1
|
Qiao X, Li X, Zhang M, Liu N, Wu Y, Lu S, Chen T. Targeting cryptic allosteric sites of G protein-coupled receptors as a novel strategy for biased drug discovery. Pharmacol Res 2025; 212:107574. [PMID: 39755133 DOI: 10.1016/j.phrs.2024.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of membrane receptors and are highly effective targets for therapeutic drugs. GPCRs couple different downstream effectors, including G proteins (such as Gi/o, Gs, G12, and Gq) and β-arrestins (such as β-arrestin 1 and β-arrestin 2) to mediate diverse cellular and physiological responses. Biased signaling allows for the specific activation of certain pathways from the full range of receptors' signaling capabilities. Targeting more variable allosteric sites, which are spatially different from the highly conserved orthosteric sites, represents a novel approach in biased GPCR drug discovery, leading to innovative strategies for targeting GPCRs. Notably, the emergence of cryptic allosteric sites on GPCRs has expanded the repertoire of available drug targets and improved receptor subtype selectivity. Here, we conduct a summary of recent progress in the structural determination of cryptic allosteric sites on GPCRs and elucidate the biased signaling mechanisms induced by allosteric modulators. Additionally, we discuss means to identify cryptic allosteric sites and design biased allosteric modulators based on cryptic allosteric sites through structure-based drug design, which is an advanced pharmacotherapeutic approach for treating GPCR-associated diseases.
Collapse
Affiliation(s)
- Xin Qiao
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaolong Li
- Department of Orthopedics, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Mingyang Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ning Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yanmei Wu
- Department of General Surgery, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China.
| | - Shaoyong Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
2
|
Chen X, Xu S, Yang S, Yu Z, Chen Y, Wu H, Bao Q, You Q, Guo X, Jiang Z. Discovery of Selenium-Containing Derivatives as Potent and Orally Bioavailable GLP-1R Agonists. J Med Chem 2025. [PMID: 39824521 DOI: 10.1021/acs.jmedchem.4c02616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) is a well-established target for the treatment of type 2 diabetes mellitus (T2DM) and obesity. The development of orally bioavailable and long-acting small-molecule GLP-1R agonists is a pursuit in both academia and industry. Herein, new selenium (Se)-containing compounds were designed using a Se-oxygen bioisostere strategy on the danuglipron scaffold. Among these, compound 21 was orally bioavailable and exhibited full agonistic efficacy in promoting cyclic adenosine monophosphate (cAMP) accumulation. In hGLP-1R knock-in mice, 21 effectively reduced blood glucose levels and food intake, with the duration of action slightly extended compared to that of danuglipron. Importantly, no significant adverse effects were observed in mice treated with 21 during the subacute toxicity studies. This study delineates the potential of Se-containing compounds as orally bioavailable GLP-1R agonists, with compound 21 emerging as a promising candidate for T2DM and obesity treatment.
Collapse
Affiliation(s)
- Xuetao Chen
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shicheng Xu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shuang Yang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zezhou Yu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yali Chen
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huidan Wu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qichao Bao
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoke Guo
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Conflitti P, Lyman E, Sansom MSP, Hildebrand PW, Gutiérrez-de-Terán H, Carloni P, Ansell TB, Yuan S, Barth P, Robinson AS, Tate CG, Gloriam D, Grzesiek S, Eddy MT, Prosser S, Limongelli V. Functional dynamics of G protein-coupled receptors reveal new routes for drug discovery. Nat Rev Drug Discov 2025:10.1038/s41573-024-01083-3. [PMID: 39747671 DOI: 10.1038/s41573-024-01083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 01/04/2025]
Abstract
G protein-coupled receptors (GPCRs) are the largest human membrane protein family that transduce extracellular signals into cellular responses. They are major pharmacological targets, with approximately 26% of marketed drugs targeting GPCRs, primarily at their orthosteric binding site. Despite their prominence, predicting the pharmacological effects of novel GPCR-targeting drugs remains challenging due to the complex functional dynamics of these receptors. Recent advances in X-ray crystallography, cryo-electron microscopy, spectroscopic techniques and molecular simulations have enhanced our understanding of receptor conformational dynamics and ligand interactions with GPCRs. These developments have revealed novel ligand-binding modes, mechanisms of action and druggable pockets. In this Review, we highlight such aspects for recently discovered small-molecule drugs and drug candidates targeting GPCRs, focusing on three categories: allosteric modulators, biased ligands, and bivalent and bitopic compounds. Although studies so far have largely been retrospective, integrating structural data on ligand-induced receptor functional dynamics into the drug discovery pipeline has the potential to guide the identification of drug candidates with specific abilities to modulate GPCR interactions with intracellular effector proteins such as G proteins and β-arrestins, enabling more tailored selectivity and efficacy profiles.
Collapse
Affiliation(s)
- Paolo Conflitti
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, DE, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Peter W Hildebrand
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Paolo Carloni
- INM-9/IAS-5 Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
- Department of Physics, RWTH Aachen University, Aachen, Germany
| | - T Bertie Ansell
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Shuguang Yuan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Patrick Barth
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - David Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| | - Matthew T Eddy
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Scott Prosser
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - Vittorio Limongelli
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland.
| |
Collapse
|
4
|
Aguggia J, Fernandez G, Cassano D, Mustafá ER, Rodríguez SS, Cantel S, Fehrentz JA, Raingo J, Schiöth HB, Habib AM, De Francesco PN, Perello M. Selective Colocalization of GHSR and GLP-1R in a Subset of Hypothalamic Neurons and Their Functional Interaction. Endocrinology 2024; 166:bqae160. [PMID: 39737802 DOI: 10.1210/endocr/bqae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Indexed: 01/01/2025]
Abstract
The GH secretagogue receptor (GHSR) and the glucagon-like peptide-1 receptor (GLP-1R) are G protein-coupled receptors with critical, yet opposite, roles in regulating energy balance. Interestingly, these receptors are expressed in overlapping brain regions. However, the extent to which they target the same neurons and engage in molecular crosstalk remains unclear. To explore the potential colocalization of GHSR and GLP-1R in specific neurons, we performed detailed mapping of cells positive for both receptors using GHSR-eGFP reporter mice or wild-type mice infused with fluorescent ghrelin, alongside an anti-GLP-1R antibody. We found that GHSR+ and GLP-1R+ cells are largely segregated in the mouse brain. The highest overlap was observed in the hypothalamic arcuate nucleus, where 15% to 20% of GHSR+ cells were also GLP-1R+ cells. Additionally, we examined RNA-sequencing datasets from mouse and human brains to assess the fraction and distribution of neurons expressing both receptors, finding that double-positive Ghsr+/Glp1r+ cells are highly segregated, with a small subset of double-positive Ghsr+/Glp1r+ cells representing <10% of all Ghsr+ or Glp1r+ cells, primarily enriched in the hypothalamus. Furthermore, we conducted functional studies using patch-clamp recordings in a heterologous expression system to assess potential crosstalk in regulating presynaptic calcium channels. We provide the first evidence that liraglutide-evoked GLP-1R activity inhibits presynaptic channels, and that the presence of one GPCR attenuates the inhibitory effects of ligand-evoked activity mediated by the other on presynaptic calcium channels. In conclusion, while GHSR and GLP-1R can engage in molecular crosstalk, they are largely segregated across most neuronal types within the brain.
Collapse
Affiliation(s)
- Julieta Aguggia
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Gimena Fernandez
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Daniela Cassano
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Emilio R Mustafá
- Laboratory of Electrophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Silvia S Rodríguez
- Laboratory of Electrophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Jesica Raingo
- Laboratory of Electrophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, 751 24 Uppsala, Sweden
| | - Abdella M Habib
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Pablo N De Francesco
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, 751 24 Uppsala, Sweden
| |
Collapse
|
5
|
Powers AS, Khan A, Paggi JM, Latorraca NR, Souza S, Di Salvo J, Lu J, Soisson SM, Johnston JM, Weinglass AB, Dror RO. A non-canonical mechanism of GPCR activation. Nat Commun 2024; 15:9938. [PMID: 39550377 PMCID: PMC11569127 DOI: 10.1038/s41467-024-54103-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024] Open
Abstract
The goal of designing safer, more effective drugs has led to tremendous interest in molecular mechanisms through which ligands can precisely manipulate the signaling of G-protein-coupled receptors (GPCRs), the largest class of drug targets. Decades of research have led to the widely accepted view that all agonists-ligands that trigger GPCR activation-function by causing rearrangement of the GPCR's transmembrane helices, opening an intracellular pocket for binding of transducer proteins. Here we demonstrate that certain agonists instead trigger activation of free fatty acid receptor 1 by directly rearranging an intracellular loop that interacts with transducers. We validate the predictions of our atomic-level simulations by targeted mutagenesis; specific mutations that disrupt interactions with the intracellular loop convert these agonists into inverse agonists. Further analysis suggests that allosteric ligands could regulate the signaling of many other GPCRs via a similar mechanism, offering rich possibilities for precise control of pharmaceutically important targets.
Collapse
Affiliation(s)
- Alexander S Powers
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Aasma Khan
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, NJ, USA
- Department of Therapeutic Proteins, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Joseph M Paggi
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Naomi R Latorraca
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Sarah Souza
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, NJ, USA
| | | | - Jun Lu
- Department of Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
- Small Molecule Discovery, Zai Lab (US) LLC, Cambridge, MA, USA
| | - Stephen M Soisson
- Department of Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
- Protein Therapeutics and Structural Biology, Odyssey Therapeutics, Boston, MA, USA
| | | | - Adam B Weinglass
- Department of Quantitative Biosciences, Merck & Co., Inc., Rahway, NJ, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, USA.
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA.
- Biophysics Program, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Fontana P, Du G, Zhang Y, Zhang H, Vora SM, Hu JJ, Shi M, Tufan AB, Healy LB, Xia S, Lee DJ, Li Z, Baldominos P, Ru H, Luo HR, Agudo J, Lieberman J, Wu H. Small-molecule GSDMD agonism in tumors stimulates antitumor immunity without toxicity. Cell 2024; 187:6165-6181.e22. [PMID: 39243763 PMCID: PMC11648675 DOI: 10.1016/j.cell.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/14/2023] [Accepted: 08/06/2024] [Indexed: 09/09/2024]
Abstract
Gasdermin-mediated inflammatory cell death (pyroptosis) can activate protective immunity in immunologically cold tumors. Here, we performed a high-throughput screen for compounds that could activate gasdermin D (GSDMD), which is expressed widely in tumors. We identified 6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline (DMB) as a direct and selective GSDMD agonist that activates GSDMD pore formation and pyroptosis without cleaving GSDMD. In mouse tumor models, pulsed and low-level pyroptosis induced by DMB suppresses tumor growth without harming GSDMD-expressing immune cells. Protection is immune-mediated and abrogated in mice lacking lymphocytes. Vaccination with DMB-treated cancer cells protects mice from secondary tumor challenge, indicating that immunogenic cell death is induced. DMB treatment synergizes with anti-PD-1. DMB treatment does not alter circulating proinflammatory cytokine or leukocyte numbers or cause weight loss. Thus, our studies reveal a strategy that relies on a low level of tumor cell pyroptosis to induce antitumor immunity and raise the possibility of exploiting pyroptosis without causing overt toxicity.
Collapse
Affiliation(s)
- Pietro Fontana
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Gang Du
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ying Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Haiwei Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Setu M Vora
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jun Jacob Hu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ming Shi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ahmet B Tufan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Liam B Healy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Shiyu Xia
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Dian-Jang Lee
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Zhouyihan Li
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Pilar Baldominos
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Heng Ru
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hongbo R Luo
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, MA 02115, USA; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA 02115, USA
| | - Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Liu N, Cui X, Guo T, Wei X, Sun Y, Liu J, Zhang Y, Ma W, Yan W, Chen L. Baicalein Ameliorates Insulin Resistance of HFD/STZ Mice Through Activating PI3K/AKT Signal Pathway of Liver and Skeletal Muscle in a GLP-1R-Dependent Manner. Antioxidants (Basel) 2024; 13:1246. [PMID: 39456499 PMCID: PMC11505556 DOI: 10.3390/antiox13101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Insulin resistance (IR) is the principal pathophysiological change occurring in diabetes mellitus (DM). Baicalein, a bioactive flavonoid primarily extracted from the medicinal plant Scutellaria baicalensis Georgi, has been shown in our previous research to be a potential natural glucagon-like peptide-1 receptor (GLP-1R) agonist. However, the exact therapeutic effect of baicalein on DM and its underlying mechanisms remain elusive. In this study, we investigated the therapeutic effects of baicalein on diabetes and sought to clarify its underlying molecular mechanisms. Our results demonstrated that baicalein improves hyperglycemic, hyperinsulinemic, and glucometabolic disorders in mice with induced diabetes via GLP-1R. This was confirmed by the finding that baicalein's effects on improving IR were largely diminished in mice with whole-body Glp1r ablation. Complementarily, network pharmacology analysis highlighted the pivotal involvement of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) insulin signaling pathway in the therapeutic actions of baicalein on IR. Our mechanism research significantly confirmed that baicalein mitigates hepatic and muscular IR through the PI3K/AKT signal pathway, both in vitro and in vivo. Furthermore, we demonstrated that baicalein enhances glucose uptake in skeletal muscle cells under IR conditions through the Ca2+/calmodulin-dependent protein kinase II (CaMKII)-adenosine 5'-monophosphate-activated protein kinase (AMPK)-glucose transporter 4 (GLUT4) signaling pathway in a GLP-1R-dependent manner. In conclusion, our findings confirm the therapeutic effects of baicalein on IR and reveal that it improves IR in liver and muscle tissues through the PI3K/AKT insulin signaling pathway in a GLP-1R dependent manner. Moreover, we clarified that baicalein enhances the glucose uptake in skeletal muscle tissue through the Ca2+/CaMKII-AMPK-GLUT4 signal pathway.
Collapse
Affiliation(s)
- Na Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Xin Cui
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Tingli Guo
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Xiaotong Wei
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Yuzhuo Sun
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Jieyun Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Yangyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Weina Ma
- School of Pharmacy, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Wenhui Yan
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Lina Chen
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi’an 710061, China
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
8
|
Alnouri MW, Roquid KA, Bonnavion R, Cho H, Heering J, Kwon J, Jäger Y, Wang S, Günther S, Wettschureck N, Geisslinger G, Gurke R, Müller CE, Proschak E, Offermanns S. SPMs exert anti-inflammatory and pro-resolving effects through positive allosteric modulation of the prostaglandin EP4 receptor. Proc Natl Acad Sci U S A 2024; 121:e2407130121. [PMID: 39365815 PMCID: PMC11474063 DOI: 10.1073/pnas.2407130121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/20/2024] [Indexed: 10/06/2024] Open
Abstract
Inflammation is a protective response to pathogens and injury. To be effective it needs to be resolved by endogenous mechanisms in order to avoid prolonged and excessive inflammation, which can become chronic. Specialized pro-resolving mediators (SPMs) are a group of lipids derived from omega-3 fatty acids, which can induce the resolution of inflammation. How SPMs exert their anti-inflammatory and pro-resolving effects is, however, not clear. Here, we show that SPMs such as protectins, maresins, and D-series resolvins function as biased positive allosteric modulators (PAM) of the prostaglandin E2 (PGE2) receptor EP4 through an intracellular binding site. They increase PGE2-induced Gs-mediated formation of cAMP and thereby promote anti-inflammatory signaling of EP4. In addition, SPMs endow the endogenous EP4 receptor on macrophages with the ability to couple to Gi-type G-proteins, which converts the EP4 receptor on macrophages from an anti-phagocytotic receptor to one increasing phagocytosis, a central mechanism of the pro-resolving activity of synthetic SPMs. In the absence of the EP4 receptor, SPMs lose their anti-inflammatory and pro-resolving activity in vitro and in vivo. Our findings reveal an unusual mechanism of allosteric receptor modulation by lipids and provide a mechanism by which synthetic SPMs exert pro-resolving and anti-inflammatory effects, which may facilitate approaches to treat inflammation.
Collapse
Affiliation(s)
- Mohamad Wessam Alnouri
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Kenneth Anthony Roquid
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Rémy Bonnavion
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Haaglim Cho
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Frankfurt am Main60596, Germany
| | - Jeonghyeon Kwon
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Yannick Jäger
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - ShengPeng Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi’an710061, China
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Deep Sequencing Platform, Bad Nauheim61231, Germany
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
- Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt60590, Germany
- Excellence Cluster Cardiopulmonary Institute (CPI), Bad Nauheim Bad61231, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main site, Bad Nauheim61231, Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Frankfurt am Main60596, Germany
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main60590, Germany
| | - Robert Gurke
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Frankfurt am Main60596, Germany
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main60590, Germany
| | - Christa E. Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn53121, Germany
- PharmaCenter Bonn, University of Bonn, Bonn53121, Germany
| | - Ewgenij Proschak
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Frankfurt am Main60596, Germany
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt60438, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
- Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt60590, Germany
- Excellence Cluster Cardiopulmonary Institute (CPI), Bad Nauheim Bad61231, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main site, Bad Nauheim61231, Germany
| |
Collapse
|
9
|
Li B, Yang MY, Kim SK, Goddard WA. The G Protein-First Mechanism for Activation of the Class B Glucagon-like Peptide 1 Receptor Coupled to N-Terminal Domain-Mediated Conformational Progression. J Am Chem Soc 2024; 146:26251-26260. [PMID: 39266057 DOI: 10.1021/jacs.4c08128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Recently, there has been a great deal of excitement about new glucagon-like peptide 1 receptor (GLP-1R) agonists (e.g., semaglutide and tirzepatide) that have received FDA approval for type 2 diabetes and obesity. Although effective, these drugs come with side effects that limit their use. While research efforts continue to focus intensively on long-lasting, orally administered GLP-1R medications with fewer side effects, a major impediment to developing improved GLP-1R medications is that the mechanism by which an agonist activates GLP-1R to imitate signaling is not known. Here we present and validate the G protein (GP)-first mechanism for the GLP-1R supported by extensive atomistic simulations. We propose that GLP-1R is preactivated through the formation of a GLP-1R-GP precoupled complex at the cell membrane prior to ligand binding. Despite a transmembrane helix 6 (TM6)-bentout conformation characteristic of activated GLP-1R, this precoupled complex remains unactivated until an agonist binds to elicit signaling. Notably, this new hypothesis offers a unified and predictive model for the activities of a series of full and partial agonists, including the peptides ExP5, GLP-1(7-36), and GLP-1(9-36). Most surprisingly, our simulations reveal an N-terminus domain (NTD)-swing/agonist-insertion mechanism wherein the long extracellular NTD of GLP-1R tightly holds the C-terminal half of the peptide agonist and progressively shifts the N-terminal head of the peptide to facilitate insertion into the orthosteric pocket. Our findings provide novel mechanistic insights into the activation and function of class B GPCRs and should provide a realistic basis for structure-based ligand design.
Collapse
Affiliation(s)
- Bo Li
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Moon Young Yang
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Soo-Kyung Kim
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - William A Goddard
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
10
|
Zhang Z, Pan H, Guo L, Cai C, Chen T, Zhang Z, Yang X, Zheng H, Jiang C, Wang Z, Yang Y, Wang Z, Zhang X, Zhang Y, Liu D. Design and Evaluation of 3-Phenyloxetane Derivative Agonists of the Glucagon-Like Peptide-1 Receptor. J Med Chem 2024; 67:14820-14839. [PMID: 39140772 DOI: 10.1021/acs.jmedchem.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Various small molecule GLP1R agonists have been developed and tested for treating type 2 diabetes (T2DM) and obesity. However, many of these new compounds have drawbacks, such as potential hERG inhibition, lower activity compared to natural GLP-1, limited oral bioavailability in cynomolgus monkeys, and short duration of action. Recently, a new category of 3-phenyloxetane derivative GLP1R agonists with enhanced hERG inhibition has been discovered. Using an AIDD/CADD method, compound 14 (DD202-114) was identified as a potent and selective GLP1R agonist, which was chosen as a preclinical candidate (PCC). Compound 14 demonstrates full agonistic efficacy in promoting cAMP accumulation and possesses favorable drug-like characteristics compared to the clinical drug candidate Danuglipron. Additionally, in hGLP-1R knock-in mice, compound 14 displayed a sustained pharmacological effect, effectively reducing blood glucose levels and food intake. These findings suggest that compound 14 holds promise as a future treatment option for T2DM and obesity, offering improved properties.
Collapse
Affiliation(s)
- Zhimin Zhang
- Global Drug R&D Center, Huadong Medicine Company Limited, Hangzhou 310011, P. R. of China
| | - Hao Pan
- Global Drug R&D Center, Huadong Medicine Company Limited, Hangzhou 310011, P. R. of China
| | - Liubin Guo
- Global Drug R&D Center, Huadong Medicine Company Limited, Hangzhou 310011, P. R. of China
| | - Cancan Cai
- Global Drug R&D Center, Huadong Medicine Company Limited, Hangzhou 310011, P. R. of China
| | - Tingni Chen
- Global Drug R&D Center, Huadong Medicine Company Limited, Hangzhou 310011, P. R. of China
| | - Zhiping Zhang
- Global Drug R&D Center, Huadong Medicine Company Limited, Hangzhou 310011, P. R. of China
| | - Xu Yang
- Global Drug R&D Center, Huadong Medicine Company Limited, Hangzhou 310011, P. R. of China
| | - Haowen Zheng
- Global Drug R&D Center, Huadong Medicine Company Limited, Hangzhou 310011, P. R. of China
| | - Chunhua Jiang
- Global Drug R&D Center, Huadong Medicine Company Limited, Hangzhou 310011, P. R. of China
| | - Zhiyong Wang
- Global Drug R&D Center, Huadong Medicine Company Limited, Hangzhou 310011, P. R. of China
| | - Yacheng Yang
- Global Drug R&D Center, Huadong Medicine Company Limited, Hangzhou 310011, P. R. of China
| | - Zhe Wang
- Global Drug R&D Center, Huadong Medicine Company Limited, Hangzhou 310011, P. R. of China
| | - Xiaohua Zhang
- Global Drug R&D Center, Huadong Medicine Company Limited, Hangzhou 310011, P. R. of China
| | - Yuchen Zhang
- Global Drug R&D Center, Huadong Medicine Company Limited, Hangzhou 310011, P. R. of China
| | - Dongzhou Liu
- Global Drug R&D Center, Huadong Medicine Company Limited, Hangzhou 310011, P. R. of China
| |
Collapse
|
11
|
Zhang H, Wu T, Wu Y, Peng Y, Wei X, Lu T, Jiao Y. Binding sites and design strategies for small molecule GLP-1R agonists. Eur J Med Chem 2024; 275:116632. [PMID: 38959726 DOI: 10.1016/j.ejmech.2024.116632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) is a pivotal receptor involved in blood glucose regulation and influencing feeding behavior. It has received significant attention in the treatment of obesity and diabetes due to its potent incretin effect. Peptide GLP-1 receptor agonists (GLP-1RAs) have achieved tremendous success in the market, driving the vigorous development of small molecule GLP-1RAs. Currently, several small molecules have entered the clinical research stage. Additionally, recent discoveries of GLP-1R positive allosteric modulators (PAMs) are also unveiling new regulatory patterns and treatment methods. This article reviews the structure and functional mechanisms of GLP-1R, recent reports on small molecule GLP-1RAs and PAMs, as well as the optimization process. Furthermore, it combines computer simulations to analyze structure-activity relationships (SAR) studies, providing a foundation for exploring new strategies for designing small molecule GLP-1RAs.
Collapse
Affiliation(s)
- Haibo Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Tianxiao Wu
- Jiangsu Vcare PharmaTech Co., Ltd., 136 Huakang Road, Nanjing, 211800, China
| | - Yong Wu
- Jiangsu Vcare PharmaTech Co., Ltd., 136 Huakang Road, Nanjing, 211800, China
| | - Yuran Peng
- Jiangsu Vcare PharmaTech Co., Ltd., 136 Huakang Road, Nanjing, 211800, China
| | - Xian Wei
- Department of Pharmacy, Youjiang Medical University for Nationalities, 98 ChengXiang Road, Baise, 533000, China.
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
| | - Yu Jiao
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
| |
Collapse
|
12
|
Liu N, Cui X, Yan W, Guo T, Wang Z, Wei X, Sun Y, Liu J, Xian C, Ma W, Chen L. Baicalein: A potential GLP-1R agonist improves cognitive disorder of diabetes through mitophagy enhancement. J Pharm Anal 2024; 14:100968. [PMID: 39258173 PMCID: PMC11386286 DOI: 10.1016/j.jpha.2024.100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 09/12/2024] Open
Abstract
There is increasing evidence that the activation of glucagon-like peptide-1 receptor (GLP-1R) can be used as a therapeutic intervention for cognitive disorders. Here, we have screened GLP-1R targeted compounds from Scutellaria baicalensis, which revealed baicalein is a potential GLP-1R small-molecule agonist. Mitophagy, a selective autophagy pathway for mitochondrial quality control, plays a neuroprotective role in multiple cognitive impairment diseases. We noticed that Glp1r knock-out (KO) mice present cognitive impairment symptoms and appear worse in spatial learning memory and learning capacity in Morris water maze (MWM) test than their wide-type (WT) counterparts. Our mechanistic studies revealed that mitophagy is impaired in hippocampus tissue of diabetic mice and Glp1r KO mice. Finally, we verified that the cognitive improvement effects of baicalein on diabetic cognitive dysfunction occur through the enhancement of mitophagy in a GLP-1R-dependent manner. Our findings shed light on the importance of GLP-1R for cognitive function maintenance, and revealed the vital significance of GLP-1R for maintaining mitochondrial homeostasis. Furthermore, we identified the therapeutic potential of baicalein in the treatment of cognitive disorder associated with diabetes.
Collapse
Affiliation(s)
- Na Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xin Cui
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenhui Yan
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tingli Guo
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhuanzhuan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaotong Wei
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuzhuo Sun
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jieyun Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Cheng Xian
- Hezhou People's Hospital, Guangxi Zhuang Autonomous Region, Hezhou, Guangxi, 542899, China
| | - Weina Ma
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Lina Chen
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, 710061, China
| |
Collapse
|
13
|
Shihoya W, Iwama A, Sano FK, Nureki O. Cryo-EM advances in GPCR structure determination. J Biochem 2024; 176:1-10. [PMID: 38498911 DOI: 10.1093/jb/mvae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
G-protein-coupled receptors (GPCRs) constitute a prominent superfamily in humans and are categorized into six classes (A-F) that play indispensable roles in cellular communication and therapeutics. Nonetheless, their structural comprehension has been limited by challenges in high-resolution data acquisition. This review highlights the transformative impact of cryogenic electron microscopy (cryo-EM) on the structural determinations of GPCR-G-protein complexes. Specific technologies, such as nanobodies and mini-G-proteins, stabilize complexes and facilitate structural determination. We discuss the structural alterations upon receptor activation in different GPCR classes, revealing their diverse mechanisms. This review highlights the robust foundation for comprehending GPCR function and pave the way for future breakthroughs in drug discovery and therapeutic targeting.
Collapse
Affiliation(s)
- Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Aika Iwama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
O'Brien ES, Rangari VA, El Daibani A, Eans SO, Hammond HR, White E, Wang H, Shiimura Y, Krishna Kumar K, Jiang Q, Appourchaux K, Huang W, Zhang C, Kennedy BJ, Mathiesen JM, Che T, McLaughlin JP, Majumdar S, Kobilka BK. A µ-opioid receptor modulator that works cooperatively with naloxone. Nature 2024; 631:686-693. [PMID: 38961287 DOI: 10.1038/s41586-024-07587-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 05/21/2024] [Indexed: 07/05/2024]
Abstract
The µ-opioid receptor (µOR) is a well-established target for analgesia1, yet conventional opioid receptor agonists cause serious adverse effects, notably addiction and respiratory depression. These factors have contributed to the current opioid overdose epidemic driven by fentanyl2, a highly potent synthetic opioid. µOR negative allosteric modulators (NAMs) may serve as useful tools in preventing opioid overdose deaths, but promising chemical scaffolds remain elusive. Here we screened a large DNA-encoded chemical library against inactive µOR, counter-screening with active, G-protein and agonist-bound receptor to 'steer' hits towards conformationally selective modulators. We discovered a NAM compound with high and selective enrichment to inactive µOR that enhances the affinity of the key opioid overdose reversal molecule, naloxone. The NAM works cooperatively with naloxone to potently block opioid agonist signalling. Using cryogenic electron microscopy, we demonstrate that the NAM accomplishes this effect by binding a site on the extracellular vestibule in direct contact with naloxone while stabilizing a distinct inactive conformation of the extracellular portions of the second and seventh transmembrane helices. The NAM alters orthosteric ligand kinetics in therapeutically desirable ways and works cooperatively with low doses of naloxone to effectively inhibit various morphine-induced and fentanyl-induced behavioural effects in vivo while minimizing withdrawal behaviours. Our results provide detailed structural insights into the mechanism of negative allosteric modulation of the µOR and demonstrate how this can be exploited in vivo.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Allosteric Regulation/drug effects
- Analgesics, Opioid/antagonists & inhibitors
- Analgesics, Opioid/pharmacology
- Binding Sites/drug effects
- Cryoelectron Microscopy
- Drug Evaluation, Preclinical
- Fentanyl/antagonists & inhibitors
- Fentanyl/pharmacology
- Kinetics
- Ligands
- Models, Molecular
- Morphine/antagonists & inhibitors
- Morphine/pharmacology
- Naloxone/administration & dosage
- Naloxone/chemistry
- Naloxone/metabolism
- Naloxone/pharmacology
- Narcotic Antagonists/administration & dosage
- Narcotic Antagonists/chemistry
- Narcotic Antagonists/metabolism
- Narcotic Antagonists/pharmacology
- Opiate Overdose/drug therapy
- Protein Conformation/drug effects
- Protein Stability/drug effects
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/metabolism
- Sf9 Cells
- Signal Transduction/drug effects
- Small Molecule Libraries/chemistry
- Small Molecule Libraries/pharmacology
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Evan S O'Brien
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Vipin Ashok Rangari
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, USA
| | - Amal El Daibani
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, USA
| | - Shainnel O Eans
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Haylee R Hammond
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Elizabeth White
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuki Shiimura
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Fukuoka, Japan
| | - Kaavya Krishna Kumar
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Qianru Jiang
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, USA
| | - Kevin Appourchaux
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, USA
| | - Weijiao Huang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chensong Zhang
- Division of CryoEM and Bioimaging, SSRL, SLAC National Acceleration Laboratory, Menlo Park, CA, USA
| | | | - Jesper M Mathiesen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Tao Che
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA.
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, USA.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
15
|
Duan J, He XH, Li SJ, Xu HE. Cryo-electron microscopy for GPCR research and drug discovery in endocrinology and metabolism. Nat Rev Endocrinol 2024; 20:349-365. [PMID: 38424377 DOI: 10.1038/s41574-024-00957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors, with many GPCRs having crucial roles in endocrinology and metabolism. Cryogenic electron microscopy (cryo-EM) has revolutionized the field of structural biology, particularly regarding GPCRs, over the past decade. Since the first pair of GPCR structures resolved by cryo-EM were published in 2017, the number of GPCR structures resolved by cryo-EM has surpassed the number resolved by X-ray crystallography by 30%, reaching >650, and the number has doubled every ~0.63 years for the past 6 years. At this pace, it is predicted that the structure of 90% of all human GPCRs will be completed within the next 5-7 years. This Review highlights the general structural features and principles that guide GPCR ligand recognition, receptor activation, G protein coupling, arrestin recruitment and regulation by GPCR kinases. The Review also highlights the diversity of GPCR allosteric binding sites and how allosteric ligands could dictate biased signalling that is selective for a G protein pathway or an arrestin pathway. Finally, the authors use the examples of glycoprotein hormone receptors and glucagon-like peptide 1 receptor to illustrate the effect of cryo-EM on understanding GPCR biology in endocrinology and metabolism, as well as on GPCR-related endocrine diseases and drug discovery.
Collapse
Affiliation(s)
- Jia Duan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Xin-Heng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shu-Jie Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Traditional Chinese Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
16
|
Brunetti L, Francavilla F, Leopoldo M, Lacivita E. Allosteric Modulators of Serotonin Receptors: A Medicinal Chemistry Survey. Pharmaceuticals (Basel) 2024; 17:695. [PMID: 38931362 PMCID: PMC11206742 DOI: 10.3390/ph17060695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter regulating numerous physiological functions, and its dysregulation is a crucial component of the pathological processes of schizophrenia, depression, migraines, and obesity. 5-HT interacts with 14 different receptors, of which 5-HT1A-1FRs, 5-HT2A-CRs, and 5-HT4-7Rs are G protein-coupled receptors (GPCRs), while 5-HT3R is a ligand-gated ion channel. Over the years, selective orthosteric ligands have been identified for almost all serotonin receptors, yielding several clinically relevant drugs. However, the high degree of homology between 5-HTRs and other GPCRs means that orthosteric ligands can have severe side effects. Thus, there has recently been increased interest in developing safer ligands of GPCRs, which bind to less conserved, more specific sites, distinct from that of the receptor's natural ligand. The present review describes the identification of allosteric ligands of serotonin receptors, which are largely natural compounds (oleamide, cannabidiol, THC, and aporphine alkaloids), complemented by synthetic modulators developed in large part for the 5-HT2C receptor. The latter are positive allosteric modulators sought after for their potential as drugs preferable over the orthosteric agonists as antiobesity agents for their potentially safer profile. When available, details on the interactions between the ligand and allosteric binding site will be provided. An outlook on future research in the field will also be provided.
Collapse
Affiliation(s)
| | | | - Marcello Leopoldo
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (L.B.); (F.F.); (E.L.)
| | | |
Collapse
|
17
|
Zhang M, Chen T, Lu X, Lan X, Chen Z, Lu S. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduct Target Ther 2024; 9:88. [PMID: 38594257 PMCID: PMC11004190 DOI: 10.1038/s41392-024-01803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of human membrane proteins and an important class of drug targets, play a role in maintaining numerous physiological processes. Agonist or antagonist, orthosteric effects or allosteric effects, and biased signaling or balanced signaling, characterize the complexity of GPCR dynamic features. In this study, we first review the structural advancements, activation mechanisms, and functional diversity of GPCRs. We then focus on GPCR drug discovery by revealing the detailed drug-target interactions and the underlying mechanisms of orthosteric drugs approved by the US Food and Drug Administration in the past five years. Particularly, an up-to-date analysis is performed on available GPCR structures complexed with synthetic small-molecule allosteric modulators to elucidate key receptor-ligand interactions and allosteric mechanisms. Finally, we highlight how the widespread GPCR-druggable allosteric sites can guide structure- or mechanism-based drug design and propose prospects of designing bitopic ligands for the future therapeutic potential of targeting this receptor family.
Collapse
Affiliation(s)
- Mingyang Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Xun Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Ziqiang Chen
- Department of Orthopedics, Changhai Hospital, Affiliated to Naval Medical University, Shanghai, 200433, China.
| | - Shaoyong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
18
|
Patil M, Casari I, Warne LN, Falasca M. G protein-coupled receptors driven intestinal glucagon-like peptide-1 reprogramming for obesity: Hope or hype? Biomed Pharmacother 2024; 172:116245. [PMID: 38340396 DOI: 10.1016/j.biopha.2024.116245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
'Globesity' is a foremost challenge to the healthcare system. The limited efficacy and adverse effects of available oral pharmacotherapies pose a significant obstacle in the fight against obesity. The biology of the leading incretin hormone glucagon-like-peptide-1 (GLP-1) has been highly captivated during the last decade owing to its multisystemic pleiotropic clinical outcomes beyond inherent glucoregulatory action. That fostered a pharmaceutical interest in synthetic GLP-1 analogues to tackle type-2 diabetes (T2D), obesity and related complications. Besides, mechanistic insights on metabolic surgeries allude to an incretin-based hormonal combination strategy for weight loss that emerged as a forerunner for the discovery of injectable 'unimolecular poly-incretin-agonist' therapies. Physiologically, intestinal enteroendocrine L-cells (EECs) are the prominent endogenous source of GLP-1 peptide. Despite comprehending the potential of various G protein-coupled receptors (GPCRs) to stimulate endogenous GLP-1 secretion, decades of translational GPCR research have failed to yield regulatory-approved endogenous GLP-1 secretagogue oral therapy. Lately, a dual/poly-GPCR agonism strategy has emerged as an alternative approach to the traditional mono-GPCR concept. This review aims to gain a comprehensive understanding by revisiting the pharmacology of a few potential GPCR-based complementary avenues that have drawn attention to the design of orally active poly-GPCR agonist therapy. The merits, challenges and recent developments that may aid future poly-GPCR drug discovery are critically discussed. Subsequently, we project the mechanism-based therapeutic potential and limitations of oral poly-GPCR agonism strategy to augment intestinal GLP-1 for weight loss. We further extend our discussion to compare the poly-GPCR agonism approach over invasive surgical and injectable GLP-1-based regimens currently in clinical practice for obesity.
Collapse
Affiliation(s)
- Mohan Patil
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Leon N Warne
- Little Green Pharma, West Perth, Western Australia 6872, Australia
| | - Marco Falasca
- University of Parma, Department of Medicine and Surgery, Via Volturno 39, 43125 Parma, Italy.
| |
Collapse
|
19
|
Li M, Zhang X, Li S, Guo J. Unraveling the Interplay of Extracellular Domain Conformational Changes and Parathyroid Hormone Type 1 Receptor Activation in Class B1 G Protein-Coupled Receptors: Integrating Enhanced Sampling Molecular Dynamics Simulations and Markov State Models. ACS Chem Neurosci 2024; 15:844-853. [PMID: 38314550 DOI: 10.1021/acschemneuro.3c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Parathyroid hormone (PTH) type 1 receptor (PTH1R), as a typical class B1 G protein-coupled receptor (GPCR), is responsible for regulating bone turnover and maintaining calcium homeostasis, and its dysregulation has been implicated in the development of several diseases. The extracellular domain (ECD) of PTH1R is crucial for the recognition and binding of ligands, and the receptor may exhibit an autoinhibited state with the closure of the ECD in the absence of ligands. However, the correlation between ECD conformations and PTH1R activation remains unclear. Thus, this study combines enhanced sampling molecular dynamics (MD) simulations and Markov state models (MSMs) to reveal the possible relevance between the ECD conformations and the activation of PTH1R. First, 22 intermediate structures are generated from the autoinhibited state to the active state and conducted for 10 independent 200 ns simulations each. Then, the MSM is constructed based on the cumulative 44 μs simulations with six identified microstates. Finally, the potential interplay between ECD conformational changes and PTH1R activation as well as cryptic allosteric pockets in the intermediate states during receptor activation is revealed. Overall, our findings reveal that the activation of PTH1R has a specific correlation with ECD conformational changes and provide essential insights for GPCR biology and developing novel allosteric modulators targeting cryptic sites.
Collapse
Affiliation(s)
- Mengrong Li
- School of Physics and Astronomy & Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxiao Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu Li
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
- Engineering Research Centre of Applied Technology on Machine Translation and Artificial Intelligence, Macao Polytechnic University, Macao 999078, China
| |
Collapse
|
20
|
Cong Z, Zhao F, Li Y, Luo G, Mai Y, Chen X, Chen Y, Lin S, Cai X, Zhou Q, Yang D, Wang MW. Molecular features of the ligand-free GLP-1R, GCGR and GIPR in complex with G s proteins. Cell Discov 2024; 10:18. [PMID: 38346960 PMCID: PMC10861504 DOI: 10.1038/s41421-024-00649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Class B1 G protein-coupled receptors (GPCRs) are important regulators of many physiological functions such as glucose homeostasis, which is mainly mediated by three peptide hormones, i.e., glucagon-like peptide-1 (GLP-1), glucagon (GCG), and glucose-dependent insulinotropic polypeptide (GIP). They trigger a cascade of signaling events leading to the formation of an active agonist-receptor-G protein complex. However, intracellular signal transducers can also activate the receptor independent of extracellular stimuli, suggesting an intrinsic role of G proteins in this process. Here, we report cryo-electron microscopy structures of the human GLP-1 receptor (GLP-1R), GCG receptor (GCGR), and GIP receptor (GIPR) in complex with Gs proteins without the presence of cognate ligands. These ligand-free complexes share a similar intracellular architecture to those bound by endogenous peptides, in which, the Gs protein alone directly opens the intracellular binding cavity and rewires the extracellular orthosteric pocket to stabilize the receptor in a state unseen before. While the peptide-binding site is partially occupied by the inward folded transmembrane helix 6 (TM6)-extracellular loop 3 (ECL3) juncture of GIPR or a segment of GCGR ECL2, the extracellular portion of GLP-1R adopts a conformation close to the active state. Our findings offer valuable insights into the distinct activation mechanisms of these three important receptors. It is possible that in the absence of a ligand, the intracellular half of transmembrane domain is mobilized with the help of Gs protein, which in turn rearranges the extracellular half to form a transitional conformation, facilitating the entry of the peptide N-terminus.
Collapse
Affiliation(s)
- Zhaotong Cong
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fenghui Zhao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yang Li
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Gan Luo
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yiting Mai
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Xianyue Chen
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Yanyan Chen
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Shi Lin
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Xiaoqing Cai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Research Center for Deepsea Bioresources, Sanya, Hainan, China.
| | - Dehua Yang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- Research Center for Deepsea Bioresources, Sanya, Hainan, China.
| | - Ming-Wei Wang
- Research Center for Deepsea Bioresources, Sanya, Hainan, China.
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan.
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
21
|
Fang H, Niu B, Chen Q. The Discovery and Development of Glucagon-Like Peptide-1 Receptor Agonists. Curr Med Chem 2024; 31:2921-2943. [PMID: 37062063 DOI: 10.2174/0929867330666230416153301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/02/2023] [Accepted: 01/13/2023] [Indexed: 04/17/2023]
Abstract
Diabetes mellitus has become a serious life-threatening disease. As one of the new drugs for the treatment of diabetes, GLP-1 receptor agonists have attracted a lot of attention. Compared with traditional hypoglycemic drugs, GLP-1 receptor agonists have good safety and tolerability. To a certain extent, they overcome the problem of the short half-life of natural GLP-1 in vivo and can exist stably in patients for a long time, achieving good results in the treatment of diabetes, as well as improving the symptoms of some complications. The GLP-1 receptor agonists in the market are all peptide drugs. Compared with peptide drugs, small molecule agonists have the advantages of low cost and oral administration. In this article, we review the recent research progress of GLP-1 receptor agonists.
Collapse
Affiliation(s)
- Haowen Fang
- School of Environmental and Chemical Engineering, Shanghai University, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, China
| | - Qin Chen
- School of Environmental and Chemical Engineering, Shanghai University, China
| |
Collapse
|
22
|
Naglekar A, Chattopadhyay A, Sengupta D. Palmitoylation of the Glucagon-like Peptide-1 Receptor Modulates Cholesterol Interactions at the Receptor-Lipid Microenvironment. J Phys Chem B 2023; 127:11000-11010. [PMID: 38111968 DOI: 10.1021/acs.jpcb.3c05930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The G protein-coupled receptor (GPCR) superfamily of cell surface receptors has been shown to be functionally modulated by post-translational modifications. The glucagon-like peptide receptor-1 (GLP-1R), which is a drug target in diabetes and obesity, undergoes agonist-dependent palmitoyl tail conjugation. The palmitoylation in the C-terminal domain of GLP-1R has been suggested to modulate the receptor-lipid microenvironment. In this work, we have performed coarse-grain molecular dynamics simulations of palmitoylated and nonpalmitoylated GLP-1R to analyze the differential receptor-lipid interactions. Interestingly, the placement and dynamics of the C-terminal domain of GLP-1R are found to be directly dependent on the palmitoyl tail. We observe that both cholesterol and phospholipids interact with the receptor but display differential interactions in the presence and absence of the palmitoyl tail. We characterize important cholesterol-binding sites and validate sites that have been previously reported in experimentally resolved structures of the receptor. We show that the receptor acts like a conduit for cholesterol flip-flop by stabilizing cholesterol in the membrane core. Taken together, our work represents an important step in understanding the molecular effects of lipid modifications in GPCRs.
Collapse
Affiliation(s)
- Amit Naglekar
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Chattopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
23
|
Oliva P, Suresh RR, Pasquini S, Salmaso V, Will EJ, Tosh DK, Gao ZG, Liu N, Gavrilova O, Vincenzi F, Varani K, Jacobson KA. 2-Amino-5-arylethynyl-thiophen-3-yl-(phenyl)methanones as A 1 Adenosine Receptor Positive Allosteric Modulators. ACS Med Chem Lett 2023; 14:1640-1646. [PMID: 38116442 PMCID: PMC10726435 DOI: 10.1021/acsmedchemlett.3c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/06/2023] [Indexed: 12/21/2023] Open
Abstract
A1 adenosine receptor (A1AR) agonists have cerebroprotective, cardioprotective, antinociceptive, and other pharmaceutical applications. We explored the structure-activity relationship of 5-arylethynyl aminothiophenes as A1AR positive allosteric modulators (PAMs). The derivatives were compared in binding and functional assays at the human A1AR, indicating that some fluoro-substituted analogues have enhanced PAM activity. We identified substitution of the terminal phenyl ring in 12 (2-F-Ph), 15 (3,4-F2-Ph, MRS7935), and 21 (2-CF3-Ph) as particularly enhancing the PAM activity. 15 was also shown to act as an A1 ago-PAM with EC50 ≈ 2 μM, without activity (30 μM) at other ARs. Molecular modeling indicated that both the 5-arylethynyl and the 4-neopentyl groups are located in a region outside the receptor transmembrane helix bundle that is in contact with the phospholipid bilayer, consistent with the preference for nonpolar substitution of the aryl moiety. Although they are hydrophobic, these PAMs could provide potential drug candidate molecules for engaging protective A1ARs.
Collapse
Affiliation(s)
- Paola Oliva
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - R. Rama Suresh
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Silvia Pasquini
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Veronica Salmaso
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Edward J. Will
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Dilip K. Tosh
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Naili Liu
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Oksana Gavrilova
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Fabrizio Vincenzi
- Department
of Translational Medicine, University of
Ferrara, Via Fossato
di Mortara 17-19, 44121 Ferrara, Italy
| | - Katia Varani
- Department
of Translational Medicine, University of
Ferrara, Via Fossato
di Mortara 17-19, 44121 Ferrara, Italy
| | - Kenneth A. Jacobson
- Laboratory
of Bioorganic Chemistry and Mouse Metabolism Core, National
Institute of Diabetes and Digestive and Kidney
Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| |
Collapse
|
24
|
Cheng L, Xia F, Li Z, Shen C, Yang Z, Hou H, Sun S, Feng Y, Yong X, Tian X, Qin H, Yan W, Shao Z. Structure, function and drug discovery of GPCR signaling. MOLECULAR BIOMEDICINE 2023; 4:46. [PMID: 38047990 PMCID: PMC10695916 DOI: 10.1186/s43556-023-00156-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are versatile and vital proteins involved in a wide array of physiological processes and responses, such as sensory perception (e.g., vision, taste, and smell), immune response, hormone regulation, and neurotransmission. Their diverse and essential roles in the body make them a significant focus for pharmaceutical research and drug development. Currently, approximately 35% of marketed drugs directly target GPCRs, underscoring their prominence as therapeutic targets. Recent advances in structural biology have substantially deepened our understanding of GPCR activation mechanisms and interactions with G-protein and arrestin signaling pathways. This review offers an in-depth exploration of both traditional and recent methods in GPCR structure analysis. It presents structure-based insights into ligand recognition and receptor activation mechanisms and delves deeper into the mechanisms of canonical and noncanonical signaling pathways downstream of GPCRs. Furthermore, it highlights recent advancements in GPCR-related drug discovery and development. Particular emphasis is placed on GPCR selective drugs, allosteric and biased signaling, polyphamarcology, and antibody drugs. Our goal is to provide researchers with a thorough and updated understanding of GPCR structure determination, signaling pathway investigation, and drug development. This foundation aims to propel forward-thinking therapeutic approaches that target GPCRs, drawing upon the latest insights into GPCR ligand selectivity, activation, and biased signaling mechanisms.
Collapse
Affiliation(s)
- Lin Cheng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziyan Li
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chenglong Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhiqian Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hanlin Hou
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Suyue Sun
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuying Feng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xihao Yong
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hongxi Qin
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Tianfu Jincheng Laboratory, Frontiers Medical Center, Chengdu, 610212, China.
| |
Collapse
|
25
|
Li Y, Zhou Q, Dai A, Zhao F, Chang R, Ying T, Wu B, Yang D, Wang MW, Cong Z. Structural analysis of the dual agonism at GLP-1R and GCGR. Proc Natl Acad Sci U S A 2023; 120:e2303696120. [PMID: 37549266 PMCID: PMC10438375 DOI: 10.1073/pnas.2303696120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/15/2023] [Indexed: 08/09/2023] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GCGR), two members of class B1 G protein-coupled receptors, play important roles in glucose homeostasis and energy metabolism. They share a high degree of sequence homology but have different functionalities. Unimolecular dual agonists of both receptors developed recently displayed better clinical efficacies than that of monotherapy. To study the underlying molecular mechanisms, we determined high-resolution cryo-electron microscopy structures of GLP-1R or GCGR in complex with heterotrimeric Gs protein and three GLP-1R/GCGR dual agonists including peptide 15, MEDI0382 (cotadutide) and SAR425899 with variable activating profiles at GLP-1R versus GCGR. Compared with related structures reported previously and supported by our published pharmacological data, key residues responsible for ligand recognition and dual agonism were identified. Analyses of peptide conformational features revealed a difference in side chain orientations within the first three residues, indicating that distinct engagements in the deep binding pocket are required to achieve receptor selectivity. The middle region recognizes extracellular loop 1 (ECL1), ECL2, and the top of transmembrane helix 1 (TM1) resulting in specific conformational changes of both ligand and receptor, especially the dual agonists reshaped ECL1 conformation of GLP-1R relative to that of GCGR, suggesting an important role of ECL1 interaction in executing dual agonism. Structural investigation of lipid modification showed a better interaction between lipid moiety of MEDI0382 and TM1-TM2 cleft, in line with its increased potency at GCGR than SAR425899. Together, the results provide insightful information for the design and development of improved therapeutics targeting these two receptors simultaneously.
Collapse
Affiliation(s)
- Yang Li
- Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Antao Dai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Fenghui Zhao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Rulue Chang
- School of Pharmacy, Fudan University, Shanghai201203, China
| | - Tianlei Ying
- Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Beili Wu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Dehua Yang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- Research Center for Deepsea Bioresources, Sanya, Hainan572025, China
| | - Ming-Wei Wang
- Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
- Research Center for Deepsea Bioresources, Sanya, Hainan572025, China
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo113-0033, Japan
- School of Pharmacy, Hainan Medical College, Haikou570228, China
| | - Zhaotong Cong
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| |
Collapse
|
26
|
Feng W, Zhou Q, Chen X, Dai A, Cai X, Liu X, Zhao F, Chen Y, Ye C, Xu Y, Cong Z, Li H, Lin S, Yang D, Wang MW. Structural insights into ligand recognition and subtype selectivity of the human melanocortin-3 and melanocortin-5 receptors. Cell Discov 2023; 9:81. [PMID: 37524700 PMCID: PMC10390531 DOI: 10.1038/s41421-023-00586-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023] Open
Abstract
Members of the melanocortin receptor (MCR) family that recognize different melanocortin peptides mediate a broad spectrum of cellular processes including energy homeostasis, inflammation and skin pigmentation through five MCR subtypes (MC1R-MC5R). The structural basis of subtype selectivity of the endogenous agonist γ-MSH and non-selectivity of agonist α-MSH remains elusive, as the two agonists are highly similar with a conserved HFRW motif. Here, we report three cryo-electron microscopy structures of MC3R-Gs in complex with γ-MSH and MC5R-Gs in the presence of α-MSH or a potent synthetic agonist PG-901. The structures reveal that α-MSH and γ-MSH adopt a "U-shape" conformation, penetrate into the wide-open orthosteric pocket and form massive common contacts with MCRs via the HFRW motif. The C-terminus of γ-MSH occupies an MC3R-specific complementary binding groove likely conferring subtype selectivity, whereas that of α-MSH distances itself from the receptor with neglectable contacts. PG-901 achieves the same potency as α-MSH with a shorter length by rebalancing the recognition site and mimicking the intra-peptide salt bridge in α-MSH by cyclization. Solid density confirmed the calcium ion binding in MC3R and MC5R, and the distinct modulation effects of divalent ions were demonstrated. Our results provide insights into ligand recognition and subtype selectivity among MCRs, and expand the knowledge of signal transduction among MCR family members.
Collapse
Affiliation(s)
- Wenbo Feng
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xianyue Chen
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Antao Dai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoqing Cai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Liu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fenghui Zhao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chenyu Ye
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yingna Xu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhaotong Cong
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hao Li
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Shi Lin
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Dehua Yang
- Research Center for Deepsea Bioresources, Sanya, Hainan, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Research Center for Deepsea Bioresources, Sanya, Hainan, China.
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan.
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
27
|
Zhang X, Zhang S, Wang M, Chen H, Liu H. Advances in the allostery of angiotensin II type 1 receptor. Cell Biosci 2023; 13:110. [PMID: 37330563 DOI: 10.1186/s13578-023-01063-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/31/2023] [Indexed: 06/19/2023] Open
Abstract
Angiotensin II type 1 receptor (AT1R) is a promising therapeutic target for cardiovascular diseases. Compared with orthosteric ligands, allosteric modulators attract considerable attention for drug development due to their unique advantages of high selectivity and safety. However, no allosteric modulators of AT1R have been applied in clinical trials up to now. Except for the classical allosteric modulators of AT1R such as antibody, peptides and amino acids, cholesterol and biased allosteric modulators, there are non-classical allosteric modes including the ligand-independent allosteric mode, and allosteric mode of biased agonists and dimers. In addition, finding the allosteric pockets based on AT1R conformational change and interaction interface of dimers are the future of drug design. In this review, we summarize the different allosteric mode of AT1R, with a view to contribute to the development and utilization of drugs targeting AT1R allostery.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Suli Zhang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Meili Wang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Hao Chen
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Huirong Liu
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, People's Republic of China.
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men Street, Beijing, 100069, China.
| |
Collapse
|
28
|
Chen L, Yun Y, Guo S, Wang X, Xiong M, Zhao T, Xu T, Shen J, Xie X, Wang K. Discovery of Novel 5,6-Dihydro-1,2,4-triazine Derivatives as Efficacious Glucagon-Like Peptide-1 Receptor Agonists. J Med Chem 2023. [PMID: 37286364 DOI: 10.1021/acs.jmedchem.3c00320] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Danuglipron is the most representative small-molecule agonist of the glucagon-like peptide-1 receptor (GLP-1R) and has received considerable attention due to positive results in the treatment of type 2 diabetes mellitus (T2DM) and obesity in clinical trials. However, hERG inhibition, lower activity than endogenous GLP-1, and a short action time represent limitations in terms of feasible application. In this study, we report a new class of 5,6-dihydro-1,2,4-triazine derivatives that serve to eliminate potential hERG inhibition caused by the piperidine ring of danuglipron. Applying systematic in vitro to in vivo screening, we have identified compound 42 as a highly potent and selective GLP-1R agonist, which delivers improved (7-fold) efficacy in stimulating cAMP accumulation compared with danuglipron and which exhibits acceptable drug-like properties. Furthermore, 42 significantly reduces glucose excursion and inhibits food intake of hGLP-1R Knock-In mice. These effects are longer-lasting than that shown by danuglipron, demonstrating feasibility in the treatment of T2DM and obesity.
Collapse
Affiliation(s)
- Lili Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ying Yun
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Shimeng Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoyan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Muya Xiong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Tingting Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Tifei Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kai Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
29
|
Kobayashi K, Kawakami K, Kusakizako T, Tomita A, Nishimura M, Sawada K, Okamoto HH, Hiratsuka S, Nakamura G, Kuwabara R, Noda H, Muramatsu H, Shimizu M, Taguchi T, Inoue A, Murata T, Nureki O. Class B1 GPCR activation by an intracellular agonist. Nature 2023; 618:1085-1093. [PMID: 37286611 PMCID: PMC10307627 DOI: 10.1038/s41586-023-06169-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/04/2023] [Indexed: 06/09/2023]
Abstract
G protein-coupled receptors (GPCRs) generally accommodate specific ligands in the orthosteric-binding pockets. Ligand binding triggers a receptor allosteric conformational change that leads to the activation of intracellular transducers, G proteins and β-arrestins. Because these signals often induce adverse effects, the selective activation mechanism for each transducer must be elucidated. Thus, many orthosteric-biased agonists have been developed, and intracellular-biased agonists have recently attracted broad interest. These agonists bind within the receptor intracellular cavity and preferentially tune the specific signalling pathway over other signalling pathways, without allosteric rearrangement of the receptor from the extracellular side1-3. However, only antagonist-bound structures are currently available1,4-6, and there is no evidence to support that biased agonist binding occurs within the intracellular cavity. This limits the comprehension of intracellular-biased agonism and potential drug development. Here we report the cryogenic electron microscopy structure of a complex of Gs and the human parathyroid hormone type 1 receptor (PTH1R) bound to a PTH1R agonist, PCO371. PCO371 binds within an intracellular pocket of PTH1R and directly interacts with Gs. The PCO371-binding mode rearranges the intracellular region towards the active conformation without extracellularly induced allosteric signal propagation. PCO371 stabilizes the significantly outward-bent conformation of transmembrane helix 6, which facilitates binding to G proteins rather than β-arrestins. Furthermore, PCO371 binds within the highly conserved intracellular pocket, activating 7 out of the 15 class B1 GPCRs. Our study identifies a new and conserved intracellular agonist-binding pocket and provides evidence of a biased signalling mechanism that targets the receptor-transducer interface.
Collapse
Affiliation(s)
- Kazuhiro Kobayashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tsukasa Kusakizako
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Atsuhiro Tomita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Preferred Networks, Tokyo, Japan
| | - Michihiro Nishimura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Sawada
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki H Okamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Suzune Hiratsuka
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Gaku Nakamura
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Riku Kuwabara
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hiroshi Noda
- Research Division, Chugai Pharmaceutical, Shizuoka, Japan
| | | | - Masaru Shimizu
- Research Division, Chugai Pharmaceutical, Shizuoka, Japan
| | - Tomohiko Taguchi
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
30
|
Zuo K, Kranjc A, Capelli R, Rossetti G, Nechushtai R, Carloni P. Metadynamics simulations of ligands binding to protein surfaces: a novel tool for rational drug design. Phys Chem Chem Phys 2023; 25:13819-13824. [PMID: 37184538 DOI: 10.1039/d3cp01388j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Structure-based drug design protocols may encounter difficulties to investigate poses when the biomolecular targets do not exhibit typical binding pockets. In this study, by providing two concrete examples from our labs, we suggest that the combination of metadynamics free energy methods (validated against affinity measurements), along with experimental structural information (by X-ray crystallography and NMR), can help to identify the poses of ligands on protein surfaces. The simulation workflow proposed here was implemented in a widely used code, namely GROMACS, and it could straightforwardly be applied to various drug-design campaigns targeting ligands' binding to protein surfaces.
Collapse
Affiliation(s)
- Ke Zuo
- Computational Biomedicine, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich 52425, Germany.
- Department of Physics, RWTH Aachen University, Aachen 52074, Germany
- The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
- Department of Physics, Università degli Studi di Ferrara, Ferrara 44121, Italy
| | - Agata Kranjc
- Computational Biomedicine, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich 52425, Germany.
| | - Riccardo Capelli
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, Milan 20133, Italy
| | - Giulia Rossetti
- Computational Biomedicine, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich 52425, Germany.
- Jülich Supercomputing Center (JSC), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
- Department of Neurology, Faculty of Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Rachel Nechushtai
- The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Paolo Carloni
- Computational Biomedicine, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich 52425, Germany.
- Department of Physics, RWTH Aachen University, Aachen 52074, Germany
- JARA Institute: Molecular Neuroscience and Imaging, Institute of Neuroscience and Medicine INM-11, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| |
Collapse
|
31
|
Zhang L, Mobbs JI, May LT, Glukhova A, Thal DM. The impact of cryo-EM on determining allosteric modulator-bound structures of G protein-coupled receptors. Curr Opin Struct Biol 2023; 79:102560. [PMID: 36848776 DOI: 10.1016/j.sbi.2023.102560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/27/2023]
Abstract
G-protein coupled receptors (GPCRs) are important therapeutic targets for the treatment of human disease. Although GPCRs are highly successful drug targets, there are many challenges associated with the discovery and translation of small molecule ligands that target the endogenous ligand-binding site for GPCRs. Allosteric modulators are a class of ligands that target alternative binding sites known as allosteric sites and offer fresh opportunities for the development of new therapeutics. However, only a few allosteric modulators have been approved as drugs. Advances in GPCR structural biology enabled by the cryogenic electron microscopy (cryo-EM) revolution have provided new insights into the molecular mechanism and binding location of small molecule allosteric modulators. This review highlights the latest findings from allosteric modulator-bound structures of Class A, B, and C GPCRs with a focus on small molecule ligands. Emerging methods that will facilitate cryo-EM structures of more difficult ligand-bound GPCR complexes are also discussed. The results of these studies are anticipated to aid future structure-based drug discovery efforts across many different GPCRs.
Collapse
Affiliation(s)
- Liudi Zhang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia
| | - Jesse I Mobbs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia. https://twitter.com/@JesseMobbs
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia. https://twitter.com/@laurentmay
| | - Alisa Glukhova
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Victoria 3010, Australia. https://twitter.com/@gl_alisa
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia.
| |
Collapse
|
32
|
Xin Y, Liu S, Liu Y, Qian Z, Liu H, Zhang B, Guo T, Thompson GJ, Stevens RC, Sharpless KB, Dong J, Shui W. Affinity selection of double-click triazole libraries for rapid discovery of allosteric modulators for GLP-1 receptor. Proc Natl Acad Sci U S A 2023; 120:e2220767120. [PMID: 36893261 PMCID: PMC10243133 DOI: 10.1073/pnas.2220767120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/02/2023] [Indexed: 03/11/2023] Open
Abstract
The recently developed double-click reaction sequence [G. Meng et al., Nature 574, 86-89 (2019)] is expected to vastly expand the number and diversity of synthetically accessible 1,2,3-triazole derivatives. However, it remains elusive how to rapidly navigate the extensive chemical space created by double-click chemistry for bioactive compound discovery. In this study, we selected a particularly challenging drug target, the glucagon-like-peptide-1 receptor (GLP-1R), to benchmark our new platform for the design, synthesis, and screening of double-click triazole libraries. First, we achieved a streamlined synthesis of customized triazole libraries on an unprecedented scale (composed of 38,400 new compounds). By interfacing affinity-selection mass spectrometry and functional assays, we identified a series of positive allosteric modulators (PAMs) with unreported scaffolds that can selectively and robustly enhance the signaling activity of the endogenous GLP-1(9-36) peptide. Intriguingly, we further revealed an unexpected binding mode of new PAMs which likely act as a molecular glue between the receptor and the peptide agonist. We anticipate the merger of double-click library synthesis with the hybrid screening platform allows for efficient and economic discovery of drug candidates or chemical probes for various therapeutic targets.
Collapse
Affiliation(s)
- Ye Xin
- iHuman Institute, ShanghaiTech University, Shanghai201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Shuo Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yan Liu
- iHuman Institute, ShanghaiTech University, Shanghai201210, China
| | - Zhen Qian
- iHuman Institute, ShanghaiTech University, Shanghai201210, China
| | - Hongyue Liu
- iHuman Institute, ShanghaiTech University, Shanghai201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Bingjie Zhang
- iHuman Institute, ShanghaiTech University, Shanghai201210, China
| | - Taijie Guo
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | | | - Raymond C. Stevens
- iHuman Institute, ShanghaiTech University, Shanghai201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - K. Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| | - Jiajia Dong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
- Institute of Translational Medicine, Zhangjiang Institute for Advanced Study, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai200240, China
- Shanghai Artificial Intelligence Laboratory, Shanghai200232, China
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, Shanghai201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| |
Collapse
|
33
|
Shen S, Zhao C, Wu C, Sun S, Li Z, Yan W, Shao Z. Allosteric modulation of G protein-coupled receptor signaling. Front Endocrinol (Lausanne) 2023; 14:1137604. [PMID: 36875468 PMCID: PMC9978769 DOI: 10.3389/fendo.2023.1137604] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of transmembrane proteins, regulate a wide array of physiological processes in response to extracellular signals. Although these receptors have proven to be the most successful class of drug targets, their complicated signal transduction pathways (including different effector G proteins and β-arrestins) and mediation by orthosteric ligands often cause difficulties for drug development, such as on- or off-target effects. Interestingly, identification of ligands that engage allosteric binding sites, which are different from classic orthosteric sites, can promote pathway-specific effects in cooperation with orthosteric ligands. Such pharmacological properties of allosteric modulators offer new strategies to design safer GPCR-targeted therapeutics for various diseases. Here, we explore recent structural studies of GPCRs bound to allosteric modulators. Our inspection of all GPCR families reveals recognition mechanisms of allosteric regulation. More importantly, this review highlights the diversity of allosteric sites and presents how allosteric modulators control specific GPCR pathways to provide opportunities for the development of new valuable agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
34
|
Dmitrieva DA, Kotova TV, Safronova NA, Sadova AA, Dashevskii DE, Mishin AV. Protein Design Strategies for the Structural–Functional Studies of G Protein-Coupled Receptors. BIOCHEMISTRY (MOSCOW) 2023; 88:S192-S226. [PMID: 37069121 DOI: 10.1134/s0006297923140110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
G protein-coupled receptors (GPCRs) are an important family of membrane proteins responsible for many physiological functions in human body. High resolution GPCR structures are required to understand their molecular mechanisms and perform rational drug design, as GPCRs play a crucial role in a variety of diseases. That is difficult to obtain for the wild-type proteins because of their low stability. In this review, we discuss how this problem can be solved by using protein design strategies developed to obtain homogeneous stabilized GPCR samples for crystallization and cryoelectron microscopy.
Collapse
Affiliation(s)
- Daria A Dmitrieva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Tatiana V Kotova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Nadezda A Safronova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexandra A Sadova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Dmitrii E Dashevskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
| |
Collapse
|
35
|
Cary BP, Zhang X, Cao J, Johnson RM, Piper SJ, Gerrard EJ, Wootten D, Sexton PM. New insights into the structure and function of class B1 GPCRs. Endocr Rev 2022; 44:492-517. [PMID: 36546772 PMCID: PMC10166269 DOI: 10.1210/endrev/bnac033] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors. Class B1 GPCRs constitute a subfamily of 15 receptors that characteristically contain large extracellular domains (ECDs) and respond to long polypeptide hormones. Class B1 GPCRs are critical regulators of homeostasis, and as such, many are important drug targets. While most transmembrane proteins, including GPCRs, are recalcitrant to crystallization, recent advances in electron cryo-microscopy (cryo-EM) have facilitated a rapid expansion of the structural understanding of membrane proteins. As a testament to this success, structures for all the class B1 receptors bound to G proteins have been determined by cryo-EM in the past five years. Further advances in cryo-EM have uncovered dynamics of these receptors, ligands, and signalling partners. Here, we examine the recent structural underpinnings of the class B1 GPCRs with an emphasis on structure-function relationships.
Collapse
Affiliation(s)
- Brian P Cary
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Xin Zhang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jianjun Cao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Rachel M Johnson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Sarah J Piper
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Elliot J Gerrard
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| |
Collapse
|
36
|
Allosteric modulation of GPCRs: From structural insights to in silico drug discovery. Pharmacol Ther 2022; 237:108242. [DOI: 10.1016/j.pharmthera.2022.108242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/14/2022] [Accepted: 07/07/2022] [Indexed: 11/19/2022]
|
37
|
El Eid L, Reynolds CA, Tomas A, Ben Jones. Biased Agonism and Polymorphic Variation at the GLP-1 Receptor: Implications for the Development of Personalised Therapeutics. Pharmacol Res 2022; 184:106411. [PMID: 36007775 DOI: 10.1016/j.phrs.2022.106411] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) is a well-studied incretin hormone receptor and target of several therapeutic drugs for type 2 diabetes (T2D), obesity and, more recently, cardiovascular disease. Some signalling pathways downstream of GLP-1R may be responsible for drug adverse effects such as nausea, while others mediate therapeutic outcomes of incretin-based T2D therapeutics. Understanding the interplay between different factors that alter signalling, trafficking, and receptor activity, including biased agonism, single nucleotide polymorphisms and structural modifications is key to develop the next-generation of personalised GLP-1R agonists. However, these interactions remain poorly described, especially for novel therapeutics such as dual and tri-agonists that target more than one incretin receptor. Comparison of GLP-1R structures in complex with G proteins and different peptide and non-peptide agonists has revealed novel insights into important agonist-residue interactions and networks crucial for receptor activation, recruitment of G proteins and engagement of specific signalling pathways. Here, we review the latest knowledge on GLP-1R structure and activation, providing structural evidence for biased agonism and delineating important networks associated with this phenomenon. We survey current biased agonists and multi-agonists at different stages of development, highlighting possible challenges in their translational potential. Lastly, we discuss findings related to non-synonymous genomic variants of GLP1R and the functional importance of specific residues involved in GLP-1R function. We propose that studies of GLP-1R polymorphisms, and specifically their effect on receptor dynamics and pharmacology in response to biased agonists, could have a significant impact in delineating precision medicine approaches and development of novel therapeutics.
Collapse
Affiliation(s)
- Liliane El Eid
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Christopher A Reynolds
- Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Alison Gingell Building, United Kingdom; School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom.
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
38
|
Wang P, Hill TA, Mitchell J, Fitzsimmons RL, Xu W, Loh Z, Suen JY, Lim J, Iyer A, Fairlie DP. Modifying a Hydroxyl Patch in Glucagon-like Peptide 1 Produces Biased Agonists with Unique Signaling Profiles. J Med Chem 2022; 65:11759-11775. [PMID: 35984914 DOI: 10.1021/acs.jmedchem.2c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) lowers blood glucose by inducing insulin but also has other poorly understood properties. Here, we show that hydroxy amino acids (Thr11, Ser14, Ser17, Ser18) in GLP-1(7-36) act in concert to direct cell signaling. Mutating any single residue to alanine removes one hydroxyl group, thereby reducing receptor affinity and cAMP 10-fold, with Ala11 or Ala14 also reducing β-arrestin-2 10-fold, while Ala17 or Ala18 also increases ERK1/2 phosphorylation 5-fold. Multiple alanine mutations more profoundly bias signaling, differentially silencing or restoring one or more signaling properties. Mutating three serines silences only ERK1/2, the first example of such bias. Mutating all four residues silences β-arrestin-2, ERK1/2, and Ca2+ maintains the ligand and receptor at the membrane but still potently stimulates cAMP and insulin secretion in cells and mice. These novel findings indicate that hydrogen bonding cooperatively controls cell signaling and highlight an important regulatory hydroxyl patch in hormones that activate class B G protein-coupled receptors.
Collapse
Affiliation(s)
- Peiqi Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Timothy A Hill
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Justin Mitchell
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Rebecca L Fitzsimmons
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Weijun Xu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Zhixuan Loh
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Jacky Y Suen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Junxian Lim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Abishek Iyer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane Queensland 4072, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane Queensland 4072, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane Queensland 4072, Australia
| |
Collapse
|
39
|
Fisher C, Fallot LB, Wan TC, Keyes RF, Suresh RR, Rothwell AC, Gao ZG, McCorvy JD, Smith BC, Jacobson KA, Auchampach JA. Characterization of Dual-Acting A 3 Adenosine Receptor Positive Allosteric Modulators That Preferentially Enhance Adenosine-Induced Gα i3 and Gα oA Isoprotein Activation. ACS Pharmacol Transl Sci 2022; 5:625-641. [PMID: 35983277 PMCID: PMC9380209 DOI: 10.1021/acsptsci.2c00076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 12/19/2022]
Abstract
The A3 adenosine receptor (A3AR) is a promising therapeutic target for inflammatory diseases, cancer, and chronic neuropathic pain, with agonists already in advanced clinical trials. Here we report an in-depth comparison of the pharmacological properties and structure-activity relationships of existing and expanded compound libraries of 2-substituted 1H-imidazo[4,5-c]quinolin-4-amine and 4-amino-substituted quinoline derivatives that function as A3AR positive allosteric modulators (PAMs). We also show that our lead compound from each series enhances adenosine-induced A3AR signaling preferentially toward activation of Gαi3 and GαoA isoproteins, which are coexpressed with the A3AR in immune cells and spinal cord neurons. Finally, utilizing an extracellular/intracellular chimeric A3AR approach composed of sequences from a responding (human) and a nonresponding (mouse) species, we provide evidence in support of the idea that the imidazoquinolin-4-amine class of PAMs variably interacts dually with the orthosteric ligand binding site as well as with a separate allosteric site located within the inner/intracellular regions of the receptor. This study has advanced both structural and pharmacological understanding of these two classes of A3AR PAMs, which includes leads for future pharmaceutical development.
Collapse
Affiliation(s)
- Courtney
L. Fisher
- Department
of Pharmacology & Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Lucas B. Fallot
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
- Department
of Biochemistry & Molecular Biology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814, United States
- Department
of Chemistry & Life Science, United
States Military Academy, 646 Swift Road, West Point, New York 10996, United
States
| | - Tina C. Wan
- Department
of Pharmacology & Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Robert F. Keyes
- Department
of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - R. Rama Suresh
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Amy C. Rothwell
- Department
of Pharmacology & Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Zhan-Guo Gao
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - John D. McCorvy
- Department
of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Brian C. Smith
- Department
of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Kenneth A. Jacobson
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - John A. Auchampach
- Department
of Pharmacology & Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
40
|
Investigating Potential GLP-1 Receptor Agonists in Cyclopeptides from Pseudostellaria heterophylla, Linum usitatissimum, and Drymaria diandra, and Peptides Derived from Heterophyllin B for the Treatment of Type 2 Diabetes: An In Silico Study. Metabolites 2022; 12:metabo12060549. [PMID: 35736482 PMCID: PMC9227353 DOI: 10.3390/metabo12060549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
GLP-1 receptor agonists stimulate GLP-1R to promote insulin secretion, whereas DPP4 inhibitors slow GLP-1 degradation. Both approaches are incretin-based therapies for T2D. In addition to GLP-1 analogs, small nonpeptide GLP-1RAs such as LY3502970, TT-OAD2, and PF-06882961 have been considered as possible therapeutic alternatives. Pseudostellaria heterophylla, Linum usitatissimum, and Drymaria diandra are plants rich in cyclopeptides with hypoglycemic effects. Our previous study demonstrated the potential of their cyclopeptides for DPP4 inhibition. Reports of cyclic setmelanotide as an MC4R (GPCR) agonist and cyclic α-conotoxin chimeras as GLP-1RAs led to docking studies of these cyclopeptides with GLP-1R. Heterophyllin B, Pseudostellarin B, Cyclolinopeptide B, Cyclolinopeptide C, Drymarin A, and Diandrine C are abundant in these plants, with binding affinities of −9.5, −10.4, −10.3, −10.6, −11.2, and −11.9 kcal/mol, respectively. The configuration they demonstrated established multiple hydrogen bonds with the transmembrane region of GLP-1R. DdC:(cyclo)-GGPYWP showed the most promising docking score. The results suggest that, in addition to DPP4, GLP-1R may be a hypoglycemic target of these cyclopeptides. This may bring about more discussion of plant cyclopeptides as GLP-1RAs. Moreover, peptides derived from the HB precursor (IFGGLPPP), including IFGGWPPP, IFPGWPPP, IFGGYWPPP, and IFGYGWPPPP, exhibited diverse interactions with GLP-1R and displayed backbones available for further research.
Collapse
|
41
|
Structural basis of peptidomimetic agonism revealed by small- molecule GLP-1R agonists Boc5 and WB4-24. Proc Natl Acad Sci U S A 2022; 119:e2200155119. [PMID: 35561211 PMCID: PMC9171782 DOI: 10.1073/pnas.2200155119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists are efficacious in the treatment of type 2 diabetes and obesity. While most clinically used agents require subcutaneous injection, Boc5, as the first orthosteric nonpeptidic agonist of GLP-1R, suffers from poor oral bioavailability that hinders its therapeutic development. The cryoelectron microscopy structures of Boc5 and its closely related analog WB4-24 presented here reveal a binding pocket located deeper in the transmembrane domain for nonpeptidic GLP-1R agonists. Molecular interaction with this site may facilitate a broad spectrum of in vivo agonistic activities, in addition to that with the upper helical bundles presumably responsible for biased signaling. These findings deepen our understanding of peptidomimetic agonism at GLP-1R and may help design better drug leads against this important target. Glucagon-like peptide-1 receptor (GLP-1R) agonists are effective in treating type 2 diabetes and obesity with proven cardiovascular benefits. However, most of these agonists are peptides and require subcutaneous injection except for orally available semaglutide. Boc5 was identified as the first orthosteric nonpeptidic agonist of GLP-1R that mimics a broad spectrum of bioactivities of GLP-1 in vitro and in vivo. Here, we report the cryoelectron microscopy structures of Boc5 and its analog WB4-24 in complex with the human GLP-1R and Gs protein. Bound to the extracellular domain, extracellular loop 2, and transmembrane (TM) helices 1, 2, 3, and 7, one arm of both compounds was inserted deeply into the bottom of the orthosteric binding pocket that is usually accessible by peptidic agonists, thereby partially overlapping with the residues A8 to D15 in GLP-1. The other three arms, meanwhile, extended to the TM1-TM7, TM1-TM2, and TM2-TM3 clefts, showing an interaction feature substantially similar to the previously known small-molecule agonist LY3502970. Such a unique binding mode creates a distinct conformation that confers both peptidomimetic agonism and biased signaling induced by nonpeptidic modulators at GLP-1R. Further, the conformational difference between Boc5 and WB4-24, two closed related compounds, provides a structural framework for fine-tuning of pharmacological efficacy in the development of future small-molecule therapeutics targeting GLP-1R.
Collapse
|
42
|
A distinctive ligand recognition mechanism by the human vasoactive intestinal polypeptide receptor 2. Nat Commun 2022; 13:2272. [PMID: 35477937 PMCID: PMC9046186 DOI: 10.1038/s41467-022-30041-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/05/2022] [Indexed: 12/21/2022] Open
Abstract
Class B1 of G protein-coupled receptors (GPCRs) comprises 15 members activated by physiologically important peptide hormones. Among them, vasoactive intestinal polypeptide receptor 2 (VIP2R) is expressed in the central and peripheral nervous systems and involved in a number of pathophysiological conditions, including pulmonary arterial hypertension, autoimmune and psychiatric disorders, in which it is thus a valuable drug target. Here, we report the cryo-electron microscopy structure of the human VIP2R bound to its endogenous ligand PACAP27 and the stimulatory G protein. Different from all reported peptide-bound class B1 GPCR structures, the N-terminal α-helix of VIP2R adopts a unique conformation that deeply inserts into a cleft between PACAP27 and the extracellular loop 1, thereby stabilizing the peptide-receptor interface. Its truncation or extension significantly decreased VIP2R-mediated cAMP accumulation. Our results provide additional information on peptide recognition and receptor activation among class B1 GPCRs and may facilitate the design of better therapeutics. Vasoactive intestinal polypeptide receptor 2 (VIP2R) is involved in immunity. Here, the authors report two cryo-EM structures of the VIP2R–Gs in complex with the endogenous peptide ligand PACAP27, revealing a unique interaction mode between PACAP27 and the receptor, stabilized by the N-terminal α-helix of VIP2R.
Collapse
|
43
|
Winquist RJ, Gribkoff VK. Cardiovascular effects of GLP-1 receptor agonism. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:213-254. [PMID: 35659373 DOI: 10.1016/bs.apha.2022.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are extensively used in type 2 diabetic patients for the effective control of hyperglycemia. It is now clear from outcomes trials that this class of drugs offers important additional benefits to these patients due to reducing the risk of developing major adverse cardiac events (MACE). This risk reduction is, in part, due to effective glycemic control in patients; however, the various outcomes trials, further validated by subsequent meta-analysis of the outcomes trials, suggest that the risk reduction in MACE is also dependent on glycemic-independent mechanisms operant in cardiovascular tissues. These glycemic-independent mechanisms are likely mediated by GLP-1 receptors found throughout the cardiovascular system and by the complex signaling cascades triggered by the binding of agonists to the G-protein coupled receptors. This heterogeneity of signaling pathways underlying different downstream effects of GLP-1 agonists, and the discovery of biased agonists favoring specific signaling pathways, may have import in the future treatment of MACE in these patients. We review the evidence supporting the glycemic-independent evidence for risk reduction of MACE by the GLP-1 receptor agonists and highlight the putative mechanisms underlying these benefits. We also comment on the different signaling pathways which appear important for mediating these effects.
Collapse
Affiliation(s)
| | - Valentin K Gribkoff
- Section on Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States; TheraStat LLC, Weston, MA, United States
| |
Collapse
|
44
|
Zhao F, Zhou Q, Cong Z, Hang K, Zou X, Zhang C, Chen Y, Dai A, Liang A, Ming Q, Wang M, Chen LN, Xu P, Chang R, Feng W, Xia T, Zhang Y, Wu B, Yang D, Zhao L, Xu HE, Wang MW. Structural insights into multiplexed pharmacological actions of tirzepatide and peptide 20 at the GIP, GLP-1 or glucagon receptors. Nat Commun 2022; 13:1057. [PMID: 35217653 PMCID: PMC8881610 DOI: 10.1038/s41467-022-28683-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/01/2022] [Indexed: 12/19/2022] Open
Abstract
Glucose homeostasis, regulated by glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1) and glucagon (GCG) is critical to human health. Several multi-targeting agonists at GIPR, GLP-1R or GCGR, developed to maximize metabolic benefits with reduced side-effects, are in clinical trials to treat type 2 diabetes and obesity. To elucidate the molecular mechanisms by which tirzepatide, a GIPR/GLP-1R dual agonist, and peptide 20, a GIPR/GLP-1R/GCGR triagonist, manifest their multiplexed pharmacological actions over monoagonists such as semaglutide, we determine cryo-electron microscopy structures of tirzepatide-bound GIPR and GLP-1R as well as peptide 20-bound GIPR, GLP-1R and GCGR. The structures reveal both common and unique features for the dual and triple agonism by illustrating key interactions of clinical relevance at the near-atomic level. Retention of glucagon function is required to achieve such an advantage over GLP-1 monotherapy. Our findings provide valuable insights into the structural basis of functional versatility of tirzepatide and peptide 20. Multi-targeting agonists at GIPR, GLP-1R or GCGR are pursued vigorously. Here, the authors report cryo-EM structures of tirzepatide-bound GIPR and GLP-1R, peptide 20-bound GIPR, GLP-1R and GCGR, revealing the molecular basis of their multiplexed pharmacological actions.
Collapse
Affiliation(s)
- Fenghui Zhao
- School of Pharmacy, Fudan University, Shanghai, China.,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhaotong Cong
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kaini Hang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xinyu Zou
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Antao Dai
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Anyi Liang
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Ming
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mu Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Li-Nan Chen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Rulve Chang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Wenbo Feng
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tian Xia
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beili Wu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dehua Yang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Research Center for Deepsea Bioresources, Sanya, Hainan, China.
| | - Lihua Zhao
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Ming-Wei Wang
- School of Pharmacy, Fudan University, Shanghai, China. .,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Research Center for Deepsea Bioresources, Sanya, Hainan, China.
| |
Collapse
|
45
|
Cong Z, Liang YL, Zhou Q, Darbalaei S, Zhao F, Feng W, Zhao L, Xu HE, Yang D, Wang MW. Structural perspective of class B1 GPCR signaling. Trends Pharmacol Sci 2022; 43:321-334. [DOI: 10.1016/j.tips.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/12/2022]
|
46
|
Cryo-EM structure of the dual incretin receptor agonist, peptide-19, in complex with the glucagon-like peptide-1 receptor. Biochem Biophys Res Commun 2021; 578:84-90. [PMID: 34547628 DOI: 10.1016/j.bbrc.2021.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 11/22/2022]
Abstract
Dual agonists that can activate both the glucagon-like peptide-1 receptor (GLP-1R) and the gastric inhibitory polypeptide receptor (GIPR) have demonstrated high efficacy for the treatment of metabolic disease. Peptide-19 is a prototypical dual agonist that has high potency at both GLP-1R and GIPR but has a distinct signalling profile relative to the native peptides at the cognate receptors. In this study, we solved the structure of peptide-19 bound to the GLP-1R in complex with Gs protein, and compared the structure and dynamics of this complex to that of published structures of GLP-1R:Gs in complex with other receptor agonists. Unlike other peptide-bound receptor complexes, peptide-19:GLP-1R:Gs demonstrated a more open binding pocket where transmembrane domain (TM) 6, TM7 and the interconnecting extracellular loop 3 (ECL3) were located away from the peptide, with no interactions between peptide-19 and TM6/ECL3. Analysis of conformational variance of the complex revealed that peptide-19 was highly dynamic and underwent binding and unbinding motions facilitated by the more open TM binding pocket. Both the consensus structure of the GLP-1R complex with peptide-19 and the dynamics of this complex were distinct from previously described GLP-1R structures providing unique insights into the mode of GLP-1R activation by this dual agonist.
Collapse
|
47
|
Constitutive signal bias mediated by the human GHRHR splice variant 1. Proc Natl Acad Sci U S A 2021; 118:2106606118. [PMID: 34599099 PMCID: PMC8501799 DOI: 10.1073/pnas.2106606118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 11/18/2022] Open
Abstract
The mechanism of functional changes induced by alternative splicing of GHRHR is largely unknown. Here, we demonstrate that GHRH-elicited signal bias toward β-arrestin recruitment is constitutively mediated by SV1. The cryogenic electron microscopy structures of SV1 and molecular dynamics simulations reveal the different functionalities between GHRHR and SV1 at the near-atomic level (i.e., the N termini of GHRHR and SV1 differentiate the downstream signaling pathways, Gs versus β-arrestins). Our findings provide valuable insights into the functional diversity of class B1 GPCRs that may aid in the design of better therapeutic agents against certain cancers. Alternative splicing of G protein–coupled receptors has been observed, but their functions are largely unknown. Here, we report that a splice variant (SV1) of the human growth hormone–releasing hormone receptor (GHRHR) is capable of transducing biased signal. Differing only at the receptor N terminus, GHRHR predominantly activates Gs while SV1 selectively couples to β-arrestins. Based on the cryogenic electron microscopy structures of SV1 in the apo state or GHRH-bound state in complex with the Gs protein, molecular dynamics simulations reveal that the N termini of GHRHR and SV1 differentiate the downstream signaling pathways, Gs versus β-arrestins. As suggested by mutagenesis and functional studies, it appears that GHRH-elicited signal bias toward β-arrestin recruitment is constitutively mediated by SV1. The level of SV1 expression in prostate cancer cells is also positively correlated with ERK1/2 phosphorylation but negatively correlated with cAMP response. Our findings imply that constitutive signal bias may be a mechanism that ensures cancer cell proliferation.
Collapse
|
48
|
Discovery of Novel Allosteric Modulators Targeting an Extra-Helical Binding Site of GLP-1R Using Structure- and Ligand-Based Virtual Screening. Biomolecules 2021; 11:biom11070929. [PMID: 34201418 PMCID: PMC8301998 DOI: 10.3390/biom11070929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022] Open
Abstract
Allosteric modulators have emerged with many potential pharmacological advantages as they do not compete the binding of agonist or antagonist to the orthosteric sites but ultimately affect downstream signaling. To identify allosteric modulators targeting an extra-helical binding site of the glucagon-like peptide-1 receptor (GLP-1R) within the membrane environment, the following two computational approaches were applied: structure-based virtual screening with consideration of lipid contacts and ligand-based virtual screening with the maintenance of specific allosteric pocket residue interactions. Verified by radiolabeled ligand binding and cAMP accumulation experiments, two negative allosteric modulators and seven positive allosteric modulators were discovered using structure-based and ligand-based virtual screening methods, respectively. The computational approach presented here could possibly be used to discover allosteric modulators of other G protein-coupled receptors.
Collapse
|