1
|
Ke C, Xiao C, Li J, Wu X, Zhang Y, Chen Y, Sheng S, Fu Z, Wang L, Ni C, Zhao J, Shi Y, Wu Y, Zhong Z, Nan J, Zhu W, Chen J, Wu R, Hu X. FMO2 ameliorates nonalcoholic fatty liver disease by suppressing ER-to-Golgi transport of SREBP1. Hepatology 2025; 81:181-197. [PMID: 37874228 DOI: 10.1097/hep.0000000000000643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND AND AIMS NAFLD comprises a spectrum of liver disorders with the initial abnormal accumulation of lipids in hepatocytes called NAFL, progressing to the more serious NASH in a subset of individuals. Our previous study revealed that global flavin-containing monooxygenase 2 (FMO2) knockout causes higher liver weight in rats. However, the role of FMO2 in NAFLD remains unclear. Herein, we aimed to determine the function and mechanism of FMO2 in liver steatosis and steatohepatitis. APPROACH AND RESULTS The expression of FMO2 was significantly downregulated in patients with NAFL/NASH and mouse models. Both global and hepatocyte-specific knockout of FMO2 resulted in increased lipogenesis and severe hepatic steatosis, inflammation, and fibrosis, whereas FMO2 overexpression in mice improved NAFL/NASH. RNA sequencing showed that hepatic FMO2 deficiency is associated with impaired lipogenesis in response to metabolic challenges. Mechanistically, FMO2 directly interacts with SREBP1 at amino acids 217-296 competitively with SREBP cleavage-activating protein (SCAP) and inhibits SREBP1 translocation from the endoplasmic reticulum (ER) to the Golgi apparatus and its subsequent activation, thus suppressing de novo lipogenesis (DNL) and improving NAFL/NASH. CONCLUSIONS In hepatocytes, FMO2 is a novel molecule that protects against the progression of NAFL/NASH independent of enzyme activity. FMO2 impairs lipogenesis in high-fat diet-induced or choline-deficient, methionine-deficient, amino acid-defined high-fat diet-induced steatosis, inflammation, and fibrosis by directly binding to SREBP1 and preventing its organelle translocation and subsequent activation. FMO2 thus is a promising molecule for targeting the activation of SREBP1 and for the treatment of NAFL/NASH.
Collapse
Affiliation(s)
- Changle Ke
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Changchen Xiao
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Jiamin Li
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Xianpeng Wu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Yu Zhang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Yongjian Chen
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Shuyuan Sheng
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Zaiyang Fu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Lingjun Wang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Cheng Ni
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Jing Zhao
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Yanna Shi
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Yan Wu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Zhiwei Zhong
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Jinliang Nan
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Wei Zhu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Jinghai Chen
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
- Institute of Translational Medicine, College of Medicine, Zhejiang University, Hangzhou, P.R.China
| | - Rongrong Wu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Xinyang Hu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, P.R.China
| |
Collapse
|
2
|
Kugler BA, Maurer A, Fu X, Franczak E, Ernst N, Schwartze K, Allen J, Li T, Crawford PA, Koch LG, Britton SL, Burgess SC, Thyfault JP. Aerobic capacity and exercise mediate protection against hepatic steatosis via enhanced bile acid metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619494. [PMID: 39484384 PMCID: PMC11526936 DOI: 10.1101/2024.10.21.619494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
High cardiorespiratory fitness and exercise show evidence of altering bile acid (BA) metabolism and are known to protect or treat diet-induced hepatic steatosis, respectively. Here, we tested the hypothesis that high intrinsic aerobic capacity and exercise both increase hepatic BA synthesis measured by the incorporation of 2H2O. We also leveraged mice with inducible liver-specific deletion of Cyp7a1 (LCyp7a1KO), which encodes the rate-limiting enzyme for BA synthesis, to test if exercise-induced BA synthesis is critical for exercise to reduce hepatic steatosis. The synthesis of hepatic BA, cholesterol, and de novo lipogenesis was measured in rats bred for either high (HCR) vs. low (LCR) aerobic capacity consuming acute and chronic high-fat diets. HCR rats had increased synthesis of cholesterol and certain BA species in the liver compared to LCR rats. We also found that chronic exercise with voluntary wheel running (VWR) (4 weeks) increased newly synthesized BAs of specific species in male C57BL/6J mice compared to sedentary mice. Loss of Cyp7a1 resulted in fewer new BAs and increased liver triglycerides compared to controls after a 10-week high-fat diet. Additionally, exercise via VWR for 4 weeks effectively reduced hepatic triglycerides in the high-fat diet-fed control male and female mice as expected; however, exercise in LCyp7a1KO mice did not lower liver triglycerides in either sex. These results show that aerobic capacity and exercise increase hepatic BA metabolism, which may be critical for combatting hepatic steatosis.
Collapse
Affiliation(s)
- Benjamin A. Kugler
- Departments of Cell Biology and Physiology
- Internal Medicine, Division of Endocrinology and Clinical Pharmacology and KU Diabetes Institute
| | | | - Xiaorong Fu
- Center for Human Nutrition and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edziu Franczak
- Departments of Cell Biology and Physiology
- Internal Medicine, Division of Endocrinology and Clinical Pharmacology and KU Diabetes Institute
| | - Nick Ernst
- Departments of Cell Biology and Physiology
| | | | | | - Tiangang Li
- Department of Biochemistry and Physiology, and Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter A. Crawford
- Division of Molecular Medicine, Department of Medicine, and Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN
| | - Lauren G. Koch
- Dept of Physiology and Pharmacology, The University of Toledo, Toledo, OH, USA
| | | | - Shawn C. Burgess
- Center for Human Nutrition and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John P. Thyfault
- Departments of Cell Biology and Physiology
- Internal Medicine, Division of Endocrinology and Clinical Pharmacology and KU Diabetes Institute
- Kansas Center for Metabolism and Obesity Research, Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
3
|
Deberneh HM, Taylor ME, Borowik AK, Miyagi M, Miller BF, Sadygov RG. Numbers of Exchangeable Hydrogens from LC-MS Data of Heavy Water Metabolically Labeled Samples. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1826-1837. [PMID: 39057601 DOI: 10.1021/jasms.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Labeling with deuterium oxide (D2O) has emerged as one of the preferred approaches for measuring the synthesis of individual proteins in vivo. In these experiments, the synthesis rates of proteins are determined by modeling mass shifts in peptides during the labeling period. This modeling depends on a theoretical maximum enrichment determined by the number of labeling sites (NEH) of each amino acid in the peptide sequence. Currently, NEH is determined from one set of published values. However, it has been demonstrated that NEH can differ between species and potentially tissues. The goal of this work was to determine the number of NEH for each amino acid within a given experiment to capture the conditions unique to that experiment. We used four methods to compute the NEH values. To test these approaches, we used two publicly available data sets. In a de novo approach, we compute NEH values and the label enrichment from the abundances of three mass isotopomers. The other three methods use the complete isotope profiles and body water enrichment in deuterium as an input parameter. They determine the NEH values by (1) minimizing the residual sum of squares, (2) from the mole percent excess of labeling, and (3) the time course profile of the depletion of the relative isotope abundance of monoisotope. In the test samples, the method using residual sum of squares performed the best. The methods are implemented in a tool for determining the NEH for each amino acid within a given experiment to use in the determination of protein synthesis rates using D2O.
Collapse
Affiliation(s)
- Henock M Deberneh
- Department of Biochemistry and Molecular Biology The University of Texas Medical Branch 301 University of Blvd, Galveston, Texas 77555, United States
| | - Michael E Taylor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation 825 NE 13th Street Oklahoma City, Oklahoma 73104, United States
| | - Agnieszka K Borowik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation 825 NE 13th Street Oklahoma City, Oklahoma 73104, United States
| | - Masaru Miyagi
- Department of Pharmacology Case Western Reserve University 10900 Euclid Avenue Cleveland, Ohio 44106, United States
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation 825 NE 13th Street Oklahoma City, Oklahoma 73104, United States
- Oklahoma City VA, Oklahoma City, Oklahoma 73104, United States
| | - Rovshan G Sadygov
- Department of Biochemistry and Molecular Biology The University of Texas Medical Branch 301 University of Blvd, Galveston, Texas 77555, United States
| |
Collapse
|
4
|
Deja S, Fletcher JA, Kim CW, Kucejova B, Fu X, Mizerska M, Villegas M, Pudelko-Malik N, Browder N, Inigo-Vollmer M, Menezes CJ, Mishra P, Berglund ED, Browning JD, Thyfault JP, Young JD, Horton JD, Burgess SC. Hepatic malonyl-CoA synthesis restrains gluconeogenesis by suppressing fat oxidation, pyruvate carboxylation, and amino acid availability. Cell Metab 2024; 36:1088-1104.e12. [PMID: 38447582 PMCID: PMC11081827 DOI: 10.1016/j.cmet.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 12/10/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024]
Abstract
Acetyl-CoA carboxylase (ACC) promotes prandial liver metabolism by producing malonyl-CoA, a substrate for de novo lipogenesis and an inhibitor of CPT-1-mediated fat oxidation. We report that inhibition of ACC also produces unexpected secondary effects on metabolism. Liver-specific double ACC1/2 knockout (LDKO) or pharmacologic inhibition of ACC increased anaplerosis, tricarboxylic acid (TCA) cycle intermediates, and gluconeogenesis by activating hepatic CPT-1 and pyruvate carboxylase flux in the fed state. Fasting should have marginalized the role of ACC, but LDKO mice maintained elevated TCA cycle intermediates and preserved glycemia during fasting. These effects were accompanied by a compensatory induction of proteolysis and increased amino acid supply for gluconeogenesis, which was offset by increased protein synthesis during feeding. Such adaptations may be related to Nrf2 activity, which was induced by ACC inhibition and correlated with fasting amino acids. The findings reveal unexpected roles for malonyl-CoA synthesis in liver and provide insight into the broader effects of pharmacologic ACC inhibition.
Collapse
Affiliation(s)
- Stanislaw Deja
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Justin A Fletcher
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Chai-Wan Kim
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Blanka Kucejova
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Xiaorong Fu
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Monika Mizerska
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Morgan Villegas
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Natalia Pudelko-Malik
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Nicholas Browder
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Melissa Inigo-Vollmer
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Cameron J Menezes
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Prashant Mishra
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Eric D Berglund
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Jeffrey D Browning
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - John P Thyfault
- Departments of Cell Biology and Physiology, Internal Medicine and KU Diabetes Institute, Kansas Medical Center, Kansas City, KS, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235, USA
| | - Jay D Horton
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA.
| | - Shawn C Burgess
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA.
| |
Collapse
|
5
|
Smith ME, Chen CT, Gohel CA, Cisbani G, Chen DK, Rezaei K, McCutcheon A, Bazinet RP. Upregulated hepatic lipogenesis from dietary sugars in response to low palmitate feeding supplies brain palmitate. Nat Commun 2024; 15:490. [PMID: 38233416 PMCID: PMC10794264 DOI: 10.1038/s41467-023-44388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Palmitic acid (PAM) can be provided in the diet or synthesized via de novo lipogenesis (DNL), primarily, from glucose. Preclinical work on the origin of brain PAM during development is scarce and contrasts results in adults. In this work, we use naturally occurring carbon isotope ratios (13C/12C; δ13C) to uncover the origin of brain PAM at postnatal days 0, 10, 21 and 35, and RNA sequencing to identify the pathways involved in maintaining brain PAM, at day 35, in mice fed diets with low, medium, and high PAM from birth. Here we show that DNL from dietary sugars maintains the majority of brain PAM during development and is augmented in mice fed low PAM. Importantly, the upregulation of hepatic DNL genes, in response to low PAM at day 35, demonstrates the presence of a compensatory mechanism to maintain total brain PAM pools compared to the liver; suggesting the importance of brain PAM regulation.
Collapse
Affiliation(s)
- Mackenzie E Smith
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, ON, Canada
| | - Chuck T Chen
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, ON, Canada
| | - Chiraag A Gohel
- Department of Biostatistics and Bioinformatics, George Washington University, 950 New Hampshire Ave, NW, Washington, DC, 20052, USA
| | - Giulia Cisbani
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, ON, Canada
| | - Daniel K Chen
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, ON, Canada
| | - Kimia Rezaei
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, ON, Canada
| | - Andrew McCutcheon
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, ON, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, ON, Canada.
| |
Collapse
|
6
|
Syed-Abdul MM, Moore MP, Wheeler AA, Ganga RR, Diaz-Arias A, Petroski GF, Rector RS, Ibdah JA, Parks EJ. Isotope Labeling and Biochemical Assessment of Liver-Triacylglycerol in Patients with Different Levels of Histologically-Graded Liver Disease. J Nutr 2023; 153:3418-3429. [PMID: 37774841 PMCID: PMC10843901 DOI: 10.1016/j.tjnut.2023.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) prevalence is rapidly growing, and fatty liver has been found in a quarter of the US population. Increased liver lipids, particularly those derived from the pathway of de novo lipogenesis (DNL), have been identified as a hallmark feature in individuals with high liver fat. This has led to much activity in basic science and drug development in this area. No studies to date have investigated the contribution of DNL across a spectrum of disease, although it is clear that inhibition of DNL has been shown to reduce liver fat. OBJECTIVES The purpose of this study was to determine whether liver lipid synthesis increases across the continuum of liver injury. METHODS Individuals (n = 49) consumed deuterated water for 10 d before their scheduled bariatric surgeries to label DNL; blood and liver tissue samples were obtained on the day of the surgery. Liver lipid concentrations were quantitated, and levels of protein and gene expression assessed. RESULTS Increased liver DNL, measured isotopically, was significantly associated with liver fatty acid synthase protein content (R = 0.470, P = 0.003), total steatosis assessed by histology (R = 0.526, P = 0.0008), and the fraction of DNL fatty acids in plasma very low-density lipoprotein-triacylglycerol (R = 0.747, P < 0.001). Regression analysis revealed a parabolic relationship between fractional liver DNL (percent) and NAFLD activity score (R = 0.538, P = 0.0004). CONCLUSION These data demonstrate that higher DNL is associated with early to mid stages of liver disease, and this pathway may be an effective target for the treatment of NAFLD and nonalcoholic steatohepatitis. This study was registered at clinicaltrials.gov as NCT03683589.
Collapse
Affiliation(s)
- Majid M Syed-Abdul
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Mary P Moore
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States; Research Services-Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States
| | - Andrew A Wheeler
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Rama R Ganga
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Alberto Diaz-Arias
- Boyce & Bynum Pathology Professional Services, Division of Gastrointestinal & Hepatobiliary Pathology, Columbia, MO, United States
| | - Gregory F Petroski
- Biostatistics Unit, School of Medicine, University of Missouri, Columbia, MO, United States
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States; Research Services-Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Jamal A Ibdah
- Research Services-Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States; Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
7
|
Zhou L, Luo Y, Liu Y, Zeng Y, Tong J, Li M, Hou Y, Du K, Qi Y, Pan W, Liu Y, Wang R, Tian F, Gu C, Chen K. Fatty Acid Oxidation Mediated by Malonyl-CoA Decarboxylase Represses Renal Cell Carcinoma Progression. Cancer Res 2023; 83:3920-3939. [PMID: 37729394 PMCID: PMC10690093 DOI: 10.1158/0008-5472.can-23-0969] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/01/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Fatty acid metabolism reprogramming is a prominent feature of clear cell renal cell carcinoma (ccRCC). Increased lipid storage supports ccRCC progression, highlighting the importance of understanding the molecular mechanisms driving altered fatty acid synthesis in tumors. Here, we identified that malonyl-CoA decarboxylase (MLYCD), a key regulator of fatty acid anabolism, was downregulated in ccRCC, and low expression correlated with poor prognosis in patients. Restoring MLYCD expression in ccRCC cells decreased the content of malonyl CoA, which blocked de novo fatty acid synthesis and promoted fatty acid translocation into mitochondria for oxidation. Inhibition of lipid droplet accumulation induced by MLYCD-mediated fatty acid oxidation disrupted endoplasmic reticulum and mitochondrial homeostasis, increased reactive oxygen species levels, and induced ferroptosis. Moreover, overexpressing MLYCD reduced tumor growth and reversed resistance to sunitinib in vitro and in vivo. Mechanistically, HIF2α inhibited MLYCD translation by upregulating expression of eIF4G3 microexons. Together, this study demonstrates that fatty acid catabolism mediated by MLYCD disrupts lipid homeostasis to repress ccRCC progression. Activating MLYCD-mediated fatty acid metabolism could be a promising therapeutic strategy for treating ccRCC. SIGNIFICANCE MLYCD deficiency facilitates fatty acid synthesis and lipid droplet accumulation to drive progression of renal cell carcinoma, indicating inducing MYLCD as a potential approach to reprogram fatty acid metabolism in kidney cancer.
Collapse
Affiliation(s)
- Lijie Zhou
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yongbo Luo
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuenan Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youmiao Zeng
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Junwei Tong
- Department of Urology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Urology, Wuhan No.1 Hospital, Wuhan, China
| | - Mengting Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yaxin Hou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kaixuan Du
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yabin Qi
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Wenbang Pan
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuanhao Liu
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Rongli Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiao tong University, Xi'an, China
| | - Fengyan Tian
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaohui Gu
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ke Chen
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
8
|
Yiew NK, Deja S, Ferguson D, Cho K, Jarasvaraparn C, Jacome-Sosa M, Lutkewitte AJ, Mukherjee S, Fu X, Singer JM, Patti GJ, Burgess SC, Finck BN. Effects of hepatic mitochondrial pyruvate carrier deficiency on de novo lipogenesis and gluconeogenesis in mice. iScience 2023; 26:108196. [PMID: 37942005 PMCID: PMC10628847 DOI: 10.1016/j.isci.2023.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/31/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
The liver coordinates the systemic response to nutrient deprivation and availability by producing glucose from gluconeogenesis during fasting and synthesizing lipids via de novo lipogenesis (DNL) when carbohydrates are abundant. Mitochondrial pyruvate metabolism is thought to play important roles in both gluconeogenesis and DNL. We examined the effects of hepatocyte-specific mitochondrial pyruvate carrier (MPC) deletion on the fasting-refeeding response. Rates of DNL during refeeding were impaired by hepatocyte MPC deletion, but this did not reduce intrahepatic lipid content. During fasting, glycerol is converted to glucose by two pathways; a direct cytosolic pathway and an indirect mitochondrial pathway requiring the MPC. Hepatocyte MPC deletion reduced the incorporation of 13C-glycerol into TCA cycle metabolites, but not into new glucose. Furthermore, suppression of glycerol and alanine metabolism did not affect glucose concentrations in fasted hepatocyte-specific MPC-deficient mice, suggesting multiple layers of redundancy in glycemic control in mice.
Collapse
Affiliation(s)
- Nicole K.H. Yiew
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Stanislaw Deja
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Daniel Ferguson
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kevin Cho
- Department of Chemistry, Siteman Cancer Center, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Chaowapong Jarasvaraparn
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Miriam Jacome-Sosa
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Andrew J. Lutkewitte
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Sandip Mukherjee
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Xiaorong Fu
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Jason M. Singer
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Gary J. Patti
- Department of Chemistry, Siteman Cancer Center, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Shawn C. Burgess
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Brian N. Finck
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
9
|
Yiew NK, Deja S, Ferguson D, Cho K, Jarasvaraparn C, Jacome-Sosa M, Lutkewitte AJ, Mukherjee S, Fu X, Singer JM, Patti GJ, Burgess SC, Finck BN. Effects of hepatic mitochondrial pyruvate carrier deficiency on de novo lipogenesis and glycerol-mediated gluconeogenesis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528992. [PMID: 36824879 PMCID: PMC9949129 DOI: 10.1101/2023.02.17.528992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The liver coordinates the systemic response to nutrient deprivation and availability by producing glucose from gluconeogenesis during fasting and synthesizing lipids via de novo lipogenesis (DNL) when carbohydrates are abundant. Mitochondrial pyruvate metabolism is thought to play important roles in both gluconeogenesis and DNL. We examined the effects of hepatocyte-specific mitochondrial pyruvate carrier (MPC) deletion on the fasting-refeeding response. Rates of DNL during refeeding were impaired by liver MPC deletion, but this did not reduce intrahepatic lipid content. During fasting, glycerol is converted to glucose by two pathways; a direct cytosolic pathway essentially reversing glycolysis and an indirect mitochondrial pathway requiring the MPC. MPC deletion reduced the incorporation of 13C-glycerol into TCA cycle metabolites but not into newly synthesized glucose. However, suppression of glycerol metabolism did not affect glucose concentrations in fasted hepatocyte-specific MPC-deficient mice. Thus, glucose production by kidney and intestine may compensate for MPC deficiency in hepatocytes.
Collapse
Affiliation(s)
- Nicole K.H. Yiew
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, MO 63110 USA
| | - Stanislaw Deja
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390 USA
| | - Daniel Ferguson
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, MO 63110 USA
| | - Kevin Cho
- Department of Chemistry, Siteman Cancer Center, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, MO 63110 USA
| | - Chaowapong Jarasvaraparn
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, MO 63110 USA
| | - Miriam Jacome-Sosa
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, MO 63110 USA
| | - Andrew J. Lutkewitte
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, MO 63110 USA
| | - Sandip Mukherjee
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, MO 63110 USA
| | - Xiaorong Fu
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390 USA
| | - Jason M. Singer
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, MO 63110 USA
| | - Gary J. Patti
- Department of Chemistry, Siteman Cancer Center, Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, MO 63110 USA
| | - Shawn C. Burgess
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390 USA
| | - Brian N. Finck
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, MO 63110 USA
| |
Collapse
|
10
|
Kostyukevich Y, Stekolshikova E, Levashova A, Kovalenko A, Vishnevskaya A, Bashilov A, Kireev A, Tupertsev B, Rumiantseva L, Khaitovich P, Osipenko S, Nikolaev E. Untargeted Lipidomics after D 2O Administration Reveals the Turnover Rate of Individual Lipids in Various Organs of Living Organisms. Int J Mol Sci 2023; 24:11725. [PMID: 37511483 PMCID: PMC10380497 DOI: 10.3390/ijms241411725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The administration of low doses of D2O to living organisms was used for decades for the investigation of metabolic pathways and for the measurement of the turnover rate for specific compounds. Usually, the investigation of the deuterium uptake in lipids is performed by measuring the deuteration level of the palmitic acid residue using GC-MS instruments, and to our knowledge, the application of the modern untargeted LC-MS/MS lipidomics approaches was only reported a few times. Here, we investigated the deuterium uptake for >500 lipids for 13 organs and body liquids of mice (brain, lung, heart, liver, kidney, spleen, plasma, urine, etc.) after 4 days of 100% D2O administration. The maximum deuteration level was observed in the liver, plasma, and lung, while in the brain and heart, the deuteration level was lower. Using MS/MS, we demonstrated the incorporation of deuterium in palmitic and stearic fragments in lipids (PC, PE, TAG, PG, etc.) but not in the corresponding free forms. Our results were analyzed based on the metabolic pathways of lipids.
Collapse
Affiliation(s)
- Yury Kostyukevich
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia
| | - Elena Stekolshikova
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia
| | - Anna Levashova
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia
- Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency, Krasnogorsky District, Village Light Mountains, Bld. 1, 143442 Moscow, Russia
| | - Anna Kovalenko
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia
| | - Anna Vishnevskaya
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia
| | - Anton Bashilov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia
| | - Albert Kireev
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia
| | - Boris Tupertsev
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia
| | - Lidiia Rumiantseva
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia
| | - Philipp Khaitovich
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia
| | - Sergey Osipenko
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia
| | - Eugene Nikolaev
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia
| |
Collapse
|
11
|
Woodall B, Fozo EM, Campagna SR. Dual stable isotopes enhance lipidomic studies in bacterial model organism Enterococcus faecalis. Anal Bioanal Chem 2023; 415:3593-3605. [PMID: 37204445 DOI: 10.1007/s00216-023-04750-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
Dual stable isotope probes of deuterium oxide and 13C fatty acid were demonstrated to probe the lipid biosynthesis cycle of a Gram-positive bacterium Enterococcus faecalis. As external nutrients and carbon sources often interact with metabolic processes, the use of dual-labeled isotope pools allowed for the simultaneous investigation of both exogenous nutrient incorporation or modification and de novo biosynthesis. Deuterium was utilized to trace de novo fatty acid biosynthesis through solvent-mediated proton transfer during elongation of the carbon chain while 13C-fatty acids were utilized to trace exogenous nutrient metabolism and modification through lipid synthesis. Ultra-high-performance liquid chromatography high-resolution mass spectrometry identified 30 lipid species which incorporated deuterium and/or 13C fatty acid into the membrane. Additionally, MS2 fragments of isolated lipids identified acyl tail position confirming enzymatic activity of PlsY in the incorporation of the 13C fatty acid into membrane lipids.
Collapse
Affiliation(s)
- Brittni Woodall
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Elizabeth M Fozo
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA.
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
12
|
Turner R, Mukherjee R, Wallace M, Sanchez-Gurmaches J. Quantitative Determination of De Novo Fatty Acid Synthesis in Brown Adipose Tissue Using Deuterium Oxide. J Vis Exp 2023:10.3791/64219. [PMID: 37246886 PMCID: PMC10913692 DOI: 10.3791/64219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
Fatty acid synthesis is a complex and highly energy demanding metabolic pathway with important functional roles in the control of whole-body metabolic homeostasis and other physiological and pathological processes. Contrary to other key metabolic pathways, such as glucose disposal, fatty acid synthesis is not routinely functionally assessed, leading to incomplete interpretations of metabolic status. In addition, there is a lack of publicly available detailed protocols suitable for newcomers in the field. Here, we describe an inexpensive quantitative method utilizing deuterium oxide and gas chromatography mass spectrometry (GCMS) for the analysis of total fatty acid de novo synthesis in brown adipose tissue in vivo. This method measures the synthesis of the products of fatty acid synthase independently of a carbon source, and it is potentially useful for virtually any tissue, in any mouse model, and under any external perturbation. Details on the sample preparation for GCMS and downstream calculations are provided. We focus on the analysis of brown fat due to its high levels of de novo fatty acid synthesis and critical roles in maintaining metabolic homeostasis.
Collapse
Affiliation(s)
- Rory Turner
- UCD Conway Institute and UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin
| | - Rajib Mukherjee
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati
| | - Martina Wallace
- UCD Conway Institute and UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin;
| | - Joan Sanchez-Gurmaches
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati; Department of Pediatrics, University of Cincinnati College of Medicine;
| |
Collapse
|
13
|
Neubauer C, Kantnerová K, Lamothe A, Savarino J, Hilkert A, Juchelka D, Hinrichs KU, Elvert M, Heuer V, Elsner M, Bakkour R, Julien M, Öztoprak M, Schouten S, Hattori S, Dittmar T. Discovering Nature's Fingerprints: Isotope Ratio Analysis on Bioanalytical Mass Spectrometers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:525-537. [PMID: 36971362 DOI: 10.1021/jasms.2c00363] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
For a generation or more, the mass spectrometry that developed at the frontier of molecular biology was worlds apart from isotope ratio mass spectrometry, a label-free approach done on optimized gas-source magnetic sector instruments. Recent studies show that electrospray-ionization Orbitraps and other mass spectrometers widely used in the life sciences can be fine-tuned for high-precision isotope ratio analysis. Since isotope patterns form everywhere in nature based on well-understood principles, intramolecular isotope measurements allow unique insights into a fascinating range of research topics. This Perspective introduces a wider readership to current topics in stable isotope research with the aim of discussing how soft-ionization mass spectrometry coupled with ultrahigh mass resolution can enable long-envisioned progress. We highlight novel prospects of observing isotopes in intact polar compounds and speculate on future directions of this adventure into the overlapping realms of biology, chemistry, and geology.
Collapse
Affiliation(s)
- Cajetan Neubauer
- University of Colorado Boulder & Institute for Arctic and Alpine Research (INSTAAR), Boulder, Colorado 80303, United States
| | - Kristýna Kantnerová
- University of Colorado Boulder & Institute for Arctic and Alpine Research (INSTAAR), Boulder, Colorado 80303, United States
| | - Alexis Lamothe
- University Grenoble Alpes, CNRS, IRD, INRAE, Grenoble-INP, IGE, Grenoble 38400, France
| | - Joel Savarino
- University Grenoble Alpes, CNRS, IRD, INRAE, Grenoble-INP, IGE, Grenoble 38400, France
| | | | | | - Kai-Uwe Hinrichs
- MARUM Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Marcus Elvert
- MARUM Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Verena Heuer
- MARUM Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Martin Elsner
- Department of Chemistry, Technical University of Munich, D-85748 Garching, Germany
| | - Rani Bakkour
- Department of Chemistry, Technical University of Munich, D-85748 Garching, Germany
| | - Maxime Julien
- GFZ German Research Center for Geosciences, 14473 Potsdam, Germany
| | - Merve Öztoprak
- NIOZ Royal Netherlands Institute for Sea Research, Texel 1797 SZ, Netherlands
| | - Stefan Schouten
- NIOZ Royal Netherlands Institute for Sea Research, Texel 1797 SZ, Netherlands
| | - Shohei Hattori
- International Center for Isotope Effects Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China
| | - Thorsten Dittmar
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
14
|
Alcoriza-Balaguer MI, García-Cañaveras JC, Benet M, Juan-Vidal O, Lahoz A. FAMetA: a mass isotopologue-based tool for the comprehensive analysis of fatty acid metabolism. Brief Bioinform 2023; 24:7066347. [PMID: 36857618 PMCID: PMC10025582 DOI: 10.1093/bib/bbad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 03/03/2023] Open
Abstract
The use of stable isotope tracers and mass spectrometry (MS) is the gold standard method for the analysis of fatty acid (FA) metabolism. Yet, current state-of-the-art tools provide limited and difficult-to-interpret information about FA biosynthetic routes. Here we present FAMetA, an R package and a web-based application (www.fameta.es) that uses 13C mass isotopologue profiles to estimate FA import, de novo lipogenesis, elongation and desaturation in a user-friendly platform. The FAMetA workflow covers the required functionalities needed for MS data analyses. To illustrate its utility, different in vitro and in vivo experimental settings are used in which FA metabolism is modified. Thanks to the comprehensive characterization of FA biosynthesis and the easy-to-interpret graphical representations compared to previous tools, FAMetA discloses unnoticed insights into how cells reprogram their FA metabolism and, when combined with FASN, SCD1 and FADS2 inhibitors, it enables the identification of new FAs by the metabolic reconstruction of their synthesis route.
Collapse
Affiliation(s)
- María I Alcoriza-Balaguer
- Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia 46026, Spain
| | - Juan C García-Cañaveras
- Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia 46026, Spain
| | - Marta Benet
- Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia 46026, Spain
| | - Oscar Juan-Vidal
- Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia 46026, Spain
| | - Agustín Lahoz
- Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia 46026, Spain
- Analytical Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia 46026, Spain
| |
Collapse
|
15
|
Kim J, Seo S, Kim TY. Metabolic deuterium oxide (D 2O) labeling in quantitative omics studies: A tutorial review. Anal Chim Acta 2023; 1242:340722. [PMID: 36657897 DOI: 10.1016/j.aca.2022.340722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/25/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Mass spectrometry (MS) is an invaluable tool for sensitive detection and characterization of individual biomolecules in omics studies. MS combined with stable isotope labeling enables the accurate and precise determination of quantitative changes occurring in biological samples. Metabolic isotope labeling, wherein isotopes are introduced into biomolecules through biosynthetic metabolism, is one of the main labeling strategies. Among the precursors employed in metabolic isotope labeling, deuterium oxide (D2O) is cost-effective and easy to implement in any biological systems. This tutorial review aims to explain the basic principle of D2O labeling and its applications in omics research. D2O labeling incorporates D into stable C-H bonds in various biomolecules, including nucleotides, proteins, lipids, and carbohydrates. Typically, D2O labeling is performed at low enrichment of 1%-10% D2O, which causes subtle changes in the isotopic distribution of a biomolecule, instead of the complete separation between labeled and unlabeled samples in a mass spectrum. D2O labeling has been employed in various omics studies to determine the metabolic flux, turnover rate, and relative quantification. Moreover, the advantages and challenges of D2O labeling and its future prospects in quantitative omics are discussed. The economy, versatility, and convenience of D2O labeling will be beneficial for the long-term omics studies for higher organisms.
Collapse
Affiliation(s)
- Jonghyun Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Seungwoo Seo
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
| |
Collapse
|
16
|
In vivo detection of metabolic 2H-incorporation upon ingestion of 2H2O. JOURNAL OF BIO-X RESEARCH 2022. [DOI: 10.1097/jbr.0000000000000121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
17
|
Satapati S, Downes DP, Metzger D, Shankaran H, Talukdar S, Zhou Y, Ren Z, Chen M, Lim YH, Hatcher NG, Wen X, Sheth PR, McLaren DG, Previs SF. Using measures of metabolic flux to align screening and clinical development: Avoiding pitfalls to enable translational studies. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:20-28. [PMID: 35058172 DOI: 10.1016/j.slasd.2021.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Screening campaigns, especially those aimed at modulating enzyme activity, often rely on measuring substrate→product conversions. Unfortunately, the presence of endogenous substrates and/or products can limit one's ability to measure conversions. As well, coupled detection systems, often used to facilitate optical readouts, are subject to interference. Stable isotope labeled substrates can overcome background contamination and yield a direct readout of enzyme activity. Not only can isotope kinetic assays enable early screening, but they can also be used to follow hit progression in translational (pre)clinical studies. Herein, we consider a case study surrounding lipid biology to exemplify how metabolic flux analyses can connect stages of drug development, caveats are highlighted to ensure reliable data interpretations. For example, when measuring enzyme activity in early biochemical screening it may be enough to quantify the formation of a labeled product. In contrast, cell-based and in vivo studies must account for variable exposure to a labeled substrate (or precursor) which occurs via tracer dilution and/or isotopic exchange. Strategies are discussed to correct for these complications. We believe that measures of metabolic flux can help connect structure-activity relationships with pharmacodynamic mechanisms of action and determine whether mechanistically differentiated biophysical interactions lead to physiologically relevant outcomes. Adoption of this logic may allow research programs to (i) build a critical bridge between primary screening and (pre)clinical development, (ii) elucidate biology in parallel with screening and (iii) suggest a strategy aimed at in vivo biomarker development.
Collapse
Affiliation(s)
- Santhosh Satapati
- Merck & Co., Inc, 213 E. Grand Ave, South San Francisco, CA, 94080, USA
| | - Daniel P Downes
- Merck & Co., Inc, 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA
| | - Daniel Metzger
- Merck & Co., Inc, 213 E. Grand Ave, South San Francisco, CA, 94080, USA
| | - Harish Shankaran
- Merck & Co., Inc, 213 E. Grand Ave, South San Francisco, CA, 94080, USA
| | - Saswata Talukdar
- Merck & Co., Inc, 213 E. Grand Ave, South San Francisco, CA, 94080, USA
| | - Yingjiang Zhou
- Merck & Co., Inc, 213 E. Grand Ave, South San Francisco, CA, 94080, USA
| | - Zhao Ren
- Merck & Co., Inc, 213 E. Grand Ave, South San Francisco, CA, 94080, USA
| | - Michelle Chen
- Merck & Co., Inc, 213 E. Grand Ave, South San Francisco, CA, 94080, USA
| | - Yeon-Hee Lim
- Merck & Co., Inc, 213 E. Grand Ave, South San Francisco, CA, 94080, USA
| | - Nathan G Hatcher
- Merck & Co., Inc, 770 Sumneytown Pike, West Point, PA, 19486, USA
| | - Xiujuan Wen
- Merck & Co., Inc, 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA
| | - Payal R Sheth
- Merck & Co., Inc, 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA
| | - David G McLaren
- Merck & Co., Inc, 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA
| | - Stephen F Previs
- Merck & Co., Inc, 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA.
| |
Collapse
|
18
|
Zhang Z, TeSlaa T, Xu X, Zeng X, Yang L, Xing G, Tesz GJ, Clasquin MF, Rabinowitz JD. Serine catabolism generates liver NADPH and supports hepatic lipogenesis. Nat Metab 2021; 3:1608-1620. [PMID: 34845393 PMCID: PMC8721747 DOI: 10.1038/s42255-021-00487-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
Carbohydrate can be converted into fat by de novo lipogenesis, a process upregulated in fatty liver disease. Chemically, de novo lipogenesis involves polymerization and reduction of acetyl-CoA, using NADPH as the electron donor. The feedstocks used to generate acetyl-CoA and NADPH in lipogenic tissues remain, however, unclear. Here we show using stable isotope tracing in mice that de novo lipogenesis in adipose is supported by glucose and its catabolism via the pentose phosphate pathway to make NADPH. The liver, in contrast, derives acetyl-CoA for lipogenesis from acetate and lactate, and NADPH from folate-mediated serine catabolism. Such NADPH generation involves the cytosolic serine pathway in liver running in the opposite direction to that observed in most tissues and tumours, with NADPH made by the SHMT1-MTHFD1-ALDH1L1 reaction sequence. SHMT inhibition decreases hepatic lipogenesis. Thus, liver folate metabolism is distinctively wired to support cytosolic NADPH production and lipogenesis. More generally, while the same enzymes are involved in fat synthesis in liver and adipose, different substrates are used, opening the door to tissue-specific pharmacological interventions.
Collapse
Affiliation(s)
- Zhaoyue Zhang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Tara TeSlaa
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Xincheng Xu
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Xianfeng Zeng
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Lifeng Yang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Gang Xing
- Pfizer Inc. Internal Medicine, Cambridge, MA, USA
| | | | | | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ, USA.
| |
Collapse
|