1
|
Zheng K, Gao X, Xie Y, He Z, Ma Y, Hou S, Su D, Ma X. Free-standing bimetallic Co/Ni-MOF foams toward enhanced methane dry reforming under non-thermal plasma catalysis. J Colloid Interface Sci 2024; 683:564-573. [PMID: 39700565 DOI: 10.1016/j.jcis.2024.12.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Understanding of the structure and interfacial merits that reactive metal-organic frameworks (MOFs) undergo is critical for constructing efficient catalysts for non-thermal plasma-assisted conversion of greenhouse gases. Herein, we proposed a free-standing bimetallic (Co/Ni) MOFs supported on bacterial cellulose (BC) foams (Co/Ni-MOF@BC) toward the coaxial dielectric barrier discharge (DBD) plasma-catalytic system, of which the Co/Ni ions coordination demonstrated an intriguing textual uplifting of the malleable BC nanofiber network with abundant pores up to micrometer-scale, which could impart a more intensive predominant filamentary microdischarge current to 180 mA with stronger plasma-catalytic interaction. Remarkably, compared to the monometallic MOF@BC foams, this bimetallic Co/Ni-MOF@BC also delivered a substantially improved alkaline absorption ability as further confirmed by the CO2- temperature-programmed desorption (TPD) result. Benefiting from its 3D superiority and synergy of Co/Ni dual-regulation, the Co/Ni-MOF@BC, therefore, displayed the highest CO2 and CH4 conversion rates to 52.31 % and 71.50 %, which was above 1.5 and 1.3 times higher than those of monometallic counterparts and Co/Ni-MOF powder. Additionally, its robust cycling performance has also been evidenced by the excellent long-time DRM performance, unchanged crystallinity, morphology, and surface chemical states. By taking both the catalyst existing form and interfacial optimization of MOFs into consideration for designing a unique DRM catalyst, we believed this free-standing 3D Co/Ni-MOF@BC foams could inspire more research outputs on the design of functional catalysts with abundant pores and alkaline absorption sites to accelerate the redox kinetics of CO2/CH4 conversion.
Collapse
Affiliation(s)
- Kexin Zheng
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, Yantai, China
| | - Xiaochun Gao
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, Yantai, China.
| | - Yuhan Xie
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ziyang He
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, Yantai, China
| | - Yujiao Ma
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, Yantai, China
| | - Shaoqi Hou
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, Yantai, China
| | - Dawei Su
- Applied Chemistry & Environmental Science, School of Science, STEM College, RMIT University, 124 La Trobe St, Melbourne, VIC 3000, Australia.
| | - Xiaoguang Ma
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, Yantai, China.
| |
Collapse
|
2
|
Kusaka S, Itoh Y, Hori A, Usuba J, Pirillo J, Hijikata Y, Ma Y, Matsuda R. Adsorptive-dissolution of O 2 into the potential nanospace of a densely fluorinated metal-organic framework. Nat Commun 2024; 15:10117. [PMID: 39578463 PMCID: PMC11584617 DOI: 10.1038/s41467-024-54391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
Nanoporous solids, including metal-organic frameworks (MOFs), have long been known to capture small molecules by adsorption on their pore surfaces. Liquids are also known to accommodate small molecules by dissolution. These two processes have been recognized as fundamentally distinct phenomena because of the different nature of the medium-solids and liquids. Here, we report a dissolution-like gas accommodation so-called "adsorptive-dissolution" behavior in a MOF (PFAC-2) with pores densely filled with perfluoroalkyl chains. PFAC-2 does not have solvent-accessible voids; nevertheless, it captures oxygen molecules without changing the framework structure, analogous to molecular dissolution into liquids. Moreover, we demonstrate the selective capture of O2 by PFAC-2 in a mixture of O2 and Ar, which are difficult to separate due to their similarities such as boiling point and molecular size. Our results show the integration of molecular adsorption into nanospaces and dissolution into fluorous solvents, which can guide the design of crystalline adsorbents for selective molecular trapping and gas separation.
Collapse
Affiliation(s)
- Shinpei Kusaka
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Yuh Itoh
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Akihiro Hori
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Junichi Usuba
- Research Center for Net Zero Carbon Society, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Jenny Pirillo
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Yuh Hijikata
- Research Center for Net Zero Carbon Society, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Yunsheng Ma
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- School of Chemistry and Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu, China
| | - Ryotaro Matsuda
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan.
| |
Collapse
|
3
|
Kloß M, Schäfers L, Zhao Z, Weinberger C, Egold H, Tiemann M. Water Sorption on Isoreticular CPO-27-Type MOFs: From Discrete Sorption Sites to Water-Bridge-Mediated Pore Condensation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1791. [PMID: 39591033 PMCID: PMC11597837 DOI: 10.3390/nano14221791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
Pore engineering is commonly used to alter the properties of metal-organic frameworks. This is achieved by incorporating different linker molecules (L) into the structure, generating isoreticular frameworks. CPO-27, also named MOF-74, is a prototypical material for this approach, offering the potential to modify the size of its one-dimensional pore channels and the hydrophobicity of pore walls using various linker ligands during synthesis. Thermal activation of these materials yields accessible open metal sites (i.e., under-coordinated metal centers) at the pore walls, thus acting as strong primary binding sites for guest molecules, including water. We study the effect of the pore size and linker hydrophobicity within a series of Ni2+-based isoreticular frameworks (i.e., Ni2L, L = dhtp, dhip, dondc, bpp, bpm, tpp), analyzing their water sorption behavior and the water interactions in the confined pore space. For this purpose, we apply water vapor sorption analysis and Fourier transform infrared spectroscopy. In addition, defect degrees of all compounds are determined by thermogravimetric analysis and solution 1H nuclear magnetic resonance spectroscopy. We find that larger defect degrees affect the preferential sorption sites in Ni2dhtp, while no such indication is found for the other materials in our study. Instead, strong evidence is found for the formation of water bridges/chains between coordinating water molecules, as previously observed for hydrophobic porous carbons and mesoporous silica. This suggests similar sorption energies for additional water molecules in materials with larger pore sizes after saturation of the primary binding sites, resulting in more bulk-like water arrangements. Consequently, the sorption mechanism is driven by classical pore condensation through H-bonding anchor sites instead of sorption at discrete sites.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael Tiemann
- Department of Chemistry, Paderborn University, 33098 Paderborn, Germany
| |
Collapse
|
4
|
Asakura Y, Leung MHM, Yamauchi Y. Flexible Mesopores in Nanoscrolls: Extraordinarily Large Alteration of Pore Sizes and Their Reversibility. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403814. [PMID: 39031105 DOI: 10.1002/smll.202403814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/22/2024] [Indexed: 07/22/2024]
Abstract
Flexible porous materials have gained considerable interest for their potential applications in selective absorption and controlled release/storage of specific molecules or compounds. Here, nanoscrolls are proposed as a type of inorganic solids with reversibly flexible mesopores. Nanoscrolls exhibit a rolled-up structure composed of nanosheets with a 1D rod-like morphology, possessing two distinct nanospaces. The first space comprises 1D tubular mesopores located at the center of the rod, while the second space exists in the interlayer regions on the wall of the mesopore, resulting from the layer stacking caused by the scrolling of nanosheets. By replacing the interlayer cations on the nanoscroll walls with other cations, a drastic alteration in the size of the 1D mesopores is observed. For instance, exchanging bulky dodecylammonium cations with small NH4 + cations leads to a substantial change in pore size, with differences ranging from 10 to 20 nm-a notably larger variation compared to previous reports on flexible porous materials. Importantly, the alteration of pore size induced by the exchange reaction is found to be reversible. This reversible alteration in pore size holds promise for applications in host-guest chemistry involving large moieties such as nanoparticles and enzymes.
Collapse
Affiliation(s)
- Yusuke Asakura
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Mandy H M Leung
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Queensland, 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| |
Collapse
|
5
|
Meekel EG, Partridge P, Paraoan RAI, Levinsky JJB, Slater B, Hobday CL, Goodwin AL. Enhanced elastic stability of a topologically disordered crystalline metal-organic framework. NATURE MATERIALS 2024; 23:1245-1251. [PMID: 39043928 PMCID: PMC11364505 DOI: 10.1038/s41563-024-01960-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/27/2024] [Indexed: 07/25/2024]
Abstract
By virtue of their open network structures and low densities, metal-organic frameworks (MOFs) are soft materials that exhibit elastic instabilities at low applied stresses. The conventional strategy for improving elastic stability is to increase the connectivity of the underlying MOF network, which necessarily increases the material density and reduces the porosity. Here we demonstrate an alternative paradigm, whereby elastic stability is enhanced in a MOF with an aperiodic network topology. We use a combination of variable-pressure single-crystal X-ray diffraction measurements and coarse-grained lattice-dynamical calculations to interrogate the high-pressure behaviour of the topologically aperiodic system TRUMOF-1, which we compare against that of its ordered congener MOF-5. We show that the topology of the former quenches the elastic instability responsible for pressure-induced framework collapse in the latter, much as irregularity in the shapes and sizes of stones acts to prevent cooperative mechanical failure in drystone walls. Our results establish aperiodicity as a counter-intuitive design motif in engineering the mechanical properties of framework structures that is relevant to MOFs and larger-scale architectures alike.
Collapse
Affiliation(s)
- Emily G Meekel
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Phillippa Partridge
- Centre for Science at Extreme Conditions and EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Robert A I Paraoan
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Joshua J B Levinsky
- Centre for Science at Extreme Conditions and EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Ben Slater
- Department of Chemistry, University College London, London, UK
| | - Claire L Hobday
- Centre for Science at Extreme Conditions and EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Andrew L Goodwin
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Edwards A, Elkins LJ, Slebodnick C, Wang J, Zhang Q, Makal TA. Structural diversity and solvent-induced transformations of a copper-based metal-organic framework with highly aromatic ligands. Dalton Trans 2024; 53:14496-14504. [PMID: 39157929 DOI: 10.1039/d4dt02085e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
A newly designed tetracarboxylic acid ligand precursor 5,5'-([9,9'-bianthracene]-10,10'-diyl)diisophthalic acid (H4BADI) has been used to prepare a series of copper-based metal-organic frameworks (MOFs) with the formula [Cu2(BADI)(S)2]·xS (denoted as 1-S, where S = solvent) and exhibiting solvent-induced structural transformations. Single-crystal-to-single-crystal transformation occurs upon exchanging 1-DMF (DMF = N,N-dimethylformamide) with DMSO (DMSO = dimethylsulfoxide). 1-DMF exhibits reversible structural transformation upon treatment with a variety of solvents; of particular interest is the reversible crystalline-to-amorphous phase transformations observed upon exchange with volatile, polar solvents. A thorough structural investigation of the three framework isomers characterized via single-crystal X-ray diffraction experiments is reported and compared to several other tetracarboxylate-based MOFs composed of dimetal secondary building units.
Collapse
Affiliation(s)
- Abigail Edwards
- Department of Natural Sciences, The University of Virginia's College at Wise, 1 College Avenue, Wise, VA 24293, USA.
| | - Landon J Elkins
- Department of Natural Sciences, The University of Virginia's College at Wise, 1 College Avenue, Wise, VA 24293, USA.
| | - Carla Slebodnick
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, USA
| | - Jinglei Wang
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Qiang Zhang
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Tegan A Makal
- Department of Natural Sciences, The University of Virginia's College at Wise, 1 College Avenue, Wise, VA 24293, USA.
| |
Collapse
|
7
|
Auras F, Ascherl L, Bon V, Vornholt SM, Krause S, Döblinger M, Bessinger D, Reuter S, Chapman KW, Kaskel S, Friend RH, Bein T. Dynamic two-dimensional covalent organic frameworks. Nat Chem 2024; 16:1373-1380. [PMID: 38702406 DOI: 10.1038/s41557-024-01527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 04/02/2024] [Indexed: 05/06/2024]
Abstract
Porous covalent organic frameworks (COFs) enable the realization of functional materials with molecular precision. Past research has typically focused on generating rigid frameworks where structural and optoelectronic properties are static. Here we report dynamic two-dimensional (2D) COFs that can open and close their pores upon uptake or removal of guests while retaining their crystalline long-range order. Constructing dynamic, yet crystalline and robust frameworks requires a well-controlled degree of flexibility. We have achieved this through a 'wine rack' design where rigid π-stacked columns of perylene diimides are interconnected by non-stacked, flexible bridges. The resulting COFs show stepwise phase transformations between their respective contracted-pore and open-pore conformations with up to 40% increase in unit-cell volume. This variable geometry provides a handle for introducing stimuli-responsive optoelectronic properties. We illustrate this by demonstrating switchable optical absorption and emission characteristics, which approximate 'null-aggregates' with monomer-like behaviour in the contracted COFs. This work provides a design strategy for dynamic 2D COFs that are potentially useful for realizing stimuli-responsive materials.
Collapse
Affiliation(s)
- Florian Auras
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
- Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Dresden, Germany.
| | - Laura Ascherl
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany
| | - Volodymyr Bon
- Department of Inorganic Chemistry, TUD Dresden University of Technology, Dresden, Germany
| | - Simon M Vornholt
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Simon Krause
- Department of Inorganic Chemistry, TUD Dresden University of Technology, Dresden, Germany
- Nanochemistry Department, Max-Planck-Institute for Solid State Research, Stuttgart, Germany
| | - Markus Döblinger
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany
| | - Derya Bessinger
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany
| | - Stephan Reuter
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Stefan Kaskel
- Department of Inorganic Chemistry, TUD Dresden University of Technology, Dresden, Germany
| | | | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany.
| |
Collapse
|
8
|
Abylgazina L, Senkovska I, Engemann R, Bönisch N, Gorelik TE, Bachetzky C, Kaiser U, Brunner E, Kaskel S. Chemoselectivity Inversion of Responsive Metal-Organic Frameworks by Particle Size Tuning in the Micrometer Regime. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307285. [PMID: 38225688 DOI: 10.1002/smll.202307285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/30/2023] [Indexed: 01/17/2024]
Abstract
Gated adsorption is one of the unique physical properties of flexible metal-organic frameworks with high application potential in selective adsorption and sensing of molecules. Despite recent studies that have provided some guidelines in understanding and designing structural flexibility for controlling gate opening by chemical modification of the secondary building units, currently, there is no established strategy to design a flexible MOF showing selective gated adsorption for a specific guest molecule. In a present contribution it is demonstrated for the first time, that the selectivity in the gate opening of a particular compound can be tuned, changed, and even reversed using particle size engineering DUT-8(Zn) ([Zn2(2,6-ndc)2(dabco)]n, 2,6-ndc = 2,6-naphthalenedicarboxylate, dabco = 1,4-diazabicyclo-[2.2.2]-octane, DUT = Dresden University of Technology) experiences phase transition from open (op) to closed (cp) pore phase upon removal of solvent from the pores. Microcrystals show selective reopening in the presence of dichloromethane (DCM) over alcohols. Crystal downsizing to micron size unexpectedly reverses the gate opening selectivity, causing DUT-8(Zn) to open its nanosized pores for alcohols but suppressing the responsivity toward DCM.
Collapse
Affiliation(s)
- Leila Abylgazina
- Technische Universität Dresden, Bergstr. 66, 01069, Dresden, Germany
| | - Irena Senkovska
- Technische Universität Dresden, Bergstr. 66, 01069, Dresden, Germany
| | - Richard Engemann
- Technische Universität Dresden, Bergstr. 66, 01069, Dresden, Germany
| | - Nadine Bönisch
- Technische Universität Dresden, Bergstr. 66, 01069, Dresden, Germany
| | - Tatiana E Gorelik
- Electron Microscopy Group of Materials Science (EMMS), Central Facility for Electron Microscopy, Universität Ulm, Oberberghof 3/1, 89081, Ulm, Germany
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Department of Pharmacy, Saarland University, Universitätscampus E8 1, 66123, Saarbrücken, Germany
| | | | - Ute Kaiser
- Electron Microscopy Group of Materials Science (EMMS), Central Facility for Electron Microscopy, Universität Ulm, Oberberghof 3/1, 89081, Ulm, Germany
| | - Eike Brunner
- Technische Universität Dresden, Bergstr. 66, 01069, Dresden, Germany
| | - Stefan Kaskel
- Technische Universität Dresden, Bergstr. 66, 01069, Dresden, Germany
| |
Collapse
|
9
|
Li J, Wu JX, Wei ML, Yang C, Dong Q, Yin Z, Kurmoo M, Zeng MH. Supramolecular Interactions Induce Dynamics in Metal-Organic Layers to Selectively Separate Acetylene from Carbon Dioxide. Inorg Chem 2024; 63:6033-6041. [PMID: 38500387 DOI: 10.1021/acs.inorgchem.4c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
We report the synthesis and structural characterization of a 2D metal-organic framework with AB-packing layers, [Co2(pybz)2(CH3COO)2]·DMF (Co2, pybz= 4-(4-pyridyl)benzoate), containing a stable (4,4)-grid network fabricated by paddle-wheel nodes, ditopic pybz, and acetate ligands. After removal of the guest, the layer structure is retained but reorganized into an ABCD packing mode in the activated phase (Co2a). Consequently, the intralayer square windows (7.2 × 5.0 Å2) close, while the interlayer separation is decreased slightly from 3.69 to 3.45 Å, leaving a narrow gap. Importantly, the dangling methyl group of the acetate with H-bonds to the adjacent layers and also the well-distributed π-π interactions between the aromatic rings of neighboring layers facilitate the structural stability. These weak supramolecular interactions further allow for favorable dynamic exfoliation of the layers, which promotes efficient adsorption of C2H2 (41.6 cm3 g-1) over CO2 with an adsorption ratio of 6.3 (0.5 bar, 298 K). The effective separation performance of equimolar C2H2/CO2 was verified by cycling breakthrough experiments and was even tolerable to moisture (R.H = 52%). DFT calculations, in situ PXRD, and PDF characterization reveal that the favorable retention of C2H2 rather than that of CO2 is due to its H-bond formation with the paddle-wheel oxygen atoms that triggers the increase in interlayer separation during C2H2 adsorption.
Collapse
Affiliation(s)
- Jian Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Jia-Xin Wu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Mei-Ling Wei
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Chuang Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Qiubing Dong
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Zheng Yin
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Mohamedally Kurmoo
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
- Institut de Chimie de Strasbourg, CNRS-UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67008 Strasbourg Cedex, France
| | - Ming-Hua Zeng
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
10
|
Bondarenko L, Baimuratova R, Reindl M, Zach V, Dzeranov A, Pankratov D, Kydralieva K, Dzhardimalieva G, Kolb D, Wagner FE, Schwaminger SP. Dramatic change in the properties of magnetite-modified MOF particles depending on the synthesis approach. Heliyon 2024; 10:e27640. [PMID: 38524575 PMCID: PMC10958221 DOI: 10.1016/j.heliyon.2024.e27640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024] Open
Abstract
Iron-containing metal-organic frameworks are promising Fenton catalysts. However, the absence of additional modifiers has proven difficult due to the low reaction rates and the inability to manipulate the catalysts. We hypothesize that the production of iron oxide NPs in the presence of a metal-organic framework will increase the rate of the Fenton reaction and lead to the production of particles that can be magnetically manipulated without changing the structure of the components. A comprehensive approach lead to a metal organic framework using the example of MIL-88b (Materials of Institute Lavoisier) modified with iron oxides NPs: formulation of iron oxide in the presence of MIL-88b and vice versa. The synthesis of MIL-88b consists of preparing a complexation compound with the respective structure and addition of terephthalic acid. The synthesis of MIL-88b facilitates to control the topology of the resulting material. Both methods for composite formulation lead to the preservation of the structure of iron oxide, however, a more technologically complex approach to obtaining MIL-88b in the presence of Fe3O4 suddenly turned out to be the more efficient for the release of iron ions.
Collapse
Affiliation(s)
- Lyubov Bondarenko
- Moscow Aviation Institute (National Research University), Moscow, 125993, Russia
| | - Rose Baimuratova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, 119991, Russia
| | - Marco Reindl
- Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Verena Zach
- Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Artur Dzeranov
- Moscow Aviation Institute (National Research University), Moscow, 125993, Russia
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, 119991, Russia
| | - Denis Pankratov
- Department of Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Kamila Kydralieva
- Moscow Aviation Institute (National Research University), Moscow, 125993, Russia
| | - Gulzhian Dzhardimalieva
- Moscow Aviation Institute (National Research University), Moscow, 125993, Russia
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, 119991, Russia
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Center for Medical Research, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Friedrich E. Wagner
- Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
| | - Sebastian P. Schwaminger
- Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
11
|
Zhang Q, Li M, Li L, Geng D, Chen W, Hu W. Recent progress in emerging two-dimensional organic-inorganic van der Waals heterojunctions. Chem Soc Rev 2024; 53:3096-3133. [PMID: 38373059 DOI: 10.1039/d3cs00821e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Two-dimensional (2D) materials have attracted significant attention in recent decades due to their exceptional optoelectronic properties. Among them, to meet the growing demand for multifunctional applications, 2D organic-inorganic van der Waals (vdW) heterojunctions have become increasingly popular in the development of optoelectronic devices. These heterojunctions demonstrate impressive capability to synergistically combine the favourable characteristics of organic and inorganic materials, thereby offering a wide range of advantages. Also, they enable the creation of innovative device structures and introduce novel functionalities in existing 2D materials, avoiding the need for lattice matching in different material systems. Presently, researchers are actively working on improving the performance of devices based on 2D organic-inorganic vdW heterojunctions by focusing on enhancing the quality of 2D materials, precise stacking methods, energy band regulation, and material selection. Therefore, this review presents a thorough examination of the emerging 2D organic-inorganic vdW heterojunctions, including their classification, fabrication, and corresponding devices. Additionally, this review offers profound and comprehensive insight into the challenges in this field to inspire future research directions. It is expected to propel researchers to harness the extraordinary capabilities of 2D organic-inorganic vdW heterojunctions for a wider range of applications by further advancing the understanding of their fundamental properties, expanding the range of available materials, and exploring novel device architectures. The ongoing research and development in this field hold potential to unlock captivating advancements and foster practical applications across diverse industries.
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Menghan Li
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Lin Li
- College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Dechao Geng
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wei Chen
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
12
|
Zhang Z, Zhong Y, Sun P, Zhao P, Li H, Liu X. Magnetically separable Co 0.6Fe 2.4O 4/MIL-101-NH 2 adsorbent for Congo red efficient removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9764-9783. [PMID: 38194177 DOI: 10.1007/s11356-023-31796-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
The development of effective and practical adsorbents for eliminating pollutants still remains a significant challenge. Herein, we synthesized a novel magnetically separable composite, Co0.6Fe2.4O4/MIL-101-NH2, through the in-situ growth of MIL-101-NH2 on magnetic nanoparticles, designed specifically for the removal of Congo red (CR) from aqueous solutions. MIL-101-NH2 possessed high BET surface area (240.485 m2•g-1) and facile magnetic separation function and can be swiftly separated (within 30 s) through an external magnetic field post-adsorption. The investigation systematically explored the influence of crucial parameters, including adsorbent dosage, pH, adsorption duration, temperature, and the presence of interfering ions, on CR adsorption performance. Findings indicate that CR adsorption adheres to the pseudo-second-order (PSO) kinetic model and the Langmuir isotherm model. Thermodynamic analysis reveals the spontaneity, endothermic nature, and orderly progression of the adsorption process. Remarkably, the adsorbent with 0.1 g•L-1 boasts an impressive maximum adsorption capacity of 1756.19 mg•g-1 for CR at 298.15 K, establishing its competitive advantage. The reuse of the adsorbent over 5 cycles remains 78% of the initial adsorption. The CR adsorption mechanisms were elucidated, emphasizing the roles of π-π interactions, electrostatic forces, hydrogen bonding, and metal coordination. Comparison with other dyes, such as methylene blue (MB) and methyl orange (MO), and exploration of adsorption performance in binary dye systems, demonstrates the superior capacity and selectivity of this adsorbent for CR. In conclusion, our magnetically separable metal-organic framework (MOF)based composite presents a versatile and effective solution for CR removal, with promising applications in water treatment and environmental remediation.
Collapse
Affiliation(s)
- Zhenhong Zhang
- School of Nursing, Wuhan University, Wuhan, 430079, People's Republic of China
| | - Yuye Zhong
- School of Nursing, Wuhan University, Wuhan, 430079, People's Republic of China
| | - Peng Sun
- Youyi Campus of Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Pingping Zhao
- School of Nursing, Wuhan University, Wuhan, 430079, People's Republic of China
| | - Houbin Li
- School of Nursing, Wuhan University, Wuhan, 430079, People's Republic of China.
| | - Xinghai Liu
- Electronic Information School, Wuhan University, Wuhan, 430079, People's Republic of China
| |
Collapse
|
13
|
Wang X, Wada Y, Shimada T, Kosaka A, Adachi K, Hashizume D, Yazawa K, Uekusa H, Shoji Y, Fukushima T, Kawano M, Murakami Y. Triple Isomerism in 3D Covalent Organic Frameworks. J Am Chem Soc 2024; 146:1832-1838. [PMID: 38206810 DOI: 10.1021/jacs.3c13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Isomerism in covalent organic frameworks (COFs) has scarcely been known. Here, for the first time we show 3D COFs with three framework isomers or polymorphs constructed from the same building blocks. All isomers were obtained as large (>10 μm) crystals; although their crystal shapes were distinctly different, they showed identical FT-IR and solid-state NMR spectra. Our structural analyses revealed unprecedented triple isomerism in 3D COFs (noninterpenetrated dia, qtz, and 3-fold interpenetrated dia-c3 nets). Furthermore, this Communication reports the first known COF with qtz topology for which the structure determination was based on Rietveld analysis. We achieved triple framework isomerism by reticulating a tetrahedral building block with a flexible junction and a linear building block with PEO side chains and by varying solution compositions. Our energy calculations, along with the discovery of interisomer transition, revealed that the isomer with qtz topology was a kinetic isomer. Thus, this simple yet little-explored concept of reticulating only flexible building blocks is an effective pathway to significantly broaden the diversity of 3D COFs, which have been proposed for a myriad of applications.
Collapse
Affiliation(s)
- Xiaohan Wang
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Yuki Wada
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Terumasa Shimada
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Atsuko Kosaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | - Kiyohiro Adachi
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | | | - Hidehiro Uekusa
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | - Masaki Kawano
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Yoichi Murakami
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
14
|
Loukopoulos E, Angeli GK, Tsangarakis C, Traka E, Froudas KG, Trikalitis PN. Reticular Synthesis of Flexible Rare-Earth Metal-Organic Frameworks: Control of Structural Dynamics and Sorption Properties Through Ligand Functionalization. Chemistry 2024; 30:e202302709. [PMID: 37823681 DOI: 10.1002/chem.202302709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/13/2023]
Abstract
An exciting direction in metal-organic frameworks involves the design and synthesis of flexible structures which can reversibly adapt their structure when triggered by external stimuli. Controlling the extent and nature of response in such solids is critical in order to develop custom dynamic materials for advanced applications. Towards this, it is highly important to expand the diversity of existing flexible MOFs, generating novel materials and gain an in-depth understanding of the associated dynamic phenomena, eventually unlocking key structure-property relationships. In the present work, we successfully utilized reticular chemistry for the construction of two novel series of highly crystalline, flexible rare-earth MOFs, RE-thc-MOF-2 and RE-teb-MOF-1. Extensive single-crystal to single-crystal structural analyses coupled with detailed gas and vapor sorption studies, shed light onto the unique responsive behavior. The development of these series is related to the reported RE-thc-MOF-1 solids which were found to display a unique continuous breathing and gas-trapping property. The synthesis of RE-thc-MOF-2 and RE-teb-MOF-1 materials represents an important milestone as they provide important insights into the key factors that control the responsive properties of this fascinating family of flexible materials and demonstrates that it is possible to control their dynamic behavior and the associated gas and vapor sorption properties.
Collapse
Affiliation(s)
- Edward Loukopoulos
- Department of Chemistry, University of Crete Voutes, 71003, Heraklion, Greece
| | - Giasemi K Angeli
- Department of Chemistry, University of Crete Voutes, 71003, Heraklion, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| | | | - Eleni Traka
- Department of Chemistry, University of Crete Voutes, 71003, Heraklion, Greece
| | | | | |
Collapse
|
15
|
Xie Y, Wu X, Shi Y, Peng Y, Zhou H, Wu X, Ma J, Jin J, Pi Y, Pang H. Recent Progress in 2D Metal-Organic Framework-Related Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305548. [PMID: 37643389 DOI: 10.1002/smll.202305548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/10/2023] [Indexed: 08/31/2023]
Abstract
2D metal-organic frameworks-based (2D MOF-related) materials benefit from variable topological structures, plentiful open active sites, and high specific surface areas, demonstrating promising applications in gas storage, adsorption and separation, energy conversion, and other domains. In recent years, researchers have innovatively designed multiple strategies to avoid the adverse effects of conventional methods on the synthesis of high-quality 2D MOFs. This review focuses on the latest advances in creative synthesis techniques for 2D MOF-related materials from both the top-down and bottom-up perspectives. Subsequently, the strategies are categorized and summarized for synthesizing 2D MOF-related composites and their derivatives. Finally, the current challenges are highlighted faced by 2D MOF-related materials and some targeted recommendations are put forward to inspire researchers to investigate more effective synthesis methods.
Collapse
Affiliation(s)
- Yun Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Xinyue Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yuxin Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yi Peng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huijie Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Xiaohui Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Jiao Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Jiangchen Jin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yecan Pi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| |
Collapse
|
16
|
Zhang Y, Wang J, Apostol P, Rambabu D, Eddine Lakraychi A, Guo X, Zhang X, Lin X, Pal S, Rao Bakuru V, Chen X, Vlad A. Bimetallic Anionic Organic Frameworks with Solid-State Cation Conduction for Charge Storage Applications. Angew Chem Int Ed Engl 2023; 62:e202310033. [PMID: 37651171 DOI: 10.1002/anie.202310033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/01/2023]
Abstract
A new phosphonate-based anionic bimetallic organic framework, with the general formula of A4 -Zn-DOBDP (wherein A is Li+ or Na+ , and DOBDP6- is the 2,5-dioxido-1,4-benzenediphosphate ligand) is prepared and characterized for energy storage applications. With four alkali cations per formula unit, the A4 -Zn-DOBDP MOF is found to be the first example of non-solvated cation conducting MOF with measured conductivities of 5.4×10-8 S cm-1 and 3.4×10-8 S cm-1 for Li4 - and Na4 - phases, indicating phase and composition effects of Li+ and Na+ shuttling through the channels. Three orders of magnitude increase in ionic conductivity is further attained upon solvation with propylene carbonate, placing this system among the best MOF ionic conductors at room temperature. As positive electrode material, Li4 -Zn-DOBDP delivers a specific capacity of 140 mAh g-1 at a high average discharge potential of 3.2 V (vs. Li+ /Li) with 90 % of capacity retention over 100 cycles. The significance of this research extends from the development of a new family of electroactive phosphonate-based MOFs with inherent ionic conductivity and reversible cation storage, to providing elementary insights into the development of highly sought yet still evasive MOFs with mixed-ion and electron conduction for energy storage applications.
Collapse
Affiliation(s)
- Yan Zhang
- College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, 410082, Hunan, P. R. China
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Jiande Wang
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Petru Apostol
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Darsi Rambabu
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Alae Eddine Lakraychi
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Xiaolong Guo
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Xiaozhe Zhang
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Xiaodong Lin
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Shubhadeep Pal
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Vasudeva Rao Bakuru
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Xiaohua Chen
- College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, 410082, Hunan, P. R. China
| | - Alexandru Vlad
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
17
|
Carpenter BP, Talosig AR, Rose B, Di Palma G, Patterson JP. Understanding and controlling the nucleation and growth of metal-organic frameworks. Chem Soc Rev 2023; 52:6918-6937. [PMID: 37796101 DOI: 10.1039/d3cs00312d] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Metal-organic frameworks offer a diverse landscape of building blocks to design high performance materials for implications in almost every major industry. With this diversity stems complex crystallization mechanisms with various pathways and intermediates. Crystallization studies have been key to the advancement of countless biological and synthetic systems, with MOFs being no exception. This review provides an overview of the current theories and fundamental chemistry used to decipher MOF crystallization. We then discuss how intrinsic and extrinsic synthetic parameters can be used as tools to modulate the crystallization pathway to produce MOF crystals with finely tuned physical and chemical properties. Experimental and computational methods are provided to guide the probing of MOF crystal formation on the molecular and bulk scale. Lastly, we summarize the recent major advances in the field and our outlook on the exciting future of MOF crystallization.
Collapse
Affiliation(s)
- Brooke P Carpenter
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - A Rain Talosig
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Ben Rose
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Giuseppe Di Palma
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| |
Collapse
|
18
|
Ying P, Liang T, Xu K, Zhang J, Xu J, Zhong Z, Fan Z. Sub-Micrometer Phonon Mean Free Paths in Metal-Organic Frameworks Revealed by Machine Learning Molecular Dynamics Simulations. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37481760 DOI: 10.1021/acsami.3c07770] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Metal-organic frameworks (MOFs) are a family of materials that have high porosity and structural tunability and hold great potential in various applications, many of which require a proper understanding of the thermal transport properties. Molecular dynamics (MD) simulations play an important role in characterizing the thermal transport properties of various materials. However, due to the complexity of the structures, it is difficult to construct accurate empirical interatomic potentials for reliable MD simulations of MOFs. To this end, we develop a set of accurate yet highly efficient machine-learned potentials for three typical MOFs, including MOF-5, HKUST-1, and ZIF-8, using the neuroevolution potential approach as implemented in the GPUMD package, and perform extensive MD simulations to study thermal transport in the three MOFs. Although the lattice thermal conductivity values of the three MOFs are all predicted to be smaller than 1 W/(m K) at room temperature, the phonon mean free paths (MFPs) are found to reach the sub-micrometer scale in the low-frequency region. As a consequence, the apparent thermal conductivity only converges to the diffusive limit for micrometer single crystals, which means that the thermal conductivity is heavily reduced in nanocrystalline MOFs. The sub-micrometer phonon MFPs are also found to be correlated with a moderate temperature dependence of thermal conductivity between those in typical crystalline and amorphous materials. Both the large phonon MFPs and the moderate temperature dependence of thermal conductivity fundamentally change our understanding of thermal transport in MOFs.
Collapse
Affiliation(s)
- Penghua Ying
- School of Science, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Ting Liang
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR 999077, P. R. China
| | - Ke Xu
- Department of Physics, Xiamen University, Xiamen 361005, P. R. China
| | - Jin Zhang
- School of Science, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Jianbin Xu
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR 999077, P. R. China
| | - Zheng Zhong
- School of Science, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Zheyong Fan
- College of Physical Science and Technology, Bohai University, Jinzhou 121013, P. R. China
| |
Collapse
|
19
|
Krause S, Milić JV. Functional dynamics in framework materials. Commun Chem 2023; 6:151. [PMID: 37452112 PMCID: PMC10349092 DOI: 10.1038/s42004-023-00945-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Dynamic crystalline materials have emerged as a unique category of condensed phase matter that combines crystalline lattice with components that display dynamic behavior in the solid state. This has involved a range of materials incorporating dynamic functional units in the form of stimuli-responsive molecular switches and machines, among others. In particular, it has been possible by relying on framework materials, such as porous molecular frameworks and other hybrid organic-inorganic systems that demonstrated potential for serving as scaffolds for dynamic molecular functions. As functional dynamics increase the level of complexity, the associated phenomena are often overlooked and need to be explored. In this perspective, we discuss a selection of recent developments of dynamic solid-state materials across material classes, outlining opportunities and fundamental and methodological challenges for their advancement toward innovative functionality and applications.
Collapse
Affiliation(s)
- Simon Krause
- Max Planck Institute for Solid-State Research, Stuttgart, Germany.
| | - Jovana V Milić
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
20
|
Kang C, Zhang Z, Kusaka S, Negita K, Usadi AK, Calabro DC, Baugh LS, Wang Y, Zou X, Huang Z, Matsuda R, Zhao D. Covalent organic framework atropisomers with multiple gas-triggered structural flexibilities. NATURE MATERIALS 2023; 22:636-643. [PMID: 37037962 DOI: 10.1038/s41563-023-01523-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 03/03/2023] [Indexed: 05/05/2023]
Abstract
Covalent organic frameworks (COFs) are emerging crystalline porous polymers, showing great potential for applications but lacking gas-triggered flexibility. Atropisomerism was experimentally discovered in 1922 but has rarely been found in crystals with infinite framework structures. Here we report atropisomerism in COF single crystals. The obtained COF atropisomers, namely COF-320 and COF-320-A, have identical chemical and interpenetrated structures but differ in the spatial arrangement of repeating units. In contrast to the rigid COF-320 structure, its atropisomer (COF-320-A) exhibits unconventional gas sorption behaviours with one or more sorption steps in isotherms at different temperatures. Single-crystal structures determined from continuous rotation electron diffraction and in situ powder X-ray diffraction demonstrate that these adsorption steps originate from internal pore expansion with or without changing the crystal space group. COF-320-A recognizes different gases by expanding its internal pores continuously (crystal-to-amorphous transition) or discontinuously (crystal-to-crystal transition) or having mixed transition styles, distinguishing COF-320-A from existing soft/flexible porous crystals. These findings extend atropisomerism from molecules to crystals and propel COFs into the covalently linked soft porous crystal regime, further advancing applications of soft porous crystals in gas sorption, separation and storage.
Collapse
Affiliation(s)
- Chengjun Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Zhaoqiang Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Shinpei Kusaka
- Department of Chemistry and Biotechnology, School of Engineering, and Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Kohei Negita
- Department of Chemistry and Biotechnology, School of Engineering, and Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Adam K Usadi
- ExxonMobil Technology and Engineering Company, Annandale, NJ, USA
| | - David C Calabro
- ExxonMobil Technology and Engineering Company, Annandale, NJ, USA
| | | | - Yuxiang Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Zhehao Huang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
| | - Ryotaro Matsuda
- Department of Chemistry and Biotechnology, School of Engineering, and Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan.
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
21
|
Koschnick C, Terban MW, Frison R, Etter M, Böhm FA, Proserpio DM, Krause S, Dinnebier RE, Canossa S, Lotsch BV. Unlocking New Topologies in Zr-Based Metal-Organic Frameworks by Combining Linker Flexibility and Building Block Disorder. J Am Chem Soc 2023; 145:10051-10060. [PMID: 37125876 PMCID: PMC10176567 DOI: 10.1021/jacs.2c13731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The outstanding diversity of Zr-based frameworks is inherently linked to the variable coordination geometry of Zr-oxo clusters and the conformational flexibility of the linker, both of which allow for different framework topologies based on the same linker-cluster combination. In addition, intrinsic structural disorder provides a largely unexplored handle to further expand the accessibility of novel metal-organic framework (MOF) structures that can be formed. In this work, we report the concomitant synthesis of three topologically different MOFs based on the same M6O4(OH)4 clusters (M = Zr or Hf) and methane-tetrakis(p-biphenyl-carboxylate) (MTBC) linkers. Two novel structural models are presented based on single-crystal diffraction analysis, namely, cubic c-(4,12)MTBC-M6 and trigonal tr-(4,12)MTBC-M6, which comprise 12-coordinated clusters and 4-coordinated tetrahedral linkers. Notably, the cubic phase features a new architecture based on orientational cluster disorder, which is essential for its formation and has been analyzed by a combination of average structure refinements and diffuse scattering analysis from both powder and single-crystal X-ray diffraction data. The trigonal phase also features structure disorder, although involving both linkers and secondary building units. In both phases, remarkable geometrical distortion of the MTBC linkers illustrates how linker flexibility is also essential for their formation and expands the range of achievable topologies in Zr-based MOFs and its analogues.
Collapse
Affiliation(s)
- Charlotte Koschnick
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart 70569, Germany
- Department of Chemistry, University of Munich, Butenandtstraße 5-13, Munich 81377, Germany
| | - Maxwell W Terban
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart 70569, Germany
| | - Ruggero Frison
- Physik-Institut, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, Hamburg 22607, Germany
| | - Felix A Böhm
- Department of Chemistry, University of Munich, Butenandtstraße 5-13, Munich 81377, Germany
| | - Davide M Proserpio
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi 19, Milano 20133, Italy
| | - Simon Krause
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart 70569, Germany
| | - Robert E Dinnebier
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart 70569, Germany
| | - Stefano Canossa
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart 70569, Germany
| | - Bettina V Lotsch
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart 70569, Germany
- Department of Chemistry, University of Munich, Butenandtstraße 5-13, Munich 81377, Germany
| |
Collapse
|
22
|
Zhang T, Yong X, Yu J, Wang Y, Wu M, Yang Q, Hou X, Liu Z, Wang K, Yang X, Lu S, Zou B. Brightening Blue Photoluminescence in Nonemission MOF-2 by Pressure Treatment Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211729. [PMID: 36960911 DOI: 10.1002/adma.202211729] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/01/2023] [Indexed: 05/17/2023]
Abstract
As equally essential as the synthesis of new materials, maneuvering new structure configurations can endow the brand-new functional properties to existing materials, which is also one of the core goals in the synthesis community. In this respect, pressure-induced emission (PIE) that triggers photoluminescence (PL) in nonemission materials is an emerging stimuli-responsive smart materials technology. In the PIE paradigms, harvesting bright PL at ambient conditions, however, has remained elusive. Herein, a remarkable PIE phenomenon is reported in initially nonemission Zn(BDC)(DMF)(H2 O) (MOF-2), which shows bright blue-emission at 455 nm under pressure. Intriguingly, the bright blue PL with an excellent photoluminescence quantum yield up to 70.4% is unprecedentedly retained to ambient conditions upon decompression from 16.2 GPa. The detailed structural analyses combined with density functional theory calculations reveal that hydrogen bonding cooperativity effect elevates powerfully the rotational barrier of the linker rotor to 3.87 eV mol-1 from initial 0.91 eV mol-1 through pressure treatment. The downgrade rotational freedom turns on PL of MOF-2 after releasing pressure completely. This is the first case of harvesting PIE to ambient conditions. These findings offer a new platform for the creation of promising alternatives to high-performance PL materials based on initially nonemission counterparts.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| | - Xue Yong
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
| | - Jingkun Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yixuan Wang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| | - Min Wu
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| | - Qing Yang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| | - Xuyuan Hou
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| | - Zhaodong Liu
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| | - Xinyi Yang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| |
Collapse
|
23
|
Fu Y, Forse AC, Kang Z, Cliffe MJ, Cao W, Yin J, Gao L, Pang Z, He T, Chen Q, Wang Q, Long JR, Reimer JA, Kong X. One-dimensional alignment of defects in a flexible metal-organic framework. SCIENCE ADVANCES 2023; 9:eade6975. [PMID: 36763650 PMCID: PMC9916987 DOI: 10.1126/sciadv.ade6975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Crystalline materials are often considered to have rigid periodic lattices, while soft materials are associated with flexibility and nonperiodicity. The continuous evolution of metal-organic frameworks (MOFs) has erased the boundaries between these two distinct conceptions. Flexibility, disorder, and defects have been found to be abundant in MOF materials with imperfect crystallinity, and their intricate interplay is poorly understood because of the limited strategies for characterizing disordered structures. Here, we apply advanced nuclear magnetic resonance spectroscopy to elucidate the mesoscale structures in a defective MOF with a semicrystalline lattice. We show that engineered defects can tune the degree of lattice flexibility by combining both ordered and disordered compartments. The one-dimensional alignment of correlated defects is the key for the reversible topological transition. The unique matrix is featured with both rigid framework of nanoporosity and flexible linkage of high swellability.
Collapse
Affiliation(s)
- Yao Fu
- Department of Physical Medicine and Rehabilitation, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310027, P. R. China
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Alexander C. Forse
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Zhengzhong Kang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Matthew J. Cliffe
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Weicheng Cao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jinglin Yin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Lina Gao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhenfeng Pang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Tian He
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Qinlong Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Qi Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jeffrey R. Long
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jeffrey A. Reimer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Xueqian Kong
- Department of Physical Medicine and Rehabilitation, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310027, P. R. China
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
24
|
Frentzel-Beyme L, Kolodzeiski P, Weiß JB, Schneemann A, Henke S. Quantification of gas-accessible microporosity in metal-organic framework glasses. Nat Commun 2022; 13:7750. [PMID: 36517486 PMCID: PMC9751146 DOI: 10.1038/s41467-022-35372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Metal-organic framework (MOF) glasses are a new class of glass materials with immense potential for applications ranging from gas separation to optics and solid electrolytes. Due to the inherent difficulty to determine the atomistic structure of amorphous glasses, the intrinsic structural porosity of MOF glasses is only poorly understood. Here, we investigate the porosity features (pore size and pore limiting diameter) of a series of prototypical MOF glass formers from the family of zeolitic imidazolate frameworks (ZIFs) and their corresponding glasses. CO2 sorption at 195 K allows quantifying the microporosity of these materials in their crystalline and glassy states, also providing excess to the micropore volume and the apparent density of the ZIF glasses. Additional hydrocarbon sorption data together with X-ray total scattering experiments prove that the porosity features of the ZIF glasses depend on the types of organic linkers. This allows formulating design principles for a targeted tuning of the intrinsic microporosity of MOF glasses. These principles are counterintuitive and contrary to those established for crystalline MOFs but show similarities to strategies previously developed for porous polymers.
Collapse
Affiliation(s)
- Louis Frentzel-Beyme
- Anorganische Chemie, Fakultät für Chemie & Chemische Biologie, Technische Universität Dortmund, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Pascal Kolodzeiski
- Anorganische Chemie, Fakultät für Chemie & Chemische Biologie, Technische Universität Dortmund, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Jan-Benedikt Weiß
- Anorganische Chemie, Fakultät für Chemie & Chemische Biologie, Technische Universität Dortmund, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Andreas Schneemann
- Anorganische Chemie I, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| | - Sebastian Henke
- Anorganische Chemie, Fakultät für Chemie & Chemische Biologie, Technische Universität Dortmund, Otto-Hahn Straße 6, 44227, Dortmund, Germany.
| |
Collapse
|
25
|
Azbell TJ, Mandel RM, Lee JH, Milner PJ. Reactive Chlorine Capture by Dichlorination of Alkene Linkers in Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53928-53935. [PMID: 36413751 PMCID: PMC10022271 DOI: 10.1021/acsami.2c17966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chlorine (Cl2) is a toxic and corrosive gas that is both an essential reagent in industry and a potent chemical warfare agent. Materials that can strongly bind Cl2 at low pressures are essential for industrial and civilian personal protective equipment (PPE). Herein, we report the first examples of irreversible Cl2 capture via the dichlorination of alkene linkages in Zr-based metal-organic frameworks. Frameworks constructed from fumarate (Zr-fum) and stilbene (Zr-stilbene) linkers retain long-range order and accessible porosity after alkene dichlorination. In addition, energy-dispersive X-ray spectroscopy reveals an even distribution of Cl throughout both materials after Cl2 capture. Cl2 uptake experiments reveal high irreversible uptake of Cl2 (>10 wt %) at low partial pressures (<100 mbar), particularly in Zr-fum. In contrast, traditional porous carbons mostly display reversible Cl2 capture, representing a continued risk to users after exposure. Overall, our results support that alkene dichlorination represents a new pathway for reactive Cl2 capture, opening new opportunities for binding this gas irreversibly in PPE.
Collapse
Affiliation(s)
- Tyler J. Azbell
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Ruth M. Mandel
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| |
Collapse
|
26
|
A contemporary report on explications of flexible metal-organic frameworks with regards to structural simulation, dynamics and material applications. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Kulachenkov N, Barsukova M, Alekseevskiy P, Sapianik AA, Sergeev M, Yankin A, Krasilin AA, Bachinin S, Shipilovskikh S, Poturaev P, Medvedeva N, Denislamova E, Zelenovskiy PS, Shilovskikh VV, Kenzhebayeva Y, Efimova A, Novikov AS, Lunev A, Fedin VP, Milichko VA. Dimensionality Mediated Highly Repeatable and Fast Transformation of Coordination Polymer Single Crystals for All-Optical Data Processing. NANO LETTERS 2022; 22:6972-6981. [PMID: 36018814 DOI: 10.1021/acs.nanolett.2c01770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A family of coordination polymers (CPs) based on dynamic structural elements are of great fundamental and commercial interest addressing modern problems in controlled molecular separation, catalysis, and even data processing. Herein, the endurance and fast structural dynamics of such materials at ambient conditions are still a fundamental challenge. Here, we report on the design of a series of Cu-based CPs [Cu(bImB)Cl2] and [Cu(bImB)2Cl2] with flexible ligand bImB (1,4-bis(imidazol-1-yl)butane) packed into one- and two-dimensional (1D, 2D) structures demonstrating dimensionality mediated flexibility and reversible structural transformations. Using the laser pulses as a fast source of activation energy, we initiate CP heating followed by anisotropic thermal expansion and 0.2-0.8% volume changes with the record transformation rates from 2220 to 1640 s-1 for 1D and 2D CPs, respectively. The endurance over 103 cycles of structural transformations, achieved for the CPs at ambient conditions, allows demonstrating optical fiber integrated all-optical data processing.
Collapse
Affiliation(s)
- Nikita Kulachenkov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Marina Barsukova
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Pavel Alekseevskiy
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Aleksandr A Sapianik
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Maxim Sergeev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Andrei Yankin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Andrei A Krasilin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Ioffe Institute, St. Petersburg 194021, Russia
| | - Semyon Bachinin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Sergei Shipilovskikh
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Department of Chemistry, Perm State University, Perm, 614990, Russia
| | - Petr Poturaev
- Department of Chemistry, Perm State University, Perm, 614990, Russia
| | - Natalia Medvedeva
- Department of Chemistry, Perm State University, Perm, 614990, Russia
| | | | - Pavel S Zelenovskiy
- Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg 620000, Russia
| | | | - Yuliya Kenzhebayeva
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Anastasiia Efimova
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Alexander S Novikov
- Saint Petersburg State University, Saint Petersburg 198504, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Artem Lunev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Valentin A Milichko
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Institut Jean Lamour, Universit de Lorraine, UMR CNRS 7198, 54011 Nancy, France
| |
Collapse
|
28
|
Large breathing effect in ZIF-65(Zn) with expansion and contraction of the SOD cage. Nat Commun 2022; 13:4569. [PMID: 35931702 PMCID: PMC9355966 DOI: 10.1038/s41467-022-32332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/26/2022] [Indexed: 11/08/2022] Open
Abstract
The flexibility and guest-responsive behavior of some metal-organic frameworks (MOFs) indicate their potential in the fields of sensors and molecular recognition. As a subfamily of MOFs, the flexible zeolitic imidazolate frameworks (ZIFs) typically feature a small displacive transition due to the rigid zeolite topology. Herein, an atypical reversible displacive transition (6.4 Å) is observed for the sodalite (SOD) cage in flexible ZIF-65(Zn), which represents an unusually large breathing effect compared to other ZIFs. ZIF-65(Zn) exhibits a stepwise II → III → I expansion between an unusual ellipsoidal SOD cage (8.6 Å × 15.9 Å for II) and a spherical SOD cage (15.0 Å for I). The breathing behavior of ZIF-65(Zn) varies depending on the nature of the guest molecules (polarity and shape). Computational simulations are employed to rationalize the differences in the breathing behavior depending on the structure of the ZIF-65(Zn) cage and the nature of the guest-associated host–guest and guest–guest interactions. Flexible metal-organic frameworks have potential applications in the development of sensors and switching materials. Here, the authors report a large breathing effect in a zeolitic imidazolate framework upon guest adsorption.
Collapse
|
29
|
Saura-Sanmartin A, Pastor A, Martinez-Cuezva A, Cutillas-Font G, Alajarin M, Berna J. Mechanically interlocked molecules in metal-organic frameworks. Chem Soc Rev 2022; 51:4949-4976. [PMID: 35612363 DOI: 10.1039/d2cs00167e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanically interlocked molecules (MIMs) have great potential in the development of molecular machinery due to their intercomponent dynamics. The incorporation of these molecules in a condensed phase makes it possible to take advantage of the control of the motion of the components at the macroscopic level. Metal-organic frameworks (MOFs) are postulated as ideal supports for intertwined molecules. This review covers the chemistry of the mechanical bond incorporated into metal-organic frameworks from the seminal studies to the latest published advances. We first describe some fundamental concepts of MIMs and MOFs. Next, we summarize the advances in the incorporation of rotaxanes and catenanes inside MOF matrices. Finally, we conclude by showing the study of the rotaxane dynamics in MOFs and the operation of some stimuli-responsive MIMs within MOFs. In addition to emphasising some selected examples, we offer a critical opinion on the state of the art of this research field, remarking the key points on which the future of these systems should be focused.
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Aurelia Pastor
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Alberto Martinez-Cuezva
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Guillermo Cutillas-Font
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Mateo Alajarin
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Jose Berna
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| |
Collapse
|
30
|
Song J, Pallach R, Frentzel‐Beyme L, Kolodzeiski P, Kieslich G, Vervoorts P, Hobday CL, Henke S. Tuning the High-Pressure Phase Behaviour of Highly Compressible Zeolitic Imidazolate Frameworks: From Discontinuous to Continuous Pore Closure by Linker Substitution. Angew Chem Int Ed Engl 2022; 61:e202117565. [PMID: 35119185 PMCID: PMC9401003 DOI: 10.1002/anie.202117565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/30/2022]
Abstract
The high-pressure behaviour of flexible zeolitic imidazolate frameworks (ZIFs) of the ZIF-62 family with the chemical composition M(im)2-x (bim)x is presented (M2+ =Zn2+ , Co2+ ; im- =imidazolate; bim- =benzimidazolate, 0.02≤x≤0.37). High-pressure powder X-ray diffraction shows that the materials contract reversibly from an open pore (op) to a closed pore (cp) phase under a hydrostatic pressure of up to 4000 bar. Sequentially increasing the bim- fraction (x) reinforces the framework, leading to an increased threshold pressure for the op-to-cp phase transition, while the total volume contraction across the transition decreases. Most importantly, the typical discontinuous op-to-cp transition (first order) changes to an unusual continuous transition (second order) for x≥0.35. This allows finetuning of the void volume and the pore size of the material continuously by adjusting the pressure, thus opening new possibilities for MOFs in pressure-switchable devices, membranes, and actuators.
Collapse
Affiliation(s)
- Jianbo Song
- Anorganische MaterialchemieFakultät für Chemie & Chemische BiologieTechnische Universität DortmundOtto-Hahn-Straße 644227DortmundGermany
| | - Roman Pallach
- Anorganische MaterialchemieFakultät für Chemie & Chemische BiologieTechnische Universität DortmundOtto-Hahn-Straße 644227DortmundGermany
| | - Louis Frentzel‐Beyme
- Anorganische MaterialchemieFakultät für Chemie & Chemische BiologieTechnische Universität DortmundOtto-Hahn-Straße 644227DortmundGermany
| | - Pascal Kolodzeiski
- Anorganische MaterialchemieFakultät für Chemie & Chemische BiologieTechnische Universität DortmundOtto-Hahn-Straße 644227DortmundGermany
| | - Gregor Kieslich
- Department of ChemistryTechnical University of MunichLichtenbergstrasse 485748GarchingGermany
| | - Pia Vervoorts
- Department of ChemistryTechnical University of MunichLichtenbergstrasse 485748GarchingGermany
| | - Claire L. Hobday
- Centre for Science at Extreme Conditions and EaStCHEM School of ChemistryThe University of Edinburgh, King's BuildingsWest Mains RoadEdinburghEH9 3FJU.K.
| | - Sebastian Henke
- Anorganische MaterialchemieFakultät für Chemie & Chemische BiologieTechnische Universität DortmundOtto-Hahn-Straße 644227DortmundGermany
| |
Collapse
|
31
|
Sapnik AF, Bechis I, Bumstead AM, Johnson T, Chater PA, Keen DA, Jelfs KE, Bennett TD. Multivariate analysis of disorder in metal-organic frameworks. Nat Commun 2022; 13:2173. [PMID: 35449202 PMCID: PMC9023516 DOI: 10.1038/s41467-022-29849-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/30/2022] [Indexed: 12/04/2022] Open
Abstract
The rational design of disordered frameworks is an appealing route to target functional materials. However, intentional realisation of such materials relies on our ability to readily characterise and quantify structural disorder. Here, we use multivariate analysis of pair distribution functions to fingerprint and quantify the disorder within a series of compositionally identical metal–organic frameworks, possessing different crystalline, disordered, and amorphous structures. We find this approach can provide powerful insight into the kinetics and mechanism of structural collapse that links these materials. Our methodology is also extended to a very different system, namely the melting of a zeolitic imidazolate framework, to demonstrate the potential generality of this approach across many areas of disordered structural chemistry. Structural disorder in materials is challenging to characterise. Here, the authors use multivariate analysis of atomic pair distribution functions to study structural collapse and melting of metal–organic frameworks, revealing powerful mechanistic and kinetic insight.
Collapse
Affiliation(s)
- Adam F Sapnik
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Irene Bechis
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Alice M Bumstead
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Timothy Johnson
- Johnson Matthey Technology Centre, Blount's Court, Sonning Common, Reading, RG4 9NH, UK
| | - Philip A Chater
- Diamond Light Source Ltd, Diamond House, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - David A Keen
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Kim E Jelfs
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
| |
Collapse
|
32
|
Xing Y, Luo L, Li Y, Wang D, Hu D, Li T, Zhang H. Exploration of Hierarchical Metal-Organic Framework as Ultralight, High-Strength Mechanical Metamaterials. J Am Chem Soc 2022; 144:4393-4402. [PMID: 35230831 DOI: 10.1021/jacs.1c11136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Due to the extraordinarily high surface to volume ratio and enormous structural and chemical diversities, metal-organic frameworks (MOFs) have drawn much attention in applications such as heterogeneous catalysis, gas storage separation, and drug delivery, and so on. However, the potential of MOF materials as mechanical metamaterials has not been investigated. In this work, we demonstrated that through the concerted effort of molecular construct and mesoscopic structural design, hierarchical MOFs can exhibit superb mechanical properties. With the cutting-edge in situ transmission and scanning electron microscope (TEM and SEM) techniques, the mechanical properties of hollow UiO-66 octahedron particles were quantitatively studied by compression on individual specimens. Results showed that the yield strength and Young's modulus of the hierarchical porous framework material presented a distinct "smaller is stronger and stiffer" size dependency, and the maximum yield strength and Young's modulus reached 580 ± 55 MPa and 4.3 ± 0.5 GPa, respectively. The specific strengths were measured as 0.15 ± 0.03 to 0.68 ± 0.11 GPa g-1 cm3, which is comparable to the previously reported state-of-the-art mechanical metamaterials like glassy carbon nanolattices and pyrolytic carbon nanolattices. This work revealed that MOF materials can be made into a new class of low-density, high-strength mechanical metamaterials and provided insight into the mechanical stability of nanoscale MOFs for practical applications.
Collapse
Affiliation(s)
- Yurui Xing
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China
| | - Lianshun Luo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China
| | - Yansong Li
- Department of Aircraft Airworthiness Engineering, School of Transportation Science and Engineering, Beihang University (BUAA), Beijing 100191, PR China
| | - Dongxu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China
| | - Dayong Hu
- Department of Aircraft Airworthiness Engineering, School of Transportation Science and Engineering, Beihang University (BUAA), Beijing 100191, PR China
| | - Tao Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China.,Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, PR China
| | - Hongti Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China.,Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, PR China
| |
Collapse
|
33
|
Chen X, Xie H, Lorenzo ER, Zeman CJ, Qi Y, Syed ZH, Stone AEBS, Wang Y, Goswami S, Li P, Islamoglu T, Weiss EA, Hupp JT, Schatz GC, Wasielewski MR, Farha OK. Direct Observation of Modulated Radical Spin States in Metal–Organic Frameworks by Controlled Flexibility. J Am Chem Soc 2022; 144:2685-2693. [DOI: 10.1021/jacs.1c11417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaofeng Chen
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Haomiao Xie
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Emmaline R. Lorenzo
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Charles J. Zeman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yue Qi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Zoha H. Syed
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Aaron E. B. S. Stone
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yao Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Subhadip Goswami
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Peng Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Timur Islamoglu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Emily A. Weiss
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Joseph T. Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - George C. Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael R. Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
34
|
Song J, Pallach R, Frentzel-Beyme L, Kolodzeiski P, Kieslich G, Vervoorts P, Hobday CL, Henke S. Tuning the High‐Pressure Phase Behaviour of Highly Compressible Zeolitic Imidazolate Frameworks: From Discontinuous to Continuous Pore Closure by Linker Substitution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jianbo Song
- TU Dortmund: Technische Universitat Dortmund Chemistry and Chemical Biology GERMANY
| | - Roman Pallach
- TU Dortmund: Technische Universitat Dortmund Chemistry and Chemical Biology GERMANY
| | - Louis Frentzel-Beyme
- TU Dortmund: Technische Universitat Dortmund Chemistry and Chemical Biology GERMANY
| | - Pascal Kolodzeiski
- TU Dortmund: Technische Universitat Dortmund Chemistry and Chemical Biology GERMANY
| | - Gregor Kieslich
- TU Munchen: Technische Universitat Munchen Chemistry GERMANY
| | - Pia Vervoorts
- TU Munchen: Technische Universitat Munchen Chemistry GERMANY
| | | | - Sebastian Henke
- TU Dortmund: Technische Universitat Dortmund Chemistry and Chemical Biology Otto-Hahn-Straße 6 44227 Dortmund GERMANY
| |
Collapse
|
35
|
Wu H, Zhai Q, Ding F, Sun D, Ma Y, Ren YILUN, Wang B, Li F, Bian H, Yang YR, Chen L, Tang S, Meng X. Amorphous FeNiCu-MOF as highly efficient electrocatalysts for oxygen evolution reaction in alkaline medium. Dalton Trans 2022; 51:14306-14316. [DOI: 10.1039/d2dt01838a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of low-cost and high-activity oxygen evolution reaction (OER) catalysts is a technical bottleneck in the field of electrolysis of water to produce hydrogen. Amorphous metal-organic frameworks (MOFs) with...
Collapse
|
36
|
Albalad J, Peralta RA, Huxley MT, Tsoukatos S, Shi Z, Zhang YB, Evans JD, Sumby CJ, Doonan CJ. Coordination modulated on-off switching of flexibility in a metal-organic framework. Chem Sci 2021; 12:14893-14900. [PMID: 34820105 PMCID: PMC8597854 DOI: 10.1039/d1sc04712d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/10/2021] [Indexed: 02/01/2023] Open
Abstract
Stimuli-responsive metal-organic frameworks (MOFs) exhibit dynamic, and typically reversible, structural changes upon exposure to external stimuli. This process often induces drastic changes in their adsorption properties. Herein, we present a stimuli-responsive MOF, 1·[CuCl], that shows temperature dependent switching from a rigid to flexible phase. This conversion is associated with a dramatic reversible change in the gas adsorption properties, from Type-I to S-shaped isotherms. The structural transition is facilitated by a novel mechanism that involves both a change in coordination number (3 to 2) and geometry (trigonal planar to linear) of the post-synthetically added Cu(i) ion. This process serves to 'unlock' the framework rigidity imposed by metal chelation of the bis-pyrazolyl groups and realises the intrinsic flexibility of the organic link.
Collapse
Affiliation(s)
- Jorge Albalad
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide North Terrace Adelaide SA 5000 Australia
| | - Ricardo A Peralta
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide North Terrace Adelaide SA 5000 Australia
| | - Michael T Huxley
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide North Terrace Adelaide SA 5000 Australia
| | - Steven Tsoukatos
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide North Terrace Adelaide SA 5000 Australia
| | - Zhaolin Shi
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Jack D Evans
- Department of Inorganic Chemistry, Technische Universität Dresden 01062 Dresden Germany
| | - Christopher J Sumby
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide North Terrace Adelaide SA 5000 Australia
| | - Christian J Doonan
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide North Terrace Adelaide SA 5000 Australia
| |
Collapse
|
37
|
Turner GF, McKellar SC, Allan DR, Cheetham AK, Henke S, Moggach SA. Guest-mediated phase transitions in a flexible pillared-layered metal-organic framework under high-pressure. Chem Sci 2021; 12:13793-13801. [PMID: 34760164 PMCID: PMC8549792 DOI: 10.1039/d1sc03108b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/07/2021] [Indexed: 11/21/2022] Open
Abstract
The guest-dependent flexibility of the pillared-layered metal-organic framework (MOF), Zn2bdc2dabco·X(guest), where guest = EtOH, DMF or benzene, has been examined by high-pressure single crystal X-ray diffraction. A pressure-induced structural phase transition is found for the EtOH- and DMF-included frameworks during compression in a hydrostatic medium of the guest species, which is dependent upon the nature and quantity of the guest in the channels. The EtOH-included material undergoes a phase transition from P4/mmm to C2/m at 0.69 GPa, which is accompanied by a change in the pore shape from square to rhombus via super-filling of the pores. The DMF-included material undergoes a guest-mediated phase transition from I4/mcm to P4/mmm at 0.33 GPa via disordering of the DMF guest. In contrast, the benzene-included framework features a structure with rhombus-shaped channels at ambient pressure and shows direct compression under hydrostatic pressure. These results demonstrate the large influence of guest molecules on the high-pressure phase behavior of flexible MOFs. Guest-mediated framework flexibility is useful for engineering MOFs with bespoke pore shapes and compressibility.
Collapse
Affiliation(s)
- Gemma F Turner
- School of Molecular Sciences, University of Western Australia Perth 6009 Western Australia Australia
| | - Scott C McKellar
- EastChem School of Chemistry, University of Edinburgh Edinburgh EH9 3JW UK
| | - David R Allan
- Diamond Light Source, Harwell Science and Innovation Campus Didcot O11 ODE UK
| | - Anthony K Cheetham
- Materials Research Laboratory, University of California Santa Barbara CA 93106 USA
| | - Sebastian Henke
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund Dortmund 44227 Germany
| | - Stephen A Moggach
- School of Molecular Sciences, University of Western Australia Perth 6009 Western Australia Australia
| |
Collapse
|