1
|
Wu D, Chang Z, Wang Y, Jiang Z, Wang R, Wu Y. High-order network degree revealed shared and distinct features among adult schizophrenia, bipolar disorder and ADHD. Neuroscience 2025; 568:154-165. [PMID: 39755231 DOI: 10.1016/j.neuroscience.2024.12.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 12/02/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Schizophrenia (SCHZ), bipolar disorder (BD), and attention-deficit/hyperactivity disorder (ADHD) share clinical symptoms and risk genes, but the shared and distinct neural dynamic mechanisms at adults remain inadequately understood. Degree is a fundamental and important graph measure in network neuroscience, and we here used eigenmodes to extend the degree to hierarchical levels and compared the resting-state brain networks of three disorders and healthy controls (HC) at adults (age: 21-50 years old). First, compared to HC, SCHZ and BD patients exhibited substantially overlapped abnormalities in brain networks, wherein BD patients displayed more significant alterations. In contrast, ADHD patients exhibited few alterations. Second, compared to the graph theory measure, hierarchical degree better predicted the clinical symptoms of three disorders, and distinguished them from HC. Furthermore, three disorders shared associations of brain network abnormalities with dopamine receptors/transporters. Finally, the alterations in SCHZ and BD patients were associated with cellular localization and transport, as well as abnormal social behavior and communication, while ADHD patients were associated with energy production and transport. These findings provided a deep understanding of the shared and distinct neuropathology of three disorders and facilitated a more precise differentiation for them.
Collapse
Affiliation(s)
- Dingjie Wu
- School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, China; State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an, China
| | - Zhao Chang
- Department of Physics, Centre for Nonlinear Studies, Hong Kong Baptist University, Hong Kong
| | - Yaozu Wang
- School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, China; State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an, China
| | - Zhengchang Jiang
- School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, China; State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an, China
| | - Rong Wang
- School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, China; State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an, China.
| | - Ying Wu
- School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, China; State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an, China; National Demonstration Center for Experimental Mechanics Education, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
Romanovsky E, Choudhary A, Peles D, Abu-Akel A, Stern S. Uncovering convergence and divergence between autism and schizophrenia using genomic tools and patients' neurons. Mol Psychiatry 2025; 30:1019-1028. [PMID: 39237719 PMCID: PMC11835745 DOI: 10.1038/s41380-024-02740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Autism spectrum disorders (ASDs) are highly heritable and result in abnormal repetitive behaviors and impairment in communication and cognitive skills. Previous studies have focused on the genetic correlation between ASDs and other neuropsychiatric disorders, but an in-depth understanding of the correlation to other disorders is required. We conducted an extensive meta-analysis of common variants identified in ASDs by genome-wide association studies (GWAS) and compared it to the consensus genes and single nucleotide polymorphisms (SNPs) of Schizophrenia (SCZ). We found approximately 75% of the GWAS genes that are associated with ASD are also associated with SCZ. We further investigated the cellular phenotypes of neurons derived from induced pluripotent stem cell (iPSC) models in ASD and SCZ. Our findings revealed that ASD and SCZ neurons initially follow divergent developmental trajectories compared to control neurons. However, despite these early diametrical differences, both ASD and SCZ neurons ultimately display similar deficits in synaptic activity as they mature. This significant genetic overlap between ASD and SCZ, coupled with the convergence towards similar synaptic deficits, highlights the intricate interplay of genetic and developmental factors in shaping the shared underlying mechanisms of these complex neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Eva Romanovsky
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ashwani Choudhary
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - David Peles
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ahmad Abu-Akel
- School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Haifa Brain and Behavior Hub, University of Haifa, Haifa, Israel
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
3
|
Fattal J, McAdams DP, Mittal VA. Interpersonal synchronization: An overlooked factor in development, social cognition, and psychopathology. Neurosci Biobehav Rev 2025; 170:106037. [PMID: 39929382 DOI: 10.1016/j.neubiorev.2025.106037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/31/2024] [Accepted: 01/31/2025] [Indexed: 02/18/2025]
Abstract
Intact social functioning relies on a combination of explicit and implicit behavioral, attentional, and interpersonal processes referred to as "social cognition". Characterizing these interpersonal processes forms a critical underpinning to understanding and treating psychopathology, particularly in disorders where deficits in social functioning do not emerge as a secondary symptom but rather as an essential feature of the disorder. Two of such disorders are autism spectrum disorders (ASD) and schizophrenia spectrum disorders (SZ). However, despite the substantial overlap in the features of social dysfunction between ASD and SZ, including social cognitive deficits in theory of mind, perspective-taking, and empathy, there is a limited understanding of the mechanisms underlying those shared deficits, and how to treat them. We suggest that disruptions of interpersonal functioning emerge over the course of development, and that interpersonal synchronization, a phenomenon in which behavioral and physiological cues align between interacting partners, forms a critical component of social cognition that underlies the disruption in social functioning in ASD and SZ. We present a conceptual review of typical and atypical development of social processes and highlight the role of interpersonal synchronization across the course of development. Then, we review the existing evidence suggesting impairments in both the intentional and spontaneous synchronization of interpersonal processes in ASD and SZ, as well as studies suggesting that interpersonal synchronization and clinical symptoms may be improved through body-oriented interventions within these disorders. Finally, we suggest potential mechanisms that may underpin typical and atypical development of interpersonal synchronization.
Collapse
Affiliation(s)
- Jessica Fattal
- Northwestern University, Department of Psychology, Swift Hall, 2029 Sheridan Road, Evanston, IL 60208, USA.
| | - Dan P McAdams
- Northwestern University, Department of Psychology, Swift Hall, 2029 Sheridan Road, Evanston, IL 60208, USA
| | - Vijay A Mittal
- Northwestern University, Department of Psychology, Swift Hall, 2029 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
4
|
Komatsu H, Sato Y, Tomimoto K, Onoguchi G, Matsuki T, Hamaie Y, Sakuma A, Ohmuro N, Katsura M, Ito F, Ono T, Matsumoto K, Tomita H. Autistic symptoms and clinical features of individuals at clinical high risk for psychosis and first-episode psychosis. Asian J Psychiatr 2025; 103:104345. [PMID: 39719760 DOI: 10.1016/j.ajp.2024.104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/26/2024]
Abstract
INTRODUCTION Autistic symptoms in schizophrenia are reportedly associated with cognitive and social functions. However, few studies have investigated the association between autistic symptoms and clinical features in individuals with a clinical high risk for psychosis (CHR-P) and first-episode psychosis (FEP). We aimed to determine the association between autistic symptoms and clinical features in a cohort of individuals with CHR-P or FEP. METHODS This cross-sectional study included 111 participants (CHR-P: 61, FEP: 50). Autistic symptoms were assessed using the Positive and Negative Syndrome Scale for Schizophrenia Autism Severity Scale. We assessed the association between autistic symptoms and global and social functioning, and cognitive function in individuals with CHR-P or EFP. Multiple regression analysis was also performed using age and sex as covariates to determine the association between autistic symptoms and global functioning. RESULTS The participants with FEP had more severe autistic symptoms than those with CHR-P. The results of bivariate correlation analysis showed a significantly negative association of autistic symptoms with global and cognitive functions in both participants with CHR-P and those with FEP. Multiple regression analysis showed that sex, autistic symptoms, and positive symptoms were significant predictors of overall functioning in those participants. CONCLUSION These findings suggest that autistic symptoms are associated with lower global functioning with both individuals at CHR-P and those with FEP. Further longitudinal analysis is needed to characterize the association between autistic symptoms and global functioning in CHR-P and FEP.
Collapse
Affiliation(s)
- Hiroshi Komatsu
- Department of Psychiatry, Tohoku University Hospital, Sendai, Miyagi, Japan; Miyagi Psychiatric Center, Natori, Miyagi, Japan.
| | - Yutaro Sato
- Department of Psychiatry, Tohoku University Hospital, Sendai, Miyagi, Japan.
| | - Kazuho Tomimoto
- Department of Psychiatry, Tohoku University Hospital, Sendai, Miyagi, Japan.
| | - Goh Onoguchi
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan.
| | - Tasuku Matsuki
- Department of Psychiatry, Tohoku University Hospital, Sendai, Miyagi, Japan.
| | - Yumiko Hamaie
- Department of Disaster Psychiatry, International Research Institute of Disaster Sciences, Tohoku University, Sendai, Japan.
| | - Atsushi Sakuma
- Department of Psychiatry, National Hospital Organization Sendai Medical Center, Sendai, Miyagi, Japan.
| | | | - Masahiro Katsura
- Department of Psychiatry, Tohoku University Hospital, Sendai, Miyagi, Japan; Canal Kotodai General Mental Clinic, Sendai, Miyagi, Japan.
| | - Fumiaki Ito
- National Hospital Organization Hanamaki Hospital, Hanamaki, Iwate, Japan.
| | - Takashi Ono
- Miyagi Psychiatric Center, Natori, Miyagi, Japan.
| | | | - Hiroaki Tomita
- Department of Psychiatry, Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
5
|
Ray WA, Fuchs DC, Olfson M, Stein CM, Murray KT, Daugherty J, Cooper WO. Incidence of Neuroleptic Malignant Syndrome During Antipsychotic Treatment in Children and Youth: A National Cohort Study. J Child Adolesc Psychopharmacol 2024; 34:397-406. [PMID: 39268665 PMCID: PMC11807862 DOI: 10.1089/cap.2024.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Objective: The incidence of neuroleptic malignant syndrome (NMS), a rare, potentially fatal adverse effect of antipsychotics, among children and youth is unknown. This cohort study estimated NMS incidence in antipsychotic users age 5-24 years and described its variation according to patient and antipsychotic characteristics. Methods: We used national Medicaid data (2004-2013) to identify patients beginning antipsychotic treatment and calculated the incidence of NMS during antipsychotic current use. Adjusted hazard ratios (HRs) assessed the independent contribution of patient and antipsychotic characteristics to NMS risk. Results: The 1,032,084 patients had 131 NMS cases during 1,472,558 person-years of antipsychotic current use, or 8.9 per 100,000 person-years. The following five factors independently predicted increased incidence: age 18-24 years (HR [95% CI] = 2.45 [1.65-3.63]), schizophrenia spectrum and other psychotic disorders (HR = 5.86 [3.16-10.88]), neurodevelopmental disorders (HR = 7.11 [4.02-12.56]), antipsychotic dose >200mg chlorpromazine-equivalents (HR = 1.71 [1.15-2.54]), and first-generation antipsychotics (HR = 4.32 [2.74-6.82]). NMS incidence per 100,000 person-years increased from 1.8 (1.1-3.0) for those with none of these factors to 198.1 (132.8-295.6) for those with 4 or 5 factors. Findings were essentially unchanged in sensitivity analyses that restricted the study data to second-generation antipsychotics, children age 5-17 years, and the 5 most recent calendar years. Conclusion: In children and youth treated with antipsychotics, five factors independently identified patients with increased NMS incidence: age 18-24 years, schizophrenia spectrum and other psychotic disorders, neurodevelopmental disorders, first-generation drugs, and antipsychotic doses greater than 200 mg chlorpromazine-equivalents. Patients with 4 or 5 of these factors had more than 100 times the incidence of those with none. These findings could improve early identification of children and youth with elevated NMS risk, potentially leading to earlier detection and improved outcomes.
Collapse
Affiliation(s)
- Wayne A. Ray
- Department of Health Policy, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - D. Catherine Fuchs
- Department of Psychiatry and Behavioral Science, Division of Child and Adolescent Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark Olfson
- New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, New York, USA
| | - Charles M. Stein
- Department of Medicine and Pharmacology, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Katherine T. Murray
- Department of Medicine and Pharmacology, Divisions of Clinical Pharmacology and Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - James Daugherty
- Department of Health Policy, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - William O. Cooper
- Departments of Pediatrics and Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Pizzano M, Shire S, Shih W, Levato L, Landa R, Lord C, Smith T, Kasari C. Profiles of minimally verbal autistic children: Illuminating the neglected end of the spectrum. Autism Res 2024; 17:1218-1229. [PMID: 38803132 PMCID: PMC11186722 DOI: 10.1002/aur.3151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Heterogeneity among individuals on the autism spectrum is widely acknowledged as a barrier to develop effective interventions. Overcoming this challenge requires characterization of individual differences, especially for children that are minimally verbal and often excluded from research studies. Most studies that describe autistic subgroups identify a single minimally verbal verbal group based on a single identifying measure (e.g., ADOS module one or single item indicating absence of phrase speech). Determining personalized courses of intervention requires a more detailed understanding since a single intervention will not be effective for all who are minimally verbal. The present study identified comprehensive profiles of cognitive, language, and social communication skills within a large, diverse, group of minimally verbal children with autism. The analysis combined baseline data from two studies to yield a sample of 344 participants, who were 3 to 8 years old at the time of study onset, with 60% who identified as having a race/ethnicity other than White. Via latent profile analysis (LPA), a three-group model was identified as best fit to the data. Profile identification was dependent on a participant's combination of cognitive, expressive, and social communication characteristics, rather than a single domain. One group (n = 206) had global delays, while the other two groups (n = 95 and n = 43) had variable strengths in cognition and communication. Findings suggest that low-frequency/minimally verbal communicators with autism have heterogeneous characteristics that can be systematically organized.
Collapse
Affiliation(s)
- Maria Pizzano
- Department of Psychiatry, UCLA, Los Angeles, CA
- Department of Psychology, Loyola Marymount University, Los Angeles, CA, USA
| | - Stephanie Shire
- School of Education, University of Oregon, Eugene, Oregon, USA
| | - Wendy Shih
- Department of Psychiatry, UCLA, Los Angeles, CA
| | - Lynne Levato
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Rebecca Landa
- Kennedy Krieger Institute, Baltimore, MD, USA
- Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Tristram Smith
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Connie Kasari
- Department of Psychiatry, UCLA, Los Angeles, CA
- Department of Education and Information Studies, UCLA, Los Angeles, CA
| |
Collapse
|
7
|
Bicks LK, Geschwind DH. Functional neurogenomics in autism spectrum disorders: A decade of progress. Curr Opin Neurobiol 2024; 86:102858. [PMID: 38547564 DOI: 10.1016/j.conb.2024.102858] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 06/11/2024]
Abstract
Advances in autism spectrum disorder (ASD) genetics have identified many genetic causes, reflecting remarkable progress while at the same time identifying challenges such as heterogeneity and pleiotropy, which complicate attempts to connect genetic risk to mechanisms. High-throughput functional genomic approaches have yielded progress by defining a molecular pathology in the brain of individuals with ASD and in identifying convergent biological pathways through which risk genes are predicted to act. These studies indicate that ASD genetic risk converges in early brain development, primarily during the period of cortical neurogenesis. Over development, genetic perturbations in turn lead to broad neuronal signaling dysregulation, most prominent in glutamatergic cortical-cortical projecting neurons and somatostatin positive interneurons, which is accompanied by glial dyshomeostasis throughout the cerebral cortex. Connecting these developmental perturbations to disrupted neuronal and glial function in the postnatal brain is an important direction in current research. Coupling functional genomic approaches with advances in induced pluripotent stem cell-derived neural organoid development provides a promising avenue for connecting brain pathology to developmental mechanisms.
Collapse
Affiliation(s)
- Lucy K Bicks
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA. https://twitter.com/Bickslucy
| | - D H Geschwind
- Program in Neurobehavioral Genetics, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA; Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
8
|
Clifton NE, Lin JQ, Holt CE, O'Donovan MC, Mill J. Enrichment of the Local Synaptic Translatome for Genetic Risk Associated With Schizophrenia and Autism Spectrum Disorder. Biol Psychiatry 2024; 95:888-895. [PMID: 38103876 DOI: 10.1016/j.biopsych.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Genes that encode synaptic proteins or messenger RNA targets of the RNA-binding protein FMRP (fragile X messenger ribonucleoprotein) have been linked to schizophrenia and autism spectrum disorder (ASD) through the enrichment of genetic variants that confer risk for these disorders. FMRP binds many transcripts with synaptic functions and is thought to regulate their local translation, a process that enables rapid and compartmentalized protein synthesis required for development and plasticity. METHODS We used summary statistics from large-scale genome-wide association studies of schizophrenia (74,776 cases, 101,023 controls) and ASD (18,381 cases, 27,969 controls) to test the hypothesis that the subset of synaptic genes that encode localized transcripts is more strongly associated with each disorder than nonlocalized transcripts. We also postulated that this subset of synaptic genes is responsible for associations attributed to FMRP targets. RESULTS Schizophrenia associations were enriched in genes encoding localized synaptic transcripts compared to the remaining synaptic genes or to the remaining localized transcripts; this also applied to ASD associations, although only for transcripts observed after stimulation by fear conditioning. The genetic associations with either disorder captured by these gene sets were independent of those derived from FMRP targets. Schizophrenia association was related to FMRP interactions with messenger RNAs in somata, but not in dendrites, while ASD association was related to FMRP binding in either compartment. CONCLUSIONS Our data suggest that synaptic transcripts capable of local translation are particularly relevant to the pathogenesis of schizophrenia and ASD, but they do not characterize the associations attributed to current sets of FMRP targets.
Collapse
Affiliation(s)
- Nicholas E Clifton
- Department of Clinical & Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.
| | - Julie Qiaojin Lin
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; UK Dementia Research Institute, King's College London, London, United Kingdom
| | - Christine E Holt
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Michael C O'Donovan
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Jonathan Mill
- Department of Clinical & Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
9
|
Akkouh IA, Ueland T, Szabo A, Hughes T, Smeland OB, Andreassen OA, Osete JR, Djurovic S. Longitudinal Transcriptomic Analysis of Human Cortical Spheroids Identifies Axonal Dysregulation in the Prenatal Brain as a Mediator of Genetic Risk for Schizophrenia. Biol Psychiatry 2024; 95:687-698. [PMID: 37661009 DOI: 10.1016/j.biopsych.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/28/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Schizophrenia (SCZ) has a known neurodevelopmental etiology, but limited access to human prenatal brain tissue hampers the investigation of basic disease mechanisms in early brain development. Here, we elucidate the molecular mechanisms contributing to SCZ risk in a disease-relevant model of the prenatal human brain. METHODS We generated induced pluripotent stem cell-derived organoids, termed human cortical spheroids (hCSs), from a large, genetically stratified sample of 14 SCZ cases and 14 age- and sex-matched controls. The hCSs were differentiated for 150 days, and comprehensive molecular characterization across 4 time points was carried out. RESULTS The transcriptional and cellular architecture of hCSs closely resembled that of fetal brain tissue at 10 to 24 postconception weeks, showing strongest spatial overlap with frontal regions of the cerebral cortex. A total of 3520 genes were differentially modulated between SCZ and control hCSs across organoid maturation, displaying a significant contribution of genetic loading, an overrepresentation of risk genes for autism spectrum disorder and SCZ, and the strongest enrichment for axonal processes in all hCS stages. The two axon guidance genes SEMA7A and SEMA5A, the first a promoter of synaptic functions and the second a repressor, were downregulated and upregulated, respectively, in SCZ hCSs. This expression pattern was confirmed at the protein level and replicated in a large postmortem sample. CONCLUSIONS Applying a disease-relevant model of the developing fetal brain, we identified consistent dysregulation of axonal genes as an early risk factor for SCZ, providing novel insights into the effects of genetic predisposition on the neurodevelopmental origins of the disorder.
Collapse
Affiliation(s)
- Ibrahim A Akkouh
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| | - Attila Szabo
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Timothy Hughes
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Olav B Smeland
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Jordi Requena Osete
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
10
|
Bhuiyan P, Sun Z, Khan MA, Hossain MA, Rahman MH, Qian Y. System biology approaches to identify hub genes linked with ECM organization and inflammatory signaling pathways in schizophrenia pathogenesis. Heliyon 2024; 10:e25191. [PMID: 38322840 PMCID: PMC10844262 DOI: 10.1016/j.heliyon.2024.e25191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 12/18/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Schizophrenia (SZ) is a chronic and devastating mental illness that affects around 20 million individuals worldwide. Cognitive deficits and structural and functional changes of the brain, abnormalities of brain ECM components, chronic neuroinflammation, and devastating clinical manifestation during SZ are likely etiological factors shown by affected individuals. However, the pathophysiological events associated with multiple regulatory pathways involved in the brain of this complex disorder are still unclear. This study aimed to develop a pipeline based on bioinformatics and systems biology approaches for identifying potential therapeutic targets involving possible biological mechanisms from SZ patients and healthy volunteers. About 420 overlapping differentially expressed genes (DEGs) from three RNA-seq datasets were identified. Gene ontology (GO), and pathways analysis showed several biological mechanisms enriched by the commonly shared DEGs, including extracellular matrix organization (ECM) organization, collagen fibril organization, integrin signaling pathway, inflammation mediated by chemokines and cytokines signaling pathway, and GABA-B receptor II and IL4 mediated signaling. Besides, 15 hub genes (FN1, COL1A1, COL3A1, COL1A2, COL5A1, COL2A1, COL6A2, COL6A3, MMP2, THBS1, DCN, LUM, HLA-A, HLA-C, and FBN1) were discovered by comprehensive analysis, which was mainly involved in the ECM organization and inflammatory signaling pathway. Furthermore, the miRNA target of the hub genes was analyzed with the random-forest-based approach software miRTarBase. In addition, the transcriptional factors and protein kinases regulating overlapping DEGs in SZ, namely, SUZ12, EZH2, TRIM28, TP53, EGR1, CSNK2A1, GSK3B, CDK1, and MAPK14, were also identified. The results point to a new understanding that the hub genes (fibronectin 1, collagen, matrix metalloproteinase-2, and lumican) in the ECM organization and inflammatory signaling pathways may be involved in the SZ occurrence and pathogenesis.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka, 1209, Bangladesh
| | - Zhaochu Sun
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Md Arif Khan
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka, 1209, Bangladesh
- Bio-Bio-1 Bioinformatics Research Foundation, Dhaka, Bangladesh
| | - Md Arju Hossain
- Department of Microbiology, Primeasia University, Banani, Dhaka 1213, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Faculty of Engineering and Technology, Islamic University, Kushtia-7003, Bangladesh
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| |
Collapse
|
11
|
Colijn MA, Carrion P, Poirier-Morency G, Rogic S, Torres I, Menon M, Lisonek M, Cook C, DeGraaf A, Thammaiah SP, Neelakant H, Willaeys V, Leonova O, White RF, Yip S, Mungall AJ, MacLeod PM, Gibson WT, Sullivan PF, Honer WG, Pavlidis P, Stowe RM. SETD1A variant-associated psychosis: A systematic review of the clinical literature and description of two new cases. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110888. [PMID: 37918557 DOI: 10.1016/j.pnpbp.2023.110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/18/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVE SETD1A encodes a histone methyltransferase involved in various cell cycle regulatory processes. Loss-of-function SETD1A variants have been associated with numerous neurodevelopmental phenotypes, including intellectual disability and schizophrenia. While the association between rare coding variants in SETD1A and schizophrenia has achieved genome-wide significance by rare variant burden testing, only a few studies have described the psychiatric phenomenology of such individuals in detail. This systematic review and case report aims to characterize the neurodevelopmental and psychiatric phenotypes of SETD1A variant-associated schizophrenia. METHODS A PubMed search was completed in July 2022 and updated in May 2023. Only studies that reported individuals with a SETD1A variant as well as a primary psychotic disorder were ultimately included. Additionally, another two previously unpublished cases of SETD1A variant-associated psychosis from our own sequencing cohort are described. RESULTS The search yielded 32 articles. While 15 articles met inclusion criteria, only five provided case descriptions. In total, phenotypic information was available for 11 individuals, in addition to our own two unpublished cases. Our findings suggest that although individuals with SETD1A variant-associated schizophrenia may share a number of common features, phenotypic variability nonetheless exists. Moreover, although such individuals may exhibit numerous other neurodevelopmental features suggestive of the syndrome, their psychiatric presentations appear to be similar to those of general schizophrenia populations. CONCLUSIONS Loss-of-function SETD1A variants may underlie the development of psychosis in a small percentage of individuals with schizophrenia. Identifying such individuals may become increasingly important, given the potential for advances in precision medicine treatment approaches.
Collapse
Affiliation(s)
- Mark A Colijn
- Department of Psychiatry, Hotchkiss Brain Institute, and Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, AB, Canada.
| | - Prescilla Carrion
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | | | - Sanja Rogic
- Department of Psychiatry and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Ivan Torres
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; BC Mental Health and Substance Use Services, Vancouver, BC, Canada
| | - Mahesh Menon
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | | | - Courtney Cook
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Ashley DeGraaf
- Heart Centre, St. Paul's Hospital and Providence Health, Vancouver, BC, Canada
| | | | - Harish Neelakant
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Veerle Willaeys
- BC Psychosis Program, British Columbia Mental Health & Substance Use Services, Vancouver, BC, Canada
| | - Olga Leonova
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Randall F White
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Patrick M MacLeod
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - William T Gibson
- Department of Medical Genetics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Patrick F Sullivan
- Psychiatry and Genetics, University of North Carolina at Chapel Hill, NC, USA; Karolinska Institut, Stockholm, Sweden
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; BC Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada
| | - Paul Pavlidis
- Department of Psychiatry, Michael Smith Laboratories, and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Robert M Stowe
- Departments of Psychiatry and Neurology (Medicine), BC Neuropsychiatry Program, and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Wellard NL, Clifton NE, Rees E, Thomas KL, Hall J. The Association of Hippocampal Long-Term Potentiation-Induced Gene Expression with Genetic Risk for Psychosis. Int J Mol Sci 2024; 25:946. [PMID: 38256020 PMCID: PMC10816085 DOI: 10.3390/ijms25020946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Genomic studies focusing on the contribution of common and rare genetic variants of schizophrenia and bipolar disorder support the view that substantial risk is conferred through molecular pathways involved in synaptic plasticity in the neurons of cortical and subcortical brain regions, including the hippocampus. Synaptic long-term potentiation (LTP) is central to associative learning and memory and depends on a pattern of gene expression in response to neuronal stimulation. Genes related to the induction of LTP have been associated with psychiatric genetic risk, but the specific cell types and timepoints responsible for the association are unknown. Using published genomic and transcriptomic datasets, we studied the relationship between temporally defined gene expression in hippocampal pyramidal neurons following LTP and enrichment for common genetic risk for schizophrenia and bipolar disorder, and for copy number variants (CNVs) and de novo coding variants associated with schizophrenia. We observed that upregulated genes in hippocampal pyramidal neurons at 60 and 120 min following LTP induction were enriched for common variant association with schizophrenia and bipolar disorder subtype I. At 60 min, LTP-induced genes were enriched in duplications from patients with schizophrenia, but this association was not specific to pyramidal neurons, perhaps reflecting the combined effects of CNVs in excitatory and inhibitory neuron subtypes. Gene expression following LTP was not related to enrichment for de novo coding variants from schizophrenia cases. Our findings refine our understanding of the role LTP-related gene sets play in conferring risk to conditions causing psychosis and provide a focus for future studies looking to dissect the molecular mechanisms associated with this risk.
Collapse
Affiliation(s)
- Natalie L. Wellard
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK (E.R.); (K.L.T.); (J.H.)
| | - Nicholas E. Clifton
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK (E.R.); (K.L.T.); (J.H.)
- Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QF, UK
| | - Elliott Rees
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK (E.R.); (K.L.T.); (J.H.)
| | - Kerrie L. Thomas
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK (E.R.); (K.L.T.); (J.H.)
| | - Jeremy Hall
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK (E.R.); (K.L.T.); (J.H.)
| |
Collapse
|
13
|
Ozbek SU, Sut E, Bora E. Comparison of social cognition and neurocognition in schizophrenia and autism spectrum disorder: A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 155:105441. [PMID: 37923237 DOI: 10.1016/j.neubiorev.2023.105441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/14/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND This report aimed to compare group differences in social and non-social cognition in autism spectrum disorders (ASD) and schizophrenia, and examine the influence of age and other factors on group differences. METHODS Literature searches were conducted in Pubmed and Web of Science from January 1980 to August 2022. Original research articles reporting objective measures of cognition were selected. RESULTS 57 articles involving 1864 patients with schizophrenia and 1716 patients with ASD have been included. Schizophrenia was associated with more severe non-social-cognitive impairment, particularly in fluency (g=0.47;CI[0.17-0.76]) and processing speed domains (g=0.41;CI[0.20-0.62]). Poorer performance in social cognition (Z = 3.68,p = 0.0002) and non-social cognition (Z = 2.48,p = 0.01) in schizophrenia were significantly related to older age. ASD was associated with more severe social cognitive impairment when groups were matched for non-social-cognition (g=-0.18, p = 0.04) or reasoning/problem solving (g=-0,62; CI [-1,06-(-0.08)]. DISCUSSION While both disorders present with social and non-social cognitive impairments, the pattern and developmental trajectories of these deficits are different. The limitations included heterogeneity of the cognitive measures, and the lack of sufficient information about antipsychotic use.
Collapse
Affiliation(s)
| | - Ekin Sut
- Department of Psychiatry, Faculty of Medicine, Izmir, Turkey.
| | - Emre Bora
- Department of Psychiatry, Faculty of Medicine, Izmir, Turkey; Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Carlton South, Victoria 3053, Australia; Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey.
| |
Collapse
|
14
|
Reece AS, Hulse GK. Perturbation of 3D nuclear architecture, epigenomic aging and dysregulation, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 2-Metabolome, immunome, synaptome. Front Psychiatry 2023; 14:1182536. [PMID: 37854446 PMCID: PMC10579598 DOI: 10.3389/fpsyt.2023.1182536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023] Open
Abstract
The second part of this paper builds upon and expands the epigenomic-aging perspective presented in Part 1 to describe the metabolomic and immunomic bases of the epigenomic-aging changes and then considers in some detail the application of these insights to neurotoxicity, neuronal epigenotoxicity, and synaptopathy. Cannabinoids are well-known to have bidirectional immunomodulatory activities on numerous parts of the immune system. Immune perturbations are well-known to impact the aging process, the epigenome, and intermediate metabolism. Cannabinoids also impact metabolism via many pathways. Metabolism directly impacts immune, genetic, and epigenetic processes. Synaptic activity, synaptic pruning, and, thus, the sculpting of neural circuits are based upon metabolic, immune, and epigenomic networks at the synapse, around the synapse, and in the cell body. Many neuropsychiatric disorders including depression, anxiety, schizophrenia, bipolar affective disorder, and autistic spectrum disorder have been linked with cannabis. Therefore, it is important to consider these features and their complex interrelationships in reaching a comprehensive understanding of cannabinoid dependence. Together these findings indicate that cannabinoid perturbations of the immunome and metabolome are important to consider alongside the well-recognized genomic and epigenomic perturbations and it is important to understand their interdependence and interconnectedness in reaching a comprehensive appreciation of the true nature of cannabinoid pathophysiology. For these reasons, a comprehensive appreciation of cannabinoid pathophysiology necessitates a coordinated multiomics investigation of cannabinoid genome-epigenome-transcriptome-metabolome-immunome, chromatin conformation, and 3D nuclear architecture which therefore form the proper mechanistic underpinning for major new and concerning epidemiological findings relating to cannabis exposure.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
15
|
Chen R, Routh BN, Gaudet AD, Fonken LK. Circadian Regulation of the Neuroimmune Environment Across the Lifespan: From Brain Development to Aging. J Biol Rhythms 2023; 38:419-446. [PMID: 37357738 PMCID: PMC10475217 DOI: 10.1177/07487304231178950] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Circadian clocks confer 24-h periodicity to biological systems, to ultimately maximize energy efficiency and promote survival in a world with regular environmental light cycles. In mammals, circadian rhythms regulate myriad physiological functions, including the immune, endocrine, and central nervous systems. Within the central nervous system, specialized glial cells such as astrocytes and microglia survey and maintain the neuroimmune environment. The contributions of these neuroimmune cells to both homeostatic and pathogenic demands vary greatly across the day. Moreover, the function of these cells changes across the lifespan. In this review, we discuss circadian regulation of the neuroimmune environment across the lifespan, with a focus on microglia and astrocytes. Circadian rhythms emerge in early life concurrent with neuroimmune sculpting of brain circuits and wane late in life alongside increasing immunosenescence and neurodegeneration. Importantly, circadian dysregulation can alter immune function, which may contribute to susceptibility to neurodevelopmental and neurodegenerative diseases. In this review, we highlight circadian neuroimmune interactions across the lifespan and share evidence that circadian dysregulation within the neuroimmune system may be a critical component in human neurodevelopmental and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruizhuo Chen
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Brandy N. Routh
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Andrew D. Gaudet
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
- Department of Psychology, The University of Texas at Austin, Austin, Texas
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Laura K. Fonken
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
16
|
Miller CJ, Golovina E, Wicker JS, Jacobsen JC, O'Sullivan JM. De novo network analysis reveals autism causal genes and developmental links to co-occurring traits. Life Sci Alliance 2023; 6:e202302142. [PMID: 37553252 PMCID: PMC10410065 DOI: 10.26508/lsa.202302142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
Autism is a complex neurodevelopmental condition that manifests in various ways. Autism is often accompanied by other conditions, such as attention-deficit/hyperactivity disorder and schizophrenia, which can complicate diagnosis and management. Although research has investigated the role of specific genes in autism, their relationship with co-occurring traits is not fully understood. To address this, we conducted a two-sample Mendelian randomisation analysis and identified four genes located at the 17q21.31 locus that are putatively causal for autism in fetal cortical tissue (LINC02210, LRRC37A4P, RP11-259G18.1, and RP11-798G7.6). LINC02210 was also identified as putatively causal for autism in adult cortical tissue. By integrating data from expression quantitative trait loci, genes and protein interactions, we identified that the 17q21.31 locus contributes to the intersection between autism and other neurological traits in fetal cortical tissue. We also identified a distinct cluster of co-occurring traits, including cognition and worry, linked to the genetic loci at 3p21.1. Our findings provide insights into the relationship between autism and co-occurring traits, which could be used to develop predictive models for more accurate diagnosis and better clinical management.
Collapse
Affiliation(s)
- Catriona J Miller
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Evgeniia Golovina
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Joerg S Wicker
- School of Computer Science, University of Auckland, Auckland, New Zealand
| | - Jessie C Jacobsen
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Justin M O'Sullivan
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, Zealand
- Garvan Institute of Medical Research, Sydney, Australia
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore
| |
Collapse
|
17
|
Zhang S, Shi K, Lyu N, Zhang Y, Liang G, Zhang W, Wang X, Wen H, Wen L, Ma H, Wang J, Yu X, Guan L. Genome-wide DNA methylation analysis in families with multiple individuals diagnosed with schizophrenia and intellectual disability. World J Biol Psychiatry 2023; 24:741-753. [PMID: 37017099 DOI: 10.1080/15622975.2023.2198595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/06/2023]
Abstract
OBJECTIVES Schizophrenia (SZ) and intellectual disability (ID) are both included in the continuum of neurodevelopmental disorders (NDDs). DNA methylation is known to be important in the occurrence of NDDs. The family study is conducive to eliminate the effects of relative epigenetic backgrounds, and to screen for differentially methylated positions (DMPs) and regions (DMRs) that are truly associated with NDDs. METHODS Four monozygotic twin families were recruited, and both twin individuals suffered from NDDs (either SZ, ID, or SZ plus ID). Genome-wide methylation analysis was performed in all samples and each family. DMPs and DMRs between NDD patients and unaffected individuals were identified. Functional and pathway enrichment analyses were performed on the annotated genes. RESULTS Two significant DMPs annotated to CYP2E1 were found in all samples. In Family One, 1476 DMPs mapped to 880 genes, and 162 DMRs overlapping with 153 unique genes were recognised. Our results suggested that the altered methylation levels of FYN, STAT3, RAC1, and NR4A2 were associated with the development of SZ and ID. Neurodevelopment and the immune system may participate in the occurrence of SZ and ID. CONCLUSIONS Our findings suggested that DNA methylation participated in the development of NDDs by affecting neurodevelopment and the immune system.
Collapse
Affiliation(s)
- Shengmin Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Kaiyu Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nan Lyu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Beijing Anding Hospital, Beijing Key Laboratory of Mental Disorders, The National Clinical Research Centre for Mental Disorders, The Advanced Innovation Centre for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yunshu Zhang
- The Sixth People's Hospital of Hebei Province, Hebei Mental Health Centre, Baoding, Hebei, China
| | | | - Wufang Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xijin Wang
- The First Psychiatric Hospital of Harbin, Harbin, Heilongjiang, China
| | - Hong Wen
- The Third Hospital of Mianyang, Mianyang, Sichuan, China
| | - Liping Wen
- Zigong Mental Health Centre, Zigong, Sichuan, China
| | - Hong Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jijun Wang
- Shanghai Mental Health Centre, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Lili Guan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
18
|
Owen MJ, Legge SE, Rees E, Walters JTR, O'Donovan MC. Genomic findings in schizophrenia and their implications. Mol Psychiatry 2023; 28:3638-3647. [PMID: 37853064 PMCID: PMC10730422 DOI: 10.1038/s41380-023-02293-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023]
Abstract
There has been substantial progress in understanding the genetics of schizophrenia over the past 15 years. This has revealed a highly polygenic condition with the majority of the currently explained heritability coming from common alleles of small effect but with additional contributions from rare copy number and coding variants. Many specific genes and loci have been implicated that provide a firm basis upon which mechanistic research can proceed. These point to disturbances in neuronal, and particularly synaptic, functions that are not confined to a small number of brain regions and circuits. Genetic findings have also revealed the nature of schizophrenia's close relationship to other conditions, particularly bipolar disorder and childhood neurodevelopmental disorders, and provided an explanation for how common risk alleles persist in the population in the face of reduced fecundity. Current genomic approaches only potentially explain around 40% of heritability, but only a small proportion of this is attributable to robustly identified loci. The extreme polygenicity poses challenges for understanding biological mechanisms. The high degree of pleiotropy points to the need for more transdiagnostic research and the shortcomings of current diagnostic criteria as means of delineating biologically distinct strata. It also poses challenges for inferring causality in observational and experimental studies in both humans and model systems. Finally, the Eurocentric bias of genomic studies needs to be rectified to maximise benefits and ensure these are felt across diverse communities. Further advances are likely to come through the application of new and emerging technologies, such as whole-genome and long-read sequencing, to large and diverse samples. Substantive progress in biological understanding will require parallel advances in functional genomics and proteomics applied to the brain across developmental stages. For these efforts to succeed in identifying disease mechanisms and defining novel strata they will need to be combined with sufficiently granular phenotypic data.
Collapse
Affiliation(s)
- Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| | - Sophie E Legge
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Elliott Rees
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - James T R Walters
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
19
|
D'Antoni C, Mautone L, Sanchini C, Tondo L, Grassmann G, Cidonio G, Bezzi P, Cordella F, Di Angelantonio S. Unlocking Neural Function with 3D In Vitro Models: A Technical Review of Self-Assembled, Guided, and Bioprinted Brain Organoids and Their Applications in the Study of Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2023; 24:10762. [PMID: 37445940 DOI: 10.3390/ijms241310762] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Understanding the complexities of the human brain and its associated disorders poses a significant challenge in neuroscience. Traditional research methods have limitations in replicating its intricacies, necessitating the development of in vitro models that can simulate its structure and function. Three-dimensional in vitro models, including organoids, cerebral organoids, bioprinted brain models, and functionalized brain organoids, offer promising platforms for studying human brain development, physiology, and disease. These models accurately replicate key aspects of human brain anatomy, gene expression, and cellular behavior, enabling drug discovery and toxicology studies while providing insights into human-specific phenomena not easily studied in animal models. The use of human-induced pluripotent stem cells has revolutionized the generation of 3D brain structures, with various techniques developed to generate specific brain regions. These advancements facilitate the study of brain structure development and function, overcoming previous limitations due to the scarcity of human brain samples. This technical review provides an overview of current 3D in vitro models of the human cortex, their development, characterization, and limitations, and explores the state of the art and future directions in the field, with a specific focus on their applications in studying neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Chiara D'Antoni
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Lorenza Mautone
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Caterina Sanchini
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Lucrezia Tondo
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Greta Grassmann
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, 00185 Rome, Italy
| | - Gianluca Cidonio
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Paola Bezzi
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Department of Fundamental Neurosciences, University of Lausanne, 1011 Lausanne, Switzerland
| | - Federica Cordella
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- D-Tails s.r.l., 00165 Rome, Italy
| |
Collapse
|
20
|
Obi-Nagata K, Suzuki N, Miyake R, MacDonald ML, Fish KN, Ozawa K, Nagahama K, Okimura T, Tanaka S, Kano M, Fukazawa Y, Sweet RA, Hayashi-Takagi A. Distorted neurocomputation by a small number of extra-large spines in psychiatric disorders. SCIENCE ADVANCES 2023; 9:eade5973. [PMID: 37294752 PMCID: PMC10256173 DOI: 10.1126/sciadv.ade5973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 05/05/2023] [Indexed: 06/11/2023]
Abstract
Human genetics strongly support the involvement of synaptopathy in psychiatric disorders. However, trans-scale causality linking synapse pathology to behavioral changes is lacking. To address this question, we examined the effects of synaptic inputs on dendrites, cells, and behaviors of mice with knockdown of SETD1A and DISC1, which are validated animal models of schizophrenia. Both models exhibited an overrepresentation of extra-large (XL) synapses, which evoked supralinear dendritic and somatic integration, resulting in increased neuronal firing. The probability of XL spines correlated negatively with working memory, and the optical prevention of XL spine generation restored working memory impairment. Furthermore, XL synapses were more abundant in the postmortem brains of patients with schizophrenia than in those of matched controls. Our findings suggest that working memory performance, a pivotal aspect of psychiatric symptoms, is shaped by distorted dendritic and somatic integration via XL spines.
Collapse
Affiliation(s)
- Kisho Obi-Nagata
- Laboratory for Multi-scale Biological Psychiatry, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0106, Japan
- Gunma University Graduate School of Medicine, Maebashi City, Gunma 371-8512, Japan
| | - Norimitsu Suzuki
- Laboratory for Multi-scale Biological Psychiatry, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0106, Japan
| | - Ryuhei Miyake
- Laboratory for Multi-scale Biological Psychiatry, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0106, Japan
| | - Matthew L. MacDonald
- Departments of Psychiatry, Neurology, Statistics, and Neurobiology, Translational Neuroscience Program, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Kenneth N. Fish
- Departments of Psychiatry, Neurology, Statistics, and Neurobiology, Translational Neuroscience Program, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Katsuya Ozawa
- Laboratory for Multi-scale Biological Psychiatry, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0106, Japan
| | - Kenichiro Nagahama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Tsukasa Okimura
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo 157-8577, Japan
| | - Shoji Tanaka
- Department of Information and Communication Sciences, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Science, University of Fukui, Yoshida, Fukui, 910-1193, Japan
| | - Robert A. Sweet
- Departments of Psychiatry, Neurology, Statistics, and Neurobiology, Translational Neuroscience Program, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Akiko Hayashi-Takagi
- Laboratory for Multi-scale Biological Psychiatry, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0106, Japan
- Gunma University Graduate School of Medicine, Maebashi City, Gunma 371-8512, Japan
| |
Collapse
|
21
|
Rammos A, Kirov G, Hubbard L, Walters JTR, Holmans P, Owen MJ, O'Donovan MC, Rees E. Family-based analysis of the contribution of rare and common genetic variants to school performance in schizophrenia. Mol Psychiatry 2023; 28:2081-2087. [PMID: 36914811 PMCID: PMC10575776 DOI: 10.1038/s41380-023-02013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/16/2023]
Abstract
Impaired cognition in schizophrenia is associated with worse functional outcomes. While genetic factors are known to contribute to variation in cognition in schizophrenia, few rare coding variants with strong effects have been identified, and the relative effects from de novo, inherited and non-transmitted alleles are unknown. We used array and exome sequencing data from 656 proband-parent trios to examine the contribution of common and rare variants to school performance, and by implication cognitive function, in schizophrenia. Parental transmission of common alleles contributing to higher educational attainment (p value = 0.00015; OR = 2.63) and intelligence (p value = 0.00009; OR = 2.80), but not to schizophrenia, were associated with higher proband school performance. No significant effects were seen for non-transmitted parental common alleles. Probands with lower school performance were enriched for damaging de novo coding variants in genes associated with developmental disorders (DD) (p value = 0.00026; OR = 11.6). Damaging, ultra-rare coding variants in DD genes that were transmitted or non-transmitted from parents, had no effects on school performance. Among probands with lower school performance, those with damaging de novo coding variants in DD genes had a higher rate of comorbid mild intellectual disability (p value = 0.0002; OR = 15.6). Overall, we provide evidence for rare and common genetic contributions to school performance in schizophrenia. The strong effects for damaging de novo coding variants in DD genes provide further evidence that cognitive impairment in schizophrenia has a shared aetiology with developmental disorders. Furthermore, we report no evidence in this sample that non-transmitted parental common alleles for cognitive traits contributed to school performance in schizophrenia via indirect effects on the environment.
Collapse
Affiliation(s)
- Alexandros Rammos
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| | - George Kirov
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Leon Hubbard
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - James T R Walters
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Peter Holmans
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Elliott Rees
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
22
|
Itai T, Jia P, Dai Y, Chen J, Chen X, Zhao Z. De novo mutations disturb early brain development more frequently than common variants in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2023; 192:62-70. [PMID: 36863698 PMCID: PMC11270591 DOI: 10.1002/ajmg.b.32932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/08/2022] [Accepted: 01/29/2023] [Indexed: 03/04/2023]
Abstract
Investigating functional, temporal, and cell-type expression features of mutations is important for understanding a complex disease. Here, we collected and analyzed common variants and de novo mutations (DNMs) in schizophrenia (SCZ). We collected 2,636 missense and loss-of-function (LoF) DNMs in 2,263 genes across 3,477 SCZ patients (SCZ-DNMs). We curated three gene lists: (a) SCZ-neuroGenes (159 genes), which are intolerant to LoF and missense DNMs and are neurologically important, (b) SCZ-moduleGenes (52 genes), which were derived from network analyses of SCZ-DNMs, and (c) SCZ-commonGenes (120 genes) from a recent GWAS as reference. To compare temporal gene expression, we used the BrainSpan dataset. We defined a fetal effect score (FES) to quantify the involvement of each gene in prenatal brain development. We further employed the specificity indexes (SIs) to evaluate cell-type expression specificity from single-cell expression data in cerebral cortices of humans and mice. Compared with SCZ-commonGenes, SCZ-neuroGenes and SCZ-moduleGenes were highly expressed in the prenatal stage, had higher FESs, and had higher SIs in fetal replicating cells and undifferentiated cell types. Our results suggested that gene expression patterns in specific cell types in early fetal stages might have impacts on the risk of SCZ during adulthood.
Collapse
Affiliation(s)
- Toshiyuki Itai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Xiangning Chen
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
23
|
A Systematic Review of the Human Accelerated Regions in Schizophrenia and Related Disorders: Where the Evolutionary and Neurodevelopmental Hypotheses Converge. Int J Mol Sci 2023; 24:ijms24043597. [PMID: 36835010 PMCID: PMC9962562 DOI: 10.3390/ijms24043597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Schizophrenia is a psychiatric disorder that results from genetic and environmental factors interacting and disrupting neurodevelopmental trajectories. Human Accelerated Regions (HARs) are evolutionarily conserved genomic regions that have accumulated human-specific sequence changes. Thus, studies on the impact of HARs in the context of neurodevelopment, as well as with respect to adult brain phenotypes, have increased considerably in the last few years. Through a systematic approach, we aim to offer a comprehensive review of HARs' role in terms of human brain development, configuration, and cognitive abilities, as well as whether HARs modulate the susceptibility to neurodevelopmental psychiatric disorders such as schizophrenia. First, the evidence in this review highlights HARs' molecular functions in the context of the neurodevelopmental regulatory genetic machinery. Second, brain phenotypic analyses indicate that HAR genes' expression spatially correlates with the regions that suffered human-specific cortical expansion, as well as with the regional interactions for synergistic information processing. Lastly, studies based on candidate HAR genes and the global "HARome" variability describe the involvement of these regions in the genetic background of schizophrenia, but also in other neurodevelopmental psychiatric disorders. Overall, the data considered in this review emphasise the crucial role of HARs in human-specific neurodevelopment processes and encourage future research on this evolutionary marker for a better understanding of the genetic basis of schizophrenia and other neurodevelopmental-related psychiatric disorders. Accordingly, HARs emerge as interesting genomic regions that require further study in order to bridge the neurodevelopmental and evolutionary hypotheses in schizophrenia and other related disorders and phenotypes.
Collapse
|
24
|
Gómez-Carrillo A, Paquin V, Dumas G, Kirmayer LJ. Restoring the missing person to personalized medicine and precision psychiatry. Front Neurosci 2023; 17:1041433. [PMID: 36845417 PMCID: PMC9947537 DOI: 10.3389/fnins.2023.1041433] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
Precision psychiatry has emerged as part of the shift to personalized medicine and builds on frameworks such as the U.S. National Institute of Mental Health Research Domain Criteria (RDoC), multilevel biological "omics" data and, most recently, computational psychiatry. The shift is prompted by the realization that a one-size-fits all approach is inadequate to guide clinical care because people differ in ways that are not captured by broad diagnostic categories. One of the first steps in developing this personalized approach to treatment was the use of genetic markers to guide pharmacotherapeutics based on predictions of pharmacological response or non-response, and the potential risk of adverse drug reactions. Advances in technology have made a greater degree of specificity or precision potentially more attainable. To date, however, the search for precision has largely focused on biological parameters. Psychiatric disorders involve multi-level dynamics that require measures of phenomenological, psychological, behavioral, social structural, and cultural dimensions. This points to the need to develop more fine-grained analyses of experience, self-construal, illness narratives, interpersonal interactional dynamics, and social contexts and determinants of health. In this paper, we review the limitations of precision psychiatry arguing that it cannot reach its goal if it does not include core elements of the processes that give rise to psychopathological states, which include the agency and experience of the person. Drawing from contemporary systems biology, social epidemiology, developmental psychology, and cognitive science, we propose a cultural-ecosocial approach to integrating precision psychiatry with person-centered care.
Collapse
Affiliation(s)
- Ana Gómez-Carrillo
- Culture, Mind, and Brain Program, Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, Montreal, QC, Canada
- Culture and Mental Health Research Unit, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Vincent Paquin
- Culture, Mind, and Brain Program, Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Guillaume Dumas
- Culture, Mind, and Brain Program, Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, Montreal, QC, Canada
- Precision Psychiatry and Social Physiology Laboratory at the CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
- Mila-Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Laurence J Kirmayer
- Culture, Mind, and Brain Program, Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, Montreal, QC, Canada
- Culture and Mental Health Research Unit, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| |
Collapse
|
25
|
Wu D, Zhu J, You L, Wang J, Zhang S, Liu Z, Xu Q, Yuan X, Yang L, Wang W, Tong M, Hong Q, Chi X. NRXN1 depletion in the medial prefrontal cortex induces anxiety-like behaviors and abnormal social phenotypes along with impaired neurite outgrowth in rat. J Neurodev Disord 2023; 15:6. [PMID: 36737720 PMCID: PMC9896742 DOI: 10.1186/s11689-022-09471-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/07/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) are a group of disorders induced by abnormal brain developmental processes. The prefrontal cortex (PFC) plays an essential role in executive function, and its role in NDDs has been reported. NDDs are associated with high-risk gene mutations and share partially overlapping genetic abnormalities. METHODS Neurexins (NRXNs) are related to autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). NRXN1, an essential susceptibility gene for NDDs, has been reported to be associated with NDDs. However, little is known about its key role in NDDs. RESULTS NRXN1 downregulation in the medial PFC induced anxiety-like behaviors and abnormal social phenotypes with impaired neurite outgrowth in Sh-NRXN1 in prefrontal neurons. Moreover, tandem mass tag (TMT)-based proteomic analysis of rat brain samples showed that NRXN1 downregulation led to significant proteome alterations, including pathways related to the extracellular matrix, cell membrane, and morphologic change. Furthermore, full-automatic immunoblotting analysis verified the differently expressed proteins related to cell morphology and membrane structure. CONCLUSIONS Our results confirmed the association of NRXN1 with abnormal behaviors in NDDs and provided richer insights into specific prefrontal knockdown in adolescence, potentially expanding the NRXN1 interactome and contributing to human health.
Collapse
Affiliation(s)
- Di Wu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.,The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiansheng Zhu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lianghui You
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jingyu Wang
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Sufen Zhang
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Zhonghui Liu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qu Xu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiaojie Yuan
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lei Yang
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Wei Wang
- The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meiling Tong
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qin Hong
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| | - Xia Chi
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| |
Collapse
|
26
|
Owen MJ. Genomic insights into schizophrenia. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230125. [PMID: 36844807 PMCID: PMC9943879 DOI: 10.1098/rsos.230125] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Schizophrenia is a common, complex, heterogeneous psychiatric syndrome which can have profound impacts on affected individuals and imposes significant burdens on society. Despite intensive research, it has been challenging to understand basic mechanisms and to identify novel therapeutic targets. Given its high heritability and the complexity and inaccessibility of the human brain, much hope has been invested in the application of genomics as a route to better understanding. This work has identified many common and rare risk alleles and laid the foundations for a new generation of mechanistic studies. Genomics has also thrown new light on the relationship between schizophrenia and other psychiatric disorders and revealed its previously unappreciated aetiological relationship with childhood neurodevelopmental disorders, providing further evidence that it has its origins in disturbances of brain development. In addition, genomic findings suggest that the condition reflects fundamental disturbances in neuronal, and particularly synaptic, function that impact broadly on brain function, rather than being a disorder of specific brain regions and circuits. Finally, genomics has provided a plausible solution to the evolutionary paradox of how the condition persists in the face of high heritability and reduced fecundity.
Collapse
Affiliation(s)
- Michael J. Owen
- Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Innovation Institute and Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF10 3AT, UK
| |
Collapse
|
27
|
Andreassen OA, Hindley GFL, Frei O, Smeland OB. New insights from the last decade of research in psychiatric genetics: discoveries, challenges and clinical implications. World Psychiatry 2023; 22:4-24. [PMID: 36640404 PMCID: PMC9840515 DOI: 10.1002/wps.21034] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 01/15/2023] Open
Abstract
Psychiatric genetics has made substantial progress in the last decade, providing new insights into the genetic etiology of psychiatric disorders, and paving the way for precision psychiatry, in which individual genetic profiles may be used to personalize risk assessment and inform clinical decision-making. Long recognized to be heritable, recent evidence shows that psychiatric disorders are influenced by thousands of genetic variants acting together. Most of these variants are commonly occurring, meaning that every individual has a genetic risk to each psychiatric disorder, from low to high. A series of large-scale genetic studies have discovered an increasing number of common and rare genetic variants robustly associated with major psychiatric disorders. The most convincing biological interpretation of the genetic findings implicates altered synaptic function in autism spectrum disorder and schizophrenia. However, the mechanistic understanding is still incomplete. In line with their extensive clinical and epidemiological overlap, psychiatric disorders appear to exist on genetic continua and share a large degree of genetic risk with one another. This provides further support to the notion that current psychiatric diagnoses do not represent distinct pathogenic entities, which may inform ongoing attempts to reconceptualize psychiatric nosology. Psychiatric disorders also share genetic influences with a range of behavioral and somatic traits and diseases, including brain structures, cognitive function, immunological phenotypes and cardiovascular disease, suggesting shared genetic etiology of potential clinical importance. Current polygenic risk score tools, which predict individual genetic susceptibility to illness, do not yet provide clinically actionable information. However, their precision is likely to improve in the coming years, and they may eventually become part of clinical practice, stressing the need to educate clinicians and patients about their potential use and misuse. This review discusses key recent insights from psychiatric genetics and their possible clinical applications, and suggests future directions.
Collapse
Affiliation(s)
- Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Guy F L Hindley
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Oleksandr Frei
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Olav B Smeland
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
28
|
Høj Jørgensen TS, Osler M, Jorgensen MB, Jorgensen A. Mapping diagnostic trajectories from the first hospital diagnosis of a psychiatric disorder: a Danish nationwide cohort study using sequence analysis. Lancet Psychiatry 2023; 10:12-20. [PMID: 36450298 DOI: 10.1016/s2215-0366(22)00367-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/20/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND A key clinical problem in psychiatry is predicting the diagnostic future of patients presenting with psychopathology for the first time. The objective of this study was to establish a comprehensive map of subsequent diagnoses after a first psychiatric hospital diagnosis. METHODS Through the Danish National Patient Registry, we identified patients aged 18 years or older with an inpatient or outpatient psychiatric hospital contact and who had received one of the 20 most common first-time psychiatric diagnoses (defined at the ICD-10 two-cipher level, F00-F99) between Jan 1, 1995, and Dec 31, 2008. For each first-time diagnosis, the 20 most frequent subsequent psychiatric diagnoses (F00-F99), and death, occurring during 10 years of follow-up were identified as outcomes. To assess diagnostic stability, we used social sequence analyses, assigning a subsequent diagnosis to each state with a length of 6 months following each first-time diagnosis. The subsequent diagnosis was defined as the last diagnosis given within each 6-month period. We calculated the normalised entropy of each sequence to show the uncertainty of predicting the states in a given sequence. Cox proportional hazards models were used to assess the risk of receiving a subsequent diagnosis (at the one-cipher level, F0-F9) after each first-time diagnosis. FINDINGS The cohort consisted of 184 949 adult patients (77 129 [41·7%] men and 107 820 [58·3%] women, mean age 42·5 years [SD 18·5; range 18 to >100). Ethnicity data were not recorded. Over 10 years of follow-up, 86 804 (46·9%) patients had at least one subsequent diagnosis that differed from their first-time diagnosis. Measured by mean normalised entropy values, persistent delusional disorders (ICD-10 code F22), mental and behavioural disorders due to multiple drug use and use of other psychoactive substances (F19), and acute and transient psychotic disorders (F23) had the highest diagnostic variability, whereas eating disorders (F50) and non-organic sexual dysfunction (F52) had the lowest. The risk of receiving a subsequent diagnosis with a psychiatric disorder from an ICD-10 group different from that of the first-time diagnosis varied substantially among first-time diagnoses. INTERPRETATION These data provide detailed information on possible diagnostic outcomes after a first-time presentation in a psychiatric hospital. This information could help clinicians to plan relevant follow-up and inform patients and families on the degree of diagnostic uncertainty associated with receiving a first psychiatric hospital diagnosis, as well as likely and unlikely trajectories of diagnostic progression. FUNDING Mental Health Services, Capital region of Denmark. TRANSLATION For the Danish translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Terese Sara Høj Jørgensen
- Section of Social Medicine, University of Copenhagen, Copenhagen, Denmark; Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospitals, Frederiksberg, Denmark.
| | - Merete Osler
- Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark; Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospitals, Frederiksberg, Denmark
| | - Martin Balslev Jorgensen
- Department of Public Health, and Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Psychiatric Center Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Anders Jorgensen
- Department of Public Health, and Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Psychiatric Center Copenhagen, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
29
|
Ganesh S, Vemula A, Bhattacharjee S, Mathew K, Ithal D, Navin K, Nadella RK, Viswanath B, Sullivan PF, Jain S, Purushottam M. Whole exome sequencing in dense families suggests genetic pleiotropy amongst Mendelian and complex neuropsychiatric syndromes. Sci Rep 2022; 12:21128. [PMID: 36476812 PMCID: PMC9729597 DOI: 10.1038/s41598-022-25664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Whole Exome Sequencing (WES) studies provide important insights into the genetic architecture of serious mental illness (SMI). Genes that are central to the shared biology of SMIs may be identified by WES in families with multiple affected individuals with diverse SMI (F-SMI). We performed WES in 220 individuals from 75 F-SMI families and 60 unrelated controls. Within pedigree prioritization employed criteria of rarity, functional consequence, and sharing by ≥ 3 affected members. Across the sample, gene and gene-set-wide case-control association analysis was performed with Sequence Kernel Association Test (SKAT). In 14/16 families with ≥ 3 sequenced affected individuals, we identified a total of 78 rare predicted deleterious variants in 78 unique genes shared by ≥ 3 members with SMI. Twenty (25%) genes were implicated in monogenic CNS syndromes in OMIM (OMIM-CNS), a fraction that is a significant overrepresentation (Fisher's Exact test OR = 2.47, p = 0.001). In gene-set SKAT, statistically significant association was noted for OMIM-CNS gene-set (SKAT-p = 0.005) but not the synaptic gene-set (SKAT-p = 0.17). In this WES study in F-SMI, we identify private, rare, protein altering variants in genes previously implicated in Mendelian neuropsychiatric syndromes; suggesting pleiotropic influences in neurodevelopment between complex and Mendelian syndromes.
Collapse
Affiliation(s)
- Suhas Ganesh
- Central Institute of Psychiatry, Kanke, Ranchi, India
- Schizophrenia Neuropharmacology Research Group, Department of Psychiatry, Yale University School of Medicine, New Haven, USA
| | - Alekhya Vemula
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | | | - Kezia Mathew
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Dhruva Ithal
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Karthick Navin
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Ravi Kumar Nadella
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
- Department of Psychiatry, Varma Hospital, Bhimavaram, India
| | - Biju Viswanath
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Patrick F Sullivan
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medical Epidemiology and Biostatistics at Karolinska Institutet, Stockholm, Sweden
| | - Sanjeev Jain
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Meera Purushottam
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India.
| |
Collapse
|
30
|
Creeth HDJ, Rees E, Legge SE, Dennison CA, Holmans P, Walters JTR, O’Donovan MC, Owen MJ. Ultrarare Coding Variants and Cognitive Function in Schizophrenia. JAMA Psychiatry 2022; 79:963-970. [PMID: 35976659 PMCID: PMC9386603 DOI: 10.1001/jamapsychiatry.2022.2289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022]
Abstract
Importance Impaired cognitive function in schizophrenia is associated with poor functional outcomes, but the role of rare coding variants is unclear. Objective To determine whether ultrarare constrained variants (URCVs) are associated with cognition in patients with schizophrenia. Design, Setting, and Participants Linear regression was used to perform a within-case genetic association study of URCVs and current cognition and premorbid cognitive ability. A multivariable linear regression analysis of the outcomes associated with URCVs, schizophrenia polygenic risk score, polygenic risk score for intelligence and schizophrenia associated copy number variants on cognitive ability was performed. Exome sequencing data from 802 participants with schizophrenia were assessed for current cognition using the Measurement and Treatment Research to Improve Cognition in Schizophrenia Consensus Cognitive Battery and for estimated premorbid IQ using the National Adult Reading Test. Individuals were recruited from clinical and voluntary mental health services in the UK. Those with a diagnosis of intellectual disability or a neurological disorder known to affect cognition were excluded. Data collection occurred between 2007 and 2015. Data were analyzed between April 2020 and March 2022. Main Outcomes and Measures Association between URCVs, current cognition, and current cognition adjusted for premorbid IQ. Results Of the 802 participants, 499 (62%) were men and 303 (38%) were women; mean (SD) age at interview was 43.36 (11.87) years. Ultrarare constrained variants (n = 400) were associated with lower current cognition scores (β = -0.18; SE = 0.07; P = .005). In the univariable analysis, premorbid IQ was associated with URCVs (β = -0.12; SE = 0.05; P = .02) and partly attenuated the association with current cognition (β = -0.09; SE = 0.05; P = .08). Multivariable analysis showed that measured genetic factors combined accounted for 6.2% of variance in current cognition, 10.3% of variance in premorbid IQ, and supported outcomes of URCVs associated with current cognition independent of premorbid IQ (β = -0.10; SE = 0.05; P = .03). Conclusions and Relevance The findings of this study suggest that URCVs contribute to variance in cognitive function in schizophrenia, with partly independent associations before and after onset of the disorder. Although the estimated effect sizes were small, future studies may show that the effect sizes will be greater with better annotation of pathogenic variants. Genomic data may contribute to identifying those at particularly high risk of cognitive impairment in whom early remedial or preventive measures can be implemented.
Collapse
Affiliation(s)
- Hugo D. J. Creeth
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Elliott Rees
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Sophie E. Legge
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Charlotte A. Dennison
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - James T. R. Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Michael C. O’Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Michael J. Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
31
|
Zug R, Uller T. Evolution and dysfunction of human cognitive and social traits: A transcriptional regulation perspective. EVOLUTIONARY HUMAN SCIENCES 2022; 4:e43. [PMID: 37588924 PMCID: PMC10426018 DOI: 10.1017/ehs.2022.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/11/2022] [Accepted: 09/11/2022] [Indexed: 11/07/2022] Open
Abstract
Evolutionary changes in brain and craniofacial development have endowed humans with unique cognitive and social skills, but also predisposed us to debilitating disorders in which these traits are disrupted. What are the developmental genetic underpinnings that connect the adaptive evolution of our cognition and sociality with the persistence of mental disorders with severe negative fitness effects? We argue that loss of function of genes involved in transcriptional regulation represents a crucial link between the evolution and dysfunction of human cognitive and social traits. The argument is based on the haploinsufficiency of many transcriptional regulator genes, which makes them particularly sensitive to loss-of-function mutations. We discuss how human brain and craniofacial traits evolved through partial loss of function (i.e. reduced expression) of these genes, a perspective compatible with the idea of human self-domestication. Moreover, we explain why selection against loss-of-function variants supports the view that mutation-selection-drift, rather than balancing selection, underlies the persistence of psychiatric disorders. Finally, we discuss testable predictions.
Collapse
Affiliation(s)
- Roman Zug
- Department of Biology, Lund University, Lund, Sweden
| | - Tobias Uller
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
32
|
Chawner SJRA, Owen MJ. Autism: A model of neurodevelopmental diversity informed by genomics. Front Psychiatry 2022; 13:981691. [PMID: 36117659 PMCID: PMC9479184 DOI: 10.3389/fpsyt.2022.981691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/10/2022] [Indexed: 01/28/2023] Open
Abstract
Definitions of autism are constantly in flux and the validity and utility of diagnostic criteria remain hotly debated. The boundaries of autism are unclear and there is considerable heterogeneity within autistic individuals. Autistic individuals experience a range of co-occurring conditions notably including other childhood onset neurodevelopmental conditions such as intellectual disability, epilepsy and ADHD, but also other neuropsychiatric conditions. Recently, the neurodiversity movement has challenged the conception of autism as a medical syndrome defined by functional deficits. Whereas others have argued that autistic individuals with the highest support needs, including those with intellectual disability and limited functional communication, are better represented by a medical model. Genomic research indicates that, rather than being a circumscribed biological entity, autism can be understood in relation to two continua. On the one hand, it can be conceived as lying on a continuum of population variation in social and adaptive functioning traits, reflecting in large part the combination of multiple alleles of small effect. On the other, it can be viewed as lying on a broader neurodevelopmental continuum whereby rare genetic mutations and environmental risk factors impact the developing brain, resulting in a diverse spectrum of outcomes including childhood-onset neurodevelopmental conditions as well as adult-onset psychiatric conditions such as schizophrenia. This model helps us understand heterogeneity within autism and to reconcile the view that autism is a part of natural variability, as advocated by the neurodiversity movement, with the presence of co-occurring disabilities and impairments of function in some autistic individuals.
Collapse
Affiliation(s)
| | - Michael J. Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
33
|
Guo H, Hou L, Shi Y, Jin SC, Zeng X, Li B, Lifton RP, Brueckner M, Zhao H, Lu Q. Quantifying concordant genetic effects of de novo mutations on multiple disorders. eLife 2022; 11:75551. [PMID: 35666111 PMCID: PMC9217133 DOI: 10.7554/elife.75551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Exome sequencing on tens of thousands of parent-proband trios has identified numerous deleterious de novo mutations (DNMs) and implicated risk genes for many disorders. Recent studies have suggested shared genes and pathways are enriched for DNMs across multiple disorders. However, existing analytic strategies only focus on genes that reach statistical significance for multiple disorders and require large trio samples in each study. As a result, these methods are not able to characterize the full landscape of genetic sharing due to polygenicity and incomplete penetrance. In this work, we introduce EncoreDNM, a novel statistical framework to quantify shared genetic effects between two disorders characterized by concordant enrichment of DNMs in the exome. EncoreDNM makes use of exome-wide, summary-level DNM data, including genes that do not reach statistical significance in single-disorder analysis, to evaluate the overall and annotation-partitioned genetic sharing between two disorders. Applying EncoreDNM to DNM data of nine disorders, we identified abundant pairwise enrichment correlations, especially in genes intolerant to pathogenic mutations and genes highly expressed in fetal tissues. These results suggest that EncoreDNM improves current analytic approaches and may have broad applications in DNM studies.
Collapse
Affiliation(s)
- Hanmin Guo
- Center for Statistical Science, Tsinghua UniversityBeijingChina
- Department of Industrial Engineering, Tsinghua UniversityBeijingChina
| | - Lin Hou
- Center for Statistical Science, Tsinghua UniversityBeijingChina
- Department of Industrial Engineering, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua UniversityBeijingChina
| | - Yu Shi
- Yale School of Management, Yale UniversityNew HavenUnited States
| | - Sheng Chih Jin
- Department of Genetics, Washington University in St. LouisSt. LouisUnited States
| | - Xue Zeng
- Department of Genetics, Yale UniversityNew HavenUnited States
- Laboratory of Human Genetics and Genomics, Rockefeller UniversityNew YorkUnited States
| | - Boyang Li
- Department of Biostatistics, Yale School of Public HealthNew HavenUnited States
| | - Richard P Lifton
- Department of Genetics, Yale UniversityNew HavenUnited States
- Laboratory of Human Genetics and Genomics, Rockefeller UniversityNew YorkUnited States
| | - Martina Brueckner
- Department of Genetics, Yale UniversityNew HavenUnited States
- Department of Pediatrics, Yale UniversityNew HavenUnited States
| | - Hongyu Zhao
- Department of Genetics, Yale UniversityNew HavenUnited States
- Department of Biostatistics, Yale School of Public HealthNew HavenUnited States
- Program of Computational Biology and Bioinformatics, Yale UniversityNew HavenUnited States
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
34
|
Willsey HR, Willsey AJ, Wang B, State MW. Genomics, convergent neuroscience and progress in understanding autism spectrum disorder. Nat Rev Neurosci 2022; 23:323-341. [PMID: 35440779 PMCID: PMC10693992 DOI: 10.1038/s41583-022-00576-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 12/31/2022]
Abstract
More than a hundred genes have been identified that, when disrupted, impart large risk for autism spectrum disorder (ASD). Current knowledge about the encoded proteins - although incomplete - points to a very wide range of developmentally dynamic and diverse biological processes. Moreover, the core symptoms of ASD involve distinctly human characteristics, presenting challenges to interpreting evolutionarily distant model systems. Indeed, despite a decade of striking progress in gene discovery, an actionable understanding of pathobiology remains elusive. Increasingly, convergent neuroscience approaches have been recognized as an important complement to traditional uses of genetics to illuminate the biology of human disorders. These methods seek to identify intersection among molecular-level, cellular-level and circuit-level functions across multiple risk genes and have highlighted developing excitatory neurons in the human mid-gestational prefrontal cortex as an important pathobiological nexus in ASD. In addition, neurogenesis, chromatin modification and synaptic function have emerged as key potential mediators of genetic vulnerability. The continued expansion of foundational 'omics' data sets, the application of higher-throughput model systems and incorporating developmental trajectories and sex differences into future analyses will refine and extend these results. Ultimately, a systems-level understanding of ASD genetic risk holds promise for clarifying pathobiology and advancing therapeutics.
Collapse
Affiliation(s)
- Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - A Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
35
|
Hu TM, Wu CL, Hsu SH, Tsai HY, Cheng FY, Cheng MC. Ultrarare Loss-of-Function Mutations in the Genes Encoding the Ionotropic Glutamate Receptors of Kainate Subtypes Associated with Schizophrenia Disrupt the Interaction with PSD95. J Pers Med 2022; 12:783. [PMID: 35629206 PMCID: PMC9144110 DOI: 10.3390/jpm12050783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Schizophrenia is a complex mental disorder with a genetic component. The GRIK gene family encodes ionotropic glutamate receptors of the kainate subtype, which are considered candidate genes for schizophrenia. We screened for rare and pathogenic mutations in the protein-coding sequences of the GRIK gene family in 516 unrelated patients with schizophrenia using the ion semiconductor sequencing method. We identified 44 protein-altered variants, and in silico analysis indicated that 36 of these mutations were rare and damaging or pathological based on putative protein function. Notably, we identified four truncating mutations, including two frameshift deletion mutations (GRIK1p.Phe24fs and GRIK1p.Thr882fs) and two nonsense mutations (GRIK2p.Arg300Ter and GRIK4p.Gln342Ter) in four unrelated patients with schizophrenia. They exhibited minor allele frequencies of less than 0.01% and were absent in 1517 healthy controls from Taiwan Biobank. Functional analysis identified these four truncating mutants as loss-of-function (LoF) mutants in HEK-293 cells. We also showed that three mutations (GRIK1p.Phe24fs, GRIK1p.Thr882fs, and GRIK2p.Arg300Ter) weakened the interaction with the PSD95 protein. The results suggest that the GRIK gene family harbors ultrarare LoF mutations in some patients with schizophrenia. The identification of proteins that interact with the kainate receptors will be essential to determine kainate receptor-mediated signaling in the brain.
Collapse
Affiliation(s)
- Tsung-Ming Hu
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; (T.-M.H.); (C.-L.W.); (S.-H.H.); (H.-Y.T.); (F.-Y.C.)
- Department of Future Studies and LOHAS Industry, Fo Guang University, Jiaosi, Yilan County 26247, Taiwan
| | - Chia-Liang Wu
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; (T.-M.H.); (C.-L.W.); (S.-H.H.); (H.-Y.T.); (F.-Y.C.)
| | - Shih-Hsin Hsu
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; (T.-M.H.); (C.-L.W.); (S.-H.H.); (H.-Y.T.); (F.-Y.C.)
| | - Hsin-Yao Tsai
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; (T.-M.H.); (C.-L.W.); (S.-H.H.); (H.-Y.T.); (F.-Y.C.)
| | - Fu-Yu Cheng
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; (T.-M.H.); (C.-L.W.); (S.-H.H.); (H.-Y.T.); (F.-Y.C.)
| | - Min-Chih Cheng
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; (T.-M.H.); (C.-L.W.); (S.-H.H.); (H.-Y.T.); (F.-Y.C.)
| |
Collapse
|
36
|
Owen MJ, Legge SE. The nature of schizophrenia: As broad as it is long. Schizophr Res 2022; 242:109-112. [PMID: 34756599 DOI: 10.1016/j.schres.2021.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/18/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, and Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| | - Sophie E Legge
- MRC Centre for Neuropsychiatric Genetics and Genomics, and Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
37
|
Lo T, Kushima I, Aleksic B, Kato H, Nawa Y, Hayashi Y, Otgonbayar G, Kimura H, Arioka Y, Mori D, Ozaki N. Sequencing of selected chromatin remodelling genes reveals increased burden of rare missense variants in ASD patients from the Japanese population. Int Rev Psychiatry 2022; 34:154-167. [PMID: 35699097 DOI: 10.1080/09540261.2022.2072193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chromatin remodelling is an important process in neural development and is related to autism spectrum disorder (ASD) and schizophrenia (SCZ) aetiology. To further elucidate the involvement of chromatin remodelling genes in the genetic aetiology of ASD and SCZ in the Japanese population, we performed a case-control study. Targeted sequencing was conducted on coding regions of four BAF chromatin remodelling complex genes: SMARCA2, SMARCA4, SMARCC2, and ARID1B in 185 ASD, 432 SCZ patients, and 517 controls. 27 rare non-synonymous variants were identified in ASD and SCZ patients, including 25 missense, one in-frame deletion in SMRACA4, and one frame-shift variant in SMARCC2. Association analysis was conducted to investigate the burden of rare variants in BAF genes in ASD and SCZ patients. Significant enrichment of rare missense variants in BAF genes, but not synonymous variants, was found in ASD compared to controls. Rare pathogenic variants indicated by in silico tools were significantly enriched in ASD, but not statistically significant in SCZ. Pathogenic-predicted variants were located in disordered binding regions and may confer risk for ASD and SCZ by disrupting protein-protein interactions. Our study supports the involvement of rare missense variants of BAF genes in ASD and SCZ susceptibility.
Collapse
Affiliation(s)
- Tzuyao Lo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yu Hayashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gantsooj Otgonbayar
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.,Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
38
|
Golimbet V, Kostyuk G. Genotype — phenotype relationships in view of recent advances in the understanding of genetic causes of schizophrenia. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:20-25. [DOI: 10.17116/jnevro202212201220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|