1
|
Mao Y, Zhang M, Peng X, Liu Y, Liu Y, Xia Q, Luo B, Chen L, Zhang Z, Wang Y, Wang H. Cross-modal cortical circuit for sound sensitivity in neuropathic pain. Curr Biol 2025; 35:831-842.e5. [PMID: 39889698 DOI: 10.1016/j.cub.2024.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/26/2024] [Accepted: 12/18/2024] [Indexed: 02/03/2025]
Abstract
Hyperacusis, exaggerated sensitivity to sound, frequently accompanies chronic pain in humans, suggesting interactions between different sensory systems in the brain. However, the neural mechanisms underlying this comorbidity remain largely unexplored. In this study, behavioral tests measuring sound-evoked pupil dilation and reaction times to lick water following auditory stimuli showed hyperacusis-like behaviors in neuropathic pain model mice. Through viral tracing, fiber photometry, and multi-electrode recordings, we identified glutamatergic projections from primary somatosensory cortex (S1HLGlu) to the auditory cortex (ACx) that participate in amplifying sound-evoked neuronal activity following spared nerve injury in the hindlimb. Chemo- or optogenetic manipulation and electrophysiology recordings confirmed that the S1HLGlu → ACx pathway is essential for this heightened response to sound. Specifically, activating this pathway intensified glutamatergic neuronal activity in the ACx and induced hyperacusis-like behaviors, while chemogenetic suppression reversed these effects in neuropathic pain model mice. These findings illustrate the mechanism by which central gain increases in the ACx of neuropathic pain mice, improving our understanding of cross-modal sensory system interactions and suggesting circuit pathway targets for developing interventions to treat pain-associated hyperacusis in clinic.
Collapse
Affiliation(s)
- Yunfeng Mao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Mingjun Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoqi Peng
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230022, China; School of Basic Medical Sciences, Anhui Medical University, Hefei 230022, China
| | - Yi Liu
- China High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, HFIPS, Hefei 230031, China
| | - Yehao Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230022, China
| | - Qianhui Xia
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230022, China
| | - Bin Luo
- Auditory Research Laboratory, Department of Neurobiology and Biophysics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Lin Chen
- Auditory Research Laboratory, Department of Neurobiology and Biophysics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; School of Basic Medical Sciences, Anhui Medical University, Hefei 230022, China; Center for Advance Interdisciplinary Science and Biomedicine of IHM, Hefei 230026, China.
| | - Yuanyin Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230022, China.
| | - Haitao Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230022, China.
| |
Collapse
|
2
|
Chen D, Zhang S, Shen L, Li C, Hua J, Liu J, Song A. Design and Evaluation of an Electromagnetic Bounce-type Refreshable Braille Display. IEEE Trans Neural Syst Rehabil Eng 2025; PP:705-716. [PMID: 40031414 DOI: 10.1109/tnsre.2025.3535564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
To help the blind or visually impaired (BVI) read digitally conveniently and at low cost, we propose a bounce-type actuator driven by electromagnetic force, and based on this, a refreshable Braille display (RBD) which can display both Braille and tactile graphic information is manufactured. The internal components of the bounce-type actuator include an electromagnet and two permanent magnets placed in a stepped manner. By passing current in different directions to the coil, the electromagnet can bounce up and down between the two permanent magnets under the action of magnetic force, thereby achieving changes in the raised state of the Braille dot. The permanent magnets placed in staggered positions have an attractive and supportive effect on the electromagnet, so the raised Braille dot can be locked in a specific position when the electromagnet is not powered on and provide a large latching force. In this paper, the force analysis and finite element simulation of the actuator actuation condition of the Braille dot actuator are carried out, and the refresh rate is measured experimentally to be about 16 Hz. Meanwhile, the overall refresh rate of the prototype can be up to 2.7 Hz. Benefiting from the full-latching structure, the RBD proposed in this paper is characterized by a large latching force, a high refresh rate, and an easy scalability. It also has the advantages of low cost, low energy consumption, reliability, and durability, providing an easy-to-promote tool for BVI to read digital information.
Collapse
|
3
|
Kato DD, Bruno RM. Stability of cross-sensory input to primary somatosensory cortex across experience. Neuron 2025; 113:291-306.e7. [PMID: 39561767 PMCID: PMC11757082 DOI: 10.1016/j.neuron.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/03/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024]
Abstract
Merging information across sensory modalities is key to forming robust percepts, yet how the brain achieves this feat remains unclear. Recent studies report cross-modal influences in the primary sensory cortex, suggesting possible multisensory integration in the early stages of cortical processing. We test several hypotheses about the function of auditory influences on mouse primary somatosensory cortex (S1) using in vivo two-photon calcium imaging. We found sound-evoked spiking activity in an extremely small fraction of cells, and this sparse activity did not encode auditory stimulus identity. Moreover, S1 did not encode information about specific audio-tactile feature conjunctions. Auditory and audio-tactile stimulus encoding remained unchanged after both passive experience and reinforcement. These results suggest that while primary sensory cortex is plastic within its own modality, the influence of other modalities is remarkably stable and stimulus nonspecific.
Collapse
Affiliation(s)
- Daniel D Kato
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Randy M Bruno
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Department of Physiology, Anatomy, & Genetics, University of Oxford, Oxford OX1 3PT, UK.
| |
Collapse
|
4
|
Li Z, He L, Peng L, Zhu X, Li M, Hu D. Negative hemodynamic response in the visual cortex: Evidence supporting neuronal origin via hemodynamic observation and two-photon imaging. Brain Res Bull 2025; 220:111149. [PMID: 39615859 DOI: 10.1016/j.brainresbull.2024.111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024]
Abstract
The positive hemodynamic response (PHR) during stimulation often co-occurs with a strong, sustained negative hemodynamic response (NHR). However, the characteristics and neurophysiological mechanisms of the NHR, especially in regions distal to the PHR, remain incompletely understood. Using intrinsic optical imaging (OI) and two-photon imaging, we observed that forelimb electrical stimulation evoked strong PHR signals in the forelimb region of the primary somatosensory cortex (S1FL). Meanwhile, NHR signals primarily appeared in the primary visual cortex (V1), with a delayed onset and lower amplitude relative to the PHR signals. Additionally, stimulation led to a reduction in cerebral blood flow (CBF) in the NHR region. Notably, there was an overall suppression of the calcium response in the NHR region, although a small proportion (14 %) of neurons exhibited concurrent activation. Axon tracing revealed cortico-cortical projections from S1FL to V1. These findings suggest that neuronal deactivation significantly contributes to the origin of the NHR, offering additional insights into the specific inhibitory mechanisms underlying the NHR.
Collapse
Affiliation(s)
- Zhen Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Lihua He
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Limin Peng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Xuan Zhu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Ming Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China.
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China.
| |
Collapse
|
5
|
Liu Y, Jiang S, Li Y, Zhao S, Yun Z, Zhao ZH, Zhang L, Wang G, Chen X, Manubens-Gil L, Hang Y, Gong Q, Li Y, Qian P, Qu L, Garcia-Forn M, Wang W, De Rubeis S, Wu Z, Osten P, Gong H, Hawrylycz M, Mitra P, Dong H, Luo Q, Ascoli GA, Zeng H, Liu L, Peng H. Neuronal diversity and stereotypy at multiple scales through whole brain morphometry. Nat Commun 2024; 15:10269. [PMID: 39592611 PMCID: PMC11599929 DOI: 10.1038/s41467-024-54745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
We conducted a large-scale whole-brain morphometry study by analyzing 3.7 peta-voxels of mouse brain images at the single-cell resolution, producing one of the largest multi-morphometry databases of mammalian brains to date. We registered 204 mouse brains of three major imaging modalities to the Allen Common Coordinate Framework (CCF) atlas, annotated 182,497 neuronal cell bodies, modeled 15,441 dendritic microenvironments, characterized the full morphology of 1876 neurons along with their axonal motifs, and detected 2.63 million axonal varicosities that indicate potential synaptic sites. Our analyzed six levels of information related to neuronal populations, dendritic microenvironments, single-cell full morphology, dendritic and axonal arborization, axonal varicosities, and sub-neuronal structural motifs, along with a quantification of the diversity and stereotypy of patterns at each level. This integrative study provides key anatomical descriptions of neurons and their types across a multiple scales and features, contributing a substantial resource for understanding neuronal diversity in mammalian brains.
Collapse
Affiliation(s)
- Yufeng Liu
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Shengdian Jiang
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
- School of Computer Science and Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Yingxin Li
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Sujun Zhao
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Zhixi Yun
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
- School of Computer Science and Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Zuo-Han Zhao
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Lingli Zhang
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Gaoyu Wang
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Xin Chen
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Linus Manubens-Gil
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Yuning Hang
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Qiaobo Gong
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Yuanyuan Li
- Ministry of Education Key Laboratory of Intelligent Computation and Signal Processing, Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Electronics and Information Engineering, Anhui University, Hefei, Anhui, China
| | - Penghao Qian
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Lei Qu
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
- Ministry of Education Key Laboratory of Intelligent Computation and Signal Processing, Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Electronics and Information Engineering, Anhui University, Hefei, Anhui, China
| | - Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wei Wang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhuhao Wu
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Hui Gong
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | | | - Partha Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Hongwei Dong
- Center for Integrative Connectomics, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Qingming Luo
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China
| | - Giorgio A Ascoli
- Volgenau School of Engineering, George Mason University, Fairfax, VA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lijuan Liu
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China.
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, China.
| | - Hanchuan Peng
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Ishii T, Narita N, Iwaki S, Kamiya K, Shimosaka M, Yamaguchi H, Uchida T, Kantake I, Shibutani K. Cross-modal representation of chewing food in posterior parietal and visual cortex. PLoS One 2024; 19:e0310513. [PMID: 39453981 PMCID: PMC11508057 DOI: 10.1371/journal.pone.0310513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 09/03/2024] [Indexed: 10/27/2024] Open
Abstract
Even though the oral cavity is not visible, food chewing can be performed without damaging the tongue, oral mucosa, or other intraoral parts, with cross-modal perception of chewing possibly critical for appropriate recognition of its performance. This study was conducted to clarify the relationship of chewing food cross-modal perception with cortex activities based on examinations of the posterior parietal cortex (PPC) and visual cortex during chewing in comparison with sham chewing without food, imaginary chewing, and rest using functional near-infrared spectroscopy. Additionally, the effects of a deafferent tongue dorsum on PPC/visual cortex activities during chewing performance were examined. The results showed that chewing food increased activity in the PPC/visual cortex as compared with imaginary chewing, sham chewing without food, and rest. Nevertheless, those activities were not significantly different during imaginary chewing or sham chewing without food as compared with rest. Moreover, subjects with a deafferent tongue dorsum showed reduced PPC/visual cortex activities during chewing food performance. These findings suggest that chewing of food involves cross-modal recognition, while an oral somatosensory deficit may modulate such cross-modal activities.
Collapse
Affiliation(s)
- Tomohiro Ishii
- Department of Removable Prosthodontics and Geriatric Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Noriyuki Narita
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Sunao Iwaki
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Kazunobu Kamiya
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Michiharu Shimosaka
- Department of Anesthesiology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Hidenori Yamaguchi
- Department of Anesthesiology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | | | | | - Koh Shibutani
- Department of Anesthesiology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| |
Collapse
|
7
|
Kato DD, Bruno RM. Stability of cross-sensory input to primary somatosensory cortex across experience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.07.607026. [PMID: 39149350 PMCID: PMC11326227 DOI: 10.1101/2024.08.07.607026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Merging information from across sensory modalities is key to forming robust, disambiguated percepts of the world, yet how the brain achieves this feat remains unclear. Recent observations of cross-modal influences in primary sensory cortical areas have suggested that multisensory integration may occur in the earliest stages of cortical processing, but the role of these responses is still poorly understood. We address these questions by testing several hypotheses about the possible functions served by auditory influences on the barrel field of mouse primary somatosensory cortex (S1) using in vivo 2-photon calcium imaging. We observed sound-evoked spiking activity in a small fraction of cells overall, and moreover that this sparse activity was insufficient to encode auditory stimulus identity; few cells responded preferentially to one sound or another, and a linear classifier trained to decode auditory stimuli from population activity performed barely above chance. Moreover S1 did not encode information about specific audio-tactile feature conjunctions that we tested. Our ability to decode auditory audio-tactile stimuli from neural activity remained unchanged after both passive experience and reinforcement. Collectively, these results suggest that while a primary sensory cortex is highly plastic with regard to its own modality, the influence of other modalities are remarkably stable and play a largely stimulus-non-specific role.
Collapse
Affiliation(s)
- Daniel D Kato
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Randy M Bruno
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
- Department of Physiology, Anatomy, & Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
8
|
Misrani A, Tabassum S, Wang T, Huang H, Jiang J, Diao H, Zhao Y, Huang Z, Tan S, Long C, Yang L. Vibration-reduced anxiety-like behavior relies on ameliorating abnormalities of the somatosensory cortex and medial prefrontal cortex. Neural Regen Res 2024; 19:1351-1359. [PMID: 37905885 PMCID: PMC11467954 DOI: 10.4103/1673-5374.385840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/30/2023] [Accepted: 07/19/2023] [Indexed: 11/02/2023] Open
Abstract
Tibetan singing bowls emit low-frequency sounds and produce perceptible harmonic tones and vibrations through manual tapping. The sounds the singing bowls produce have been shown to enhance relaxation and reduce anxiety. However, the underlying mechanism remains unclear. In this study, we used chronic restraint stress or sleep deprivation to establish mouse models of anxiety that exhibit anxiety-like behaviors. We then supplied treatment with singing bowls in a bottomless cage placed on the top of a cushion. We found that unlike in humans, the combination of harmonic tones and vibrations did not improve anxiety-like behaviors in mice, while individual vibration components did. Additionally, the vibration of singing bowls increased the level of N-methyl-D-aspartate receptor 1 in the somatosensory cortex and prefrontal cortex of the mice, decreased the level of γ-aminobutyric acid A (GABA) receptor α 1 subtype, reduced the level of CaMKII in the prefrontal cortex, and increased the number of GABAergic interneurons. At the same time, electrophysiological tests showed that the vibration of singing bowls significantly reduced the abnormal low-frequency gamma oscillation peak frequency in the medial prefrontal cortex caused by stress restraint pressure and sleep deprivation. Results from this study indicate that the vibration of singing bowls can alleviate anxiety-like behaviors by reducing abnormal molecular and electrophysiological events in somatosensory and medial prefrontal cortex.
Collapse
Affiliation(s)
- Afzal Misrani
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, Guangdong Province, China
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Sidra Tabassum
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, Guangdong Province, China
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Tintin Wang
- Guangzhou Hongai Cultural Development, Inc., Guangzhou, Guangdong Province, China
- Yinguo Health Management Team, Guangzhou, Guangdong Province, China
| | - Huixian Huang
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, Guangdong Province, China
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Jinxiang Jiang
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Hongjun Diao
- Guangzhou Hongai Cultural Development, Inc., Guangzhou, Guangdong Province, China
- Yinguo Health Management Team, Guangzhou, Guangdong Province, China
| | - Yanping Zhao
- College of Biophotonics, South China Normal University, Guangzhou, Guangdong Province, China
| | - Zhen Huang
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, Guangdong Province, China
| | - Shaohua Tan
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, Guangdong Province, China
| | - Cheng Long
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, Guangdong Province, China
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| |
Collapse
|
9
|
Schnepel P, Paricio-Montesinos R, Ezquerra-Romano I, Haggard P, Poulet JFA. Cortical cellular encoding of thermotactile integration. Curr Biol 2024; 34:1718-1730.e3. [PMID: 38582078 DOI: 10.1016/j.cub.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 12/24/2023] [Accepted: 03/13/2024] [Indexed: 04/08/2024]
Abstract
Recent evidence suggests that primary sensory cortical regions play a role in the integration of information from multiple sensory modalities. How primary cortical neurons integrate different sources of sensory information is unclear, partly because non-primary sensory input to a cortical sensory region is often weak or modulatory. To address this question, we take advantage of the robust representation of thermal (cooling) and tactile stimuli in mouse forelimb primary somatosensory cortex (fS1). Using a thermotactile detection task, we show that the perception of threshold-level cool or tactile information is enhanced when they are presented simultaneously, compared with presentation alone. To investigate the cortical cellular correlates of thermotactile integration, we performed in vivo extracellular recordings from fS1 in awake resting and anesthetized mice during unimodal and bimodal stimulation of the forepaw. Unimodal stimulation evoked thermal- or tactile- specific excitatory and inhibitory responses of fS1 neurons. The most prominent features of combined thermotactile stimulation are the recruitment of unimodally silent fS1 neurons, non-linear integration features, and response dynamics that favor longer response durations with additional spikes. Together, we identify quantitative and qualitative changes in cortical encoding that may underlie the improvement in perception of thermotactile surfaces during haptic exploration.
Collapse
Affiliation(s)
- Philipp Schnepel
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin-Buch, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ricardo Paricio-Montesinos
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin-Buch, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ivan Ezquerra-Romano
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin-Buch, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Institute of Cognitive Neuroscience, University College London (UCL), London WC1N 3AZ, UK
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London (UCL), London WC1N 3AZ, UK
| | - James F A Poulet
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin-Buch, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
10
|
Kania D, Romaniszyn-Kania P, Tuszy A, Bugdol M, Ledwoń D, Czak M, Turner B, Bibrowicz K, Szurmik T, Pollak A, Mitas AW. Evaluation of physiological response and synchronisation errors during synchronous and pseudosynchronous stimulation trials. Sci Rep 2024; 14:8814. [PMID: 38627479 PMCID: PMC11021516 DOI: 10.1038/s41598-024-59477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
Rhythm perception and synchronisation is musical ability with neural basis defined as the ability to perceive rhythm in music and synchronise body movements with it. The study aimed to check the errors of synchronisation and physiological response as a reaction of the subjects to metrorhythmic stimuli of synchronous and pseudosynchronous stimulation (synchronisation with an externally controlled rhythm, but in reality controlled or produced tone by tapping) Nineteen subjects without diagnosed motor disorders participated in the study. Two tests were performed, where the electromyography signal and reaction time were recorded using the NORAXON system. In addition, physiological signals such as electrodermal activity and blood volume pulse were measured using the Empatica E4. Study 1 consisted of adapting the finger tapping test in pseudosynchrony with a given metrorhythmic stimulus with a selection of preferred, choices of decreasing and increasing tempo. Study 2 consisted of metrorhythmic synchronisation during the heel stomping test. Numerous correlations and statistically significant parameters were found between the response of the subjects with respect to their musical education, musical and sports activities. Most of the differentiating characteristics shown evidence of some group division in the undertaking of musical activities. The use of detailed analyses of synchronisation errors can contribute to the development of methods to improve the rehabilitation process of subjects with motor dysfunction, and this will contribute to the development of an expert system that considers personalised musical preferences.
Collapse
Affiliation(s)
- Damian Kania
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Mikołowska 72A, 40-065, Katowice, Poland
| | - Patrycja Romaniszyn-Kania
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800, Zabrze, Poland.
| | - Aleksandra Tuszy
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800, Zabrze, Poland
| | - Monika Bugdol
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800, Zabrze, Poland
| | - Daniel Ledwoń
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800, Zabrze, Poland
| | - Miroslaw Czak
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800, Zabrze, Poland
| | - Bruce Turner
- dBs Music, HE Music Faculty, 17 St Thomas St, Redcliffe, Bristol, BS1 6JS, UK
| | - Karol Bibrowicz
- Science and Research Center of Body Posture, College of Education and Therapy in Poznań, 61-473, Poznań, Poland
| | - Tomasz Szurmik
- Faculty of Arts and Educational Science, University of Silesia, ul. Bielska 62, 43-400, Cieszyn, Poland
| | - Anita Pollak
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800, Zabrze, Poland
- Institute of Psychology, University of Silesia, ul. Grazynskiego 53, 40-126, Katowice, Poland
| | - Andrzej W Mitas
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800, Zabrze, Poland
| |
Collapse
|
11
|
Wu M, Auksztulewicz R, Riecke L. Multimodal acoustic-electric trigeminal nerve stimulation modulates conscious perception. Neuroimage 2024; 285:120476. [PMID: 38030051 DOI: 10.1016/j.neuroimage.2023.120476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/05/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023] Open
Abstract
Multimodal stimulation can reverse pathological neural activity and improve symptoms in neuropsychiatric diseases. Recent research shows that multimodal acoustic-electric trigeminal-nerve stimulation (TNS) (i.e., musical stimulation synchronized to electrical stimulation of the trigeminal nerve) can improve consciousness in patients with disorders of consciousness. However, the reliability and mechanism of this novel approach remain largely unknown. We explored the effects of multimodal acoustic-electric TNS in healthy human participants by assessing conscious perception before and after stimulation using behavioral and neural measures in tactile and auditory target-detection tasks. To explore the mechanisms underlying the putative effects of acoustic-electric stimulation, we fitted a biologically plausible neural network model to the neural data using dynamic causal modeling. We observed that (1) acoustic-electric stimulation improves conscious tactile perception without a concomitant change in auditory perception, (2) this improvement is caused by the interplay of the acoustic and electric stimulation rather than any of the unimodal stimulation alone, and (3) the effect of acoustic-electric stimulation on conscious perception correlates with inter-regional connection changes in a recurrent neural processing model. These results provide evidence that acoustic-electric TNS can promote conscious perception. Alterations in inter-regional cortical connections might be the mechanism by which acoustic-electric TNS achieves its consciousness benefits.
Collapse
Affiliation(s)
- Min Wu
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, the Netherlands.
| | - Ryszard Auksztulewicz
- Department of Education and Psychology, Freie Universität Berlin, Berlin 14195, Germany
| | - Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, the Netherlands
| |
Collapse
|
12
|
Chauvie C, Schroeder A. Expectation Based on Olfactory Cues Impacts Learned Auditory Associations. J Neurosci 2023; 43:4752-4754. [PMID: 37380362 PMCID: PMC10312050 DOI: 10.1523/jneurosci.0694-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/30/2023] Open
Affiliation(s)
- Caroline Chauvie
- Institute for Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Anna Schroeder
- Institute for Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
13
|
Muller M, Pennartz CMA, Bosman CA, Olcese U. A novel task to investigate vibrotactile detection in mice. PLoS One 2023; 18:e0284735. [PMID: 37079581 PMCID: PMC10118142 DOI: 10.1371/journal.pone.0284735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/06/2023] [Indexed: 04/21/2023] Open
Abstract
Throughout the last decades, understanding the neural mechanisms of sensory processing has been a key objective for neuroscientists. Many studies focused on uncovering the microcircuit-level architecture of somatosensation using the rodent whisker system as a model. Although these studies have significantly advanced our understanding of tactile processing, the question remains to what extent the whisker system can provide results translatable to the human somatosensory system. To address this, we developed a restrained vibrotactile detection task involving the limb system in mice. A vibrotactile stimulus was delivered to the hindlimb of head-fixed mice, who were trained to perform a Go/No-go detection task. Mice were able to learn this task with satisfactory performance and with reasonably short training times. In addition, the task we developed is versatile, as it can be combined with diverse neuroscience methods. Thus, this study introduces a novel task to study the neuron-level mechanisms of tactile processing in a system other than the more commonly studied whisker system.
Collapse
Affiliation(s)
- Mariel Muller
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Cyriel M. A. Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Conrado A. Bosman
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Murphy SC, Godenzini L, Guzulaitis R, Lawrence AJ, Palmer LM. Cocaine regulates sensory filtering in cortical pyramidal neurons. Cell Rep 2023; 42:112122. [PMID: 36790932 DOI: 10.1016/j.celrep.2023.112122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 12/14/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Exposure to cocaine leads to robust changes in the structure and function of neurons within the mesocorticolimbic pathway. However, little is known about how cocaine influences the processing of information within the sensory cortex. We address this by using patch-clamp and juxtacellular voltage recordings and two-photon Ca2+ imaging in vivo to investigate the influence of acute cocaine exposure on layer 2/3 (L2/3) pyramidal neurons within the primary somatosensory cortex (S1). Here, cocaine dampens membrane potential state transitions and decreases spontaneous somatic action potentials and Ca2+ transients. In contrast to the uniform decrease in background spontaneous activity, cocaine has a heterogeneous influence on sensory encoding, increasing tactile-evoked responses in dendrites that do not typically encode sensory information and decreasing responses in those dendrites that are more reliable sensory encoders. Combined, these findings suggest that cocaine acts as a filter that suppresses background noise to selectively modulate incoming sensory information.
Collapse
Affiliation(s)
- Sean C Murphy
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Luca Godenzini
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Robertas Guzulaitis
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia; Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Lucy M Palmer
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
15
|
Lohse M, Zimmer-Harwood P, Dahmen JC, King AJ. Integration of somatosensory and motor-related information in the auditory system. Front Neurosci 2022; 16:1010211. [PMID: 36330342 PMCID: PMC9622781 DOI: 10.3389/fnins.2022.1010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
An ability to integrate information provided by different sensory modalities is a fundamental feature of neurons in many brain areas. Because visual and auditory inputs often originate from the same external object, which may be located some distance away from the observer, the synthesis of these cues can improve localization accuracy and speed up behavioral responses. By contrast, multisensory interactions occurring close to the body typically involve a combination of tactile stimuli with other sensory modalities. Moreover, most activities involving active touch generate sound, indicating that stimuli in these modalities are frequently experienced together. In this review, we examine the basis for determining sound-source distance and the contribution of auditory inputs to the neural encoding of space around the body. We then consider the perceptual consequences of combining auditory and tactile inputs in humans and discuss recent evidence from animal studies demonstrating how cortical and subcortical areas work together to mediate communication between these senses. This research has shown that somatosensory inputs interface with and modulate sound processing at multiple levels of the auditory pathway, from the cochlear nucleus in the brainstem to the cortex. Circuits involving inputs from the primary somatosensory cortex to the auditory midbrain have been identified that mediate suppressive effects of whisker stimulation on auditory thalamocortical processing, providing a possible basis for prioritizing the processing of tactile cues from nearby objects. Close links also exist between audition and movement, and auditory responses are typically suppressed by locomotion and other actions. These movement-related signals are thought to cancel out self-generated sounds, but they may also affect auditory responses via the associated somatosensory stimulation or as a result of changes in brain state. Together, these studies highlight the importance of considering both multisensory context and movement-related activity in order to understand how the auditory cortex operates during natural behaviors, paving the way for future work to investigate auditory-somatosensory interactions in more ecological situations.
Collapse
|
16
|
Yi JH, Choe SY, Jung MW. Variations in Commissural Input Processing Across Different Types of Cortical Projection Neurons. Cereb Cortex 2021; 32:2508-2520. [PMID: 34607355 DOI: 10.1093/cercor/bhab361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/14/2022] Open
Abstract
To understand how incoming cortical inputs are processed by different types of cortical projection neurons in the medial prefrontal cortex, we compared intrinsic physiological properties of and commissural excitatory/inhibitory influences on layer 5 intratelencephalic (IT), layer 5 pyramidal tract (PT), and layers 2/3 IT projection neurons. We found that intrinsic physiological properties and commissural synaptic transmission varied across the three types of projection neurons. The rank order of intrinsic excitability was layer 5 PT > layer 5 IT > layers 2/3 IT neurons. Commissural connectivity was higher in layers 2/3 than layer 5 projection neurons, but commissural excitatory influence was stronger on layer 5 than layers 2/3 pyramidal neurons. Paired-pulse ratio was also greater in PT than IT neurons. These results indicate that commissural inputs activate deep layer PT neurons most preferentially and superficial layer IT neurons least preferentially. Deep layer PT neurons might faithfully transmit cortical input signals to downstream subcortical structures for reliable control of behavior, whereas superficial layer IT neurons might integrate cortical input signals from diverse sources in support of higher-order cognitive functions.
Collapse
Affiliation(s)
- Jee Hyun Yi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
| | - Seo Yeon Choe
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
| | - Min Whan Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|