1
|
Yang W, Li W, Lei Y, He P, Wei G, Guo L. Functionalization of cellulose-based sponges: Design, modification, environmental applications, and sustainability analysis. Carbohydr Polym 2025; 348:122772. [PMID: 39562056 DOI: 10.1016/j.carbpol.2024.122772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 11/21/2024]
Abstract
The trend of economic globalization is accelerating, and as competition for resources intensifies within the international community, there is an urgent need to seek environmentally friendly renewable resources. Sponges, due to their excellent inherent properties, have significant potential for applications in various fields. While considerable attention has been given to the synthesis of inorganic and plastic/rubber-based sponges in recent years, research on cellulose-based sponges (CBSs) has been on the rise. This review provides an overview of recent advances related to CBSs, detailing their structure and properties, including structural design, functional modification, and applications. An extensive sustainability analysis comparing CBSs with inorganic and plastic/rubber sponges shows that CBSs offer superior sustainability. The review also explores the latest applications of CBSs in environmental science, such as catalysts, dye removal, oil-water separation, ion removal, and seawater evaporation. Overall, this review highlights the inherent advantages of CBSs and encourages the exploration of their broader application areas.
Collapse
Affiliation(s)
- Weiwei Yang
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Wanying Li
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Yu Lei
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Tang L, Zhang Y, Zhang H, Yang X, Wang J, Mao J, Wang L, Li Y. Glucose-Activated Janus Wound Dressing for Enhanced Management of Infected and Exudative Diabetic Wounds. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39695343 DOI: 10.1021/acsami.4c18298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Diabetic wounds, often multifactorial and affecting multiple organs, pose substantial challenges to patient well-being, drawing significant interest in biomedical engineering. The demanding wound microenvironment, marked by heightened glucose levels, local exudate, and bacterial infections, emphasizes the pressing demand for advanced wound dressings to meet escalating clinical needs. Herein, a Janus wound dressing with an integration of an antimicrobial hydrophobic nanofiber layer and a 3D hydrophilic sponge was designed and prepared to manage and utilize wound exudate. The hydrophobic layer skillfully combined electrospun poly(ε-caprolactone) (PCL) nanofiber membranes (ENMs) and metal-organic frameworks (MOFs) with peroxidase-like properties by solvent etching, and glucose oxidase (GOx) was grafted through ligand interaction. GOx acts to consume glucose while modulating pH, thus suitable pH and self-supplied H2O2 were able to activate the catalytic activity of MOFs to generate •OH. Additionally, hydrophilic 3D sponges are constructed using gas foaming technology, which are tactfully combined with hydrophobic ENMs to form a Janus structure, which can transport exudate through the antimicrobial layer to the sponge layer, while sufficient glucose contact with GOx enhances the antimicrobial properties of the designed Janus wound dressing. Experimental results demonstrate the effectiveness of the cascade effect of GOx@PCL/MOF ENMs, ultimately releasing reactive oxygen species and exhibiting robust antibacterial properties. In vivo animal experiments reveal the ability of the Janus wound dressing to mitigate methicillin-resistant Staphylococcus aureus (MRSA) infections in the early stages, thereby expediting the wound healing process. In vivo animal study, the Janus wound dressing achieved a healing rate of 54% on day 3. Our findings underscore the substantial potential of the Janus wound dressings in promoting the healing of chronic diabetic wounds.
Collapse
Affiliation(s)
- Liqin Tang
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Yingjie Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Huiru Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Xiao Yang
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Jun Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jifu Mao
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Yan Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
3
|
Fan Y, Liu C, Wang F, Sun Z, Kong D, Yao J, Chu M, Zhang G, Wang Y. Mesoporous Atomically Dispersed Fe Catalysts with Enhanced Nonradical Pathways in Fenton-like Reactions: The Role of SiO 2 Templates. Inorg Chem 2024; 63:23960-23969. [PMID: 39636049 DOI: 10.1021/acs.inorgchem.4c04369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Single-atom catalysts (SACs) are extensively applied in Fenton-like catalytic processes to treat water pollutants. However, the role of the porous structures of SACs supports in catalytic reactions is often overlooked despite its significant contribution to mass diffusion during the reaction. Herein, we adopted a hard-template-assisted approach to fabricate Fe-based SACs (Fe-SACs) featuring a mesoporous architecture. The SiO2 template not only adjusts the pore architecture of the support but also facilitates the conversion of active sites from nanoscale sites to single-atom sites, thereby improving the selectivity for pollutant degradation via nonradical pathways (singlet oxygen and electron transfer mechanism). The experimental results demonstrated that using large-sized SiO2 (∼200 nm) as a template leads to metal aggregation on its surface, forming Fe nanoparticles (Fe-NPs). Fe-NPs exhibit narrow pore structures that prevent peroxymonosulfate (PMS) from being activated, resulting in a slow degradation of pollutants primarily through radical pathways. In contrast, employing small-sized SiO2 (∼10 nm) as a hard template not only produces supports with mesoporous structures but also promotes the building of single-atom active sites. The prepared Fe-SACs effectively activated PMS through nonradical pathways and removed contaminants at a rate k of 0.89 min-1, 33 times faster than Fe-NPs. This template-assisted method sheds light on the synthesis of effective Fenton-like catalysts with porous structures that enhance the efficient breakdown of contaminants in wastewater.
Collapse
Affiliation(s)
- Yafei Fan
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Caiyun Liu
- School of Economic Crime Investigation, Shandong Police College, Jinan 250200, China
| | - Feifei Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zhaoli Sun
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dezhi Kong
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jianfei Yao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Menghui Chu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | | |
Collapse
|
4
|
Jia X, Kanbaiguli M, Zhang B, Huang Y, Peydayesh M, Huang Q. Anisotropic Chitosan-nanocellulose/Zeolite imidazolate frameworks-8 aerogel for sustainable dye removal. J Colloid Interface Sci 2024; 676:298-309. [PMID: 39032416 DOI: 10.1016/j.jcis.2024.07.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Assembling microscopic metal-organic frameworks into macroscopic polymeric scaffolds to develop highly renewable materials has been a promising yet challenging area of research. Herein, chitosan (CS) blended with nano-cellulose (NC) was unidirectionally transformed into an aerogel with oriented macropores and then biomineralized with zeolite imidazolate frameworks-8 (ZIF-8) to form a hierarchical structured chitosan-nanocellulose/zeolite imidazolate frameworks-8 (CS-NC-ZIF-8) hybrid aerogel. Incorporating ZIF-8 significantly increases the versatility and mechanical strength with a Young's modulus of 14.18 MPa of the CS-NC aerogel. The incorporation of ZIF-8 into the aerogel not only enhances its adsorption capacity for methylene blue, rhodamine B, acid fuchsin, and methyl orange, but also facilitates the generation of electrons from water that can be transferred to degrade > 90 % of malachite green within 90 min in each catalytic cycle, and this capability was maintained for at least 10 consecutive cycles. Remarkably, the hybrid aerogel was highly renewable after the adsorption of cationic dyes and catalytic removal of malachite green. With its facile production process, high removal efficiency, affordable and green nature, and excellent regeneration feasibility, the CS-NC-ZIF-8 aerogel stands as a promising solution for addressing challenges associated with dye-contaminated water treatment.
Collapse
Affiliation(s)
- Xiangze Jia
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Muhefuli Kanbaiguli
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Yanyan Huang
- College of Food Science and Engineering, Foshan University, Foshan 528225, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, 528225, China
| | - Mohammad Peydayesh
- ETH Zurich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, 8092 Zurich, Switzerland.
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
5
|
Cinfrignini P, Boschetti A, Ghini G, Tenti A, Plazanet M, Martella D, Torre R. A Gold Rush: Designing Hydrogels for Selective Recovery in Wastewater Containing Mixed Metal Ions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68368-68378. [PMID: 39582197 DOI: 10.1021/acsami.4c15657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The use of synthetic hydrogels in wastewater treatment represents a promising and scalable approach to achieving clean water. By modulation of their chemical structure, hydrogels can effectively remove a wide range of toxic compounds, including emerging organic pollutants and heavy metals. For the latter, recovery is essential for both environmental protection and metal recycling. The increasing demand for gold, a nonrenewable metal widely used in many technologies, calls for methods for its selective recovery from complex metal cation solutions. This study explores easy-to-make poly(acrylamide-co-acrylic acid) hydrogels as adsorbents for gold recovery from industrial wastewater containing other precious metals. Such material can reduce gold cations into elemental nanoparticles and microparticles in acid environments at room temperature. This process offers a potential route for metal recovery that is not based on weak interaction or complex formation. Batch tests demonstrate a good adsorption capacity (up to 124 mg/g) and efficient separation from other precious metal ions (Ru, Ir, Pd, Pt, and Rh) in a solution that closely mimics realistic industrial waste conditions. These hydrogels would enable gold recovery also from other complex metal solutions, including those derived from the dissolution of electronic wastes.
Collapse
Affiliation(s)
- Pamela Cinfrignini
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone, 1, 50019 Sesto Fiorentino, Italy
| | - Alice Boschetti
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, 10135 Torino, Italy
| | - Giacomo Ghini
- Cabro S.p.A, Via Setteponti 141, 52100 Arezzo, Italy
| | - Alice Tenti
- Cabro S.p.A, Via Setteponti 141, 52100 Arezzo, Italy
| | - Marie Plazanet
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier, 140 Rue de la Physique and CNRS, 38000 Grenoble, France
| | - Daniele Martella
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Renato Torre
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone, 1, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Feng L, Leng T, Qiu Y, Wang C, Ren LF, Sun H, Tang L, Shao J, Wu M. Weak interaction strategy enables enhanced selectivity and reusability of arginine-functionalized imprinted aerogel for phosphate adsorption. BIORESOURCE TECHNOLOGY 2024; 418:131960. [PMID: 39667628 DOI: 10.1016/j.biortech.2024.131960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Efficient phosphate adsorption from eutrophic waters remains challenging, fundamentally due to inherent trade-off in common adsorbents: high-binding energy between adsorbent and phosphate compromises reusability while low-binding energy suppresses selectivity. Herein, an innovative arginine-functionalized imprinted aerogel (AFIA-1:4) was fabricated by click chemistry and imprinting modification for overcoming this trade-off through synergistic weak interactions. Results shown that AFIA-1:4 exhibited high adsorption capacity (Qmax of 40.65 mg/g, 30.44 % higher than phoslock), rapid kinetics (15 min), and broad pH applicability (3-11) at 2 mg P/L solution. Moreover, its selectivity coefficient ranged from 10 to 90 even with 15- to 125-fold excess interfering anions, surpassing common adsorbents. After 10 cycles, AFIA-1:4 still maintained 98.15 % regeneration rate with 99.14 % phosphate desorption. Characterizations and calculations confirmed core roles of multiple hydrogen bonds and shape screening in maintaining selectivity and reusability. These findings advanced development of next-generation of phosphate adsorbents, which contributed to sustainable prevention and management of eutrophication.
Collapse
Affiliation(s)
- Lidong Feng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, PR China
| | - Tianxiao Leng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, PR China
| | - Yangbo Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, PR China
| | - Chao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, PR China
| | - Long-Fei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, PR China.
| | - Haoyu Sun
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, Shanghai, PR China
| | - Liang Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, Shanghai, PR China
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, PR China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Shanghai Jiao Tong University Yunnan Dali Research Institute, Dali 671006, Yunnan, PR China.
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, Shanghai, PR China; School of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, PR China
| |
Collapse
|
7
|
Yang X, Zhou Y, Hu J, Zheng Q, Zhao Y, Lv G, Liao L. Clay minerals and clay-based materials for heavy metals pollution control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176193. [PMID: 39278488 DOI: 10.1016/j.scitotenv.2024.176193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Heavy metal contamination is a huge hazard to the environment and human health, and research into removing heavy metals from their primary sources (industrial and agricultural wastes) has increased significantly. Adsorption has received interest due to its distinct benefits over other treatment approaches. The distinctive qualities of clay minerals, such as their high specific surface area, strong cation exchange capacity, and varied structures, make them particularly ideal for use in the manufacture of adsorbents. The customizable structure and performance of clay minerals allow for unprecedented diversity in adsorbent creation, opening up new possibilities for the development of high-efficiency and functional adsorption technologies. In this review, various approaches for developing optimal adsorbents from raw materials are presented. Then, the correlation between functionalization and performance is investigated, focusing on the effects of structural features and surface properties on adsorption performance. The research progress on the synthesis of adsorbents using clay minerals and other functional materials is systematically reported. Finally, the challenges and opportunities in designing and utilizing innovative clay mineral adsorbents are discussed.
Collapse
Affiliation(s)
- Xiaotong Yang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yi Zhou
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
| | - Jingjing Hu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Qinwen Zheng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yunpu Zhao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Guocheng Lv
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Libing Liao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
8
|
Wang L, Solin N. Valorization of Protein Materials Through Mechanochemistry and Self-Assembly. Chempluschem 2024; 89:e202400512. [PMID: 39239834 DOI: 10.1002/cplu.202400512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024]
Abstract
The concept of combining mixing of solids by milling (a type of mechanochemistry) with aqueous self-assembly provides interesting possibilities for energy efficient production of advanced nanomaterials. Many proteins are outstanding building blocks for self-assembly, a prominent example being the conversion of proteins into protein nanofibrils (PNFs) - a structure related to amyloid fibrils. PNFs have attractive mechanical properties and have a tendency to form ordered materials. They are accordingly of interest as materials for bioplastics and potentially also for more high-tech applications. In this concept article we highlight our effort on valorization of such proteins with hydrophobic organic compounds such an organic dyes and drug molecules, by developing scalable methodology combining mechanochemistry and self-assembly. Compared to more established methodology, mechanochemical methodology is a valuable complement as it allows potential scalable production of hybrids between e. g. proteins and highly hydrophobic compounds - a class of hybrid material that is difficult to access by other means. This may allow for development of sustainable processes for fabrication of advanced protein-based materials derivable from renewable source materials.
Collapse
Affiliation(s)
- Lei Wang
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, 525000, Maoming, China
| | - Niclas Solin
- Electronic and Photonic Materials, Department of Physics, Chemistry, and Biology, Linköping University, SE-58183, Linköping, Sweden
| |
Collapse
|
9
|
An D, Li L. Effects of molecular weight of hydrolysate on the formation of soy protein isolate hydrolysate nanofibrils: Kinetics, structures, and interactions. Food Chem 2024; 456:139687. [PMID: 38889496 DOI: 10.1016/j.foodchem.2024.139687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
Enzymatic hydrolysis prior to protein fibrillation was an effective way to facilitate the formation of nanofibrils. This study aimed to investigate the effects of molecular weights of hydrolysate on the kinetics, structures, and interactions of soy protein isolate (SPI) hydrolysate nanofibrils. The results showed that hydrolysate with molecular weight > 10 kDa showed a distinct fibrillation kinetics curve and a higher apparent rate constant (27.72) during fibrillation, indicating their vital role in determining the fibrillation. Hydrolysate with molecular weight > 10 kDa could form nanofibrils with higher radius gyration (17.11 ± 0.77 Å) due to stronger hydrophobic interaction, showing a stronger fibrillation ability. Hydrolysate with molecular weight within 5-10 kDa exhibited enhanced π-π stacking interactions during fibrillation, thereby promoting the extension of nanofibrils, and contributing to the formation of more nanofibrils. Hydrolysate with molecular weight < 5 kDa tended to randomly aggregate during fibrillation, resulting in a significant loss of cross-β structures in nanofibrils. Therefore, hydrolysate with different molecular weights exhibited synergistic effects during fibrillation.
Collapse
Affiliation(s)
- Di An
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
10
|
Ni R, Zhang L, Ma J, Zhang J, Xu X, Shi H, Deng Q, Hu W, Hu J, Ke Q, Zhao Y. Versatile Keratin Fibrous Adsorbents with Rapid-Response Shape-Memory Features for Sustainable Water Remediation. NANO LETTERS 2024. [PMID: 39365030 DOI: 10.1021/acs.nanolett.4c03276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Biodegradable shape-memory polymers derived from protein substrates are attractive alternatives with strong potential for valorization, although their reconstruction remains a challenge due to the poor processability and inherent instability. Herein, based on Maillard reaction and immobilization, a feather keratin fibrous adsorbent featuring dual-response shape-memory is fabricated by co-spinning with pullulan, heating, and air-assisted spraying ZIF-8-NH2. Maillard reaction between the amino group of keratin and the carbonyl group of pullulan improves the mechanics and thermal performance of the adsorbent. ZIF-8-NH2 immobilization endows the adsorbent with outstanding multipollutant removal efficiency (over 90%), water stability, and photocatalytic degradation and sterilization performance. Furthermore, the adsorbent can be folded to 1/12 of its original size to save space for transportation and allow for rapid on-demand unfolding (12 s) upon exposure to water and ultraviolet irradiation to facilitate the adsorption and photocatalytic activity with a larger water contact area. This research provides new insight for further applications of keratin-based materials with rapid shape-memory features.
Collapse
Affiliation(s)
- Ruiyan Ni
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Le Zhang
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jiajia Ma
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jiawen Zhang
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Xiaoyun Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R, 999077, China
| | - Huan Shi
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Hunan 410208, China
| | - Qiong Deng
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Wenfeng Hu
- School of Textiles and Fashion Central Laboratory, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R, 999077, China
| | - Qinfei Ke
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yi Zhao
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| |
Collapse
|
11
|
Chen M, Yang T, Lei Q, Gan X, Mao S, Zhao H. Constructing Tandem Fenton-like Reaction Systems Based on Structure Adaption to Boost Water Contaminant Mineralization Efficiency. Angew Chem Int Ed Engl 2024:e202416921. [PMID: 39347914 DOI: 10.1002/anie.202416921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/01/2024]
Abstract
Mineralization of emerging contaminants by using advanced oxidation processes (AOPs) is a desirable option to ensure water safety, but still challenged by the excessive chemical and/or energy input. Here, we conceptually proposed the tandem reaction system (TRS) of different reactive oxygen species (ROS) based on structure adaption of target contaminants. To construct a model TRS, we first realized highly selective generation of three classical ROS (1O2, HO⋅ and SO4⋅-) by peroxymonosulfate activation in an electrochemical Fenton-like system, where three replaceable Fe-centered cathodes were rationally designed as electronic mediator. The 1O2+SO4⋅--TRS exhibited nearly 100 % mineralization of sulfamethoxazole (SMX), whereas only 34.2 %, 56.2 % and 60.8 % for each of the single 1O2/HO⋅/SO4⋅--AOP systems. Mechanism exploration of SMX degradation in TRS evidenced that the initial reaction with 1O2 selectively destructed the sulfonamide bridge of SMX to form p-aminobenzenesulfonic acid, which will be vulnerable to sequent SO4⋅- attack to facilitate mineralization. Successful extendibility of 1O2+SO4⋅--TRS to other sulfonamide antibiotics and 1O2+HO⋅-TRS to phenolic and arylcarboxylic compounds, as well as the demonstration of 1O2+SO4⋅--TRS in treatment of three actual pharmaceutical wastewaters strongly support that TRS is a powerful and sustainable strategy to enhance the mineralization of emerging contaminants in water.
Collapse
Affiliation(s)
- Min Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Tian Yang
- Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qiuxia Lei
- Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xue Gan
- Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Shun Mao
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Hongying Zhao
- Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
12
|
Nakahata M, Sumiya A, Ikemoto Y, Nakamura T, Dudin A, Schwieger J, Yamamoto A, Sakai S, Kaufmann S, Tanaka M. Hyperconfined bio-inspired Polymers in Integrative Flow-Through Systems for Highly Selective Removal of Heavy Metal Ions. Nat Commun 2024; 15:5824. [PMID: 38992009 PMCID: PMC11239941 DOI: 10.1038/s41467-024-49869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Access to clean water, hygiene, and sanitation is becoming an increasingly pressing global demand, particularly owing to rapid population growth and urbanization. Phytoremediation utilizes a highly conserved phytochelatin in plants, which captures hazardous heavy metal ions from aquatic environments and sequesters them in vacuoles. Herein, we report the design of phytochelatin-inspired copolymers containing carboxylate and thiolate moieties. Titration calorimetry results indicate that the coexistence of both moieties is essential for the excellent Cd2+ ion-capturing capacity of the copolymers. The obtained dissociation constant, KD ~ 1 nM for Cd2+ ion, is four-to-five orders of magnitude higher than that for peptides mimicking the sequence of endogenous phytochelatin. Furthermore, infrared and nuclear magnetic resonance spectroscopy results unravel the mechanism underlying complex formation at the molecular level. The grafting of 0.1 g bio-inspired copolymers onto silica microparticles and cellulose membranes helps concentrate the copolymer-coated microparticles in ≈3 mL volume to remove Cd2+ ions from 0.3 L of water within 1 h to the drinking water level (<0.03 µM). The obtained results suggest that hyperconfinement of bio-inspired polymers in flow-through systems can be applied for the highly selective removal of harmful contaminants from the environmental water.
Collapse
Affiliation(s)
- Masaki Nakahata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka, 560-0043, Japan.
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan.
| | - Ai Sumiya
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Yuka Ikemoto
- Japan Synchrotron Radiation Research Institute (JASRI) SPring-8, Hyogo, 679-5198, Japan
| | - Takashi Nakamura
- Institute of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Ibaraki, 305-8571, Japan
| | - Anastasia Dudin
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, 69120, Germany
| | - Julius Schwieger
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, 69120, Germany
| | - Akihisa Yamamoto
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan
- Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Saitama, 351-0198, Japan
| | - Shinji Sakai
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Stefan Kaufmann
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, 69120, Germany
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, 69120, Germany.
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
13
|
Kim HT, Philip L, McDonagh A, Johir M, Ren J, Shon HK, Tijing LD. Recent Advances in High-Rate Solar-Driven Interfacial Evaporation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401322. [PMID: 38704683 PMCID: PMC11234448 DOI: 10.1002/advs.202401322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Recent advances in solar-driven interfacial evaporation (SDIE) have led to high evaporation rates that open promising avenues for practical utilization in freshwater production and industrial application for pollutant and nutrient concentration, and resource recovery. Breakthroughs in overcoming the theoretical limitation of 2D interfacial evaporation have allowed for developing systems with high evaporation rates. This study presents a comprehensive review of various evaporator designs that have achieved pure evaporation rates beyond 4 kg m-2 h-1, including structural and material designs allowing for rapid evaporation, passive 3D designs, and systems coupled with alternative energy sources of wind and joule heating. The operational mechanisms for each design are outlined together with discussion on the current benefits and areas for improvement. The overarching challenges encountered by SDIE concerning the feasibility of direct integration into contemporary practical settings are assessed, and issues relating to sustaining elevated evaporation rates under diverse environmental conditions are addressed.
Collapse
Affiliation(s)
- Hyeon Tae Kim
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, NSW, 2007, Australia
- ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Ligy Philip
- Environmental Engineering Division, Department of Civil Engineering, IIT Madras, Chennai, 600 036, India
| | - Andrew McDonagh
- School of Mathematical and Physical Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Md Johir
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Jiawei Ren
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, NSW, 2007, Australia
- ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Leonard D Tijing
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, NSW, 2007, Australia
- ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, NSW, 2007, Australia
| |
Collapse
|
14
|
Zhang N, Xu Y, He T, Zhou M, Yu Y, Wang P, Wang Q. Rapid aggregation of amyloid-like protein enhanced by mTGase to prepare functional wool fabrics for efficient and sustainable remove heavy metals from wastewater. Int J Biol Macromol 2024; 273:133066. [PMID: 38866294 DOI: 10.1016/j.ijbiomac.2024.133066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
To counteract the increasing severity of water pollution and purify water sources, wastewater treatment materials are essential. In particular, it is necessary to improve the bonding strength between the adsorption material and the substrate in a long-term humid environment, and resist the invasion of microorganisms to prolong the service life. In this study, an amyloid-like aggregation method of lysozyme catalyzed by microbial transglutaminase (mTGase). Lysozyme self-assembles into an amyloid-like phase-transited lysozyme (PTL) in the presence of a reducing agent. Simultaneously, mTGase catalyzes acyl transfer reactions within lysozyme molecules or between lysozyme and keratin molecules, and driving PTL assembly on the wool fiber (TG-PTL@wool). This process enhances the grafting amount and fastness of PTL on the wool. Moreover, the tensile strength of wool fabric increased to 523 N. TG-PTL@wool achieves a 97.32 % removal rate of heavy metals, maintaining a removal rate of over 95 % after 5 cycles. TG-PTL@wool has excellent antibacterial property (99 %), and it remains above 90 % after 50 times of circulating washing. This study proved that mTGase can enhance the amyloid aggregation of lysozyme and enhance the bonding strength between PTL coating and substrate. Moreover, TG-PTL@wool provides a sustainable, efficient and cleaner solution for removing heavy metals from water.
Collapse
Affiliation(s)
- Ning Zhang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Yujie Xu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Tong He
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
15
|
Wang Y, Villalobos LF, Liang L, Zhu B, Li J, Chen C, Bai Y, Zhang C, Dong L, An QF, Meng H, Zhao Y, Elimelech M. Scalable weaving of resilient membranes with on-demand superwettability for high-performance nanoemulsion separations. SCIENCE ADVANCES 2024; 10:eadn3289. [PMID: 38924410 PMCID: PMC11204282 DOI: 10.1126/sciadv.adn3289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
This study leverages the ancient craft of weaving to prepare membranes that can effectively treat oil/water mixtures, specifically challenging nanoemulsions. Drawing inspiration from the core-shell architecture of spider silk, we have engineered fibers, the fundamental building blocks for weaving membranes, that feature a mechanically robust core for tight weaving, coupled with a CO2-responsive shell that allows for on-demand wettability adjustments. Tightly weaving these fibers produces membranes with ideal pores, achieving over 99.6% separation efficiency for nanoemulsions with droplets as small as 20 nm. They offer high flux rates, on-demand self-cleaning, and can switch between sieving oil and water nanodroplets through simple CO2/N2 stimulation. Moreover, weaving can produce sufficiently large membranes (4800 cm2) to assemble a module that exhibits long-term stability and performance, surpassing state-of-the-art technologies for nanoemulsion separations, thus making industrial application a practical reality.
Collapse
Affiliation(s)
- Yangyang Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Luis Francisco Villalobos
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Lijun Liang
- College of Automation, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Bo Zhu
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Li
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Chen Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Yunxiang Bai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Chunfang Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Liangliang Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Quan-Fu An
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Hong Meng
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resources Institution, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yue Zhao
- Département de Chimie, Université de Sherbrooke; Sherbrooke, QC J1K 2R1, Canada
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
16
|
Barbinta-Patrascu ME, Bita B, Negut I. From Nature to Technology: Exploring the Potential of Plant-Based Materials and Modified Plants in Biomimetics, Bionics, and Green Innovations. Biomimetics (Basel) 2024; 9:390. [PMID: 39056831 PMCID: PMC11274542 DOI: 10.3390/biomimetics9070390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
This review explores the extensive applications of plants in areas of biomimetics and bioinspiration, highlighting their role in developing sustainable solutions across various fields such as medicine, materials science, and environmental technology. Plants not only serve essential ecological functions but also provide a rich source of inspiration for innovations in green nanotechnology, biomedicine, and architecture. In the past decade, the focus has shifted towards utilizing plant-based and vegetal waste materials in creating eco-friendly and cost-effective materials with remarkable properties. These materials are employed in making advancements in drug delivery, environmental remediation, and the production of renewable energy. Specifically, the review discusses the use of (nano)bionic plants capable of detecting explosives and environmental contaminants, underscoring their potential in improving quality of life and even in lifesaving applications. The work also refers to the architectural inspirations drawn from the plant world to develop novel design concepts that are both functional and aesthetic. It elaborates on how engineered plants and vegetal waste have been transformed into value-added materials through innovative applications, especially highlighting their roles in wastewater treatment and as electronic components. Moreover, the integration of plants in the synthesis of biocompatible materials for medical applications such as tissue engineering scaffolds and artificial muscles demonstrates their versatility and capacity to replace more traditional synthetic materials, aligning with global sustainability goals. This paper provides a comprehensive overview of the current and potential uses of living plants in technological advancements, advocating for a deeper exploration of vegetal materials to address pressing environmental and technological challenges.
Collapse
Affiliation(s)
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 077125 Magurele, Romania;
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| |
Collapse
|
17
|
Meng Y, Liu YQ, Wang C, Si Y, Wang YJ, Xia WQ, Liu T, Cao X, Guo ZY, Chen JJ, Li WW. Nanoconfinement steers nonradical pathway transition in single atom fenton-like catalysis for improving oxidant utilization. Nat Commun 2024; 15:5314. [PMID: 38906879 PMCID: PMC11192908 DOI: 10.1038/s41467-024-49605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs. The surface electronic structure of cobalt site is altered by confining it within the nanopores of mesostructured silica particles, which triggers a fundamental transition from singlet oxygen to electron transfer pathway for 4-chlorophenol oxidation. The changed pathway and accelerated interfacial mass transfer render the nanoconfined system up to 34.7-fold higher pollutant degradation rate and drastically raised peroxymonosulfate utilization efficiency (from 61.8% to 96.6%) relative to the unconfined control. It also demonstrates superior reactivity for the degradation of other electron-rich phenolic compounds, good environment robustness, and high stability for treating real lake water. Our findings deepen the knowledge of nanoconfined catalysis and may inspire innovations in low-carbon water purification technologies and other heterogeneous catalytic applications.
Collapse
Affiliation(s)
- Yan Meng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China
| | - Yu-Qin Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science & Technology of China, Hefei, China
| | - Yang Si
- Kunming Institute of Physics, Kunming, China
| | - Yun-Jie Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China
| | - Wen-Qi Xia
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China
| | - Tian Liu
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China
| | - Xu Cao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Zhi-Yan Guo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China.
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China.
| | - Jie-Jie Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China.
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China.
| |
Collapse
|
18
|
Evangelista NN, Micheletto MC, Kava E, Mendes LFS, Costa-Filho AJ. Biomolecular condensates of Chlorocatechol 1,2-Dioxygenase as prototypes of enzymatic microreactors for the degradation of polycyclic aromatic hydrocarbons. Int J Biol Macromol 2024; 270:132294. [PMID: 38735602 DOI: 10.1016/j.ijbiomac.2024.132294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are molecules with two or more fused aromatic rings that occur naturally in the environment due to incomplete combustion of organic substances. However, the increased demand for fossil fuels in recent years has increased anthropogenic activity, contributing to the environmental concentration of PAHs. The enzyme chlorocatechol 1,2-dioxygenase from Pseudomonas putida (Pp 1,2-CCD) is responsible for the breakdown of the aromatic ring of catechol, making it a potential player in bioremediation strategies. Pp 1,2-CCD can tolerate a broader range of substrates, including halogenated compounds, than other dioxygenases. Here, we report the construction of a chimera protein able to form biomolecular condensates with potential application in bioremediation. The chimera protein was built by conjugating Pp 1,2-CCD to low complex domains (LCDs) derived from the DEAD-box protein Dhh1. We showed that the chimera could undergo liquid-liquid phase separation (LLPS), forming a protein-rich liquid droplet under different conditions (variable protein and PEG8000 concentrations and pH values), in which the protein maintained its structure and main biophysical properties. The condensates were active against 4-chlorocatechol, showing that the chimera droplets preserved the enzymatic activity of the native protein. Therefore, it constitutes a prototype of a microreactor with potential use in bioremediation.
Collapse
Affiliation(s)
- Nathan N Evangelista
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Mariana C Micheletto
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Emanuel Kava
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis F S Mendes
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; Grupo de Biofísica Molecular Sérgio Mascarenhas, Departamento de Física e Ciência Interdisciplinar, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
19
|
Wang Y, Liang X, Andrikopoulos N, Tang H, He F, Yin X, Li Y, Ding F, Peng G, Mortimer M, Ke PC. Remediation of Metal Oxide Nanotoxicity with a Functional Amyloid. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310314. [PMID: 38582521 PMCID: PMC11187920 DOI: 10.1002/advs.202310314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/21/2024] [Indexed: 04/08/2024]
Abstract
Understanding the environmental health and safety of nanomaterials (NanoEHS) is essential for the sustained development of nanotechnology. Although extensive research over the past two decades has elucidated the phenomena, mechanisms, and implications of nanomaterials in cellular and organismal models, the active remediation of the adverse biological and environmental effects of nanomaterials remains largely unexplored. Inspired by recent developments in functional amyloids for biomedical and environmental engineering, this work shows their new utility as metallothionein mimics in the strategically important area of NanoEHS. Specifically, metal ions released from CuO and ZnO nanoparticles are sequestered through cysteine coordination and electrostatic interactions with beta-lactoglobulin (bLg) amyloid, as revealed by inductively coupled plasma mass spectrometry and molecular dynamics simulations. The toxicity of the metal oxide nanoparticles is subsequently mitigated by functional amyloids, as validated by cell viability and apoptosis assays in vitro and murine survival and biomarker assays in vivo. As bLg amyloid fibrils can be readily produced from whey in large quantities at a low cost, the study offers a crucial strategy for remediating the biological and environmental footprints of transition metal oxide nanomaterials.
Collapse
Affiliation(s)
- Yue Wang
- School of Biomedical Sciences and EngineeringGuangzhou International CampusSouth China University of TechnologyGuangzhou510006China
- Nanomedicine CenterGreat Bay Area National Institute for Nanotechnology Innovation136 Kaiyuan AvenueGuangzhou510700China
| | - Xiufang Liang
- School of Biomedical Sciences and EngineeringGuangzhou International CampusSouth China University of TechnologyGuangzhou510006China
- Nanomedicine CenterGreat Bay Area National Institute for Nanotechnology Innovation136 Kaiyuan AvenueGuangzhou510700China
| | - Nicholas Andrikopoulos
- Nanomedicine CenterGreat Bay Area National Institute for Nanotechnology Innovation136 Kaiyuan AvenueGuangzhou510700China
- Drug DeliveryDisposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Huayuan Tang
- Department of Engineering MechanicsHohai UniversityNanjing211100China
- Department of Physics and AstronomyClemson UniversityClemsonSC29634USA
| | - Fei He
- College of Environmental Science and EngineeringKey Laboratory of Yangtze River Water EnvironmentTongji University1239 Siping RoadShanghai200092China
| | - Xiang Yin
- College of Environmental Science and EngineeringKey Laboratory of Yangtze River Water EnvironmentTongji University1239 Siping RoadShanghai200092China
| | - Yuhuan Li
- Drug DeliveryDisposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Liver Cancer InstituteZhongshan HospitalKey Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationFudan UniversityShanghai200032China
| | - Feng Ding
- Department of Physics and AstronomyClemson UniversityClemsonSC29634USA
| | - Guotao Peng
- College of Environmental Science and EngineeringKey Laboratory of Yangtze River Water EnvironmentTongji University1239 Siping RoadShanghai200092China
| | - Monika Mortimer
- Laboratory of Environmental ToxicologyNational Institute of Chemical Physics and BiophysicsAkadeemia tee 23Tallinn12618Estonia
| | - Pu Chun Ke
- Nanomedicine CenterGreat Bay Area National Institute for Nanotechnology Innovation136 Kaiyuan AvenueGuangzhou510700China
- Drug DeliveryDisposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| |
Collapse
|
20
|
Chen J, Shi H, Gong M, Chen H, Teng L, Xu P, Wang Y, Hu Z, Zeng Z. β-Lactoglobulin-based aerogels: Facile preparation and sustainable removal of organic contaminants from water. Int J Biol Macromol 2024; 272:132856. [PMID: 38834118 DOI: 10.1016/j.ijbiomac.2024.132856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Economically and efficiently removing organic pollutants from water is still a challenge in wastewater treatment. Utilizing environmentally friendly and readily available protein-based natural polymers to develop aerogels with effective removal performance and sustainable regeneration capability is a promising strategy for adsorbent design. Here, a robust and cost-effective method using inexpensive β-lactoglobulin (BLG) as raw material was proposed to fabricate BLG-based aerogels. Firstly, photocurable BLG-based polymers were synthesized by grafting glycidyl methacrylate. Then, a cross-linking reaction, including photo-crosslinking and salting-out treatment, was applied to prepared BLG-based hydrogels. Finally, the BLG-based aerogels with high porosity and ultralight weight were obtained after freeze-drying. The outcomes revealed that the biocompatible BLG-based aerogels exhibited effective removal performance for a variety of organic pollutants under perfectly quiescent conditions, and could be regenerated and reused many times via a simple and rapid process of acid washing and centrifugation. Overall, this work not only demonstrates that BLG-based aerogels are promising adsorbents for water purification but also provides a potential way for the sustainable utilization of BLG.
Collapse
Affiliation(s)
- Jin Chen
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, PR China; Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, PR China.
| | - Huanhuan Shi
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, PR China
| | - Min Gong
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, PR China
| | - Hong Chen
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, PR China
| | - Lijing Teng
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, PR China
| | - Pu Xu
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, PR China
| | - Yun Wang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, PR China.
| | - Zuquan Hu
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, PR China; Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, PR China.
| | - Zhu Zeng
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, PR China; Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, PR China.
| |
Collapse
|
21
|
Peydayesh M, Mezzenga R. The circular economy of water across the six continents. Chem Soc Rev 2024; 53:4333-4348. [PMID: 38597321 DOI: 10.1039/d3cs00812f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Water is our most valuable and precious resource, yet it is only available in a limited amount. Sustainable use of water can therefore only operate in a circular way; nonetheless, still today depletion of water resources proceeds at an accelerated pace. Here, we quantitatively assess the water circular economy and the status of water management across 132 countries distributed over six continents by introducing the water circular economy index, WCEI, based on the three pillars of water circular economy, i.e., decreasing, optimising, and retaining. This index relies on eight indicators such as water stress, tap water price, water use efficiency, the degree of water resource management, proportion of safely treated wastewater, population with access to safe drinking water, drinking water quality, and surface water changes in hydrological basins. It allows ranking 132 countries, and most importantly to identify criticalities and bottlenecks in the sustainable use of water resources across the six continents, pointing at possible directions and actions towards a fully circular economy of water.
Collapse
Affiliation(s)
- Mohammad Peydayesh
- ETH Zurich, Department of Health Sciences and Technology, 8092 Zurich, Switzerland.
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Sciences and Technology, 8092 Zurich, Switzerland.
- ETH Zurich, Department of Materials, 8093 Zurich, Switzerland
| |
Collapse
|
22
|
Peña-Díaz S, Olsen WP, Wang H, Otzen DE. Functional Amyloids: The Biomaterials of Tomorrow? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312823. [PMID: 38308110 DOI: 10.1002/adma.202312823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Indexed: 02/04/2024]
Abstract
Functional amyloid (FAs), particularly the bacterial proteins CsgA and FapC, have many useful properties as biomaterials: high stability, efficient, and controllable formation of a single type of amyloid, easy availability as extracellular material in bacterial biofilm and flexible engineering to introduce new properties. CsgA in particular has already demonstrated its worth in hydrogels for stable gastrointestinal colonization and regenerative tissue engineering, cell-specific drug release, water-purification filters, and different biosensors. It also holds promise as catalytic amyloid; existing weak and unspecific activity can undoubtedly be improved by targeted engineering and benefit from the repetitive display of active sites on a surface. Unfortunately, FapC remains largely unexplored and no application is described so far. Since FapC shares many common features with CsgA, this opens the window to its development as a functional scaffold. The multiple imperfect repeats in CsgA and FapC form a platform to introduce novel properties, e.g., in connecting linkers of variable lengths. While exploitation of this potential is still at an early stage, particularly for FapC, a thorough understanding of their molecular properties will pave the way for multifunctional fibrils which can contribute toward solving many different societal challenges, ranging from CO2 fixation to hydrolysis of plastic nanoparticles.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
| | - William Pallisgaard Olsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
| | - Huabing Wang
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus C, 8000, Denmark
| |
Collapse
|
23
|
Peydayesh M, Boschi E, Donat F, Mezzenga R. Gold Recovery from E-Waste by Food-Waste Amyloid Aerogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310642. [PMID: 38262611 DOI: 10.1002/adma.202310642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/30/2023] [Indexed: 01/25/2024]
Abstract
Demand for gold recovery from e-waste grows steadily due to its pervasive use in the most diverse technical applications. Current methods of gold recovery are resource-intensive, necessitating the development of more efficient extraction materials. This study explores protein amyloid nanofibrils (AF) derived from whey, a dairy industry side-stream, as a novel adsorbent for gold recovery from e-waste. To do so, AF aerogels are prepared and assessed against gold adsorption capacity and selectivity over other metals present in waste electrical and electronic equipment (e-waste). The results demonstrate that AF aerogel has a remarkable gold adsorption capacity (166.7 mg g-1) and selectivity, making it efficient and an adsorbent for gold recovery. Moreover, AF aerogels are efficient templates to convert gold ions into single crystalline flakes due to Au growth along the (111) plane. When used as templates to recover gold from e-waste solutions obtained by dissolving computer motherboards in suitable solvents, the process yields high-purity gold nuggets, constituted by ≈90.8 wt% gold (21-22 carats), with trace amounts of other metals. Life cycle assessment and techno-economic analysis of the process finally consolidate the potential of protein nanofibril aerogels from food side-streams as an environmentally friendly and economically viable approach for gold recovery from e-waste.
Collapse
Affiliation(s)
- Mohammad Peydayesh
- Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092, Switzerland
| | - Enrico Boschi
- Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092, Switzerland
- Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Felix Donat
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, Zürich, CH-8092, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092, Switzerland
- Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
24
|
Nabi Afjadi M, Aziziyan F, Farzam F, Dabirmanesh B. Biotechnological applications of amyloid fibrils. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:435-472. [PMID: 38811087 DOI: 10.1016/bs.pmbts.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Protein aggregates and amyloid fibrils have special qualities and are used in a variety of biotechnological applications. They are extensively employed in bioremediation, biomaterials, and biocatalysis. Because of their capacity to encapsulate and release pharmaceuticals and their sensitivity to certain molecules, respectively, they are also used in drug delivery and biosensor applications. They have also demonstrated potential in the domains of food and bioremediation. Additionally, amyloid peptides have drawn interest in biological applications, especially in the investigation of illnesses like Parkinson's and Alzheimer's. The unique characteristics of amyloid fibrils, namely their mechanical strength and β-sheet structure, make them adaptable to a wide range of biotechnological uses. Even with their promise, one important factor to keep in mind before widely using modified amyloid materials is their potential toxicity. Thus, current research aims to overcome safety concerns while maximizing their potential.
Collapse
Affiliation(s)
- Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
25
|
Lei Y, Li W, Han Y, Wang L, Wu H, He P, Wei G, Guo L. Biomimetic ZrO 2-modified seaweed residue with excellent fluorine/ bacteria removal and uranium extraction properties for wastewater purification. WATER RESEARCH 2024; 252:121219. [PMID: 38309067 DOI: 10.1016/j.watres.2024.121219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Exploring and developing promising biomass composite membranes for the water purification and waste resource utilization is of great significance. The modification of biomass has always been a focus of research in its resource utilization. In this study, we successfully prepare a functional composite membrane, activated graphene oxide/seaweed residue-zirconium dioxide (GOSRZ), with fluoride removal, uranium extraction, and antibacterial activity by biomimetic mineralization of zirconium dioxide nanoparticles (ZrO2 NPs) on seaweed residue (SR) grafted with oxidized graphene (GO). The GOSRZ membrane exhibits highly efficient and specific adsorption of fluoride. For the fluoride concentrations in the range of 100-400 mg/L in water, the removal efficiency can reach over 99 %, even in the presence of interfering ions. Satisfactory extraction rates are also achieved for uranium by the GOSRZ membrane. Additionally, the antibacterial performance studies show that this composite membrane efficiently removes Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA). The high adsorption of F- and U(VI) to the composite membrane is ascribed to the ionic exchange and coordination interactions, and its antibacterial activity is caused by the destruction of bacterial cell structure. The sustainability of the biomass composite membranes is further evaluated using the Sustainability Footprint method. This study provides a simple preparation method of biomass composite membrane, expands the water purification treatment technology, and offers valuable guidance for the resource utilization of seaweed waste and the removal of pollutants in wastewater.
Collapse
Affiliation(s)
- Yu Lei
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, PR China
| | - Wanying Li
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, PR China
| | - Yunhai Han
- College of Applied Technology, Qingdao University, Qingdao 266061, PR China
| | - Lupeng Wang
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, PR China
| | - Hao Wu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, PR China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
26
|
Natarajan A, Vadrevu LR, Rangan K. DRGD-linked charged EKKE dimeric dodecapeptide: pH-based amyloid nanostructures and their application in lead and uranium binding. RSC Adv 2024; 14:9200-9217. [PMID: 38505393 PMCID: PMC10949120 DOI: 10.1039/d3ra08261j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
Peptides have been reported to undergo self-assembly into diverse nanostructures, influenced by several parameters, including their amino acid sequence, pH, charge, solvent, and temperature. Inspired by natural systems, researchers have developed biomimetic peptides capable of self-assembling into supramolecular functional structures. The present study explored a newly designed peptide sequence, EKKEDRGDEKKE, where E = glutamic acid, K = lysine, D = aspartic acid, G = glycine, and R = arginine, with a metal binding DRGD sequence incorporated between the exclusively charged EKKE peptide. We investigated the formation and the potential of the EKKEDRGDEKKE peptide in retaining the structure and morphology adopted by the individual EKKE peptide. According to a combination of experimental techniques such as thioflavin T fluorescence, field emission-scanning electron microscopy, atomic force microscopy, and circular dichroism, it was evident that the EKKEDRGDEKKE peptide displayed a pH-dependent propensity to adopt amyloid-like structures. Furthermore, the self-assembled entities formed under acidic, basic, and neutral conditions exhibited morphological variations, which resembled that observed for the exclusively charged EKKE peptide. Furthermore, the incorporation of the functional DRGD motif resulted in promising binding to two toxic metal ions, lead (Pb) and uranium (U), as evidenced by a range of spectroscopic techniques, including UV-visible spectroscopy, atomic absorption spectroscopy, fluorescence spectroscopy, and X-ray photoelectron spectroscopy. The use of the amyloid-forming EKKEDRGDEKKE scaffold can also be extended to potential biomedical applications.
Collapse
Affiliation(s)
- Aishwarya Natarajan
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus Jawahar Nagar Hyderabad 500 078 Telangana India
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus Jawahar Nagar Hyderabad 500 078 Telangana India
| | - Late Ramakrishna Vadrevu
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus Jawahar Nagar Hyderabad 500 078 Telangana India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus Jawahar Nagar Hyderabad 500 078 Telangana India
| |
Collapse
|
27
|
Peydayesh M, Boschi E, Bagnani M, Tay D, Donat F, Almohammadi H, Li M, Usuelli M, Shiroka T, Mezzenga R. Hybrid Amyloid-Chitin Nanofibrils for Magnetic and Catalytic Aerogels. ACS NANO 2024; 18:6690-6701. [PMID: 38345899 DOI: 10.1021/acsnano.4c00883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
In the quest for a sustainable and circular economy, it is essential to explore environmentally friendly alternatives to traditional petroleum-based materials. A promising pathway toward this goal lies in the leveraging of biopolymers derived from food waste, such as proteins and polysaccharides, to develop advanced sustainable materials. Here, we design versatile hybrid materials by hybridizing amyloid nanofibrils derived by self-assembly of whey, a dairy byproduct, with chitin nanofibrils exfoliated from the two distinct allomorphs of α-chitin and β-chitin, extracted from seafood waste. Various hydrogels and aerogels were developed via the hybridization and reassembly of these biopolymeric nanobuilding blocks, and they were further magnetized upon biomineralization with iron nanoparticles. The pH-phase diagram highlights the significant role of electrostatic interactions in gel formation, between positively charged amyloid fibrils and negatively charged chitin nanofibrils. Hybrid magnetic aerogels exhibit a ferromagnetic response characterized by a low coercivity (<50 Oe) and a high specific magnetization (>40 emu/g) at all temperatures, making them particularly suitable for superparamagnetic applications. Additionally, these aerogels exhibit a distinct magnetic transition, featuring a higher blocking temperature (200 K) compared to previously reported similar nanoparticles (160 K), indicating enhanced magnetic stability at elevated temperatures. Finally, we demonstrate the practical application of these hybrid magnetic materials as catalysts for carbon monoxide oxidation, showcasing their potential in environmental pollution control and highlighting their versatility as catalyst supports.
Collapse
Affiliation(s)
- Mohammad Peydayesh
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Enrico Boschi
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Massimo Bagnani
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Daniel Tay
- Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Felix Donat
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, CH-8092 Zürich, Switzerland
| | - Hamed Almohammadi
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Mingqin Li
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Mattia Usuelli
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Toni Shiroka
- Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
28
|
Fu C, Wang Z, Zhou X, Hu B, Li C, Yang P. Protein-based bioactive coatings: from nanoarchitectonics to applications. Chem Soc Rev 2024; 53:1514-1551. [PMID: 38167899 DOI: 10.1039/d3cs00786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Protein-based bioactive coatings have emerged as a versatile and promising strategy for enhancing the performance and biocompatibility of diverse biomedical materials and devices. Through surface modification, these coatings confer novel biofunctional attributes, rendering the material highly bioactive. Their widespread adoption across various domains in recent years underscores their importance. This review systematically elucidates the behavior of protein-based bioactive coatings in organisms and expounds on their underlying mechanisms. Furthermore, it highlights notable advancements in artificial synthesis methodologies and their functional applications in vitro. A focal point is the delineation of assembly strategies employed in crafting protein-based bioactive coatings, which provides a guide for their expansion and sustained implementation. Finally, the current trends, challenges, and future directions of protein-based bioactive coatings are discussed.
Collapse
Affiliation(s)
- Chengyu Fu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Zhengge Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xingyu Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Bowen Hu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
29
|
Wang Y, Rencus-Lazar S, Zhou H, Yin Y, Jiang X, Cai K, Gazit E, Ji W. Bioinspired Amino Acid Based Materials in Bionanotechnology: From Minimalistic Building Blocks and Assembly Mechanism to Applications. ACS NANO 2024; 18:1257-1288. [PMID: 38157317 DOI: 10.1021/acsnano.3c08183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Inspired by natural hierarchical self-assembly of proteins and peptides, amino acids, as the basic building units, have been shown to self-assemble to form highly ordered structures through supramolecular interactions. The fabrication of functional biomaterials comprised of extremely simple biomolecules has gained increasing interest due to the advantages of biocompatibility, easy functionalization, and structural modularity. In particular, amino acid based assemblies have shown attractive physical characteristics for various bionanotechnology applications. Herein, we propose a review paper to summarize the design strategies as well as research advances of amino acid based supramolecular assemblies as smart functional materials. We first briefly introduce bioinspired reductionist design strategies and assembly mechanism for amino acid based molecular assembly materials through noncovalent interactions in condensed states, including self-assembly, metal ion mediated coordination assembly, and coassembly. In the following part, we provide an overview of the properties and functions of amino acid based materials toward applications in nanotechnology and biomedicine. Finally, we give an overview of the remaining challenges and future perspectives on the fabrication of amino acid based supramolecular biomaterials with desired properties. We believe that this review will promote the prosperous development of innovative bioinspired functional materials formed by minimalistic building blocks.
Collapse
Affiliation(s)
- Yuehui Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Sigal Rencus-Lazar
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Haoran Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, People's Republic of China
| | - Xuemei Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ehud Gazit
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
30
|
Al-Gethami W, Qamar MA, Shariq M, Alaghaz ANMA, Farhan A, Areshi AA, Alnasir MH. Emerging environmentally friendly bio-based nanocomposites for the efficient removal of dyes and micropollutants from wastewater by adsorption: a comprehensive review. RSC Adv 2024; 14:2804-2834. [PMID: 38234871 PMCID: PMC10792434 DOI: 10.1039/d3ra06501d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Water scarcity will worsen due to population growth, urbanization, and climate change. Addressing this issue requires developing energy-efficient and cost-effective water purification technologies. One approach is to use biomass to make bio-based materials (BBMs) with valuable attributes. This aligns with the goal of environmental conservation and waste management. Furthermore, the use of biomass is advantageous because it is readily available, economical, and has minimal secondary environmental impact. Biomass materials are ideal for water purification because they are abundant and contain important functional groups like hydroxyl, carboxyl, and amino groups. Functional groups are important for modifying and absorbing contaminants in water. Single-sourced biomass has limitations such as weak mechanical strength, limited adsorption capacity, and chemical instability. Investing in research and development is crucial for the development of efficient methods to produce BBMs and establish suitable water purification application models. This review covers BBM production, modification, functionalization, and their applications in wastewater treatment. These applications include oil-water separation, membrane filtration, micropollutant removal, and organic pollutant elimination. This review explores the production processes and properties of BBMs from biopolymers, highlighting their potential for water treatment applications. Furthermore, this review discusses the future prospects and challenges of developing BBMs for water treatment and usage. Finally, this review highlights the importance of BBMs in solving water purification challenges and encourages innovative solutions in this field.
Collapse
Affiliation(s)
- Wafa Al-Gethami
- Chemistry Department, Faculty of Science, Taif University Al-Hawiah, PO Box 11099 Taif City Saudi Arabia
| | - Muhammad Azam Qamar
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Mohammad Shariq
- Department of Physics, College of Science, Jazan University Jazan 45142 Saudi Arabia
| | | | - Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38040 Pakistan
| | - Ashwaq A Areshi
- Samtah General Hospital, Ministry of Health Jazan 86735 Saudi Arabia
| | - M Hisham Alnasir
- Department of Physics, RIPHAH International University Islamabad 44000 Pakistan
| |
Collapse
|
31
|
Li T, Kambanis J, Sorenson TL, Sunde M, Shen Y. From Fundamental Amyloid Protein Self-Assembly to Development of Bioplastics. Biomacromolecules 2024; 25:5-23. [PMID: 38147506 PMCID: PMC10777412 DOI: 10.1021/acs.biomac.3c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
Proteins can self-assemble into a range of nanostructures as a result of molecular interactions. Amyloid nanofibrils, as one of them, were first discovered with regard to the relevance of neurodegenerative diseases but now have been exploited as building blocks to generate multiscale materials with designed functions for versatile applications. This review interconnects the mechanism of amyloid fibrillation, the current approaches to synthesizing amyloid protein-based materials, and the application in bioplastic development. We focus on the fundamental structures of self-assembled amyloid fibrils and how external factors can affect protein aggregation to optimize the process. Protein self-assembly is essentially the autonomous congregation of smaller protein units into larger, organized structures. Since the properties of the self-assembly can be manipulated by changing intrinsic factors and external conditions, protein self-assembly serves as an excellent building block for bioplastic development. Building on these principles, general processing methods and pathways from raw protein sources to mature state materials are proposed, providing a guide for the development of large-scale production. Additionally, this review discusses the diverse properties of protein-based amyloid nanofibrils and how they can be utilized as bioplastics. The economic feasibility of the protein bioplastics is also compared to conventional plastics in large-scale production scenarios, supporting their potential as sustainable bioplastics for future applications.
Collapse
Affiliation(s)
- Tianchen Li
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Jordan Kambanis
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Timothy L. Sorenson
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Margaret Sunde
- School
of Medical Sciences and Sydney Nano, The
University of Sydney, Sydney NSW 2006, Australia
| | - Yi Shen
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| |
Collapse
|
32
|
Li M, Zhang R, Zou Z, Zhang L, Ma H. Optimizing physico-chemical properties of hierarchical ZnO/TiO 2 nano-film by the novel heating method for photocatalytic degradation of antibiotics and dye. CHEMOSPHERE 2024; 346:140392. [PMID: 37852380 DOI: 10.1016/j.chemosphere.2023.140392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/17/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
The design of semiconductor catalysts with excellent photocatalytic properties, stability, recyclability, and good separation for the treatment of polluted water is still challenging. In this paper, the ZnO/TiO2 nano-thin films were fabricated using the magnetron sputtering technique and then heating the underlying ZnO layer and the upper TiO2 layer for their respective optimal heating time, i. e. heating ZnO for 3 h and heating TiO2 for 2 h. The as-prepared films were characterized. The results show that the preferred growth of TiO2 grains along the [001] axis, relatively large specific surface area, and increased amounts of surface oxygen vacancies (OVs) were induced to the heterojunction catalysts through this optimized heating strategy, which boosts the photocatalytic activity of ZnO/TiO2 nano-film. The degradation experiment inndicates that the ciprofloxacin (CIP) removal efficiency can reach 97.3% in 2 h duration, which was higher than that of the samples annealed for the same periods. Meanwhile, the prepared ZnO/TiO2 photocatalytic film exhibited favorable stability of 95.5% degradation efficiency after the fourth run and general applicability for the photodegradation of various contantains, whih removed 99.5% of ofloxacin (OFX) and 77.6% of tetracycline (TC) in 2 h and 94.1% of Rhodamine B (RhB) in 1 h. This work is expected to yields a novel insight into the production of heterojunction photocatalysts with excellen ability for photocatalytic degradation of pollutants in the practical industry.
Collapse
Affiliation(s)
- Min Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China
| | - Ruiyang Zhang
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China
| | - Zhipeng Zou
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China
| | - Lan Zhang
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China.
| | - Huizhong Ma
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
33
|
Yuan M, Liu D, Shang S, Song Z, You Q, Huang L, Cui S. A novel magnetic Fe 3O 4/cellulose nanofiber/polyethyleneimine/thiol-modified montmorillonite aerogel for efficient removal of heavy metal ions: Adsorption behavior and mechanism study. Int J Biol Macromol 2023; 253:126634. [PMID: 37678684 DOI: 10.1016/j.ijbiomac.2023.126634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
To efficiently remove heavy metals from wastewater, designing an adsorbent with high adsorption capacity and ease of recovery is necessary. This paper presents a novel magnetic hybridized aerogel, Fe3O4/cellulose nanofiber/polyethyleneimine/thiol-modified montmorillonite (Fe3O4/CNF/PEI/SHMMT), and explores its adsorption performance and mechanism for Pb2+, Cu2+, and Cd2+ in aqueous solutions. The hybrid aerogel has a slit-like porous structure and numerous exposed active sites, which facilitates the uptake of metal ions by adsorption. Pb2+, Cu2+, and Cd2+ adsorption by the hybridized aerogel followed the second-order kinetics and the Langmuir isotherm model, the maximum adsorption of Pb2+, Cu2+, and Cd2+ at 25 °C, pH = 6, 800 mg/L was 429.18, 381.68 and 299.40 mg/g, respectively. The adsorption process was primarily attributed to monolayer chemical adsorption, a spontaneous heat-absorption reaction. FTIR, XPS and DFT studies confirmed that the adsorption mechanisms of Fe3O4/CNF/PEI/SHMMT on Pb2+, Cu2+, and Cd2+ were mainly chelation, coordination, and ion exchange. The lowest adsorption energy of Pb2+ on the hybrid aerogel was calculated to be -2.37 Ha by DFT, which indicates that the sample has higher adsorption affinity and preferential selectivity for Pb2+. After 5 cycles, the adsorption efficiency of the aerogel was still >85 %. The incorporation of Fe3O4 improved the mechanical properties of the aerogel. The Fe3O4/CNF/PEI/SHMMT has fast magnetic responsiveness, and it is easy to be separated and recovered after adsorption, which is a promising potential for the treatment of heavy metal ions.
Collapse
Affiliation(s)
- Man Yuan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Dongsheng Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Sisi Shang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Zihao Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Qi You
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Longjin Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Sheng Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China.
| |
Collapse
|
34
|
Dong Y, Lan T, Wang L, Wang X, Xu Z, Jiang L, Zhang Y, Sui X. Development of composite electrospun films utilizing soy protein amyloid fibrils and pullulan for food packaging applications. Food Chem X 2023; 20:100995. [PMID: 38144716 PMCID: PMC10739858 DOI: 10.1016/j.fochx.2023.100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 12/26/2023] Open
Abstract
Electrospun films (ESF) are gaining attention for active delivery due to their biocompatibility and biodegradability. This study investigated the impact of adding soy protein amyloid fibrils (SAFs) to ESF. Functional ESF based on SAFs/pullulan were successfully fabricated, with SAFs clearly observed entangled in the electrospun fibers using fluorescence microscopy. The addition of SAFs improved the mechanical strength of the ESF threefold and increased its surface hydrophobicity from 24.8° to 49.9°. Moreover, the ESF demonstrated antibacterial properties against Escherichia coli and Staphylococcus aureus. In simulated oral disintegration tests, almost 100% of epigallocatechin gallate (EGCG) dissolved within 4 min from the ESF. In summary, the incorporation of SAFs into ESF improved their mechanical strength, hydrophobicity, and enabled them to exhibit antibacterial properties, making them promising candidates for active delivery applications in food systems. Additionally, the ESF showed efficient release of EGCG, indicating their potential for controlled release of bioactive compounds.
Collapse
Affiliation(s)
- Yabo Dong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tian Lan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Luying Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xing Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zejian Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
35
|
Zhang X, Razanajatovo MR, Du X, Wang S, Feng L, Wan S, Chen N, Zhang Q. Well-designed protein amyloid nanofibrils composites as versatile and sustainable materials for aquatic environment remediation: A review. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:264-277. [PMID: 38435357 PMCID: PMC10902511 DOI: 10.1016/j.eehl.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 03/05/2024]
Abstract
Amyloid nanofibrils (ANFs) are supramolecular polymers originally classified as pathological markers in various human degenerative diseases. However, in recent years, ANFs have garnered greater interest and are regarded as nature-based sustainable biomaterials in environmental science, material engineering, and nanotechnology. On a laboratory scale, ANFs can be produced from food proteins via protein unfolding, misfolding, and hydrolysis. Furthermore, ANFs have specific structural characteristics such as a high aspect ratio, good rigidity, chemical stability, and a controllable sequence. These properties make them a promising functional material in water decontamination research. As a result, the fabrication and application of ANFs and their composites in water purification have recently gained considerable attention. Despite the large amount of literature in this field, there is a lack of systematic review to assess the gap in using ANFs and their composites to remove contaminants from water. This review discusses significant advancements in design techniques as well as the physicochemical properties of ANFs-based composites. We also emphasize the current progress in using ANFs-based composites to remove inorganic, organic, and biological contaminants. The interaction mechanisms between ANFs-based composites and contaminants are also highlighted. Finally, we illustrate the challenges and opportunities associated with the future preparation and application of ANFs-based composites. We anticipate that this review will shed new light on the future design and use of ANFs-based composites.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Mamitiana Roger Razanajatovo
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xuedong Du
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shuo Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Li Feng
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shunli Wan
- College of Life & Environment Sciences, Huangshan University, Huangshan 245041, China
| | - Ningyi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingrui Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
36
|
Taqieddin A, Sarrouf S, Ehsan MF, Alshawabkeh AN. New Insights on Designing the Next-Generation Materials for Electrochemical Synthesis of Reactive Oxidative Species Towards Efficient and Scalable Water Treatment: A Review and Perspectives. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2023; 11:111384. [PMID: 38186676 PMCID: PMC10769459 DOI: 10.1016/j.jece.2023.111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Electrochemical water remediation technologies offer several advantages and flexibility for water treatment and degradation of contaminants. These technologies generate reactive oxidative species (ROS) that degrade pollutants. For the implementation of these technologies at an industrial scale, efficient, scalable, and cost-effective in-situ ROS synthesis is necessary to degrade complex pollutant mixtures, treat large amount of contaminated water, and clean water in a reasonable amount of time and cost. These targets are directly dependent on the materials used to generate the ROS, such as electrodes and catalysts. Here, we review the key design aspects of electrocatalytic materials for efficient in-situ ROS generation. We present a mechanistic understanding of ROS generation, including their reaction pathways, and integrate this with the key design considerations of the materials and the overall electrochemical reactor/cell. This involves tunning the interfacial interactions between the electrolyte and electrode which can enhance the ROS generation rate up to ~ 40% as discussed in this review. We also summarized the current and emerging materials for water remediation cells and created a structured dataset of about 500 electrodes and 130 catalysts used for ROS generation and water treatment. A perspective on accelerating the discovery and designing of the next generation electrocatalytic materials is discussed through the application of integrated experimental and computational workflows. Overall, this article provides a comprehensive review and perspectives on designing and discovering materials for ROS synthesis, which are critical not only for successful implementation of electrochemical water remediation technologies but also for other electrochemical applications.
Collapse
Affiliation(s)
- Amir Taqieddin
- Department of Mechanical & Industrial Engineering, Northeastern University, Boston, MA 02115
| | - Stephanie Sarrouf
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115
| | - Muhammad Fahad Ehsan
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115
| | - Akram N. Alshawabkeh
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115
| |
Collapse
|
37
|
Girish N, Parashar N, Hait S. Coagulative removal of microplastics from aqueous matrices: Recent progresses and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165723. [PMID: 37482362 DOI: 10.1016/j.scitotenv.2023.165723] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Coagulation-flocculation-sedimentation (CFS) system has been identified as one of the favored treatment technique in water/wastewater treatment systems and hence, it is crucial to comprehend the efficacy of different coagulants used in removing microplastics (MPs) from aqueous matrices. Henceforth, this study critically reviews the recent progress and efficacy of different coagulants used to date for MPs removal. This includes laboratory and field-scale studies on inorganic and organic coagulants, as well as laboratory-scale studies on natural coagulants. Inorganic and organic coagulants have varying MPs removal efficiencies such as: Fe/Al-salts (30 %-95 %), alum (99 %), and poly aluminum chloride (13 %-97 %), magnesium hydroxide (84 %), polyamine (99 %), organosilanes (>95 %), and polyacrylamide (85 %-98 %). Moreover, studies have highlighted the use of natural coagulants, such as chitosan, protein amyloid fibrils, and starch has shown promising results in MPs removal with sevral advantages over traditional coagulants. These natural coagulants have demonstrated high MPs removal efficiencies with chitosan-tannic acid (95 %), protein amyloid fibrils (98 %), and starch (>90 %). Moreover, the MPs removal efficiencies of natural coagulants are compared and their predominant removal mechanisms are determined. Plant-based natural coagulants can potentially remove MPs through mechanisms such as polymer bridging and charge neutralization. Further, a systematic analysis on the effect of operational parameters highlights that the pH affects particle surface charge and coagulation efficiency, while mixing speed affects particle aggregation and sedimentation. Also, the optimal mixing speed for effective MPs removal depends on coagulant type and concentration, water composition, and MPs characteristics. Moreover, this work highlights the advantages and limitations of using different coagulants for MPs removal and discusses the challenges and future prospects in scaling up these laboratory studies for real-time applications.
Collapse
Affiliation(s)
- Nandika Girish
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar 801 106, India
| | - Neha Parashar
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar 801 106, India
| | - Subrata Hait
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar 801 106, India.
| |
Collapse
|
38
|
Jung S, Kim J, Bang J, Jung M, Park S, Yun H, Kwak HW. pH-sensitive cellulose/chitin nanofibrillar hydrogel for dye pollutant removal. Carbohydr Polym 2023; 317:121090. [PMID: 37364959 DOI: 10.1016/j.carbpol.2023.121090] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
In this study, a pH-sensitive smart hydrogel was successfully prepared by combining a polyelectrolyte complex using biopolymeric nanofibrils. By adding a green citric acid cross-linking agent to the formed chitin and cellulose-derived nanofibrillar polyelectrolytic complex, a hydrogel with excellent structural stability could be prepared even in a water environment, and all processes were conducted in an aqueous system. The prepared biopolymeric nanofibrillar hydrogel not only enables rapid conversion of swelling degree and surface charge according to pH but can also effectively remove ionic contaminants. The ionic dye removal capacity was 372.0 mg/g for anionic AO and 140.5 mg/g for cationic MB. The surface charge conversion ability according to pH could be easily applied to the desorption of the removed contaminants, and as a result, it showed an excellent contaminant removal efficiency of 95.1 % or more even in the repeated reuse process 5 times. Overall, the eco-friendly biopolymeric nanofibrillar pH-sensitive hydrogel shows potential for complex wastewater treatment and long-term use.
Collapse
Affiliation(s)
- Seungoh Jung
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jungkyu Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junsik Bang
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Minjung Jung
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sangwoo Park
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Heecheol Yun
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyo Won Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
39
|
Kummer N, Huguenin-Elie L, Zeller A, Chandorkar Y, Schoeller J, Zuber F, Ren Q, Sinha A, De France K, Fischer P, Campioni S, Nyström G. 2D foam film coating of antimicrobial lysozyme amyloid fibrils onto cellulose nanopapers. NANOSCALE ADVANCES 2023; 5:5276-5285. [PMID: 37767031 PMCID: PMC10521212 DOI: 10.1039/d3na00370a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
Amyloid fibrils made from inexpensive hen egg white lysozyme (HEWL) are bio-based, bio-degradable and bio-compatible colloids with broad-spectrum antimicrobial activity, making them an attractive alternative to existing small-molecule antibiotics. Their surface activity leads to the formation of 2D foam films within a loop, similar to soap films when blowing bubbles. The stability of the foam was optimized by screening concentration and pH, which also revealed that the HEWL amyloid foams were actually stabilized by unconverted peptides unable to undergo amyloid self-assembly rather than the fibrils themselves. The 2D foam film was successfully deposited on different substrates to produce a homogenous coating layer with a thickness of roughly 30 nm. This was thick enough to shield the negative charge of dry cellulose nanopaper substrates, leading to a positively charged HEWL amyloid coating. The coating exhibited a broad-spectrum antimicrobial effect based on the interactions with the negatively charged cell walls and membranes of clinically relevant pathogens (Staphylococcus aureus, Escherichia coli and Candida albicans). The coating method presented here offers an alternative to existing techniques, such as dip and spray coating, in particular when optimized for continuous production. Based on the facile preparation and broad spectrum antimicrobial performance, we anticipate that these biohybrid materials could potentially be used in the biomedical sector as wound dressings.
Collapse
Affiliation(s)
- Nico Kummer
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129, 8600 Dübendorf Switzerland
- Institute of Food Nutrition and Health, ETH Zurich Schmelzbergstrasse 9 8092 Zurich Switzerland
| | - Luc Huguenin-Elie
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129, 8600 Dübendorf Switzerland
| | - Adrian Zeller
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129, 8600 Dübendorf Switzerland
| | - Yashoda Chandorkar
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
| | - Jean Schoeller
- Laboratory for Biomimetic Membranes and Textiles, Empa - Swiss Federal Laboratories for Materials Science and Technology Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
- Institute for Biomechanics, ETH Zürich Stefano-Franscini-Platz 5 8093 Zürich Switzerland
| | - Flavia Zuber
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
| | - Ashutosh Sinha
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129, 8600 Dübendorf Switzerland
- Institute of Food Nutrition and Health, ETH Zurich Schmelzbergstrasse 9 8092 Zurich Switzerland
| | - Kevin De France
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129, 8600 Dübendorf Switzerland
| | - Peter Fischer
- Institute of Food Nutrition and Health, ETH Zurich Schmelzbergstrasse 9 8092 Zurich Switzerland
| | - Silvia Campioni
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129, 8600 Dübendorf Switzerland
| | - Gustav Nyström
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129, 8600 Dübendorf Switzerland
- Institute of Food Nutrition and Health, ETH Zurich Schmelzbergstrasse 9 8092 Zurich Switzerland
| |
Collapse
|
40
|
Ornithopoulou E, Åstrand C, Gustafsson L, Crouzier T, Hedhammar M. Self-Assembly of RGD-Functionalized Recombinant Spider Silk Protein into Microspheres in Physiological Buffer and in the Presence of Hyaluronic Acid. ACS APPLIED BIO MATERIALS 2023; 6:3696-3705. [PMID: 37579070 PMCID: PMC10521021 DOI: 10.1021/acsabm.3c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Biomaterials made of self-assembling protein building blocks are widely explored for biomedical applications, for example, as drug carriers, tissue engineering scaffolds, and functionalized coatings. It has previously been shown that a recombinant spider silk protein functionalized with a cell binding motif from fibronectin, FN-4RepCT (FN-silk), self-assembles into fibrillar structures at interfaces, i.e., membranes, fibers, or foams at liquid/air interfaces, and fibrillar coatings at liquid/solid interfaces. Recently, we observed that FN-silk also assembles into microspheres in the bulk of a physiological buffer (PBS) solution. Herein, we investigate the self-assembly process of FN-silk into microspheres in the bulk and how its progression is affected by the presence of hyaluronic acid (HA), both in solution and in a cross-linked HA hydrogel. Moreover, we characterize the size, morphology, mesostructure, and protein secondary structure of the FN-silk microspheres prepared in PBS and HA. Finally, we examine how the FN-silk microspheres can be used to mediate cell adhesion and spreading of human mesenchymal stem cells (hMSCs) during cell culture. These investigations contribute to our fundamental understanding of the self-assembly of silk protein into materials and demonstrate the use of silk microspheres as additives for cell culture applications.
Collapse
Affiliation(s)
- Eirini Ornithopoulou
- Department
of Protein Science, School of Chemistry, Biotechnology and Health
(CBH), KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Carolina Åstrand
- Department
of Protein Science, School of Chemistry, Biotechnology and Health
(CBH), KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
- Spiber
Technologies AB, Roslagstullsbacken
15, 114 21 Stockholm, Sweden
| | - Linnea Gustafsson
- Spiber
Technologies AB, Roslagstullsbacken
15, 114 21 Stockholm, Sweden
- Division
of Micro and Nanosystems, School
of Electrical Engineering and Computer Science (EECS), KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Thomas Crouzier
- Department
of Chemistry, School of Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - My Hedhammar
- Department
of Protein Science, School of Chemistry, Biotechnology and Health
(CBH), KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
41
|
He F, Zhu M, Fan J, Ma E, Zhai S, Zhao H. Automated Drone-Delivery Solar-Driven Onsite Wastewater Smart Monitoring and Treatment System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302935. [PMID: 37357989 PMCID: PMC10460888 DOI: 10.1002/advs.202302935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 06/27/2023]
Abstract
Treating potential polluted water sources is urgent and challenging, especially for natural water sources. Numerous research groups focus on either smart water monitoring or new adsorbent. However, either aspect alone is insufficient for complex nature water source treatment. Here, integrating the state-of-art machine learning technique, a sustainable silk-based bioadsorbent, and wireless Internet of Things, an integrated automated drone-delivery solar driven onsite water monitoring & treatment system (WMTS) for the contaminated nature water sources is developed. In short, the embedded sensors and microprogrammed control unit capture and upload the real-time monitoring data to the cloud server for data analysis and optimized treatment strategy. Meanwhile, a grid map system based on the satellite remote sensing images directs the minimum number of WMTS units to cover the entire polluted region. Finally, unmanned aerial vehicles provide autonomous dispatch, operation, and maintenance, especially in hard-to-reach sites. Overall, this work offers a general, sustainable, energy-efficient, and closed-loop solution toward efficiently alerting and on-site treating nature water source contamination.
Collapse
Affiliation(s)
- Fengjie He
- Department of Mechanical EngineeringUniversity of NevadaLas VegasNV89154USA
| | - Ming Zhu
- Department of Electrical and Computer EngineeringEngineeringUniversity of NevadaLas VegasNV89154USA
| | - Jiawei Fan
- Department of Electrical and Computer EngineeringEngineeringUniversity of NevadaLas VegasNV89154USA
| | - Edwin Ma
- Ed W. Clark High SchoolLas VegasNV89102USA
| | - Shengjie Zhai
- Department of Electrical and Computer EngineeringEngineeringUniversity of NevadaLas VegasNV89154USA
| | - Hui Zhao
- Department of Mechanical EngineeringUniversity of NevadaLas VegasNV89154USA
| |
Collapse
|
42
|
Zhang Y, Wen J, Zhou Y, Wang J, Cheng W. Novel efficient capture of hexavalent chromium by polyethyleneimine/amyloid fibrils/polyvinyl alcohol aerogel beads: Functional design, applicability, and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132017. [PMID: 37429193 DOI: 10.1016/j.jhazmat.2023.132017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
The harmful effects of hexavalent chromium (Cr(VI)) on the environment and human health have aroused wide public concern. In this study, bulk spherical aerogel beads (PAP) were synthesized from polyethyleneimine (PEI), protein amyloid fibrils (AFL), and polyvinyl alcohol (PVA) through green technology and its removal of Cr(VI) from wastewater was comprehensively studied. The results showed that although the bulk PAP beads (∼ 5 mm) only had an average pore size of 16.88 nm and a BET surface area of 12 m2/g, its maximum adsorption capacity for Cr(VI) reached 121.44 mg/g (at 298 K). Cr(VI) adsorption onto PAP conformed to pseudo-second-order adsorption kinetics and was endothermic. The adsorption of Cr(VI) decreased stepwise with the increase of solution alkalinity (pH = 2: 91.97%; pH = 10: 0.04%). Importantly, PAP showed high selectivity towards Cr(VI) in mixed heavy metal solutions (Cr(VI) > Pb(II) > Ni(II) > Cu(II) > Cd(II)) and good reusability (removal efficiency > 88% after 5 cycles). PAP had excellent anti-interference ability against FA and HCO3- with the overall removal rate exceeding 87% in the presence of 5 - 25 mg/L of these ions. Cations such as Na+, Mg2+, and other heavy metal ions at high concentrations could promote the removal efficiency of Cr(VI). The removal rates of Cr(VI) and Cr(III) by PAP in a tannery wastewater were 34.4% and 59.3%, respectively. Meanwhile, the removal rates of Cr(VI) in a electroplating wastewater and a contaminated soil leachate reached 84.4∼89.7%, showing high practicability. Mechanism studies revealed that electrostatic attraction, hydrogen bonding, reduction, and complexation were the main reactions for Cr(VI) removal by PAP. In general, the study of PAP provides a new insight into using bulk monolith materials for treating Cr(VI) contaminated wastewater.
Collapse
Affiliation(s)
- Yuru Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jia Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Research Institute of Hunan University in Chongqing, Chongqing 401120, PR China.
| | - Yichen Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wenxing Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
43
|
Zubair M, Zahara I, Roopesh MS, Ullah A. Chemically cross-linked keratin and nanochitosan based sorbents for heavy metals remediation. Int J Biol Macromol 2023; 241:124446. [PMID: 37088187 DOI: 10.1016/j.ijbiomac.2023.124446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/25/2023]
Abstract
Biosorbents for water remediation were prepared using keratin biopolymer cross-linked with nanochitosan (NC). Keratin proteins were dissolved using reducing agents and NC was incorporated with concentrations of 1, 3 and 5 % individually into the keratin solution. The mixtures were thermally treated at 75°C overnight, which promoted the formation of ester bonds between the hydroxyl groups of nanochitosan and the carboxylic groups of the keratin biopolymer. The resulting keratin derived biosorbents were characterized by X-Ray photoelectron spectroscopy, confirming the cross-linking between keratin and nanochitosan. The chicken feathers keratin (CFK) surface modifications with nanochitosan were examined with Brunauer-Emmett-Teller, scanning and transmission electron microscopies. The sorption capacity of biosorbents was tested for eight different metals simultaneously at different contact times (15, 30, 60, 120, 240, 280 mins) and pH (5.5, 7.5 and 8.5), including arsenic, selenium, chromium, nickel, cobalt, lead, cadmium and zinc, using simulated industrial wastewater water containing 600 μg L-1 concentration of each metal. The synthesized environmentally benign biosorbents exhibited biosorption of metals upto 98 % at pH 7.5 and a contact time of 24 h, showing their potential for industrial wastewater remediation.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Irum Zahara
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - M S Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
44
|
Grossmann L. Structural properties of pea proteins ( Pisum sativum) for sustainable food matrices. Crit Rev Food Sci Nutr 2023; 64:8346-8366. [PMID: 37074167 DOI: 10.1080/10408398.2023.2199338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Pea proteins are widely used as a food ingredient, especially in sustainable food formulations. The seed itself consists of many proteins with different structures and properties that determine their structure-forming properties in food matrices, such as emulsions, foams, and gels. This review discusses the current insights into the structuring properties of pea protein mixtures (concentrates, isolates) and the resulting individual fractions (globulins, albumins). The structural molecular features of the proteins found in pea seeds are discussed and based on this information, different structural length scales relevant to foods are reviewed. The main finding of this article is that the different pea proteins are able to form and stabilize structural components found in foods such as air-water and oil-water interfaces, gels, and anisotropic structures. Current research reveals that each individual protein fraction has unique structure-forming properties and that tailored breeding and fractionation processes will be required to optimize these properties. Especially the use of albumins, globulins, and mixed albumin-globulins proved to be useful in specific food structures such as foams, emulsions, and self-coacervation, respectively. These new research findings will transform how pea proteins are processed and being used in novel sustainable food formulations in the future.
Collapse
Affiliation(s)
- Lutz Grossmann
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
45
|
Li B, Wang S, Loh XJ, Li Z, Chung TS. Closed-loop recyclable membranes enabled by covalent adaptable networks for water purification. Proc Natl Acad Sci U S A 2023; 120:e2301009120. [PMID: 37011185 PMCID: PMC10104506 DOI: 10.1073/pnas.2301009120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/24/2023] [Indexed: 04/05/2023] Open
Abstract
In the state-of-the-art membrane industry, membranes have linear life cycles and are commonly disposed of by landfill or incineration, sacrificing their sustainability. To date, little or no thought is given in the design phase to the end-of-life management of membranes. For the first time, we have innovated high-performance sustainable membranes, which can be closed-loop recycled after long-term usage for water purification. By synergizing membrane technology and dynamic covalent chemistry, covalent adaptable networks (CANs) with thermally reversible Diels-Alder (DA) adducts were synthesized and employed to fabricate integrally skinned asymmetric membranes via the nonsolvent-induced phase separation technique. Due to the stable and reversible features of CAN, the closed-loop recyclable membranes exhibit excellent mechanical properties and thermal and chemical stabilities as well as separation performance, which are comparable to or even higher than the state-of-the-art nonrecyclable membranes. Moreover, the used membranes can be closed-loop recycled with consistent properties and separation performance by depolymerization to remove contaminants, followed by refabrication into new membranes through the dissociation and reformation of DA adducts. This study may fill in the gaps in closed-loop recycling of membranes and inspire the advancement of sustainable membranes for a green membrane industry.
Collapse
Affiliation(s)
- Bofan Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology, and Research (A*STAR), Singapore627833, Republic of Singapore
| | - Sheng Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology, and Research (A*STAR), Singapore627833, Republic of Singapore
| | - Xian Jun Loh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology, and Research (A*STAR), Singapore627833, Republic of Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), Singapore138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore117576, Republic of Singapore
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology, and Research (A*STAR), Singapore627833, Republic of Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), Singapore138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore117576, Republic of Singapore
| | - Tai-Shung Chung
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| |
Collapse
|
46
|
Peydayesh M, Kistler S, Zhou J, Lutz-Bueno V, Victorelli FD, Meneguin AB, Spósito L, Bauab TM, Chorilli M, Mezzenga R. Amyloid-polysaccharide interfacial coacervates as therapeutic materials. Nat Commun 2023; 14:1848. [PMID: 37012278 PMCID: PMC10070338 DOI: 10.1038/s41467-023-37629-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Coacervation via liquid-liquid phase separation provides an excellent opportunity to address the challenges of designing nanostructured biomaterials with multiple functionalities. Protein-polysaccharide coacervates, in particular, offer an appealing strategy to target biomaterial scaffolds, but these systems suffer from the low mechanical and chemical stabilities of protein-based condensates. Here we overcome these limitations by transforming native proteins into amyloid fibrils and demonstrate that the coacervation of cationic protein amyloids and anionic linear polysaccharides results in the interfacial self-assembly of biomaterials with precise control of their structure and properties. The coacervates present a highly ordered asymmetric architecture with amyloid fibrils on one side and the polysaccharide on the other. We demonstrate the excellent performance of these coacervates for gastric ulcer protection by validating via an in vivo assay their therapeutic effect as engineered microparticles. These results point at amyloid-polysaccharides coacervates as an original and effective biomaterial for multiple uses in internal medicine.
Collapse
Affiliation(s)
- Mohammad Peydayesh
- ETH Zurich, Department of Health Sciences and Technology, 8092, Zurich, Switzerland
| | - Sabrina Kistler
- ETH Zurich, Department of Materials, 8093, Zurich, Switzerland
| | - Jiangtao Zhou
- ETH Zurich, Department of Health Sciences and Technology, 8092, Zurich, Switzerland
| | - Viviane Lutz-Bueno
- ETH Zurich, Department of Health Sciences and Technology, 8092, Zurich, Switzerland
- Paul Scherrer Institute PSI, 5232, Villigen, Switzerland
| | | | - Andréia Bagliotti Meneguin
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University, 14800-903, Araraquara, Sao Paulo, Brazil
| | - Larissa Spósito
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University, 14800-903, Araraquara, Sao Paulo, Brazil
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University, 14800-903, Araraquara, Sao Paulo, Brazil
| | - Tais Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University, 14800-903, Araraquara, Sao Paulo, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University, 14800-903, Araraquara, Sao Paulo, Brazil
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Sciences and Technology, 8092, Zurich, Switzerland.
- ETH Zurich, Department of Materials, 8093, Zurich, Switzerland.
| |
Collapse
|
47
|
Anselmo S, Avola T, Kalouta K, Cataldo S, Sancataldo G, Muratore N, Foderà V, Vetri V, Pettignano A. Sustainable soy protein microsponges for efficient removal of lead (II) from aqueous environments. Int J Biol Macromol 2023; 239:124276. [PMID: 37011754 DOI: 10.1016/j.ijbiomac.2023.124276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Protein-based materials recently emerged as good candidates for water cleaning applications, due to the large availability of the constituent material, their biocompatibility and the ease of preparation. In this work, new adsorbent biomaterials were created from Soy Protein Isolate (SPI) in aqueous solution using a simple environmentally friendly procedure. Protein microsponge-like structures were produced and characterized by means of spectroscopy and fluorescence microscopy methods. The efficiency of these structures in removing lead (Pb2+) ions from aqueous solutions was evaluated by investigating the adsorption mechanisms. The molecular structure and, consequently, the physico-chemical properties of these aggregates can be readily tuned by selecting the pH of the solution during production. In particular, the presence of β-structures typical of amyloids as well as an environment characterized by a lower dielectric constant seem to enhance metal binding affinity revealing that hydrophobicity and water accessibility of the material are key features affecting the adsorption efficiency. Presented results provide new knowledge on how raw plant proteins can be valorised for the production of new biomaterials. This may offer extraordinary opportunities towards the design and production of new tailorable biosorbents which can also be exploited for several cycles of purification with minimal reduction in performance. SYNOPSIS: Innovative, sustainable plant-protein biomaterials with tunable properties are presented as green solution for water purification from lead (II) and the structure-function relationship is discussed.
Collapse
|
48
|
Recent advance in biomass membranes: Fabrication, functional regulation, and antimicrobial applications. Carbohydr Polym 2023; 305:120537. [PMID: 36737189 DOI: 10.1016/j.carbpol.2023.120537] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023]
Abstract
Both inorganic and polymeric membranes have been widely applied for antimicrobial applications. However, these membranes exhibit low biocompatibility, weak biodegradability, and potential toxicity to human being and environment. Biomass materials serve as excellent candidates for fabricating functional membranes to address these problems due to their unique physical, chemical, and biological properties. Here we present recent progress in the fabrication, functional regulation, and antimicrobial applications of various biomass-based membranes. We first introduce the types of biomass membranes and their fabrication methods, including the phase inversion, vacuum filtration, electrospinning, layer-by-layer self-assembly, and coating. Then, the strategies on functional regulation of biomass membranes by adding 0D, 1D, and 2D nanomaterials are presented and analyzed. In addition, antibacterial, antifungal, and antiviral applications of biomass-based functional membranes are summarized. Finally, potential development aspects of biomass membranes are discussed and prospected. This comprehensive review is valuable for guiding the design, synthesis, structural/functional tailoring, and sustainable utilization of biomass membranes.
Collapse
|
49
|
Anani OA, Adama KK, Ukhurebor KE, Habib AI, Abanihi VK, Pal K. Application of nanofibrous protein for the purification of contaminated water as a next generational sorption technology: a review. NANOTECHNOLOGY 2023; 34:232004. [PMID: 36807991 DOI: 10.1088/1361-6528/acbd9f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Globally, wastes from agricultural and industrial activities cause water pollution. Pollutants such as microbes, pesticides, and heavy metals in contaminated water bodies beyond their threshold limits result in several diseases like mutagenicity, cancer, gastrointestinal problems, and skin or dermal issues when bioaccumulated via ingestion and dermal contacts. Several technologies have been used in modern times to treat wastes or pollutants such as membrane purification technologies and ionic exchange methods. However, these methods have been recounted to be capital intensive, non-eco-friendly, and need deep technical know-how to operate thus, contributing to their inefficiencies and non-efficacies. This review work evaluated the application of Nanofibrils-protein for the purification of contaminated water. Findings from the study indicated that Nanofibrils protein is economically viable, green, and sustainable when used for water pollutant management or removal because they have outstanding recyclability of wastes without resulting in a secondary phase-pollutant. It is recommended to use residues from dairy industries, agriculture, cattle guano, and wastes from a kitchen in conjunction with nanomaterials to develop nanofibrils protein which has been recounted for the effective removal of micro and micropollutants from wastewater and water. The commercialization of nanofibrils protein for the purification of wastewater and water against pollutants has been tied to novel methods in nanoengineering technology, which depends strongly on the environmental impact in the aqueous ecosystem. So, there is a need to establish a legal framework for the establishment of a nano-based material for the effective purification of water against pollutants.
Collapse
Affiliation(s)
- Osikemekha Anthony Anani
- Laboratory for Ecotoxicology and Forensic Biology, Department of Biological Science, Faculty of Science, Edo State University, Uzairue, Edo State, Nigeria
| | - Kenneth Kennedy Adama
- Department of Chemical Engineering, Faculty of Engineering, Edo State University, Uzairue, Edo State, Nigeria
| | | | - Aishatu Idris Habib
- Department of Microbiology, Edo State University, Faculty of Science, Uzairue, Nigeria
| | - Vincent Kenechi Abanihi
- Department of Electrical/Electronic Engineering, Faculty of Engineering, Edo State University, Uzairue, Nigeria
| | - Kaushik Pal
- University Centre for Research and Development (UCRD), Department of Physics, Chandigarh University, Mohali, Gharuan, Punjab 140413, India
| |
Collapse
|
50
|
Abstract
For each kilogram of food protein wasted, between 15 and 750 kg of CO2 end up in the atmosphere. With this alarming carbon footprint, food protein waste not only contributes to climate change but also significantly impacts other environmental boundaries, such as nitrogen and phosphorus cycles, global freshwater use, change in land composition, chemical pollution, and biodiversity loss. This contrasts sharply with both the high nutritional value of proteins, as well as their unique chemical and physical versatility, which enable their use in new materials and innovative technologies. In this review, we discuss how food protein waste can be efficiently valorized not only by reintroduction into the food chain supply but also as a template for the development of sustainable technologies by allowing it to exit the food-value chain, thus alleviating some of the most urgent global challenges. We showcase three technologies of immediate significance and environmental impact: biodegradable plastics, water purification, and renewable energy. We discuss, by carefully reviewing the current state of the art, how proteins extracted from food waste can be valorized into key players to facilitate these technologies. We furthermore support analysis of the extant literature by original life cycle assessment (LCA) examples run ad hoc on both plant and animal waste proteins in the context of the technologies considered, and against realistic benchmarks, to quantitatively demonstrate their efficacy and potential. We finally conclude the review with an outlook on how such a comprehensive management of food protein waste is anticipated to transform its carbon footprint from positive to negative and, more generally, have a favorable impact on several other important planetary boundaries.
Collapse
Affiliation(s)
- Mohammad Peydayesh
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
| | - Massimo Bagnani
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
| | - Wei Long Soon
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University, 639798 Singapore
| | - Raffaele Mezzenga
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
- Department
of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|