1002/adhm.202300699] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) has gradually come into the limelight for oncological treatment due to its noninvasiveness, high specificity, and low side effects. However, upregulated heat-shock proteins (HSPs) and reactive oxygen species (ROS)-defensing system such as glutathione (GSH) or MutT homolog 1 (MTH1) protein in tumor microenvironment counteract the efficiency of single-modality therapy either PTT or PDT. Herein, the well-defined bismuth telluride nanoplates (Bi2 Te3 NPs) are engineered with a high-performance photo-thermo-electro-catalytic effect for tumor-synergistic treatment. Upon near-infrared light illumination, Bi2 Te3 NPs induce a significant temperature elevation for PTT, which effectively inhibits MTH1 expression. Especially, heating and cooling alteration caused temperature variations result in electron-hole separation for ROS generation, which not only damages HSPs to reduce the thermotolerance for enhance PTT, but also arouses tumor cell pyroptosis. Additionally, Bi2 Te3 NPs conspicuously reduce GSH, further improving ROS level and leading to decrease glutathione peroxidase 4 (GPX4) activity, which triggers tumor cell ferroptosis. Due to the photo-thermo-electro-catalytic synergistic therapy, Bi2 Te3 NPs are gifted with impressive tumor suppression on both ectopic and orthotopic ocular tumor models. This work highlights a high-performance multifunctional energy-conversion nanoplatform for reshaping tumor microenvironment to boost the tumor-therapeutic efficacy of phototherapy.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Muyue Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Ying Fang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhenyu Yang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
46
|
Song X, Huang H, Xia L, Jia W, Yang S, Wang C, Chen Y. Engineering 2D Multienzyme-Mimicking Pyroptosis Inducers for Ultrasound-Augmented Catalytic Tumor Nanotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301279. [PMID: 37350357 PMCID: PMC10460896 DOI: 10.1002/advs.202301279] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/17/2023] [Indexed: 06/24/2023]
Abstract
Overcoming apoptosis resistance is necessary to ensure an effective cancer treatment; however, it is currently very difficult to achieve. A desirable alternative for cancer treatment is the targeted activation of pyroptosis, a unique type of programmed cell death. However, the pyroptosis inducers that are efficient for cancer therapy are limited. This work reports the engineering of 2D NiCoOx nanosheets as inducers of the production of harmful reactive oxygen species (ROS), which promote intense cell pyroptosis, and that can be applied to ultrasound (US)-augmented catalytic tumor nanotherapy. The main therapeutic task is carried out by the 2D NiCoOx nanosheets, which have four multienzyme-mimicking activities: peroxidase- (POD), oxidase- (OXD), glutathione peroxidase- (GPx), and catalase- (CAT) mimicking activities. These activities induce the reversal of the hypoxic microenvironment, endogenous glutathione depletion, and a continuous ROS output. The ROS-induced pyroptosis process is carried out via the ROS-NLRP3-GSDMD pathway, and the exogenous US activation boosts the multienzyme-mimicking activities and favors the incremental ROS generation, thus inducing mitochondrial dysfunction. The anti-cancer experimental results support the dominance of NiCoOx nanosheet-induced pyroptosis. This work expands on the biomedical applications of engineering 2D materials for US-augmented catalytic breast cancer nanotherapy and deepens the understanding of the multienzyme activities of nanomaterials.
Collapse
Affiliation(s)
- Xinran Song
- School of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
| | - Hui Huang
- School of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
| | - Lili Xia
- School of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
| | - Wencong Jia
- School of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
| | - Shaoling Yang
- Department of Ultrasound MedicineShanghai Eighth People's HospitalShanghai200235P. R. China
| | - Chenglong Wang
- Department of Orthopedic SurgeryXinHua Hospital Affiliated with Shanghai Jiaotong University School of MedicineShanghai200082P. R. China
| | - Yu Chen
- School of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
| |
Collapse
|
47
|
Huang X, He Y, Zhang M, Lu Z, Zhang T, Wang B. GPP-TSAIII nanocomposite hydrogel-based photothermal ablation facilitates melanoma therapy. Expert Opin Drug Deliv 2023; 20:1277-1295. [PMID: 37039332 DOI: 10.1080/17425247.2023.2200997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/01/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Photothermal therapy (PTT) is a promising cancer treatment, but its application is limited by low photoconversion efficiency. In this study, we aimed to develop a novel graphene oxide (GO)-based nanocomposite hydrogel to improve the bioavailability of timosaponin AIII (TSAIII) while maximizing PTT efficacy and enhancing the antitumor effect. METHODS GO was modified via physical cross-linking with polyvinyl alcohol. The pore structure of the gel was adjusted by repeated freeze-thawing and the addition of polyethylene glycol 2000 to obtain a nanocomposite hydrogel (GPP). The GPP loaded with TSAIII constituted a GPP-TSAIII drug delivery system, and its efficacy was evaluated by in vitro cytotoxicity, apoptosis, migration, and uptake analyses, and in vivo antitumor studies. RESULTS The encapsulation rate of GPP-TSAIII was 66.36 ± 3.97%, with slower in vitro release and higher tumor cell uptake (6.4-fold) compared to TSAIII. GPP-TSAIII in combination with PTT showed better bioavailability and antitumor effects in vivo than did TSAIII, with a 1.9-fold higher tumor suppression rate than the TSAIII group. CONCLUSIONS GPP is a potential vehicle for delivery of TSAIII-like poor water-soluble anticancer drugs. The innovative PTT co-delivery system may serve as a safe and effective melanoma treatment platform for further anticancer translational purposes.
Collapse
Affiliation(s)
- Xing Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yihao He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenhui Lu
- Institute of Respiratory Disease, Long hua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
48
|
Shi J. Sonocatalytic hydrogen generation breaks the heart of super bacteria-a hydrogen solution to super bacteria? Natl Sci Rev 2023; 10:nwad101. [PMID: 37181089 PMCID: PMC10174718 DOI: 10.1093/nsr/nwad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
|
49
|
Zhu YX, You Y, Chen Z, Xu D, Yue W, Ma X, Jiang J, Wu W, Lin H, Shi J. Inorganic Nanosheet-Shielded Probiotics: A Self-Adaptable Oral Delivery System for Intestinal Disease Treatment. NANO LETTERS 2023; 23:4683-4692. [PMID: 36912868 DOI: 10.1021/acs.nanolett.3c00118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The oral delivery of probiotics is commonly adopted for intestinal disease treatments in clinical settings; however, the probiotics suffer from a strong acidic attack in the gastric area and the low-efficiency intestinal colonization of naked probiotics. Coating living probiotics with synthetic materials has proven effective in enabling the adaption of bacteria to gastrointestinal environments, which, unfortunately, may shield the probiotics from initiating therapeutic responses. In this study, we report a copolymer-modified two-dimensional H-silicene nanomaterial (termed SiH@TPGS-PEI) that can facilitate probiotics to adapt to diverse gastrointestinal microenvironments on-demand. Briefly, SiH@TPGS-PEI electrostatically coated on the surface of probiotic bacteria helps to resist erosive destruction in the acidic stomach and spontaneously degrades by reacting with water to generate hydrogen, an anti-inflammatory gas in response to the neutral/weakly alkaline intestinal environment, thus exposing the probiotic bacteria for colitis amelioration. This strategy may shed new light on the development of intelligent self-adaptive materials.
Collapse
Affiliation(s)
- Ya-Xuan Zhu
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Yanling You
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhixin Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Deliang Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenwen Yue
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Xinxin Ma
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P. R. China
| | - Junjie Jiang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Wencheng Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Han Lin
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Jianlin Shi
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
50
|
Tao G, Liu F, Jin Z, Liu B, Wang H, Li D, Tang W, Chen Y, He Q, Qin S. A strategy of local hydrogen capture and catalytic hydrogenation for enhanced therapy of chronic liver diseases. Theranostics 2023; 13:2455-2470. [PMID: 37215568 PMCID: PMC10196827 DOI: 10.7150/thno.80494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/08/2023] [Indexed: 05/24/2023] Open
Abstract
Background: Chronic liver diseases (CLD) frequently derive from hepatic steatosis, inflammation and fibrosis, and become a leading inducement of cirrhosis and hepatocarcinoma. Molecular hydrogen (H2) is an emerging wide-spectrum anti-inflammatory molecule which is able to improve hepatic inflammation and metabolic dysfunction, and holds obvious advantages in biosafety over traditional anti-CLD drugs, but existing H2 administration routes cannot realize the liver-targeted high-dose delivery of H2, severely limiting its anti-CLD efficacy. Method: In this work, a concept of local hydrogen capture and catalytic hydroxyl radical (·OH) hydrogenation is proposed for CLD treatment. The mild and moderate non-alcoholic steatohepatitis (NASH) model mice were intravenously injected with PdH nanoparticles firstly, and then daily inhaled 4% hydrogen gas for 3 h throughout the whole treatment period. After the end of treatment, glutathione (GSH) was intramuscularly injected every day to assist the Pd excretion. Results: In vitro and in vivo proof-of-concept experiments have confirmed that Pd nanoparticles can accumulate in liver in a targeted manner post intravenous injection, and play a dual role of hydrogen captor and ·OH filter to locally capture/store the liver-passing H2 during daily hydrogen gas inhalation and rapidly catalyze the ·OH hydrogenation into H2O. The proposed therapy significantly improves the outcomes of hydrogen therapy in the prevention and treatment of NASH by exhibiting a wide range of bioactivity including the regulation of lipid metabolism and anti-inflammation. Pd can be mostly eliminated after the end of treatment under the assistance of GSH. Conclusion: Our study verified a catalytic strategy of combining PdH nanoparticles and hydrogen inhalation, which exhibited enhanced anti-inflammatory effect for CLD treatment. The proposed catalytic strategy will open a new window to realize safe and efficient CLD treatment.
Collapse
Affiliation(s)
- Geru Tao
- Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province & Key Laboratory of Hydrogen Biomedical Research of Health Commission of Shandong Province, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271000, China
- Taishan Institute for Hydrogen Biomedical Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271000, China
| | - Feng Liu
- Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province & Key Laboratory of Hydrogen Biomedical Research of Health Commission of Shandong Province, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271000, China
- Taishan Institute for Hydrogen Biomedical Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271000, China
| | - Zhaokui Jin
- School of Biomedical Engineering, Guangzhou Medical University, Guangdong, 511495 China
| | - Boyan Liu
- Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province & Key Laboratory of Hydrogen Biomedical Research of Health Commission of Shandong Province, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271000, China
- Taishan Institute for Hydrogen Biomedical Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271000, China
| | - Hao Wang
- Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province & Key Laboratory of Hydrogen Biomedical Research of Health Commission of Shandong Province, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271000, China
- Taishan Institute for Hydrogen Biomedical Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271000, China
| | - Daosheng Li
- Pathology Department of Tai'an City Central Hospital, Tai'an 271016, China
| | - Wei Tang
- Key Laboratory of Human-Machine-Intelligence Synergic System, Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yuan Chen
- Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province & Key Laboratory of Hydrogen Biomedical Research of Health Commission of Shandong Province, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271000, China
- Taishan Institute for Hydrogen Biomedical Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271000, China
| | - Qianjun He
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shenzhen Research Institute, Shanghai Jiao Tong University, Shenzhen 518057, China
| | - Shucun Qin
- Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province & Key Laboratory of Hydrogen Biomedical Research of Health Commission of Shandong Province, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271000, China
- Taishan Institute for Hydrogen Biomedical Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271000, China
| |
Collapse
|