1
|
Ren X, Lin C, Zhou G, He J, Tong Y, Chen P. Pt-decorated spinel MnCo 2O 4 nanosheets enable ampere-level hydrazine assisted water electrolysis. J Colloid Interface Sci 2024; 676:13-21. [PMID: 39018806 DOI: 10.1016/j.jcis.2024.07.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Coupling hydrazine oxidation reaction (HzOR) with hydrogen evolution reaction (HER) has been widely concerned for high efficiency of green hydrogen preparation with low energy consumption. However, the lacking of bifunctional electrodes with ampere-level performance severely limits its industrialization. Herein, we put forward an efficient active site anchored strategy for MnCo2O4 nanosheet arrays on nickel foam (NF) by introducing Pt species (denoted as Pt-MnCo2O4/NF), which is standing for excellent bifunctional electrodes. The Pt-MnCo2O4/NF delivers ultralow potentials of -195 mV and 350 mV at 1000 mA cm-2 as well as robust stability for HzOR and HER, respectively. The study of in-situ Raman and reaction kinetics reveal that the formation of key adsorbed *NH2 and *N2H4 intermediates and the rapidly oxidization of intermediates with a fast interfacial charge transfer on Pt-MnCo2O4/NF. Remarkably, the Pt-MnCo2O4/NF assembled two-electrode hydrazine assisted water electrolyzer realizes current density of 100 mA cm-2 and 1000 mA cm-2 at 0.16 V and 0.62 V with over 80 h stability. This work provides a promising way to design efficient electrodes for energy-saving H2 generation under ampere-level current density.
Collapse
Affiliation(s)
- Xuhui Ren
- School of Chemistry and Chemical Engineering, Department of Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Cong Lin
- School of Chemistry and Chemical Engineering, Department of Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Guorong Zhou
- School of Chemistry and Chemical Engineering, Department of Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Jinfeng He
- School of Chemistry and Chemical Engineering, Department of Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Yun Tong
- School of Chemistry and Chemical Engineering, Department of Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.
| | - Pengzuo Chen
- School of Chemistry and Chemical Engineering, Department of Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
2
|
Sun ML, Wang HY, Feng Y, Ren JT, Wang L, Yuan ZY. Electrodegradation of nitrogenous pollutants in sewage: from reaction fundamentals to energy valorization applications. Chem Soc Rev 2024. [PMID: 39498737 DOI: 10.1039/d4cs00517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The excessive accumulation of nitrogen pollutants (mainly nitrate, nitrite, ammonia nitrogen, hydrazine, and urea) in water bodies seriously disrupts the natural nitrogen cycle and poses a significant threat to human life and health. Electrolysis is considered a promising method to degrade these nitrogenous pollutants in sewage, with the advantages of high efficiency, wide generality, easy operability, retrievability, and environmental friendliness. For particular energy devices, including metal-nitrate batteries, direct fuel cells, and hybrid water electrolyzers, the realization of energy valorization from sewage purification processes (e.g., valuable chemical generation, electricity output, and hydrogen production) becomes feasible. Despite the progress in the research on pollutant electrodegradation, the development of electrocatalysts with high activity, stability, and selectivity for pollutant removal, coupled with corresponding energy devices, remains a challenge. This review comprehensively provides advanced insights into the electrodegradation processes of nitrogenous pollutants and relevant energy valorization strategies, focusing on the reaction mechanisms, activity descriptors, electrocatalyst design, and actuated electrodes and operation parameters of tailored energy conversion devices. A feasibility analysis of electrodegradation on real wastewater samples from the perspective of pollutant concentration, pollutant accumulation, and electrolyte effects is provided. Challenges and prospects for the future development of electrodegradation systems are also discussed in detail to bridge the gap between experimental trials and commercial applications.
Collapse
Affiliation(s)
- Ming-Lei Sun
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Hao-Yu Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Yi Feng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Jin-Tao Ren
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Lei Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Zhong-Yong Yuan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| |
Collapse
|
3
|
Sarsenov S, Senthil RA, Min A, Kumar A, Moon CJ, Park J, Choi MY. Deciphering the Electronic Coupling Dynamics of Laser-induced Ru/Cu Electrocatalyst for Dual-Side Hydrogen Production and Formic Acid Co-synthesis via DFT Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403999. [PMID: 39420860 DOI: 10.1002/smll.202403999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Herein, a straightforward approach using pulsed laser technology to synthesize selective hexagonal-close-packed (hcp) Ru nanoparticles attached to Cu nanospheres (Ru/Cu) as bifunctional electrocatalyst for catalyzing the hydrogen evolution reaction (HER) and formaldehyde oxidation reaction (FOR) are reported. Initially, Ru-doped CuO flakes are synthesized using a coprecipitation method followed by transformation into Ru/Cu composites through a strategy involving pulsed laser irradiation in liquid. Specifically, the optimized Ru/Cu-4 composite not only demonstrates a low overpotential of 182 mV at 10 mA·cm-2 for the HER but also an ultralow working potential of 0.078 V (versus reversible hydrogen electrode) for the FOR at the same current density. Remarkably, the FOR∥HER-coupled electrolyzer employing the Ru/Cu-4∥Ru/Cu-4 system achieves H2 production at both electrodes with a cell voltage of 0.42 V at 10 mA·cm-2 while co-synthesizing formic acid. Furthermore, density functional theory analyses elucidate that the superior activity of the Ru/Cu composite originates from optimized adsorption energies of reactive species on the catalyst surfaces during the HER and FOR, facilitated by the synergistic coupling between Ru and Cu. This study presents an alternative strategy for synthesizing highly effective electrocatalytic materials for use in energy-efficient H2 production with the cosynthesis of value-added chemicals suitable for practical applications.
Collapse
Affiliation(s)
- Sagyntay Sarsenov
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Raja Arumugam Senthil
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ahreum Min
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Anuj Kumar
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Cheol Joo Moon
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Juhyeon Park
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| |
Collapse
|
4
|
Liu T, Lan C, Tang M, Li M, Xu Y, Yang H, Deng Q, Jiang W, Zhao Z, Wu Y, Xie H. Redox-mediated decoupled seawater direct splitting for H 2 production. Nat Commun 2024; 15:8874. [PMID: 39402055 PMCID: PMC11473778 DOI: 10.1038/s41467-024-53335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/10/2024] [Indexed: 10/17/2024] Open
Abstract
Seawater direct electrolysis (SDE) using renewable energy provides a sustainable pathway to harness abundant oceanic hydrogen resources. However, the side-reaction of the chlorine electro-oxidation reaction (ClOR) severely decreased direct electrolysis efficiency of seawater and gradually corrodes the anode. In this study, a redox-mediated strategy is introduced to suppress the ClOR, and a decoupled seawater direct electrolysis (DSDE) system incorporating a separate O2 evolution reactor is established. Ferricyanide/ferrocyanide ([Fe(CN)6]3-/4-) serves as an electron-mediator between the cell and the reactor, thereby enabling a more dynamically favorable half-reaction to supplant the traditional oxygen evolution reaction (OER). This alteration involves a straightforward, single-electron-transfer anodic reaction without gas precipitation and effectively eliminates the generation of chlorine-containing byproducts. By operating at low voltages (~1.37 V at 10 mA cm-2 and ~1.57 V at 100 mA cm-2) and maintaining stability even in a Cl--saturated seawater electrolyte, this system has the potential of undergoing decoupled seawater electrolysis with zero chlorine emissions. Further improvements in the high-performance redox-mediators and catalysts can provide enhanced cost-effectiveness and sustainability of the DSDE system.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University & Shenzhen University, Chengdu, 610065, China.
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China.
- Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Deep Engineering Science and Green Energy, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China.
| | - Cheng Lan
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University & Shenzhen University, Chengdu, 610065, China.
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China.
- Shenzhen Key Laboratory of Deep Engineering Science and Green Energy, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China.
| | - Min Tang
- Sichuan University-Pittsburgh Institute, Chengdu, 610065, China
| | - Mengxin Li
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China
- Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China
| | - Yitao Xu
- Sichuan University-Pittsburgh Institute, Chengdu, 610065, China
| | - Hangrui Yang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Qingyue Deng
- Sichuan University-Pittsburgh Institute, Chengdu, 610065, China
| | - Wenchuan Jiang
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University & Shenzhen University, Chengdu, 610065, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China
- Shenzhen Key Laboratory of Deep Engineering Science and Green Energy, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China
| | - Zhiyu Zhao
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University & Shenzhen University, Chengdu, 610065, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China
- Shenzhen Key Laboratory of Deep Engineering Science and Green Energy, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China
| | - Yifan Wu
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University & Shenzhen University, Chengdu, 610065, China.
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China.
- Shenzhen Key Laboratory of Deep Engineering Science and Green Energy, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China.
| | - Heping Xie
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University & Shenzhen University, Chengdu, 610065, China.
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China.
- Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Deep Engineering Science and Green Energy, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China.
- College of Water Resource & Hydropower, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
5
|
Liang Z, Shen D, Wei Y, Sun F, Xie Y, Wang L, Fu H. Modulating the Electronic Structure of Cobalt-Vanadium Bimetal Catalysts for High-Stable Anion Exchange Membrane Water Electrolyzer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408634. [PMID: 39148167 DOI: 10.1002/adma.202408634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/21/2024] [Indexed: 08/17/2024]
Abstract
Modulating the electronic structure of catalysts to effectively couple the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is essential for developing high-efficiency anion exchange membrane water electrolyzer (AEMWE). Herein, a coral-like nanoarray composed of nanosheets through the synergistic layering effect of cobalt and the 1D guiding of vanadium is synthesized, which promotes extensive contact between the active sites and electrolyte. The HER and OER activities can be enhanced by modulating the electronic structure through nitridation and phosphorization, respectively, enhancing the strength of metal-H bond to optimize hydrogen adsorption and facilitating the proton transfer to improve the transformation of oxygen-containing intermediates. Resultantly, the AEMWE achieves a current density of 500 mA cm-2 at 1.76 V for 1000 h in 1.0 M KOH at 70 °C. The energy consumption is 4.21 kWh Nm-3 with the producing hydrogen cost of $0.93 per kg H2. Operando synchrotron radiation and Bode phase angle analyses reveal that during the high-energy consumed OER, the dissolution of vanadium species transforms distorted Co-O octahedral into regular octahedral structures, accompanied by a shortening of the Co-Co bond length. This structural evolution facilitates the formation of oxygen intermediates, thus accelerating the reaction kinetics.
Collapse
Affiliation(s)
- Zhijian Liang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Di Shen
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Yao Wei
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Fanfei Sun
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Lei Wang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Honggang Fu
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
6
|
Zhang J, Zeng Y, Xiao T, Tian S, Jiang J. Aerophobic/Hydrophilic Nickel-Iron Sulfide Nanoarrays for Energy-Saving Hydrogen Production from Seawater Splitting Assisted by Sulfion Oxidation Reaction. Inorg Chem 2024. [PMID: 39240171 DOI: 10.1021/acs.inorgchem.4c02480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Electrolysis of infinite seawater is a promising and sustainable approach for clean hydrogen production. However, it remains a big challenge to accomplish corrosion-resistant and chlorine-free seawater electrolysis at low power input. Herein, the bimetallic nickel-iron sulfide-based electrocatalytic nanoarrays are constructed by a facile hydrothermal sulfidation of redox-etched iron foam (IF), which manifests an effective and reliable strategy for the sulfion oxidation reaction (SOR) to assist alkaline seawater electrolysis for the achievement of energy-saving hydrogen production and value-added sulfion upcycling. The resulting NiFeSx/FeNi3/IF required 0.353 and 0.415 V vs RHE for SOR at current densities of 50 and 100 mA cm-2, which are considerably lower than the theoretical potential of the oxygen evolution reaction (OER, 1.23 V vs RHE). In situ spectroscopy analysis demonstrated efficient sulfion oxidation on the surface of NiFeSx/FeNi3/IF. Furthermore, the NiFeSx/FeNi3/IF-assembled electrolyzer delivered a greatly reduced cell voltage of 0.92 V at 50 mA cm-2 and maintains excellent durability for 30 h, achieving high Faradaic efficiency for both hydrogen production and sulfion degradation. In addition, under natural sunlight (660.4 W m-2), only a 0.947 V voltage of the solar panel smoothly powers the SOR-coupled seawater electrolysis for green hydrogen production and economic sulfur recovery.
Collapse
Affiliation(s)
- Jiayi Zhang
- School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Yu Zeng
- School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Tanyang Xiao
- School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Song Tian
- School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Jing Jiang
- School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| |
Collapse
|
7
|
Xiang F, Li N, Burguete-Lopez A, He Z, Elizarov M, Fratalocchi A. Light-Induced Quantum Reconfiguration of Oxyhydroxides for Photoanodes with 4.24% Efficiency and Stability Beyond 250 Hours. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405478. [PMID: 39097948 DOI: 10.1002/adma.202405478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Indexed: 08/06/2024]
Abstract
Photoelectrochemical (PEC) water splitting is attracting significant research interest in addressing sustainable development goals in renewable energy. Current state-of-the-art, however, cannot provide photoanodes with simultaneously high efficiency and long-lasting lifetime. Here, large-scale NiFe oxyhydroxides-alloy hybridized co-catalyst layer that exhibits an applied bias photon-to-current efficiency (ABPE) of 4.24% in buried homojunction-free photoanodes and stability over 250 h is reported. These performances represent an increase over the present highest-performing technology by 408% in stability and the most stable competitor by over 330% in efficiency. These results originate from a previously unexplored mechanism of light-induced atomic reconfiguration, which rapidly self-generates a catalytic-protective amorphous/crystalline heterostructure at low biases. This mechanism provides active sites for reaction and insulates the photoanode from performance degradation. Photon-generated NiFe oxyhydroxides are more than 200% higher than the quantity that pure electrocatalysis would otherwise induce, overcoming the threshold for an efficient water oxidation reaction in the device. While of immediate interest in the industry of water splitting, the light-induced NiFe oxyhydroxides-alloy co-catalyst developed in this work provides a general strategy to enhance further the performances and stability of PEC devices for a vast panorama of chemical reactions, ranging from biomass valorization to organic waste degradation, and CO2-to-fuel conversion.
Collapse
Affiliation(s)
- Fei Xiang
- PRIMALIGHT, Faculty of Electrical and Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ning Li
- PRIMALIGHT, Faculty of Electrical and Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Arturo Burguete-Lopez
- PRIMALIGHT, Faculty of Electrical and Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Zhao He
- PRIMALIGHT, Faculty of Electrical and Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Maxim Elizarov
- PRIMALIGHT, Faculty of Electrical and Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Andrea Fratalocchi
- PRIMALIGHT, Faculty of Electrical and Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
8
|
Zhao Y, Cui M, Zhang B, Wei S, Shi X, Shan K, Ma J, Zhou G, Pang H. One-step Sintering Synthesis of Ni 3Se 2-Ni Electrode with Robust Interfacial Bonding for Ultra-stable Hydrogen Evolution Reaction. SMALL METHODS 2024; 8:e2301465. [PMID: 38164889 DOI: 10.1002/smtd.202301465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Exploring efficient and robust self-supporting hydrogen evolution reaction (HER) electrodes using simple, accessible, and low-cost synthetic processes is crucial for the commercial application of water electrolysis at high current densities. Ni-based self-supporting electrodes are widely studied owing to their low cost and good catalytic performance. However, to date, the preparation of Ni-based electrodes requires multistep and complex preparation processes. In this study, a novel one-step in situ sintering method to synthesize mechanically stable and highly active Ni3Se2-Ni electrodes with well-controlled morphologies and structures is developed. Their excellent performance and durability can be attributed to the numerous highly active nano-Ni3Se2 catalysts embedded on the surface of the Ni skeleton, the excellent conductivity of the interconnected conductive network, and the strong interfacial bonding between Ni3Se2 and Ni. As a result, the Ni3Se2-Ni600 electrode can operate stably at 85 and 400 mA cm-2 for more than 800 and 300 h, respectively. Moreover, the Ni3Se2-Ni600 electrode displays outstanding stability for over 500 h in a commercial two-electrode system. This study provides a feasible one-step synthesis method for low-cost, high-efficiency metal selenide-metal self-supporting electrodes for water electrolysis.
Collapse
Affiliation(s)
- Yang Zhao
- School of Materials Science and Engineering, Henan University of Science and Technology
| | - Manman Cui
- School of Materials Science and Engineering, Henan University of Science and Technology
| | - Bin Zhang
- School of Materials Science and Engineering, Henan University of Science and Technology
| | - Shizhong Wei
- School of Materials Science and Engineering, Henan University of Science and Technology
| | - Xiaoqian Shi
- School of Materials Science and Engineering, Henan University of Science and Technology
| | - Kangning Shan
- School of Materials Science and Engineering, Henan University of Science and Technology
| | - Jiping Ma
- School of Materials Science and Engineering, Henan University of Science and Technology
| | - Guangmin Zhou
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| |
Collapse
|
9
|
Liu Y, Wang Y, Fornasiero P, Tian G, Strasser P, Yang XY. Long-term Durability of Seawater Electrolysis for Hydrogen: From Catalysts to Systems. Angew Chem Int Ed Engl 2024:e202412087. [PMID: 39205621 DOI: 10.1002/anie.202412087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Direct electrochemical seawater splitting is a renewable, scalable, and potentially economic approach for green hydrogen production in environments where ultra-pure water is not readily available. However, issues related to low durability caused by complex ions in seawater pose great challenges for its industrialization. In this review, a mechanistic analysis of durability issues of electrolytic seawater splitting is discussed. We critically analyze the development of seawater electrolysis and identify the durability challenges at both the anode and cathode. Particular emphasis is given to elucidating rational strategies for designing electrocatalysts/electrodes/interfaces with long lifetimes in realistic seawater including inducing passivating anion layers, preferential OH-adsorption, employing anti-corrosion materials, fabricating protective layers, immobilizing Cl- on the surface of electrocatalysts, tailoring Cl- adsorption sites, inhibition of OH- binding to Mg2+ and Ca2+, inhibition of Mg and Ca hydroxide precipitation adherence, and co-electrosynthesis of nano-sized Mg hydroxides. Synthesis methods of electrocatalysts/electrodes and innovations in electrolyzer are also discussed. Furthermore, the prospects for developing seawater splitting technologies for clean hydrogen generation are summarized. We found that researchers have rethought the role of Cl- ions, as well as more attention to cathodic reaction and electrolyzers, which is conducive to accelerate the commercialization of seawater electrolysis.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Foshan Xianhu Laboratory & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yong Wang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Foshan Xianhu Laboratory & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, University of Trieste and ICCOM-CNR and INSTM Trieste Research Units, 34127, Trieste, Italy
| | - Ge Tian
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Foshan Xianhu Laboratory & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Peter Strasser
- Technical University Berlin, Department of Chemistry, 10623, Berlin, Germany
| | - Xiao-Yu Yang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Foshan Xianhu Laboratory & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
10
|
Singh B, Kumar R, Ansari T, Indra A, Draksharapu A. Nitrate-coordinated FeNi(OH) 2 for hydrazine oxidation assisted seawater splitting at the industrial-level current density. Chem Commun (Camb) 2024; 60:9432-9435. [PMID: 39139041 DOI: 10.1039/d4cc03803g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In this study, we developed a nitrate-coordinated iron-nickel hydroxide [NC-FeNi(OH)2] catalyst for hydrazine oxidation-assisted seawater splitting. Replacement of O2 evolution by hydrazine oxidation in a two-electrode setup resulted in a cell voltage of 1.20 V at 100 mA cm-2. This represents a voltage reduction of 470 mV compared to conventional seawater splitting. Additionally, NC-FeNi(OH)2 demonstrated remarkable stability over a period of 60 hours.
Collapse
Affiliation(s)
- Baghendra Singh
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Rakesh Kumar
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Toufik Ansari
- Department of Chemistry, Indian Institute of Technology BHU, Varanasi-221005, India.
| | - Arindam Indra
- Department of Chemistry, Indian Institute of Technology BHU, Varanasi-221005, India.
| | - Apparao Draksharapu
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| |
Collapse
|
11
|
Behera S, Chauhan C, Mondal B. Co-N-C/C Bifunctional Electrocatalyst for Dual Applications in Seawater Electrolysis and Catalyst in Hydrazine Fuel Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311946. [PMID: 38446102 DOI: 10.1002/smll.202311946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/23/2024] [Indexed: 03/07/2024]
Abstract
The convergence of water electrolysis and alkaline fuel cells offers captivating solutions for sustainably harvesting energy. The research explores both hydrazine-assisted seawater electrolysis (hydrazine oxidation reaction (HzOR) and hydrogen production reaction (HER)), as well as alkaline hydrazine fuel cell reactions (HzOR and Oxygen reduction reaction (ORR)) by using a bifunctional cobalt polyaniline derived (Co PANI/C) catalyst. The catalyst shows excellent performance for hydrazine-assisted seawater electrolysis in harsh seawater environments to produce H2 as fuel with nearly 85% Faradaic efficiency and during alkaline HzOR, the bifunctional catalyst generates H2 with 95% Faradaic efficiency by acting as both anode and cathode side catalyst. Also, the same catalyst requires only a potential of 0.34 V versus RHE and 0.906 V versus RHE for HzOR and ORR, respectively, in 1 m KOH, which makes this overall process useful for a Hz/O2 fuel cell.
Collapse
Affiliation(s)
- Snehanjali Behera
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Chetansinh Chauhan
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Biswajit Mondal
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| |
Collapse
|
12
|
Jung S, Senthil RA, Min A, Kumar A, Moon CJ, Choi MY. Laser-Synthesized Co-Doped CuO Electrocatalyst: Unveiling Boosted Methanol Oxidation Kinetics for Enhanced Hydrogen Production Efficiency by In Situ/Operando Raman and Theoretical Analyses. SMALL METHODS 2024; 8:e2301628. [PMID: 38412410 DOI: 10.1002/smtd.202301628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/17/2024] [Indexed: 02/29/2024]
Abstract
The present study details the strategic development of Co-doped CuO nanostructures via sophisticated and expedited pulsed laser ablation in liquids (PLAL) technique. Subsequently, these structures are employed as potent electrocatalysts for the anodic methanol oxidation reaction (MOR), offering an alternative to the sluggish oxygen evolution reaction (OER). Electrochemical assessments indicate that the Co-CuO catalyst exhibits exceptional MOR activity, requiring a reduced potential of 1.42 V at 10 mA cm-2 compared to that of pure CuO catalyst (1.57 V at 10 mA cm-2). Impressively, the Co-CuO catalyst achieved a nearly 180 mV potential reduction in MOR compared to its OER performance (1.60 V at 10 mA cm-2). Furthermore, when pairing Co-CuO(+)ǀǀPt/C(-) in methanol electrolysis, the cell voltage required is only 1.51 V at 10 mA cm-2, maintaining remarkable stability over 12 h. This represents a substantial voltage reduction of ≈160 mV relative to conventional water electrolysis (1.67 V at 10 mA cm-2). Additionally, both in situ/operando Raman spectroscopy studies and theoretical calculations have confirmed that Co-doping plays a crucial role in enhancing the activity of the Co-CuO catalyst. This research introduces a novel synthetic approach for fabricating high-efficiency electrocatalysts for large-scale hydrogen production while co-synthesizing value-added formic acid.
Collapse
Affiliation(s)
- Sieon Jung
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Raja Arumugam Senthil
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ahreum Min
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Anuj Kumar
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Cheol Joo Moon
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| |
Collapse
|
13
|
Wang L, Chen Y, Liu Y, Dai Q, Chen Z, Yang X, Luo Y, Li Z, Yang B, Zheng M, Lei L, Hou Y. Electron Redistribution of Ru Site on MoO 2@NiMoO 4 Support for Efficient Ampere-Level Current Density Electrolysis of Alkaline Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311477. [PMID: 38554022 DOI: 10.1002/smll.202311477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Indexed: 04/01/2024]
Abstract
Seawater electrolysis is a promising but challenging strategy to generate carbon-neutral hydrogen. A grand challenge for hydrogen evolution reaction (HER) from alkaline seawater electrolysis is the development of efficient and stable electrocatalysts to overcome the limitation of sluggish kinetics. Here, a 3D nanorod hybrid catalyst is reported, which comprises heterostructure MoO2@NiMoO4 supported Ru nanoparticles (Ru/ MoO2@NiMoO4) with a size of ≈5 nm. Benefitting from the effect of strongly coupled interaction, Ru/MoO2@NiMoO4 catalyst exhibits a remarkable alkaline seawater hydrogen evolution performance, featured by a low overpotential of 184 mV at a current density of 1.0 A cm-2, superior to commercial Pt/C (338 mV). Experimental observations demonstrate that the heterostructure MoO2@NiMoO4 as an electron-accepting support makes the electron transfer from the Ru nanoparticles to MoO2, and thereby implements the electron redistribution of Ru site. Mechanistic analysis elucidates that the electron redistribution of active Ru site enhances the ability of hydrogen desorption, thereby promoting alkaline seawater HER kinetics and finally leading to a satisfactory catalysis performance at ampere-level current density of alkaline seawater electrolysis.
Collapse
Affiliation(s)
- Lin Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yue Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yingnan Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qizhou Dai
- Institute of Environmental Biology and Catalysis, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhengfei Chen
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China
| | - Xiaoxuan Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yansong Luo
- Institute of Thermal Science and Power Systems, School of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Bin Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Menglian Zheng
- Institute of Thermal Science and Power Systems, School of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yang Hou
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Donghai Laboratory, Zhoushan, 316021, China
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
| |
Collapse
|
14
|
Wang P, Zheng J, Xu X, Zhang YQ, Shi QF, Wan Y, Ramakrishna S, Zhang J, Zhu L, Yokoshima T, Yamauchi Y, Long YZ. Unlocking Efficient Hydrogen Production: Nucleophilic Oxidation Reactions Coupled with Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404806. [PMID: 38857437 DOI: 10.1002/adma.202404806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/19/2024] [Indexed: 06/12/2024]
Abstract
Electrocatalytic water splitting driven by sustainable energy is a clean and promising water-chemical fuel conversion technology for the production of high-purity green hydrogen. However, the sluggish kinetics of anodic oxygen evolution reaction (OER) pose challenges for large-scale hydrogen production, limiting its efficiency and safety. Recently, the anodic OER has been replaced by a nucleophilic oxidation reaction (NOR) with biomass as the substrate and coupled with a hydrogen evolution reaction (HER), which has attracted great interest. Anode NOR offers faster kinetics, generates high-value products, and reduces energy consumption. By coupling NOR with hydrogen evolution reaction, hydrogen production efficiency can be enhanced while yielding high-value oxidation products or degrading pollutants. Therefore, NOR-coupled HER hydrogen production is another new green electrolytic hydrogen production strategy after electrolytic water hydrogen production, which is of great significance for realizing sustainable energy development and global decarbonization. This review explores the potential of nucleophilic oxidation reactions as an alternative to OER and delves into NOR mechanisms, guiding future research in NOR-coupled hydrogen production. It assesses different NOR-coupled production methods, analyzing reaction pathways and catalyst effects. Furthermore, it evaluates the role of electrolyzers in industrialized NOR-coupled hydrogen production and discusses future prospects and challenges. This comprehensive review aims to advance efficient and economical large-scale hydrogen production.
Collapse
Affiliation(s)
- Peng Wang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Jie Zheng
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens (SCEN), College of Textiles Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Xue Xu
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Yu-Qing Zhang
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens (SCEN), College of Textiles Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Qiao-Fu Shi
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens (SCEN), College of Textiles Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Yong Wan
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Jun Zhang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Liyang Zhu
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Tokihiko Yokoshima
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Yun-Ze Long
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
15
|
Singh B, Gupta H. Metal-organic frameworks (MOFs) for hybrid water electrolysis: structure-property-performance correlation. Chem Commun (Camb) 2024; 60:8020-8038. [PMID: 38994743 DOI: 10.1039/d4cc02729a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Hybrid water electrolysis (HWE) is a promising pathway for the simultaneous production of high-value chemicals and clean H2 fuel. Unlike conventional electrochemical water splitting, which relies on the oxygen evolution reaction (OER), HWE involves the anodic oxidation reaction (AOR). The AORs facilitate the conversion of organic or inorganic compounds at the anode into valuable chemicals, while the cathode carries out the hydrogen evolution reaction (HER) to produce H2. Recent literature has witnessed a surge in papers investigating various AORs with organic and inorganic substrates using a series of transition metal-based catalysts. Over the past two decades, metal-organic frameworks (MOFs) have garnered significant attention for their exceptional performance in electrochemical water splitting. These catalysts possess distinct attributes such as highly porous architectures, customizable morphologies, open facets, high electrochemical surface areas, improved electron transport, and accessible catalytic sites. While MOFs have demonstrated efficiency in electrochemical water splitting, their application in hybrid water electrolysis has only recently been explored. In recent years, a series of articles have been published; yet there is no comprehensive article summarizing MOFs for hybrid water electrolysis. This article aims to fill this gap by delving into the recent progress in MOFs specifically tailored for hybrid water electrolysis. In this article, we systematically discuss the structure-property-performance relationships of various MOFs utilized in hybrid water electrolysis, supported by pioneering examples. We explore how the structure, morphology, and electronic properties of MOFs impact their performance in hybrid water electrolysis, with particular emphasis on value-added chemical generation, H2 production, potential improvement, conversion efficiency, selectivity, faradaic efficiency, and their potential for industrial-scale applications. Furthermore, we address future advancements and challenges in this field, providing insights into the prospects and challenges associated with the continued development and deployment of MOFs for hybrid water electrolysis.
Collapse
Affiliation(s)
- Baghendra Singh
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Harshit Gupta
- Department of Chemistry, University of Delhi, Delhi-110007, India
| |
Collapse
|
16
|
Li Y, Niu S, Liu P, Pan R, Zhang H, Ahmad N, Shi Y, Liang X, Cheng M, Chen S, Du J, Hu M, Wang D, Chen W, Li Y. Ruthenium Nanoclusters and Single Atoms on α-MoC/N-Doped Carbon Achieves Low-Input/Input-Free Hydrogen Evolution via Decoupled/Coupled Hydrazine Oxidation. Angew Chem Int Ed Engl 2024; 63:e202316755. [PMID: 38739420 DOI: 10.1002/anie.202316755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/13/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
The hydrazine oxidation-assisted H2 evolution method promises low-input and input-free hydrogen production. However, developing high-performance catalysts for hydrazine oxidation (HzOR) and hydrogen evolution (HER) is challenging. Here, we introduce a bifunctional electrocatalyst α-MoC/N-C/RuNSA, merging ruthenium (Ru) nanoclusters (NCs) and single atoms (SA) into cubic α-MoC nanoparticles-decorated N-doped carbon (α-MoC/N-C) nanowires, through electrodeposition. The composite showcases exceptional activity for both HzOR and HER, requiring -80 mV and -9 mV respectively to reach 10 mA cm-2. Theoretical and experimental insights confirm the importance of two Ru species for bifunctionality: NCs enhance the conductivity, and its coexistence with SA balances the H ad/desorption for HER and facilitates the initial dehydrogenation during the HzOR. In the overall hydrazine splitting (OHzS) system, α-MoC/N-C/RuNSA excels as both anode and cathode materials, achieving 10 mA cm-2 at just 64 mV. The zinc hydrazine (Zn-Hz) battery assembled with α-MoC/N-C/RuNSA cathode and Zn foil anode can exhibit 97.3 % energy efficiency, as well as temporary separation of hydrogen gas during the discharge process. Therefore, integrating Zn-Hz with OHzS system enables self-powered H2 evolution, even in hydrazine sewage. Overall, the amalgamation of NCs with SA achieves diverse catalytic activities for yielding multifold hydrogen gas through advanced cell-integrated-electrolyzer system.
Collapse
Affiliation(s)
- Yapeng Li
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shuwen Niu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shangdong, 266071, P. R. China
| | - Peigen Liu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Rongrong Pan
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huaikun Zhang
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Nazir Ahmad
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yi Shi
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingyu Cheng
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shenghua Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Junyi Du
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, P. R. China
| | - Maolin Hu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wei Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
17
|
Li T, Wang B, Cao Y, Liu Z, Wang S, Zhang Q, Sun J, Zhou G. Energy-saving hydrogen production by seawater electrolysis coupling tip-enhanced electric field promoted electrocatalytic sulfion oxidation. Nat Commun 2024; 15:6173. [PMID: 39039041 PMCID: PMC11263359 DOI: 10.1038/s41467-024-49931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Hydrogen production by seawater electrolysis is significantly hindered by high energy costs and undesirable detrimental chlorine chemistry in seawater. In this work, energy-saving hydrogen production is reported by chlorine-free seawater splitting coupling tip-enhanced electric field promoted electrocatalytic sulfion oxidation reaction. We present a bifunctional needle-like Co3S4 catalyst grown on nickel foam with a unique tip structure that enhances the kinetic rate by improving the current density in the tip region. The assembled hybrid seawater electrolyzer combines thermodynamically favorable sulfion oxidation and cathodic seawater reduction can enable sustainable hydrogen production at a current density of 100 mA cm-2 for up to 504 h. The hybrid seawater electrolyzer has the potential for scale-up industrial implementation of hydrogen production by seawater electrolysis, which is promising to achieve high economic efficiency and environmental remediation.
Collapse
Affiliation(s)
- Tongtong Li
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Boran Wang
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Yu Cao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Zhexuan Liu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Shaogang Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, PR China
| | - Qi Zhang
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Jie Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| |
Collapse
|
18
|
Wang HY, Zhai S, Wang H, Yan F, Ren JT, Wang L, Sun M, Yuan ZY. Taking Advantage of Potential Coincidence Region: Insights into Gas Production Behavior in Advanced Self-Activated Hydrazine-Assisted Alkaline Seawater Electrolysis. ACS NANO 2024. [PMID: 39012051 DOI: 10.1021/acsnano.4c04831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Water electrolysis assisted by hydrazine has emerged as a prospective energy conversion method for achieving efficient hydrogen generation. Due to the potential coincidence region (PCR) between the hydrogen evolution reaction (HER) and the electro-oxidation of hydrazine, the hydrazine oxidation reaction (HzOR) offers distinct advantages in terms of strategy amalgamation, device architecture, and the broadening of application horizons. Herein, we report a bifunctional electrocatalyst of interfacial heterogeneous Fe2P/Co2P microspheres supported on Ni foam (FeCoP/NF). Benefiting from the strong interfacial coupling effect between Fe2P and Co2P and the three-dimensional microsphere structure, FeCoP/NF exhibits outstanding bifunctional electrocatalytic performance, achieving 10 mA cm-2 with low overpotentials of 10 and 203 mV for HER and HzOR, respectively. Utilizing FeCoP/NF for both electrodes in HzOR-assisted water electrolysis results in significantly reduced potentials of 820 mV for 1 A cm-2 in contrast to the electro-oxidation of alternative chemical substrates. The presence of a potential coincidence region makes the application of self-activated seawater electrolysis realistic. The gas production behavior at different current densities in this interesting hydrogen production system is discussed, and some rules that are distinguished from conventional water electrolysis are summarized. Furthermore, a new self-powered hydrogen production system with a direct hydrazine fuel cell, rechargeable Zn-hydrazine battery, and hydrazine-assisted seawater electrolysis is proposed, emphasizing the distinct benefits of HzOR and its potential role in electrochemical energy conversion technologies powered by renewable sources.
Collapse
Affiliation(s)
- Hao-Yu Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| | - Sixiang Zhai
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| | - Hao Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| | - Fengxiao Yan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| | - Jin-Tao Ren
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| | - Lei Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| | - Minglei Sun
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| | - Zhong-Yong Yuan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| |
Collapse
|
19
|
Chen L, Yu C, Dong J, Han Y, Huang H, Li W, Zhang Y, Tan X, Qiu J. Seawater electrolysis for fuels and chemicals production: fundamentals, achievements, and perspectives. Chem Soc Rev 2024; 53:7455-7488. [PMID: 38855878 DOI: 10.1039/d3cs00822c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Seawater electrolysis for the production of fuels and chemicals involved in onshore and offshore plants powered by renewable energies offers a promising avenue and unique advantages for energy and environmental sustainability. Nevertheless, seawater electrolysis presents long-term challenges and issues, such as complex composition, potential side reactions, deposition of and poisoning by microorganisms and metal ions, as well as corrosion, thus hindering the rapid development of seawater electrolysis technology. This review focuses on the production of value-added fuels (hydrogen and beyond) and fine chemicals through seawater electrolysis, as a promising step towards sustainable energy development and carbon neutrality. The principle of seawater electrolysis and related challenges are first introduced, and the redox reaction mechanisms of fuels and chemicals are summarized. Strategies for operating anodes and cathodes including the development and application of chloride- and impurity-resistant electrocatalysts/membranes are reviewed. We comprehensively summarize the production of fuels and chemicals (hydrogen, carbon monoxide, sulfur, ammonia, etc.) at the cathode and anode via seawater electrolysis, and propose other potential strategies for co-producing fine chemicals, even sophisticated and electronic chemicals. Seawater electrolysis can drive the oxidation and upgrading of industrial pollutants or natural organics into value-added chemicals or degrade them into harmless substances, which would be meaningful for environmental protection. Finally, the perspective and prospects are outlined to address the challenges and expand the application of seawater electrolysis.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Chang Yu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Junting Dong
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yingnan Han
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Hongling Huang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Wenbin Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yafang Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Xinyi Tan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Jieshan Qiu
- State Key Lab of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
20
|
Ren Y, Fan F, Zhang Y, Chen L, Wang Z, Li J, Zhao J, Tang B, Cui G. A Dual-Cation Exchange Membrane Electrolyzer for Continuous H 2 Production from Seawater. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401702. [PMID: 38569463 PMCID: PMC11220719 DOI: 10.1002/advs.202401702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Indexed: 04/05/2024]
Abstract
Direct seawater splitting (DSS) offers an aspirational route toward green hydrogen (H2) production but remains challenging when operating in a practically continuous manner, mainly due to the difficulty in establishing the water supply-consumption balance under the interference from impurity ions. A DSS system is reported for continuous ampere-level H2 production by coupling a dual-cation exchange membrane (CEM) three-compartment architecture with a circulatory electrolyte design. Monovalent-selective CEMs decouple the transmembrane water migration from interferences of Mg2+, Ca2+, and Cl- ions while maintaining ionic neutrality during electrolysis; the self-loop concentrated alkaline electrolyte ensures the constant gradient of water chemical potential, allowing a specific water supply-consumption balance relationship in a seawater-electrolyte-H2 sequence to be built among an expanded current range. Even paired with commercialized Ni foams, this electrolyzer (model size: 2 × 2 cm2) continuously produces H2 from flowing seawater with a rate of 7.5 mL min-1 at an industrially relevant current of 1.0 A over 100 h. More importantly, the energy consumption can be further reduced by coupling more efficient NiMo/NiFe foams (≈6.2 kWh Nm-3 H2 at 1.0 A), demonstrating the potential to further optimize the continuous DSS electrolyzer for practical applications.
Collapse
Affiliation(s)
- Yongwen Ren
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Faying Fan
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Yaojian Zhang
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Lin Chen
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Zhe Wang
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Jiedong Li
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Jingwen Zhao
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Bo Tang
- Laoshan LaboratoryQingdao266237China
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
21
|
Liu T, Zhao Z, Tang W, Chen Y, Lan C, Zhu L, Jiang W, Wu Y, Wang Y, Yang Z, Yang D, Wang Q, Luo L, Liu T, Xie H. In-situ direct seawater electrolysis using floating platform in ocean with uncontrollable wave motion. Nat Commun 2024; 15:5305. [PMID: 38906873 PMCID: PMC11192878 DOI: 10.1038/s41467-024-49639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
Direct hydrogen production from inexhaustible seawater using abundant offshore wind power offers a promising pathway for achieving a sustainable energy industry and fuel economy. Various direct seawater electrolysis methods have been demonstrated to be effective at the laboratory scale. However, larger-scale in situ demonstrations that are completely free of corrosion and side reactions in fluctuating oceans are lacking. Here, fluctuating conditions of the ocean were considered for the first time, and seawater electrolysis in wave motion environment was achieved. We present the successful scaling of a floating seawater electrolysis system that employed wind power in Xinghua Bay and the integration of a 1.2 Nm3 h-1-scale pilot system. Stable electrolysis operation was achieved for over 240 h with an electrolytic energy consumption of 5 kWh Nm-3 H2 and a high purity (>99.9%) of hydrogen under fluctuating ocean conditions (0~0.9 m wave height, 0~15 m s-1 wind speed), which is comparable to that during onshore water electrolysis. The concentration of impurity ions in the electrolyte was low and stable over a long period of time under complex and changing scenarios. We identified the technological challenges and performances of the key system components and examined the future outlook for this emerging technology.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Shenzhen University & Sichuan University, Shenzhen, 518060, China.
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China.
- Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Zhiyu Zhao
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Shenzhen University & Sichuan University, Shenzhen, 518060, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China
- Shenzhen Key Laboratory of Deep Engineering Science and Green Energy, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China
| | - Wenbin Tang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Chen
- Dongfang Electric (Fujian) Innovation Institute Co. Ltd, Fuzhou, 350108, China
| | - Cheng Lan
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Shenzhen University & Sichuan University, Shenzhen, 518060, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China
- Shenzhen Key Laboratory of Deep Engineering Science and Green Energy, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China
| | - Liangyu Zhu
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China
| | - Wenchuan Jiang
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Shenzhen University & Sichuan University, Shenzhen, 518060, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China
- Shenzhen Key Laboratory of Deep Engineering Science and Green Energy, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China
| | - Yifan Wu
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Shenzhen University & Sichuan University, Shenzhen, 518060, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China
- Shenzhen Key Laboratory of Deep Engineering Science and Green Energy, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China
| | - Yunpeng Wang
- Shenzhen Key Laboratory of Deep Engineering Science and Green Energy, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zezhou Yang
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China
| | - Dongsheng Yang
- Shenzhen Key Laboratory of Deep Engineering Science and Green Energy, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qijun Wang
- Dongfang Electric Wind Power Co. Ltd, Deyang, 618000, China
| | - Lunbo Luo
- Fujian Branch, China Three Gorges Corporation, Fuzhou, 350014, China
| | - Taisheng Liu
- Dongfang Electric (Fujian) Innovation Institute Co. Ltd, Fuzhou, 350108, China.
| | - Heping Xie
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Shenzhen University & Sichuan University, Shenzhen, 518060, China.
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China.
- Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Deep Engineering Science and Green Energy, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
22
|
Gao J, Yu W, Liu J, Qin L, Cheng H, Cui X, Jiang L. Regulation of hydrogen binding energy via oxygen vacancy enables an efficient trifunctional Rh-Rh 2O 3 electrocatalyst for fuel cells and water splitting. J Colloid Interface Sci 2024; 664:766-778. [PMID: 38492378 DOI: 10.1016/j.jcis.2024.03.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Developing multi-functional electrocatalysts is of great practical significance for fuel cells and water splitting. Herein, Rh-Rh2O3 nanoclusters are prepared and the surface oxygen vacancy content is regulated elaborately by post-treatment. The optimized Rh-Rh2O3/C-400 exhibits superior trifunctional catalytic activity for hydrogen oxidation reaction (HOR), hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR), i.e., the mass activity for HOR is 2.29 mA μgRh-1, and the overpotential for HER and HzOR at 10 mA cm-2 is as low as 12 mV and 31 mV, respectively, superior to the benchmark Pt/C. Rh-Rh2O3/C-400 also displays promising performance in practical devices, with the H2-O2 anion-exchange-membrane fuel cell delivering a peak power density of 0.66 W cm-2, and the hydrazine-assisted water splitting electrolyzer requiring a low electrolysis voltage of 0.161 V at 0.1 A cm-2. The experimental and theoretical investigations discover that the hydrogen binding energy (HBE) is linearly depended on surface oxygen vacancy contents, and the HBE directly determines the catalytic activity for HOR, HER and HzOR. This work not only innovates an efficient Rh-based nanocluster tri-functional electrocatalyst, but also eludicates the intrinsic relationship of surface structure-intermediate adsorption-catalytic activity.
Collapse
Affiliation(s)
- Jie Gao
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Wanqing Yu
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jing Liu
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, China.
| | - Lishuai Qin
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Haodong Cheng
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xuejing Cui
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Luhua Jiang
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, China.
| |
Collapse
|
23
|
Tran NQ, Le QM, Tran TTN, Truong TK, Yu J, Peng L, Le TA, Doan TLH, Phan TB. Boosting Urea-Assisted Natural Seawater Electrolysis in 3D Leaf-Like Metal-Organic Framework Nanosheet Arrays Using Metal Node Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28625-28637. [PMID: 38767316 DOI: 10.1021/acsami.4c04342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Metal node engineering, which can optimize the electronic structure and modulate the composition of poor electrically conductive metal-organic frameworks, is of great interest for electrochemical natural seawater splitting. However, the mechanism underlying the influence of mixed-metal nodes on electrocatalytic activities is still ambiguous. Herein, a strategic design is comprehensively demonstrated in which mixed Ni and Co metal redox-active centers are uniformly distributed within NH2-Fe-MIL-101 to obtain a synergistic effect for the overall enhancement of electrocatalytic activities. Three-dimensional mixed metallic MOF nanosheet arrays, consisting of three different metal nodes, were in situ grown on Ni foam as a highly active and stable bifunctional catalyst for urea-assisted natural seawater splitting. A well-defined NH2-NiCoFe-MIL-101 reaches 1.5 A cm-2 at 360 mV for the oxygen evolution reaction (OER) and 0.6 A cm-2 at 295 mV for the hydrogen evolution reaction (HER) in freshwater, substantially higher than its bimetallic and monometallic counterparts. Moreover, the bifunctional NH2-NiCoFe-MIL-101 electrode exhibits eminent catalytic activity and stability in natural seawater-based electrolytes. Impressively, the two-electrode urea-assisted alkaline natural seawater electrolysis cell based on NH2-NiCoFe-MIL-101 needs only 1.56 mV to yield 100 mA cm-2, much lower than 1.78 V for alkaline natural seawater electrolysis cells and exhibits superior long-term stability at a current density of 80 mA cm-2 for 80 h.
Collapse
Affiliation(s)
- Ngoc Quang Tran
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Quang Manh Le
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thuy Tien Nguyen Tran
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thuy-Kieu Truong
- Department of Mechanical Engineering, Hanbat National University (HBNU), 125 Dongseo-daero, Yuseong-gu, Daejeon 34158, Republic of Korea
| | - Jianmin Yu
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, P. R. China
| | - Lishan Peng
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, P. R. China
| | - Thi Anh Le
- School of Chemical Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi 100000, Vietnam
| | - Tan Le Hoang Doan
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thang Bach Phan
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
24
|
Zhao S, Sun Y, Li H, Zeng S, Yao Q, Li R, Chen H, Qu K. Highly bifunctional Rh 2P on N,P-codoped carbon for hydrazine oxidation assisted energy-saving hydrogen production. Chem Commun (Camb) 2024; 60:5928-5931. [PMID: 38757204 DOI: 10.1039/d4cc01267d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Highly pure Rh2P nanoparticles on N,P-codoped carbon were synthesized by a simple "mix-and-pyrolyze" method using one kind of low-cost nucleotide as the carbon, nitrogen and phosphorus source, which exhibits excellent bifunctional activity for the hydrogen reduction and hydrazine oxidation reactions, achieving energy-efficient hydrogen production.
Collapse
Affiliation(s)
- Simeng Zhao
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
| | - Yu Sun
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
| | - Haibo Li
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
| | - Suyuan Zeng
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
| | - Qingxia Yao
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
| | - Rui Li
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
| | - Hongyan Chen
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
| | - Konggang Qu
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
25
|
Chauhan I, Bajpai H, Ray B, Kolekar SK, Datar S, Patra KK, Gopinath CS. Electrocatalytic Glycerol Conversion: A Low-Voltage Pathway to Efficient Carbon-Negative Green Hydrogen and Value-Added Chemical Production. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26130-26141. [PMID: 38717844 DOI: 10.1021/acsami.4c02392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Electrochemical glycerol oxidation reaction (GLYOR) could be a promising way to use the abundantly available glycerol for production of value-added chemicals and fuels. Completely avoiding the oxygen evolution reaction (OER) with GLYOR is an evolving strategy to reduce the overall cell potential and generate value-added chemicals and fuels on both the anode and cathode. We demonstrate the morphology-controlled palladium nanocrystals, afforded by colloidal chemistry, and their established morphology-dependent GLYOR performance. Although it is known that controlling the morphology of an electrocatalyst can modulate the activity and selectivity of the products, still it is a relatively underexplored area for many reactions, including GLYOR. Among nanocube (Pd-NC), truncated octahedron (Pd-TO), spherical and polycrystalline (Pd-PC) morphologies, the Pd-NC electrocatalyst deposited on a Ni foam exhibits the highest glycerol conversion (85%) along with 42% glyceric acid selectivity at a low applied potential of 0.6 V (vs reversible hydrogen electrode (RHE)) in 0.1 M glycerol and 1 M KOH at ambient temperature. Owing to the much favorable thermodynamics of GLYOR on the Pd-NC surface, the assembled electrolyzer requires an electricity input of only ∼3.7 kWh/m3 of H2 at a current density of 100 mA/cm2, in contrast to the requirement of ≥5 kWh/m3 of H2 with an alkaline/PEM electrolyzer. Sustainability has been successfully demonstrated at 10 and 50 mA/cm2 and up to 120 h with GLYOR in water and simulated seawater.
Collapse
Affiliation(s)
- Inderjeet Chauhan
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Himanshu Bajpai
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Bishakha Ray
- Department of Applied Physics, Defence Institute of Advanced Technology (Deemed University), Girinagar, Pune 411 025, India
| | - Sadhu K Kolekar
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Suwarna Datar
- Department of Applied Physics, Defence Institute of Advanced Technology (Deemed University), Girinagar, Pune 411 025, India
| | - Kshirodra Kumar Patra
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Chinnakonda S Gopinath
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
26
|
Hu H, Zhang Z, Liu L, Che X, Wang J, Zhu Y, Attfield JP, Yang M. Efficient and durable seawater electrolysis with a V 2O 3-protected catalyst. SCIENCE ADVANCES 2024; 10:eadn7012. [PMID: 38758788 PMCID: PMC11100561 DOI: 10.1126/sciadv.adn7012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
The ocean, a vast hydrogen reservoir, holds potential for sustainable energy and water development. Developing high-performance electrocatalysts for hydrogen production under harsh seawater conditions is challenging. Here, we propose incorporating a protective V2O3 layer to modulate the microcatalytic environment and create in situ dual-active sites consisting of low-loaded Pt and Ni3N. This catalyst demonstrates an ultralow overpotential of 80 mV at 500 mA cm-2, a mass activity 30.86 times higher than Pt-C and maintains at least 500 hours in seawater. Moreover, the assembled anion exchange membrane water electrolyzers (AEMWE) demonstrate superior activity and durability even under demanding industrial conditions. In situ localized pH analysis elucidates the microcatalytic environmental regulation mechanism of the V2O3 layer. Its role as a Lewis acid layer enables the sequestration of excess OH- ions, mitigate Cl- corrosion, and alkaline earth salt precipitation. Our catalyst protection strategy by using V2O3 presents a promising and cost-effective approach for large-scale sustainable green hydrogen production.
Collapse
Affiliation(s)
- Huashuai Hu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhaorui Zhang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Lijia Liu
- Department of Chemistry, Western University, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Xiangli Che
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jiacheng Wang
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Institute of Electrochemistry, School of Materials Science and Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - J. Paul Attfield
- Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh, UK
| | - Minghui Yang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
27
|
Wang K, Liu X, Yu Q, Wang X, Zhu J, Li Y, Chi J, Lin H, Wang L. Mn Doping and P Vacancy Induced Fast Phase Reconstruction of FeP for Enhanced Electrocatalytic Oxygen Evolution Reaction in Alkaline Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308613. [PMID: 38072783 DOI: 10.1002/smll.202308613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/28/2023] [Indexed: 05/18/2024]
Abstract
Due to the shortage of pure water resources, seawater electrolysis is a promising strategy to produce green hydrogen energy. To avoid chlorine oxidation reactions (ClOR) and the production of more corrosive hypochlorite, enhancing OER electrocatalyst activity is the key to solving the above problem. Considering that transition metal phosphides (TMPs) are promising OER eletrocatalysts for seawater splitting, a method to regulate the electronic structure of FeP by introducing Mn heteroatoms and phosphorus vacancy on it (Mn-FePV) is developed. As an OER electrocatalyst in seawater solution, the synthesized Mn-FePV achieves extremely low overpotentials (η500 = 376, η1000 = 395 mV). In addition, the Pt/C||Mn-FePV couple only requires the voltage of 1.81 V to drive the current density of 1000 mA cm-2 for overall seawater splitting. The density functional theory (DFT) calculation shows that Mn-FePV (0.21 e-) has more charge transfer number compared with FeP (0.17 e-). In-situ Raman analysis shows that phosphorus vacancy and Mn doping can synergistically regulate the electronic structure of FeP to induce rapid phase reconstruction, further improving the OER performance of Mn-FePV. The new phase species of FeOOH is confirmed to can enhance the adsorption kinetics of OER intermediates.
Collapse
Affiliation(s)
- Ketao Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiaobin Liu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qingping Yu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xuanyi Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jiawei Zhu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yanyan Li
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jingqi Chi
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Haifeng Lin
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
28
|
Chi M, Ke J, Liu Y, Wei M, Li H, Zhao J, Zhou Y, Gu Z, Geng Z, Zeng J. Spatial decoupling of bromide-mediated process boosts propylene oxide electrosynthesis. Nat Commun 2024; 15:3646. [PMID: 38684683 PMCID: PMC11059342 DOI: 10.1038/s41467-024-48070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
The electrochemical synthesis of propylene oxide is far from practical application due to the limited performance (including activity, stability, and selectivity). In this work, we spatially decouple the bromide-mediated process to avoid direct contact between the anode and propylene, where bromine is generated at the anode and then transferred into an independent reactor to react with propylene. This strategy effectively prevents the side reactions and eliminates the interference to stability caused by massive alkene input and vigorously stirred electrolytes. As expected, the selectivity for propylene oxide reaches above 99.9% with a remarkable Faradaic efficiency of 91% and stability of 750-h (>30 days). When the electrode area is scaled up to 25 cm2, 262 g of pure propylene oxide is obtained after 50-h continuous electrolysis at 6.25 A. These findings demonstrate that the electrochemical bromohydrin route represents a viable alternative for the manufacture of epoxides.
Collapse
Grants
- This work was supported by National Key Research and Development Program of China (2021YFA1500500, 2019YFA0405600), National Science Fund for Distinguished Young Scholars (21925204), NSFC (U19A2015, 22221003, 22250007, and 22209161), Provincial Key Research and Development Program of Anhui (202004a05020074), CAS project for young scientists in basic research (YSBR-051), K. C. Wong Education (GJTD-2020-15), Collaborative Innovation Program of Hefei Science Center, CAS (2022HSC-CIP004), the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2022012), International Partnership Program of Chinese Academy of Sciences (123GJHZ2022101GC), USTC Research Funds of the Double First-Class Initiative (YD2340002002, YD9990002014), and Fundamental Research Funds for the Central Universities.
Collapse
Affiliation(s)
- Mingfang Chi
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Jingwen Ke
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Yan Liu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Miaojin Wei
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Hongliang Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Jiankang Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Yuxuan Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Zhenhua Gu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Zhigang Geng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
- Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
- Department of Chemical Physics, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
- School of Chemistry & Chemical Engineering, Anhui University of Technology, 243002, Ma'anshan, Anhui, P. R. China.
| |
Collapse
|
29
|
Quan L, Jiang H, Mei G, Sun Y, You B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem Rev 2024; 124:3694-3812. [PMID: 38517093 DOI: 10.1021/acs.chemrev.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Collapse
Affiliation(s)
- Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guoliang Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
30
|
Huang L, Fang C, Pan T, Zhu Q, Geng T, Li G, Li X, Yu J. Hydrogen Production via Electrolysis of Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:567. [PMID: 38607103 PMCID: PMC11013150 DOI: 10.3390/nano14070567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/13/2024]
Abstract
The high energy consumption of traditional water splitting to produce hydrogen is mainly due to complex oxygen evolution reaction (OER), where low-economic-value O2 gas is generated. Meanwhile, cogeneration of H2 and O2 may result in the formation of an explosive H2/O2 gas mixture due to gas crossover. Considering these factors, a favorable anodic oxidation reaction is employed to replace OER, which not only reduces the voltage for H2 production at the cathode and avoids H2/O2 gas mixture but also generates value-added products at the anode. In recent years, this innovative strategy that combines anodic oxidation for H2 production has received intensive attention in the field of electrocatalysis. In this review, the latest research progress of a coupled hydrogen production system with pollutant degradation/upgrading is systematically introduced. Firstly, wastewater purification via anodic reaction, which produces free radicals instead of OER for pollutant degradation, is systematically presented. Then, the coupled system that allows for pollutant refining into high-value-added products combined with hydrogen production is displayed. Thirdly, the photoelectrical system for pollutant degradation and upgrade are briefly introduced. Finally, this review also discusses the challenges and future perspectives of this coupled system.
Collapse
Affiliation(s)
- Lijun Huang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Chaoqiong Fang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Ting Pan
- Zhejiang Hehui Ecological Environment Technology Co., Ltd., Jiaxing 314201, China
| | - Qigang Zhu
- Zhejiang Hehui Ecological Environment Technology Co., Ltd., Jiaxing 314201, China
| | - Tiangeng Geng
- Zhejiang Hehui Ecological Environment Technology Co., Ltd., Jiaxing 314201, China
| | - Guixiang Li
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Xiao Li
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jiayuan Yu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Zhejiang Hehui Ecological Environment Technology Co., Ltd., Jiaxing 314201, China
- Zhejiang Hehui Sludge Disposal Co., Ltd., Jiaxing 314201, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
31
|
Zhou L, Guo D, Wu L, Guan Z, Zou C, Jin H, Fang G, Chen X, Wang S. A restricted dynamic surface self-reconstruction toward high-performance of direct seawater oxidation. Nat Commun 2024; 15:2481. [PMID: 38509067 PMCID: PMC10954752 DOI: 10.1038/s41467-024-46708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
The development of highly efficient electrocatalysts for direct seawater splitting with bifunctionality for inhibiting anodic oxidation reconstruction and selective oxygen evolution reactions is a major challenge. Herein, we report a direct seawater oxidation electrocatalyst that achieves long-term stability for more than 1000 h at 600 mA/cm2@η600 and high selectivity (Faraday efficiency of 100%). This catalyst revolves an amorphous molybdenum oxide layer constructed on the beaded-like cobalt oxide interface by atomic layer deposition technology. As demonstrated, a new restricted dynamic surface self-reconstruction mechanism is induced by the formation a stable reconstructed Co-Mo double hydroxide phase interface layer. The device assembled into a two-electrode flow cell for direct overall seawater electrolysis maintained at 1 A/cm2@1.93 V for 500 h with Faraday efficiency higher than 95%. Hydrogen generation rate reaches 419.4 mL/cm2/h, and the power consumption (4.62 KWh/m3 H2) is lower than that of pure water (5.0 KWh/m3 H2) at industrial current density.
Collapse
Affiliation(s)
- Ling Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Daying Guo
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China.
| | - Lianhui Wu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Zhixi Guan
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Chao Zou
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Huile Jin
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Guoyong Fang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Xi'an Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China.
| | - Shun Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
32
|
Ren Y, Li S, Yu C, Zheng Y, Wang C, Qian B, Wang L, Fang W, Sun Y, Qiu J. NH 3 Electrosynthesis from N 2 Molecules: Progresses, Challenges, and Future Perspectives. J Am Chem Soc 2024; 146:6409-6421. [PMID: 38412558 DOI: 10.1021/jacs.3c11676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Green ammonia (NH3), made by using renewable electricity to split nearly limitless nitrogen (N2) molecules, is a vital platform molecule and an ideal fuel to drive the sustainable development of human society without carbon dioxide emission. The NH3 electrosynthesis field currently faces the dilemma of low yield rate and efficiency; however, decoupling the overlapping issues of this area and providing guidelines for its development directions are not trivial because it involves complex reaction process and multidisciplinary entries (for example, electrochemistry, catalysis, interfaces, processes, etc.). In this Perspective, we introduce a classification scheme for NH3 electrosynthesis based on the reaction process, namely, direct (N2 reduction reaction) and indirect electrosynthesis (Li-mediated/plasma-enabled NH3 electrosynthesis). This categorization allows us to finely decouple the complicated reaction pathways and identify the specific rate-determining steps/bottleneck issues for each synthesis approach such as N2 activation, H2 evolution side reaction, solid-electrolyte interphase engineering, plasma process, etc. We then present a detailed overview of the latest progresses on solving these core issues in terms of the whole electrochemical system covering the electrocatalysts, electrodes, electrolytes, electrolyzers, etc. Finally, we discuss the research focuses and the promising strategies for the development of NH3 electrosynthesis in the future with a multiscale perspective of atomistic mechanisms, nanoscale electrocatalysts, microscale electrodes/interfaces, and macroscale electrolyzers/processes. It is expected that this Perspective will provide the readers with an in-depth understanding of the bottleneck issues and insightful guidance on designing the efficient NH3 electrosynthesis systems.
Collapse
Affiliation(s)
- Yongwen Ren
- State Key Laboratory of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shaofeng Li
- Department of Physics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Chang Yu
- State Key Laboratory of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yihan Zheng
- State Key Laboratory of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Cheng Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bingzhi Qian
- State Key Laboratory of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Linshan Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wenhui Fang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ying Sun
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Jieshan Qiu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
33
|
Sun J, Qin S, Zhao Z, Zhang Z, Meng X. Rapid carbothermal shocking fabrication of iron-incorporated molybdenum oxide with heterogeneous spin states for enhanced overall water/seawater splitting. MATERIALS HORIZONS 2024; 11:1199-1211. [PMID: 38112124 DOI: 10.1039/d3mh01757e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Molybdenum dioxide (MoO2) has been considered as a promising hydrogen evolution reaction (HER) electrocatalyst. However, the active sites are mainly located at the edges, resulting in few active sites and poor activity in the HER. Herein, we first reported on an efficient strategy to incorporate Fe into MoO2 nanosheets on Ni foam (Fe-MoO2/NF) using a rapid carbothermal shocking method (820 °C for 127 s). Notably, the different spin states between Fe and Mo atoms could lead to rich lattice dislocations in Fe-MoO2/NF, exposing abundant oxygen vacancies and the low-oxidation-state of Mo sites during the rapid Joule heating process. As tested, the catalyst exhibited superior activity with ultralow overpotentials (HER: 17 mV@10 mA cm-2; oxygen evolution reaction (OER): 310 mV@50 mA cm-2) and high OER selectivity in alkaline seawater splitting. Meanwhile, this catalyst was equipped in a home-made anion exchange membrane (AEM) seawater electrolyzer, which achieved a low energy consumption (5.5 kW h m-3). More importantly, Fe-MoO2/NF also coupled very well with a solar-driven electrolytic system and turned out a solar-to-hydrogen (STH) efficiency of 13.5%. Theoretical results also demonstrated that Fe incorporated and abundant oxygen vacancies in MoO2 can distort the distance of the Mo-O bonds and regulate the electronic structure, thus optimizing the binding energy of H*/OOH* adsorption. This method can be extended to other heterogeneous spin states in MoO2-based catalysts (e.g. Ni-MoO2/NF, Co-MoO2/NF) for seawater splitting, and provide a simple, efficient and universal strategy to prepare highly-efficient MoO2-based electrocatalysts.
Collapse
Affiliation(s)
- Jianpeng Sun
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Shiyu Qin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhan Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zisheng Zhang
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Ontario, K1N6N5, Canada.
| | - Xiangchao Meng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
34
|
Qi L, Gao Y, Gao Y, Zheng Z, Luan X, Zhao S, Chen Z, Liu H, Xue Y, Li Y. Controlled Growth of Metal Atom Arrays on Graphdiyne for Seawater Oxidation. J Am Chem Soc 2024; 146:5669-5677. [PMID: 38350029 DOI: 10.1021/jacs.3c14742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Advanced atomic-level heterointerface engineering provides a promising method for the preparation of next-generation catalysts. Traditional carbon-based heterointerface catalytic performance rely heavily on the undetermined defects in complex and demanding preparation processes, rendering it impossible to control the catalytic performance. Here, we present a general method for the controlled growth of metal atom arrays on graphdiyne (GDY/IrCuOx), and we are surprised to find strong heterointerface strains during the growth. We successfully controlled the thickness of GDY to regulate the heterointerface metal atoms and achieved compressive strain at the interface. Experimental and density functional theory calculation results show that the unique incomplete charge transfer between GDY and metal atoms leads to the formation of strong interactions and significant heterointerface compressive strain between GDY and IrCuOx, which results in high oxidation performances with 1000 mA cm-2 at a low overpotential of 283 mV and long-term stability at large current densities in alkaline simulated seawater. We anticipate that this finding will contribute to construction of high-performance heterogeneous interface structures, leading to the development of new generation of GDY-based heterojunction catalysts in the field of catalysis for future promising performance.
Collapse
Affiliation(s)
- Lu Qi
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yaqi Gao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yang Gao
- CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiqiang Zheng
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaoyu Luan
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shuya Zhao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zhaoyang Chen
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Huimin Liu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yurui Xue
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Yan Y, Zhong J, Wang R, Yan S, Zou Z. Trivalent Nickel-Catalyzing Electroconversion of Alcohols to Carboxylic Acids. J Am Chem Soc 2024; 146:4814-4821. [PMID: 38323566 DOI: 10.1021/jacs.3c13155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The comprehension of activity and selectivity origins of the electrooxidation of organics is a crucial knot for the development of a highly efficient energy conversion system that can produce value-added chemicals on both the anode and cathode. Here, we find that the potential-retaining trivalent nickel in NiOOH (Fermi level, -7.4 eV) is capable of selectively oxidizing various primary alcohols to carboxylic acids through a nucleophilic attack and nonredox electron transfer process. This nonredox trivalent nickel is highly efficient in oxidizing primary alcohols (methanol, ethanol, propanol, butanol, and benzyl alcohol) that are equipped with the appropriate highest occupied molecular orbital (HOMO) levels (-7.1 to -6.5 eV vs vacuum level) and the negative dual local softness values (Δsk, -0.50 to -0.19) of nucleophilic atoms in nucleophilic hydroxyl functional groups. However, the carboxylic acid products exhibit a deeper HOMO level (<-7.4 eV) or a positive Δsk, suggesting that they are highly stable and weakly nucleophilic on NiOOH. The combination (HOMO, Δsk) is useful in explaining the activity and selectivity origins of electrochemically oxidizing alcohols to carboxylic acid. Our findings are valuable in creating efficient energy conversions to generate value-added chemicals on dual electrodes.
Collapse
Affiliation(s)
- Yuandong Yan
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| | - Jiaying Zhong
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| | - Ruyi Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| | - Shicheng Yan
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| | - Zhigang Zou
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| |
Collapse
|
36
|
Wu X, Wang Y, Wu ZS. Recent advancement and key opportunities of MXenes for electrocatalysis. iScience 2024; 27:108906. [PMID: 38318370 PMCID: PMC10839268 DOI: 10.1016/j.isci.2024.108906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
MXenes are promising materials for electrocatalysis due to their excellent metallic conductivity, hydrophilicity, high specific surface area, and excellent electrochemical properties. Herein, we summarize the recent advancement of MXene-based materials for electrocatalysis and highlight their key challenges and opportunities. In particular, this review emphasizes on the major design principles of MXene-based electrocatalysts, including (1) coupling MXene with active materials or heteroatomic doping to create highly active synergistic catalyst sites; (2) construction of 3D MXene structure or introducing interlayer spacers to increase active areas and form fast mass-charge transfer channel; and (3) protecting edge of MXene or in situ transforming the surface of MXene to stable active substance that inhibits the oxidation of MXene and then enhances the stability. Consequently, MXene-based materials exhibit outstanding performance for a variety of electrocatalytic reactions. Finally, the key challenges and promising prospects of the practical applications of MXene-based electrocatalysts are briefly proposed.
Collapse
Affiliation(s)
- Xianhong Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
37
|
Tang J, Su C, Shao Z. Advanced membrane-based electrode engineering toward efficient and durable water electrolysis and cost-effective seawater electrolysis in membrane electrolyzers. EXPLORATION (BEIJING, CHINA) 2024; 4:20220112. [PMID: 38854490 PMCID: PMC10867400 DOI: 10.1002/exp.20220112] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/04/2023] [Indexed: 06/11/2024]
Abstract
Researchers have been seeking for the most technically-economical water electrolysis technology for entering the next-stage of industrial amplification for large-scale green hydrogen production. Various membrane-based electrolyzers have been developed to improve electric-efficiency, reduce the use of precious metals, enhance stability, and possibly realize direct seawater electrolysis. While electrode engineering is the key to approaching these goals by bridging the gap between catalysts design and electrolyzers development, nevertheless, as an emerging field, has not yet been systematically analyzed. Herein, this review is organized to comprehensively discuss the recent progresses of electrode engineering that have been made toward advanced membrane-based electrolyzers. For the commercialized or near-commercialized membrane electrolyzer technologies, the electrode material design principles are interpreted and the interface engineering that have been put forward to improve catalytic sites utilization and reduce precious metal loading is summarized. Given the pressing issues of electrolyzer cost reduction and efficiency improvement, the electrode structure engineering toward applying precious metal free electrocatalysts is highlighted and sufficient accessible sites within the thick catalyst layers with rational electrode architectures and effective ions/mass transport interfaces are enabled. In addition, this review also discusses the innovative ways as proposed to break the barriers of current membrane electrolyzers, including the adjustments of electrode reaction environment, and the feasible cell-voltage-breakdown strategies for durable direct seawater electrolysis. Hopefully, this review may provide insightful information of membrane-based electrode engineering and inspire the future development of advanced membrane electrolyzer technologies for cost-effective green hydrogen production.
Collapse
Affiliation(s)
- Jiayi Tang
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM‐MECE)Curtin UniversityPerthWestern AustraliaAustralia
| | - Chao Su
- School of Energy and PowerJiangsu University of Science and TechnologyZhenjiangChina
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM‐MECE)Curtin UniversityPerthWestern AustraliaAustralia
| |
Collapse
|
38
|
He ZM, Zhang CX, Guo SQ, Xu P, Ji Y, Luo SW, Qi X, Liu YD, Cheng NY, Dou SX, Wang YX, Zhang BW. Mo-doping heterojunction: interfacial engineering in an efficient electrocatalyst for superior simulated seawater hydrogen evolution. Chem Sci 2024; 15:1123-1131. [PMID: 38239697 PMCID: PMC10793640 DOI: 10.1039/d3sc05220f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/24/2023] [Indexed: 01/22/2024] Open
Abstract
Exploring economical, efficient, and stable electrocatalysts for the seawater hydrogen evolution reaction (HER) is highly desirable but is challenging. In this study, a Mo cation doped Ni0.85Se/MoSe2 heterostructural electrocatalyst, Mox-Ni0.85Se/MoSe2, was successfully prepared by simultaneously doping Mo cations into the Ni0.85Se lattice (Mox-Ni0.85Se) and growing atomic MoSe2 nanosheets epitaxially at the edge of the Mox-Ni0.85Se. Such an Mox-Ni0.85Se/MoSe2 catalyst requires only 110 mV to drive current densities of 10 mA cm-2 in alkaline simulated seawater, and shows almost no obvious degradation after 80 h at 20 mA cm-2. The experimental results, combined with the density functional theory calculations, reveal that the Mox-Ni0.85Se/MoSe2 heterostructure will generate an interfacial electric field to facilitate the electron transfer, thus reducing the water dissociation barrier. Significantly, the heteroatomic Mo-doping in the Ni0.85Se can regulate the local electronic configuration of the Mox-Ni0.85Se/MoSe2 heterostructure catalyst by altering the coordination environment and orbital hybridization, thereby weakening the bonding interaction between the Cl and Se/Mo. This synergistic effect for the Mox-Ni0.85Se/MoSe2 heterostructure will simultaneously enhance the catalytic activity and durability, without poisoning or corrosion of the chloride ions.
Collapse
Affiliation(s)
- Zuo-Ming He
- Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, Xiangtan University Xiangtan 411105 PR China
- School of Chemistry and Chemical Engineering, Chongqing University Chongqing 400044 PR China
| | - Chun-Xiao Zhang
- School of Physics and Optoelectronic Engineering, Shandong University of Technology Zibo 255000 PR China
| | - Si-Qi Guo
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 PR China
| | - Peng Xu
- Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, Xiangtan University Xiangtan 411105 PR China
| | - Yuan Ji
- Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, Xiangtan University Xiangtan 411105 PR China
| | - Si-Wei Luo
- Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, Xiangtan University Xiangtan 411105 PR China
| | - Xiang Qi
- Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, Xiangtan University Xiangtan 411105 PR China
| | - Yun-Dan Liu
- Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, Xiangtan University Xiangtan 411105 PR China
| | - Ning-Yan Cheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 PR China
| | - Shi-Xue Dou
- Institute of Energy Materials Science (IEMS), University of Shanghai For Science and Technology Shanghai 200093 China
| | - Yun-Xiao Wang
- Institute of Energy Materials Science (IEMS), University of Shanghai For Science and Technology Shanghai 200093 China
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong North Wollongong New South Wales 2500 Australia
| | - Bin-Wei Zhang
- School of Chemistry and Chemical Engineering, Chongqing University Chongqing 400044 PR China
- Center of Advanced Electrochemical Energy, Institute of Advanced Interdisciplinary Studies Chongqing 400044 PR China
| |
Collapse
|
39
|
Hou ZQ, Hu WP, Yang GH, Zhang ZX, Cheng TY, Huang KJ. Improving the electrocatalytic hydrogen evolution reaction through a magnetic field and hydrogen peroxide production co-assisted Ni/Fe 3O 4@poly(3,4-ethylene-dioxythiophene)/Ni electrode. J Colloid Interface Sci 2024; 654:1303-1311. [PMID: 37913719 DOI: 10.1016/j.jcis.2023.10.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/06/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
The production of high-purity hydrogen using surplus electrical energy and abundant water resources has immense potential in mitigating the fossil energy crisis, as hydrogen fuel holds clean, pollution-free, and high-energy characteristics. However, the practical application of large-scale hydrogen production from water faces challenges such as high overpotentials, sluggish dynamics, and limited electrocatalytic lifetime associated with the hydrogen evolution reaction (HER). Here, we fabricated the sandwich structure of a Ni/Fe3O4@poly(3,4-ethylene-dioxythiophene)/Ni (Ni/Fe3O4@PEDOT/Ni) electrode and employed a strong magnet to obtain a magnetic electrode capable of achieving high-activity and durability for HER. Electrochemical analysis reveals that the activated magnetic electrode displays a significantly reduced overpotential and an extended electrocatalytic lifetime of 10 days. Notably, its stability is higher than that of non-magnetic Ni/Fe3O4/Ni and Ni/Fe3O4@PEDOT/Ni electrodes, primarily due to the support from magnetic force and the protective PEDOT layer. Moreover, the minute atomized droplets can form the H2O2 species in a moist environment, facilitating the formation of the NiO layer on the Ni surface, which plays a vital role in boosting catalytic activity. In conclusion, our magnetic electrode strategy, combined with the emergence of the NiO layer, offers valuable insights for the development of advanced HER electrodes.
Collapse
Affiliation(s)
- Zhi-Qiang Hou
- School of Chemistry and Chemical Engineering, Zhou Kou Normal University, Henan 466001, China
| | - Wen-Ping Hu
- School of Chemistry and Chemical Engineering, Zhou Kou Normal University, Henan 466001, China
| | - Guo-Hua Yang
- School of Chemistry and Chemical Engineering, Zhou Kou Normal University, Henan 466001, China
| | - Zi-Xuan Zhang
- School of Chemistry and Chemical Engineering, Zhou Kou Normal University, Henan 466001, China
| | - Tian-Yi Cheng
- School of Chemistry and Chemical Engineering, Zhou Kou Normal University, Henan 466001, China
| | - Ke-Jing Huang
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
40
|
Hu H, Wang X, Attfield JP, Yang M. Metal nitrides for seawater electrolysis. Chem Soc Rev 2024; 53:163-203. [PMID: 38019124 DOI: 10.1039/d3cs00717k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Electrocatalytic high-throughput seawater electrolysis for hydrogen production is a promising green energy technology that offers possibilities for environmental and energy sustainability. However, large-scale application is limited by the complex composition of seawater, high concentration of Cl- leading to competing reaction, and severe corrosion of electrode materials. In recent years, extensive research has been conducted to address these challenges. Metal nitrides (MNs) with excellent chemical stability and catalytic properties have emerged as ideal electrocatalyst candidates. This review presents the electrode reactions and basic parameters of the seawater splitting process, and summarizes the types and selection principles of conductive substrates with critical analysis of the design principles for seawater electrocatalysts. The focus is on discussing the properties, synthesis, and design strategies of MN-based electrocatalysts. Finally, we provide an outlook for the future development of MNs in the high-throughput seawater electrolysis field and highlight key issues that require further research and optimization.
Collapse
Affiliation(s)
- Huashuai Hu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xiaoli Wang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - J Paul Attfield
- Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, UK
| | - Minghui Yang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
41
|
Qian Q, Zhu Y, Ahmad N, Feng Y, Zhang H, Cheng M, Liu H, Xiao C, Zhang G, Xie Y. Recent Advancements in Electrochemical Hydrogen Production via Hybrid Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306108. [PMID: 37815215 DOI: 10.1002/adma.202306108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/20/2023] [Indexed: 10/11/2023]
Abstract
As one of the most promising approaches to producing high-purity hydrogen (H2 ), electrochemical water splitting powered by the renewable energy sources such as solar, wind, and hydroelectric power has attracted considerable interest over the past decade. However, the water electrolysis process is seriously hampered by the sluggish electrode reaction kinetics, especially the four-electron oxygen evolution reaction at the anode side, which induces a high reaction overpotential. Currently, the emerging hybrid electrochemical water splitting strategy is proposed by integrating thermodynamically favorable electro-oxidation reactions with hydrogen evolution reaction at the cathode, providing a new opportunity for energy-efficient H2 production. To achieve highly efficient and cost-effective hybrid water splitting toward large-scale practical H2 production, much work has been continuously done to exploit the alternative anodic oxidation reactions and cutting-edge electrocatalysts. This review will focus on recent developments on electrochemical H2 production coupled with alternative oxidation reactions, including the choice of anodic substrates, the investigation on electrocatalytic materials, and the deep understanding of the underlying reaction mechanisms. Finally, some insights into the scientific challenges now standing in the way of future advancement of the hybrid water electrolysis technique are shared, in the hope of inspiring further innovative efforts in this rapidly growing field.
Collapse
Affiliation(s)
- Qizhu Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Yin Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Nazir Ahmad
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Yafei Feng
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Huaikun Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Mingyu Cheng
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Huanhuan Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Chong Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, P. R. China
| | - Genqiang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, P. R. China
| |
Collapse
|
42
|
Meng D, Xu M, Li S, Ganesan M, Ruan X, Ravi SK, Cui X. Functional MXenes: Progress and Perspectives on Synthetic Strategies and Structure-Property Interplay for Next-Generation Technologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304483. [PMID: 37730973 DOI: 10.1002/smll.202304483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Indexed: 09/22/2023]
Abstract
MXenes are a class of 2D materials that include layered transition metal carbides, nitrides, and carbonitrides. Since their inception in 2011, they have garnered significant attention due to their diverse compositions, unique structures, and extraordinary properties, such as high specific surface areas and excellent electrical conductivity. This versatility has opened up immense potential in various fields, catalyzing a surge in MXene research and leading to note worthy advancements. This review offers an in-depth overview of the evolution of MXenes over the past 5 years, with an emphasis on synthetic strategies, structure-property relationships, and technological prospects. A classification scheme for MXene structures based on entropy is presented and an updated summary of the elemental constituents of the MXene family is provided, as documented in recent literature. Delving into the microscopic structure and synthesis routes, the intricate structure-property relationships are explored at the nano/micro level that dictate the macroscopic applications of MXenes. Through an extensive review of the latest representative works, the utilization of MXenes in energy, environmental, electronic, and biomedical fields is showcased, offering a glimpse into the current technological bottlenecks, such asstability, scalability, and device integration. Moreover, potential pathways for advancing MXenes toward next-generation technologies are highlighted.
Collapse
Affiliation(s)
- Depeng Meng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Minghua Xu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Shijie Li
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Muthusankar Ganesan
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, SAR, Hong Kong
| | - Xiaowen Ruan
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, SAR, Hong Kong
| | - Sai Kishore Ravi
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, SAR, Hong Kong
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
43
|
Xu W, Wang Z, Liu P, Tang X, Zhang S, Chen H, Yang Q, Chen X, Tian Z, Dai S, Chen L, Lu Z. Ag Nanoparticle-Induced Surface Chloride Immobilization Strategy Enables Stable Seawater Electrolysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306062. [PMID: 37907201 DOI: 10.1002/adma.202306062] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/18/2023] [Indexed: 11/02/2023]
Abstract
Although hydrogen gas (H2 ) storage might enable offshore renewable energy to be stored at scale, the commercialization of technology for H2 generation by seawater electrolysis depends upon the development of methods that avoid the severe corrosion of anodes by chloride (Cl- ) ions. Here, it is revealed that the stability of an anode used for seawater splitting can be increased by more than an order of magnitude by loading Ag nanoparticles on the catalyst surface. In experiments, an optimized NiFe-layered double hydroxide (LDH)@Ag electrode displays stable operation at 400 mA cm-2 in alkaline saline electrolyte and seawater for over 5000 and 2500 h, respectively. The impressive long-term durability is more than 20 times that of an unmodified NiFe-LDH anode. Meticulous characterization and simulation reveals that in the presence of an applied electric field, free Cl- ions react with oxidized Ag nanoparticles to form stable AgCl species, giving rise to the formation of a Cl- -free layer near the anode surface. Because of its simplicity and effectiveness, it is anticipated that the proposed strategy to immobilize chloride ions on the surface of an anode has the potential to become a crucial technology to control corrosion during large-scale electrolysis of seawater to produce hydrogen.
Collapse
Affiliation(s)
- Wenwen Xu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Zhongfeng Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pingying Liu
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi, 333403, P. R. China
| | - Xuan Tang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Sixie Zhang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haocheng Chen
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qihao Yang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Xu Chen
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Ziqi Tian
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Liang Chen
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiyi Lu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
44
|
Ren JT, Chen L, Wang HY, Tian W, Wang L, Sun M, Feng Y, Zhai SX, Yuan ZY. Self-Powered Hydrogen Production with Improved Energy Efficiency via Polysulfides Redox. ACS NANO 2023; 17:25707-25720. [PMID: 38047808 DOI: 10.1021/acsnano.3c10867] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
In the pursuit of efficient solar-driven electrocatalytic water splitting for hydrogen production, the intrinsic challenges posed by the sluggish kinetics of anodic oxygen evolution and intermittent sunlight have prompted the need for innovative energy systems. Here, we introduce an approach by coupling the polysulfides oxidation reaction with the hydrogen evolution reaction for energy-saving H2 production, which could be powered by an aqueous zinc-polysulfides battery to construct a self-powered energy system. This unusual hybrid water electrolyzer achieves 300 mA cm-2 at a low cell voltage of 1.14 V, saving electricity consumption by 100.4% from 5.47 to 2.73 kWh per m3 H2 compared to traditional overall water splitting. Benefiting from the favorable reaction kinetics of polysulfides oxidation/reduction, the aqueous zinc-polysulfides battery exhibits an energy efficiency of approximately 89% at 1.0 mA cm-2. Specially, the zinc-polysulfide battery effectively stores intermittent solar energy as chemical energy during light reaction by solar cells. Under an unassisted light reaction, the batteries could release energy to drive H2 production through a hybrid water electrolyzer for uninterrupted hydrogen production. Therefore, the aim of simultaneously generating H2 and eliminating the restrictions of intermittent sunlight is realized by combining the merits of polysulfides redox, an aqueous metal-polysulfide battery, and solar cells. We believe that this concept and utilization of polysulfides redox will inspire further fascinating attempts for the development of sustainable energy via electrocatalytic reactions.
Collapse
Affiliation(s)
- Jin-Tao Ren
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| | - Lei Chen
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| | - Hao-Yu Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| | - Wenwen Tian
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| | - Lei Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| | - Minglei Sun
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| | - Yi Feng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| | - Si-Xiang Zhai
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| | - Zhong-Yong Yuan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
45
|
Zhang Y, Zhang Z, Yu Z, Addad A, Wang Q, Roussel P, Szunerits S, Boukherroub R. Ruthenium Oxide Nanoparticles Immobilized on Ti 3C 2 MXene Nanosheets for Boosting Seawater Electrolysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58345-58355. [PMID: 38063412 DOI: 10.1021/acsami.3c12254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Seawater electrolysis represents a viable alternative for large-scale synthesis of hydrogen (H2), which is recognized as the most promising clean energy source, without relying on scarce fresh water. However, high energy cost and harmful chlorine chemistry in seawater limited its development. Herein, an effective catalyst based on a ruthenium nanoparticle-Ti3C2 MXene composite loaded on nickel foam (RuO2-Ti3C2/NF) with an open, fine, and homogeneous nanostructure was devised and synthesized by electrodeposition for high performance and stable overall seawater splitting. To drive a current density of 100 mA cm-2, the RuO2-Ti3C2/NF electrode required a small overpotential of 85 and 351 mV for HER and OER in 1 M KOH with only a slight increase in 1 M KOH seawater (156 and 378 mV for, respectively, HER and OER). An assembled RuO2-Ti3C2/NF-based two-electrode cell required an overpotential of only 1.84 V to acquire 100 mA cm-2 in 1 M KOH seawater and maintained its activity for over 25 h. This low cell voltage effectively prevented chlorine electrochemical evolution without anode protection. These promising results open up new avenues for the effective conversion of abundant seawater resources to hydrogen fuel.
Collapse
Affiliation(s)
- Yi Zhang
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, Lille F-59000, France
| | - Zhaohui Zhang
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, Lille F-59000, France
| | - Zhiran Yu
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, Lille F-59000, France
| | - Ahmed Addad
- Univ. Lille, CNRS, UMR 8207-UMET, Lille F-59000, France
| | - Qi Wang
- Key Laboratory of Liquid-Solid Structural Evolution and Processing of Materials of Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Pascal Roussel
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR8181, UCCS-Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Sabine Szunerits
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, Lille F-59000, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, Lille F-59000, France
| |
Collapse
|
46
|
Feng G, Pan Y, Su D, Xia D. Constructing Fully-Active and Ultra-Active Sites in High-Entropy Alloy Nanoclusters for Hydrazine Oxidation-Assisted Electrolytic Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2309715. [PMID: 38118066 DOI: 10.1002/adma.202309715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/03/2023] [Indexed: 12/22/2023]
Abstract
The development of sufficiently high-efficiency systems and effective catalysts for electrocatalytic hydrogen production is of great significance but challenging. Here, high-entropy alloy nanoclusters (HEANCs) with full-active sites and super-active sites are innovatively constructed for hydrazine oxidation-assisted electrolytic hydrogen production. The HEANCs show an average size of only seven atomic layers (1.48 nm). As the catalysts for both hydrogen evolution reaction (HER) and hydrazine oxidation reaction, the HEANC/C exhibits the best-level performance among reported electrocatalysts. Especially, the HEANC/C achieves an ultrahigh mass activity of 12.85 A mg-1 noble metals at -0.07 V and overpotential of only 9.5 mV for 10 mA cm-2 for alkaline HER. Further, with HEANC/C as both anode and cathode catalysts, an overall hydrazine oxidation-assisted splitting (OHzS) electrolyzer shows a record mass activity of 250.2 mA mg-1 catalysts at 0.1 V and only requires working voltages of 0.025 and 0.181 V to reach 10 and 100 mA cm-2 , respectively, outperforming those of overall water-splitting system and other reported chemicals-assisted hydrogen production systems. Active site libraries including 72 sites on HEANC surface are originally constructed by theoretical calculations, revealing that all sites on HEANC surface are effective active sites for OHzS; especially some are super-active sites, endowing the best-level performance of HEANC/C.
Collapse
Affiliation(s)
- Guang Feng
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yue Pan
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dingguo Xia
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Institute of Carbon Neutrality, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
47
|
Zhao Y, Sun Y, Li H, Zeng S, Li R, Yao Q, Chen H, Zheng Y, Qu K. Highly enhanced hydrazine oxidation on bifunctional Ni tailored by alloying for energy-efficient hydrogen production. J Colloid Interface Sci 2023; 652:1848-1856. [PMID: 37683412 DOI: 10.1016/j.jcis.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
The low-potential hydrazine oxidation reaction (HzOR) can replace the oxygen evolution reaction (OER) and thus assemble with the hydrogen evolution reaction (HER), consequently achieving energy-saving hydrogen (H2) production. Notably, developing sophisticated bifunctional electrocatalysts for HER and HzOR is a prerequisite for efficient H2 production. Alloying noble metals with eligible non-precious ones can increase affordability, catalytic activity, and stability, alongside rendering bifunctionality. Herein, RuNi alloy deposited onto carbon (RuNi/C) was directly prepared by a simple and highly practical co-reduction method, showing excellent performance for HER and HzOR. Interestingly, to achieve 10 mA cm-2, RuNi/C only required an ultralow potential of 24 mV for HER, on par with commercial 20 wt% platinum in carbon (Pt/C), and -65 mV for HzOR, surpassing most reported counterparts. Moreover, the two-electrode electrolyzer only required small operation voltages of 57.8 and 327 mV to drive 10 and 100 mA cm-2, respectively. Driven by a homemade hydrazine (N2H4) fuel cell and solar panel, appreciable H2 yields of 1.027 and 1.406 mmol h-1 were achieved, respectively, exhibiting the energy-saving advantages alongside robust practicability. Moreover, theoretical calculations revealed that alloying with Ru endows bifunctional Ni sites not only with a lower H2O dissociation barrier but also with more favorable H* adsorption alongside the reduced energy barrier between HzOR intermediates.
Collapse
Affiliation(s)
- Yujun Zhao
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Yu Sun
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Haibo Li
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Suyuan Zeng
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Rui Li
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Qingxia Yao
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Hongyan Chen
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Yao Zheng
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Konggang Qu
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
48
|
Yu Z, Liu L. Recent Advances in Hybrid Seawater Electrolysis for Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308647. [PMID: 38143285 DOI: 10.1002/adma.202308647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/04/2023] [Indexed: 12/26/2023]
Abstract
Seawater electrolysis (SWE) is a promising and potentially cost-effective approach to hydrogen production, considering that seawater is vastly abundant and SWE is able to combine with offshore renewables producing green hydrogen. However, SWE has long been suffering from technical challenges including the high energy demand and interference of chlorine chemistry, leading electrolyzers to a low efficiency and short lifespan. In this context, hybrid SWE, operated by replacing the energy-demanding oxygen evolution reaction and interfering chlorine evolution reaction (CER) with a thermodynamically more favorable anodic oxidation reaction (AOR) or by designing innovative electrolyzer cells, has recently emerged as a better alternative, which not only allows SWE to occur in a safe and energy-saving manner without the notorious CER, but also enables co-production of value-added chemicals or elimination of environmental pollutants. This review provides a first account of recent advances in hybrid SWE for hydrogen production. The substitutional AOR of various small molecules or redox mediators, in couple with hydrogen evolution from seawater, is comprehensively summarized. Moreover, how the electrolyzer cell design helps in hybrid SWE is briefly discussed. Last, the current challenges and future outlook about the development of the hybrid SWE technology are outlined.
Collapse
Affiliation(s)
- Zhipeng Yu
- Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan, 523808, P. R. China
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, Braga, 4715-330, Portugal
| | - Lifeng Liu
- Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan, 523808, P. R. China
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, Braga, 4715-330, Portugal
| |
Collapse
|
49
|
He W, Li X, Tang C, Zhou S, Lu X, Li W, Li X, Zeng X, Dong P, Zhang Y, Zhang Q. Materials Design and System Innovation for Direct and Indirect Seawater Electrolysis. ACS NANO 2023; 17:22227-22239. [PMID: 37965727 DOI: 10.1021/acsnano.3c08450] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Green hydrogen production from renewably powered water electrolysis is considered as an ideal approach to decarbonizing the energy and industry sectors. Given the high-cost supply of ultra-high-purity water, as well as the mismatched distribution of water sources and renewable energies, combining seawater electrolysis with coastal solar/offshore wind power is attracting increasing interest for large-scale green hydrogen production. However, various impurities in seawater lead to corrosive and toxic halides, hydroxide precipitation, and physical blocking, which will significantly degrade catalysts, electrodes, and membranes, thus shortening the stable service life of electrolyzers. To accelerate the development of seawater electrolysis, it is crucial to widen the working potential gap between oxygen evolution and chlorine evolution reactions and develop flexible and highly efficient seawater purification technologies. In this review, we comprehensively discuss present challenges, research efforts, and design principles for direct/indirect seawater electrolysis from the aspects of materials engineering and system innovation. Further opportunities in developing efficient and stable catalysts, advanced membranes, and integrated electrolyzers are highlighted for green hydrogen production from both seawater and low-grade water sources.
Collapse
Affiliation(s)
- Wenjun He
- Tsinghua Center for Green Chemical Engineering Electrification, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xinxin Li
- Tsinghua Center for Green Chemical Engineering Electrification, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Cheng Tang
- Tsinghua Center for Green Chemical Engineering Electrification, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Institute for Carbon Neutrality, Tsinghua University, Beijing 100084, P. R. China
| | - Shujie Zhou
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xunyu Lu
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Weihong Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Xue Li
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Xiaoyuan Zeng
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Peng Dong
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Yingjie Zhang
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Qiang Zhang
- Tsinghua Center for Green Chemical Engineering Electrification, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
50
|
Jeon B, Kim D, Kim TS, Lee HK, Park JY. Enhanced Hot Electron Flow and Catalytic Synergy by Engineering Core-Shell Structures on Au-Pd Nanocatalysts. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37927055 DOI: 10.1021/acsami.3c10325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The synergistic catalytic performances of bimetallic catalysts are often attributed to the reaction mechanism associated with the alloying process of the catalytic metals. Chemically induced hot electron flux is strongly correlated with catalytic activity, and the interference between two metals at the atomic level can have a huge impact on the hot electron generation on the bimetallic catalysts. In this study, we investigate the correlation between catalytic synergy and hot electron chemistry driven by the electron coupling effect using a model system of Au-Pd bimetallic nanoparticles. We show that the bimetallic nanocatalysts exhibit enhanced catalytic activity under the hydrogen oxidation reaction compared with that of monometallic Pd nanocatalysts. Analysis of the hot electron flux generated in each system revealed the formation of Au/PdOx interfaces, resulting in high reactivity on the bimetallic catalyst. In further experiments with engineering the Au@Pd core-shell structures, we reveal that the hot electron flux, when the topmost surface Pd atoms were less affected by inner Au, due to the concrete shell, was smaller than the alloyed one. The alloyed bimetallic catalyst forming the metal-oxide interfaces has a more direct effect on the hot electron chemistry, as well as on the catalytic reactivity. The great significance of this study is in the confirmation that the change in the hot electron formation rate with the metal-oxide interfaces can be observed by shell engineering of nanocatalysts.
Collapse
Affiliation(s)
- Beomjoon Jeon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daeho Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Taek-Seung Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Han-Koo Lee
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang 37673, Republic of Korea
| | - Jeong Young Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|