1
|
Han Y, Ren X, Wu T, Lei Li Y, Ma H, Ru Z, Jia Y, Feng Gao Z, Du Y, Wu D, Wei Q. Effective Enrichment of Free Radicals through Nanoconfinement Boosts Electrochemiluminescence of Carbon Dots Derived from Luminol. Angew Chem Int Ed Engl 2024:e202414073. [PMID: 39248641 DOI: 10.1002/anie.202414073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/07/2024] [Accepted: 09/07/2024] [Indexed: 09/10/2024]
Abstract
Local enrichment of free radicals at the electrode interface may open new opportunities for the development of electrochemiluminescence (ECL) applications. The sensing platform was constructed by assembling ECL-emitting luminol derived carbon dots (Lu CDs) onto the heterojunction Tungsten disulfide/Covalent organic frameworks (WS2@COF) for the first time, establishing a nanoconfinement-reactor with significantly heightened ECL intensity and stability compared to the Lu CDs-H2O2 system. This enhanced performance is credited to the COF domain's restricted pore environment, where WS2@COF exhibits a more negative adsorption energy for H2O2, effectively enriching H2O2 in the catalytic edge sites of WS2. Furthermore, the internal electric field at the WS2 and COF interface accelerates electron flow, boosting WS2's catalytic activity and achieving domain-limited catalytic enhancement of ECL. Self-designed DNA nanomachines combined with cascading molecular keypad locking mechanisms are integrated into the biosensors, effectively guaranteeing the accuracy of the sensing process while providing crucial safeguards for molecular diagnostics and information security applications. In essence, this innovative approach represents the first system to enhance local free radical concentrations by enriching co-reactants on the electrode surface through nanoconfinement catalysis, yielding heightened ECL intensity. The potential impact of this novel strategy and sensing mechanism on real-bioanalysis applications is promising.
Collapse
Affiliation(s)
- Yujie Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Tingting Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Yan Lei Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Zhuangzhuang Ru
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Yue Jia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Zhong Feng Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Yu Du
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, P. R. China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| |
Collapse
|
2
|
Xiao Y, Hu S, Miao Y, Gong F, Chen J, Wu M, Liu W, Chen S. Recent Progress in Hot Spot Regulated Strategies for Catalysts Applied in Li-CO 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305009. [PMID: 37641184 DOI: 10.1002/smll.202305009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/23/2023] [Indexed: 08/31/2023]
Abstract
As a high energy density power system, lithium-carbon dioxide (Li-CO2 ) batteries play an important role in addressing the fossil fuel crisis issues and alleviating the greenhouse effect. However, the sluggish transformation kinetic of CO2 and the difficult decomposition of discharge products impede the achievement of large capacity, small overpotential, and long life span of the batteries, which require exploring efficient catalysts to resolve these problems. In this review, the main focus is on the hot spot regulation strategies of the catalysts, which include the modulation of the active sites, the designing of microstructure, and the construction of composition. The recent progress of promising catalysis with hot spot regulated strategies is systematically addressed. Critical challenges are also presented and perspectives to provide useful guidance for the rational design of highly efficient catalysts for practical advanced Li-CO2 batteries are proposed.
Collapse
Affiliation(s)
- Ying Xiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shilin Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yue Miao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fenglian Gong
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jun Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Mingxuan Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shimou Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
3
|
Liu M, Wen J, Qin Y, Li J, Tang Y, Jiao L, Wu Y, Fang Q, Zheng L, Cui X, Gu W, Zhu C, Hu L, Guo S. Metal atom doping-induced S-scheme heterojunction boosts the photoelectric response. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
4
|
Cortés E, Wendisch FJ, Sortino L, Mancini A, Ezendam S, Saris S, de S. Menezes L, Tittl A, Ren H, Maier SA. Optical Metasurfaces for Energy Conversion. Chem Rev 2022; 122:15082-15176. [PMID: 35728004 PMCID: PMC9562288 DOI: 10.1021/acs.chemrev.2c00078] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanostructured surfaces with designed optical functionalities, such as metasurfaces, allow efficient harvesting of light at the nanoscale, enhancing light-matter interactions for a wide variety of material combinations. Exploiting light-driven matter excitations in these artificial materials opens up a new dimension in the conversion and management of energy at the nanoscale. In this review, we outline the impact, opportunities, applications, and challenges of optical metasurfaces in converting the energy of incoming photons into frequency-shifted photons, phonons, and energetic charge carriers. A myriad of opportunities await for the utilization of the converted energy. Here we cover the most pertinent aspects from a fundamental nanoscopic viewpoint all the way to applications.
Collapse
Affiliation(s)
- Emiliano Cortés
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Fedja J. Wendisch
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Luca Sortino
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Andrea Mancini
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Simone Ezendam
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Seryio Saris
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Leonardo de S. Menezes
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- Departamento
de Física, Universidade Federal de
Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Andreas Tittl
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Haoran Ren
- MQ Photonics
Research Centre, Department of Physics and Astronomy, Macquarie University, Macquarie
Park, New South Wales 2109, Australia
| | - Stefan A. Maier
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- School
of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
- Department
of Phyiscs, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
5
|
Keller K, Rojas-Aedo R, Zhang H, Schweizer P, Allerbeck J, Brida D, Jariwala D, Maccaferri N. Ultrafast Thermionic Electron Injection Effects on Exciton Formation Dynamics at a van der Waals Semiconductor/Metal Interface. ACS PHOTONICS 2022; 9:2683-2690. [PMID: 35996365 PMCID: PMC9389617 DOI: 10.1021/acsphotonics.2c00394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 06/15/2023]
Abstract
Inorganic van der Waals bonded semiconductors such as transition metal dichalcogenides are the subject of intense research due to their electronic and optical properties which are promising for next-generation optoelectronic devices. In this context, understanding the carrier dynamics, as well as charge and energy transfer at the interface between metallic contacts and semiconductors, is crucial and yet quite unexplored. Here, we present an experimental study to measure the effect of mutual interaction between thermionically injected and directly excited carriers on the exciton formation dynamics in bulk WS2. By employing a pump-push-probe scheme, where a pump pulse induces thermionic injection of electrons from a gold substrate into the conduction band of the semiconductor, and another delayed push pulse that excites direct transitions in the WS2, we can isolate the two processes experimentally and thus correlate the mutual interaction with its effect on the ultrafast dynamics in WS2. The fast decay time constants extracted from the experiments show a decrease with an increasing ratio between the injected and directly excited charge carriers, thus disclosing the impact of thermionic electron injection on the exciton formation dynamics. Our findings might offer a new vibrant direction for the integration of photonics and electronics, especially in active and photodetection devices, and, more in general, in upcoming all-optical nanotechnologies.
Collapse
Affiliation(s)
- Kilian
R. Keller
- Department
of Physics and Materials Science, University
of Luxembourg, 162a Avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg
| | - Ricardo Rojas-Aedo
- Department
of Physics and Materials Science, University
of Luxembourg, 162a Avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg
| | - Huiqin Zhang
- Department
of Electrical and Systems Engineering, University
of Pennsylvania, 19104 Philadelphia, Pennsylvania, United States
| | - Pirmin Schweizer
- Department
of Physics and Materials Science, University
of Luxembourg, 162a Avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg
| | - Jonas Allerbeck
- Department
of Physics and Materials Science, University
of Luxembourg, 162a Avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg
- Nanotech@Surfaces
Laboratory, EMPA, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Daniele Brida
- Department
of Physics and Materials Science, University
of Luxembourg, 162a Avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg
| | - Deep Jariwala
- Department
of Electrical and Systems Engineering, University
of Pennsylvania, 19104 Philadelphia, Pennsylvania, United States
| | - Nicolò Maccaferri
- Department
of Physics and Materials Science, University
of Luxembourg, 162a Avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg
- Department
of Physics, Umeå University, Linnaeus väg 24, SE-90187 Umeå, Sweden
| |
Collapse
|
6
|
Ren H, Xiang G. Strain-Modulated Magnetism in MoS 2. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1929. [PMID: 35683784 PMCID: PMC9182138 DOI: 10.3390/nano12111929] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022]
Abstract
Since the experiments found that two-dimensional (2D) materials such as single-layer MoS2 can withstand up to 20% strain, strain-modulated magnetism has gradually become an emerging research field. However, applying strain alone is difficult to modulate the magnetism of single-layer pristine MoS2, but applying strain combined with other tuning techniques such as introducing defects makes it easier to produce and alter the magnetism in MoS2. Here, we summarize the recent progress of strain-dependent magnetism in MoS2. First, we review the progress in theoretical study. Then, we compare the experimental methods of applying strain and their effects on magnetism. Specifically, we emphasize the roles played by web buckles, which induce biaxial tensile strain conveniently. Despite some progress, the study of strain-dependent MoS2 magnetism is still in its infancy, and a few potential directions for future research are discussed at the end. Overall, a broad and in-depth understanding of strain-tunable magnetism is very necessary, which will further drive the development of spintronics, straintronics, and flexible electronics.
Collapse
Affiliation(s)
- Hongtao Ren
- School of Materials Science and Engineering, Liaocheng University, Hunan Road No. 1, Liaocheng 252000, China
| | - Gang Xiang
- College of Physics, Sichuan University, Wangjiang Road No. 29, Chengdu 610064, China
| |
Collapse
|
7
|
Tang Y, Zhang Y, Liu Q, Wei K, Cheng X, Shi L, Jiang T. Interacting plexcitons for designed ultrafast optical nonlinearity in a monolayer semiconductor. LIGHT, SCIENCE & APPLICATIONS 2022; 11:94. [PMID: 35422032 PMCID: PMC9010435 DOI: 10.1038/s41377-022-00754-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 05/10/2023]
Abstract
Searching for ideal materials with strong effective optical nonlinear responses is a long-term task enabling remarkable breakthroughs in contemporary quantum and nonlinear optics. Polaritons, hybridized light-matter quasiparticles, are an appealing candidate to realize such nonlinearities. Here, we explore a class of peculiar polaritons, named plasmon-exciton polaritons (plexcitons), in a hybrid system composed of silver nanodisk arrays and monolayer tungsten-disulfide (WS2), which shows giant room-temperature nonlinearity due to their deep-subwavelength localized nature. Specifically, comprehensive ultrafast pump-probe measurements reveal that plexciton nonlinearity is dominated by the saturation and higher-order excitation-induced dephasing interactions, rather than the well-known exchange interaction in traditional microcavity polaritons. Furthermore, we demonstrate this giant nonlinearity can be exploited to manipulate the ultrafast nonlinear absorption properties of the solid-state system. Our findings suggest that plexcitons are intrinsically strongly interacting, thereby pioneering new horizons for practical implementations such as energy-efficient ultrafast all-optical switching and information processing.
Collapse
Affiliation(s)
- Yuxiang Tang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, 410073, Changsha, China
| | - Yanbin Zhang
- Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), and State Key Laboratory of Surface Physics, Department of Physics, Fudan University, 200433, Shanghai, China
| | - Qirui Liu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, 410073, Changsha, China
| | - Ke Wei
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, 410073, Changsha, China
- State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, 410073, Changsha, China
- Beijing Institute for Advanced Study, National University of Defense Technology, 100000, Beijing, China
| | - Xiang'ai Cheng
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, 410073, Changsha, China
| | - Lei Shi
- Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), and State Key Laboratory of Surface Physics, Department of Physics, Fudan University, 200433, Shanghai, China.
| | - Tian Jiang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, 410073, Changsha, China.
- Beijing Institute for Advanced Study, National University of Defense Technology, 100000, Beijing, China.
| |
Collapse
|
8
|
Optical Response of CVD-Grown ML-WS2 Flakes on an Ultra-Dense Au NP Plasmonic Array. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The combination of metallic nanostructures with two-dimensional transition metal dichalcogenides is an efficient way to make the optical properties of the latter more appealing for opto-electronic applications. In this work, we investigate the optical properties of monolayer WS2 flakes grown by chemical vapour deposition and transferred onto a densely-packed array of plasmonic Au nanoparticles (NPs). The optical response was measured as a function of the thickness of a dielectric spacer intercalated between the two materials and of the system temperature, in the 75–350 K range. We show that a weak interaction is established between WS2 and Au NPs, leading to temperature- and spacer-thickness-dependent coupling between the localized surface plasmon resonance of Au NPs and the WS2 exciton. We suggest that the closely-packed morphology of the plasmonic array promotes a high confinement of the electromagnetic field in regions inaccessible by the WS2 deposited on top. This allows the achievement of direct contact between WS2 and Au while preserving a strong connotation of the properties of the two materials also in the hybrid system.
Collapse
|
9
|
Tunable Lifetime and Nonlinearity in Two Dimensional Materials Plasmonic-Photonic Absorber. NANOMATERIALS 2022; 12:nano12030416. [PMID: 35159760 PMCID: PMC8839502 DOI: 10.3390/nano12030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/04/2022]
Abstract
We investigate a framework of local field, quality factor and lifetime for tunable graphene nanoribbon plasmonic-photonic absorbers and study the second order and third order nonlinear optical response of surface plasmons. The energy exchange of plasmonic-photonic absorber occurs in two main ways: one way is the decay process of intrinsic loss for each resonant mode and another is the decay process of energy loss between graphene surface plasmon (GSP) mode and the external light field. The quality factor and lifetime of the plasmonic-photonic absorber can be obtained with using the coupled mode theory (CMT) and finite difference time domain (FDTD) method, which are effectively tunable with changing Fermi energy, carrier mobility and superstrate refractive index. The evolutions of total energy and lifetime of GSP are also shown, which are helpful for the study of micro processes in a two-dimensional material plasmonic-photonic absorber. The strongly localized fundamental field induces a desired increase of second harmonic (SH) wave and third harmonic (TH) wave. The manipulation of the quality factor and lifetime of the GSP makes graphene an excellent platform for tunable two-dimensional material plasmonic-photonic devices to realize the active control of the photoelectric/photothermal energy conversion process and higher harmonic generation.
Collapse
|