1
|
Preston K, Riede T. California mice (Peromyscus californicus) adjust mouth movements for vocal production during early postnatal development. BMC Biol 2024; 22:299. [PMID: 39719564 DOI: 10.1186/s12915-024-02098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND The order Rodentia is the largest group of mammals. Diversification of vocal communication has contributed to rodent radiation and allowed them to occupy diverse habitats and adopt different social systems. The mechanism by which efficient vocal sounds, which carry over surprisingly large distances, are generated is incompletely understood. Here we focused on the development and function of rhythmic mouth movements and laryngeal sound production. We studied spontaneously vocalizing California mice (Peromyscus californicus) through video and sound recordings. Mouth gape was estimated from video images and vocal characteristics were measured in synchronized sound recordings. RESULTS California mice coordinated their mouth movements with laryngeal sound production but differently in two call types. In high-frequency whistles ("USV syllables"), mouth movements were present on postnatal day 1 but were reduced within the first 2 weeks of life. Mouth movements were prominently present during sustained vocalizations ("SV syllables"), and movements became more and more adjusted to syllable beginning and end. Maximum mouth gape was correlated with sound intensity and fundamental frequency of SV syllables. The effect on sound intensity was the strongest during postnatal development and most predictable when the mouth was closed by temporarily immobilizing the mandible in an elevated position. CONCLUSIONS This study demonstrates that rhythmic orofacial behavior not only plays a critical role in determining acoustic features of the vocal behavior of California mice but also shows remarkable adjustments during early development.
Collapse
Affiliation(s)
- Kuirsten Preston
- College of Veterinary Medicine, Midwestern University, Glendale, AZ, USA
| | - Tobias Riede
- College of Veterinary Medicine, Midwestern University, Glendale, AZ, USA.
- College of Graduate Studies, Department of Physiology, Midwestern University, Glendale, AZ, USA.
| |
Collapse
|
2
|
Chaterji S, Belliappa PH, Sathyamurthy A. The superior colliculus directs goal-oriented forelimb movements. Cell Rep 2024; 44:115097. [PMID: 39723891 DOI: 10.1016/j.celrep.2024.115097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/23/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Skilled forelimb control is essential for daily living, yet our understanding of its neural mechanisms, although extensive, remains incomplete. Here, we present evidence that the superior colliculus (SC), a major midbrain structure, is necessary for accurate forelimb reaching in mice. We found that neurons in the lateral SC are active during goal-directed reaching, and by employing chemogenetic and phase-specific optogenetic silencing of these neurons, we show that the SC causally facilitates reach accuracy. Anatomical studies identified the deep cerebellar nuclei and substantia nigra pars reticulata as sources of inputs to the SC, while functional studies revealed a role for nigrotectal, but not cerebellotectal, neurons in controlling reach endpoints. Silencing the nigrotectal pathway caused paw deviations opposite to those seen with SC silencing, emphasizing the coordinated role of the substantia nigra and SC in regulating optimal reaching. Together, these findings establish the SC as a crucial regulator of skilled forelimb control.
Collapse
Affiliation(s)
- Shrivas Chaterji
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Punarva H Belliappa
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Anupama Sathyamurthy
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
| |
Collapse
|
3
|
Khilkevich A, Lohse M, Low R, Orsolic I, Bozic T, Windmill P, Mrsic-Flogel TD. Brain-wide dynamics linking sensation to action during decision-making. Nature 2024; 634:890-900. [PMID: 39261727 PMCID: PMC11499283 DOI: 10.1038/s41586-024-07908-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/05/2024] [Indexed: 09/13/2024]
Abstract
Perceptual decisions rely on learned associations between sensory evidence and appropriate actions, involving the filtering and integration of relevant inputs to prepare and execute timely responses1,2. Despite the distributed nature of task-relevant representations3-10, it remains unclear how transformations between sensory input, evidence integration, motor planning and execution are orchestrated across brain areas and dimensions of neural activity. Here we addressed this question by recording brain-wide neural activity in mice learning to report changes in ambiguous visual input. After learning, evidence integration emerged across most brain areas in sparse neural populations that drive movement-preparatory activity. Visual responses evolved from transient activations in sensory areas to sustained representations in frontal-motor cortex, thalamus, basal ganglia, midbrain and cerebellum, enabling parallel evidence accumulation. In areas that accumulate evidence, shared population activity patterns encode visual evidence and movement preparation, distinct from movement-execution dynamics. Activity in movement-preparatory subspace is driven by neurons integrating evidence, which collapses at movement onset, allowing the integration process to reset. Across premotor regions, evidence-integration timescales were independent of intrinsic regional dynamics, and thus depended on task experience. In summary, learning aligns evidence accumulation to action preparation in activity dynamics across dozens of brain regions. This leads to highly distributed and parallelized sensorimotor transformations during decision-making. Our work unifies concepts from decision-making and motor control fields into a brain-wide framework for understanding how sensory evidence controls actions.
Collapse
Affiliation(s)
- Andrei Khilkevich
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| | - Michael Lohse
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| | - Ryan Low
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Ivana Orsolic
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Tadej Bozic
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Paige Windmill
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Thomas D Mrsic-Flogel
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| |
Collapse
|
4
|
Cui K, Xia Y, Patnaik A, Salivara A, Lowenstein ED, Isik EG, Knorz AL, Airaghi L, Crotti M, Garratt AN, Meng F, Schmitz D, Studer M, Rijli FM, Nothwang HG, Rost BR, Strauß U, Hernandez-Miranda LR. Genetic identification of medullary neurons underlying congenital hypoventilation. SCIENCE ADVANCES 2024; 10:eadj0720. [PMID: 38896627 PMCID: PMC11186509 DOI: 10.1126/sciadv.adj0720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Mutations in the transcription factors encoded by PHOX2B or LBX1 correlate with congenital central hypoventilation disorders. These conditions are typically characterized by pronounced hypoventilation, central apnea, and diminished chemoreflexes, particularly to abnormally high levels of arterial PCO2. The dysfunctional neurons causing these respiratory disorders are largely unknown. Here, we show that distinct, and previously undescribed, sets of medullary neurons coexpressing both transcription factors (dB2 neurons) account for specific respiratory functions and phenotypes seen in congenital hypoventilation. By combining intersectional chemogenetics, intersectional labeling, lineage tracing, and conditional mutagenesis, we uncovered subgroups of dB2 neurons with key functions in (i) respiratory tidal volumes, (ii) the hypercarbic reflex, (iii) neonatal respiratory stability, and (iv) neonatal survival. These data provide functional evidence for the critical role of distinct medullary dB2 neurons in neonatal respiratory physiology. In summary, our work identifies distinct subgroups of dB2 neurons regulating breathing homeostasis, dysfunction of which causes respiratory phenotypes associated with congenital hypoventilation.
Collapse
Affiliation(s)
- Ke Cui
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yiling Xia
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Abhisarika Patnaik
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Aikaterini Salivara
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Eser G. Isik
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adrian L. Knorz
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura Airaghi
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michela Crotti
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alistair N. Garratt
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fanqi Meng
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michèle Studer
- Université Côte d'Azur (UCA), CNRS, Inserm, Institute of Biology Valrose (iBV), Nice, France
| | - Filippo M. Rijli
- Laboratory of Developmental Neuroepigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Hans G. Nothwang
- Division of Neurogenetics, Cluster of Excellence Hearing4all, Carl von Ossietzky University, Oldenburg, Germany
| | - Benjamin R. Rost
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulf Strauß
- Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Luis R. Hernandez-Miranda
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
5
|
Wang Y, Deng T, Zhao X, Shao L, Chen J, Fu C, He W, Wang X, Wang H, Yuan F, Wang S. Control of breathing by orexinergic signaling in the nucleus tractus solitarii. Sci Rep 2024; 14:7473. [PMID: 38553555 PMCID: PMC10980752 DOI: 10.1038/s41598-024-58075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Orexin signaling plays a facilitatory role in respiration. Abnormalities in orexin levels correlate with disordered breathing patterns and impaired central respiratory chemoreception. Nucleus tractus solitarii (NTS) neurons expressing the transcription factor Phox2b contribute to the chemoreceptive regulation of respiration. However, the extent to which orexinergic signaling modulates respiratory activity in these Phox2b-expressing NTS neurons remains unclear. In the present study, the injection of orexin A into the NTS significantly increased the firing rate of the phrenic nerve. Further analysis using fluorescence in situ hybridization and immunohistochemistry revealed that orexin 1 receptors (OX1Rs) were primarily located in the ventrolateral subdivision of the NTS and expressed in 25% of Phox2b-expressing neurons. Additionally, electrophysiological recordings showed that exposure to orexin A increased the spontaneous firing rate of Phox2b-expressing neurons. Immunostaining experiments with cFos revealed that the OX1R-residing Phox2b-expressing neurons were activated by an 8% CO2 stimulus. Crucially, OX1R knockdown in these NTS neurons notably blunted the ventilatory response to 8% CO2, alongside an increase in sigh-related apneas. In conclusion, orexinergic signaling in the NTS facilitates breathing through the activation of OX1Rs, which induces the depolarization of Phox2b-expressing neurons. OX1Rs are essential for the involvement of Phox2b-expressing NTS neurons in the hypercapnic ventilatory response.
Collapse
Affiliation(s)
- Yakun Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Sleep Medicine, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tianjiao Deng
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xue Zhao
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Liuqi Shao
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinting Chen
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Congrui Fu
- Nursing School, Hebei Medical University, Shijiazhuang, China
| | - Wei He
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoyi Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hanqiao Wang
- Department of Sleep Medicine, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fang Yuan
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China
| | - Sheng Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China.
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China.
| |
Collapse
|
6
|
Coverdell TC, Abbott SBG, Campbell JN. Molecular cell types as functional units of the efferent vagus nerve. Semin Cell Dev Biol 2024; 156:210-218. [PMID: 37507330 PMCID: PMC10811285 DOI: 10.1016/j.semcdb.2023.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
The vagus nerve vitally connects the brain and body to coordinate digestive, cardiorespiratory, and immune functions. Its efferent neurons, which project their axons from the brainstem to the viscera, are thought to comprise "functional units" - neuron populations dedicated to the control of specific vagal reflexes or organ functions. Previous research indicates that these functional units differ from one another anatomically, neurochemically, and physiologically but have yet to define their identity in an experimentally tractable way. However, recent work with genetic technology and single-cell genomics suggests that genetically distinct subtypes of neurons may be the functional units of the efferent vagus. Here we review how these approaches are revealing the organizational principles of the efferent vagus in unprecedented detail.
Collapse
Affiliation(s)
- Tatiana C Coverdell
- Biomedical Sciences Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - John N Campbell
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
7
|
Gao C, Krashes MJ. Neuroscience of eating: Pace and portion control. Curr Biol 2024; 34:R155-R157. [PMID: 38412828 DOI: 10.1016/j.cub.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Satiety-promoting neurons of the hindbrain have long been known for their role in meal termination. An innovative new study now reveals how different hindbrain cell types mediate appetite on distinct timescales.
Collapse
Affiliation(s)
- Claire Gao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J Krashes
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
8
|
Kleinfeld D, Deschênes M, Economo MN, Elbaz M, Golomb D, Liao SM, O'Connor DH, Wang F. Low- and high-level coordination of orofacial motor actions. Curr Opin Neurobiol 2023; 83:102784. [PMID: 37757586 PMCID: PMC11034851 DOI: 10.1016/j.conb.2023.102784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Orofacial motor actions are movements that, in rodents, involve whisking of the vibrissa, deflection of the nose, licking and lapping with the tongue, and consumption through chewing. These actions, along with bobbing and turning of the head, coordinate to subserve exploration while not conflicting with life-supporting actions such as breathing and swallowing. Orofacial and head movements are comprised of two additive components: a rhythm that can be entrained by the breathing oscillator and a broadband component that directs the actuator to the region of interest. We focus on coordinating the rhythmic component of actions into a behavior. We hypothesize that the precise timing of each constituent action is continually adjusted through the merging of low-level oscillator input with sensory-derived, high-level rhythmic feedback. Supporting evidence is discussed.
Collapse
Affiliation(s)
- David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA; Department of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Martin Deschênes
- Department of Psychiatry and Neuroscience, Laval University, Québec City, G1J 2R3 Canada
| | - Michael N Economo
- Department of Bioengineering, Boston University, Boston, MA 02215, USA
| | - Michaël Elbaz
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - David Golomb
- Department of Physiology and Cell Biology, Ben Gurion University, Be'er-Sheba 8410501, Israel; Department of Physics, Ben Gurion University, Be'er-Sheba 8410501, Israel
| | - Song-Mao Liao
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Daniel H O'Connor
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Zynval Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Fan Wang
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
9
|
Falardeau D, Dubois S, Kolta A. The coordination of chewing. Curr Opin Neurobiol 2023; 83:102805. [PMID: 37913688 DOI: 10.1016/j.conb.2023.102805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/11/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023]
Abstract
Feeding behavior involves a complex organization of neural circuitry and interconnected pathways between the cortex, the brainstem, and muscles. Elevated synchronicity is required starting from the moment the animal brings the food to its mouth, chews, and initiates subsequent swallowing. Moreover, orofacial sensory and motor systems are coordinated in a way to optimize movement patterns as a result of integrating information from premotor neurons. Recent studies have uncovered significant discoveries employing various and creative techniques in order to identify key components in these vital functions. Here, we attempt to provide a brief overview of our current knowledge on orofacial systems. While our focus will be on recent breakthroughs regarding the masticatory machinery, we will also explore how it is sometimes intertwined with other functions, such as swallowing and limb movement.
Collapse
Affiliation(s)
- Dominic Falardeau
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA), QC, Canada; Department of Neurosciences, Faculty of Medecine, Université de Montréal, QC, Canada
| | - Sophia Dubois
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA), QC, Canada; Department of Neurosciences, Faculty of Medecine, Université de Montréal, QC, Canada
| | - Arlette Kolta
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA), QC, Canada; Department of Neurosciences, Faculty of Medecine, Université de Montréal, QC, Canada; Department of Stomatology, Faculty of Dentistry, Université de Montréal, QC, Canada.
| |
Collapse
|
10
|
Callado Pérez A, Demers M, Fassihi A, Moore JD, Kleinfeld D, Deschênes M. A brainstem circuit for the expression of defensive facial reactions in rat. Curr Biol 2023; 33:4030-4035.e3. [PMID: 37703878 PMCID: PMC11034846 DOI: 10.1016/j.cub.2023.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023]
Abstract
The brainstem houses neuronal circuits that control homeostasis of vital functions. These include the depth and rate of breathing1,2 and, critically, apnea, a transient cessation of breathing that prevents noxious vapors from entering further into the respiratory tract. Current thinking is that this reflex is mediated by two sensory pathways. One known pathway involves vagal and glossopharyngeal afferents that project to the nucleus of the solitary tract.3,4,5 Yet, apnea induced by electrical stimulation of the nasal epithelium or delivery of ammonia vapors to the nose persists after brainstem transection at the pontomedullary junction, indicating that the circuitry that mediates this reflex is intrinsic to the medulla.6 A second potential pathway, consistent with this observation, involves trigeminal afferents from the nasal cavity that project to the muralis subnucleus of the spinal trigeminal complex.7,8 Notably, the apneic reflex is not dependent on olfaction as it can be initiated even after disruption of olfactory pathways.9 We investigated how subnucleus muralis cells mediate apnea in rat. By means of electrophysiological recordings and lesions in anesthetized rats, we identified a pathway from chemosensors in the nostrils through the muralis subnucleus and onto both the preBötzinger and facial motor nuclei. We then monitored breathing and orofacial reactions upon ammonia delivery near the nostril of alert, head-restrained rats. The apneic reaction was associated with a grimace, characterized by vibrissa protraction, wrinkling of the nose, and squinting of the eyes. Our results show that a brainstem circuit can control facial expressions for nocifensive and potentially pain-inducing stimuli.
Collapse
Affiliation(s)
- Amalia Callado Pérez
- Cervo Research Center, Université Laval, Québec City, Québec G1J 2R3, Canada; Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maxime Demers
- Cervo Research Center, Université Laval, Québec City, Québec G1J 2R3, Canada
| | - Arash Fassihi
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeffrey D Moore
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Martin Deschênes
- Cervo Research Center, Université Laval, Québec City, Québec G1J 2R3, Canada.
| |
Collapse
|
11
|
Carey H, Pegios M, Martin L, Saleeba C, Turner AJ, Everett NA, Bjerke IE, Puchades MA, Bjaalie JG, McMullan S. DeepSlice: rapid fully automatic registration of mouse brain imaging to a volumetric atlas. Nat Commun 2023; 14:5884. [PMID: 37735467 PMCID: PMC10514056 DOI: 10.1038/s41467-023-41645-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Registration of data to a common frame of reference is an essential step in the analysis and integration of diverse neuroscientific data. To this end, volumetric brain atlases enable histological datasets to be spatially registered and analyzed, yet accurate registration remains expertise-dependent and slow. In order to address this limitation, we have trained a neural network, DeepSlice, to register mouse brain histological images to the Allen Brain Common Coordinate Framework, retaining registration accuracy while improving speed by >1000 fold.
Collapse
Affiliation(s)
- Harry Carey
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Marsfield, NSW, Australia
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Michael Pegios
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Marsfield, NSW, Australia
| | | | - Chris Saleeba
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Marsfield, NSW, Australia
| | - Anita J Turner
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Marsfield, NSW, Australia
| | | | - Ingvild E Bjerke
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Simon McMullan
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Marsfield, NSW, Australia.
| |
Collapse
|
12
|
Gonye EC, Bayliss DA. Criteria for central respiratory chemoreceptors: experimental evidence supporting current candidate cell groups. Front Physiol 2023; 14:1241662. [PMID: 37719465 PMCID: PMC10502317 DOI: 10.3389/fphys.2023.1241662] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
An interoceptive homeostatic system monitors levels of CO2/H+ and provides a proportionate drive to respiratory control networks that adjust lung ventilation to maintain physiologically appropriate levels of CO2 and rapidly regulate tissue acid-base balance. It has long been suspected that the sensory cells responsible for the major CNS contribution to this so-called respiratory CO2/H+ chemoreception are located in the brainstem-but there is still substantial debate in the field as to which specific cells subserve the sensory function. Indeed, at the present time, several cell types have been championed as potential respiratory chemoreceptors, including neurons and astrocytes. In this review, we advance a set of criteria that are necessary and sufficient for definitive acceptance of any cell type as a respiratory chemoreceptor. We examine the extant evidence supporting consideration of the different putative chemoreceptor candidate cell types in the context of these criteria and also note for each where the criteria have not yet been fulfilled. By enumerating these specific criteria we hope to provide a useful heuristic that can be employed both to evaluate the various existing respiratory chemoreceptor candidates, and also to focus effort on specific experimental tests that can satisfy the remaining requirements for definitive acceptance.
Collapse
Affiliation(s)
- Elizabeth C. Gonye
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| | | |
Collapse
|
13
|
Lowenstein ED, Ruffault PL, Misios A, Osman KL, Li H, Greenberg RS, Thompson R, Song K, Dietrich S, Li X, Vladimirov N, Woehler A, Brunet JF, Zampieri N, Kühn R, Liberles SD, Jia S, Lewin GR, Rajewsky N, Lever TE, Birchmeier C. Prox2 and Runx3 vagal sensory neurons regulate esophageal motility. Neuron 2023; 111:2184-2200.e7. [PMID: 37192624 DOI: 10.1016/j.neuron.2023.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/31/2022] [Accepted: 04/24/2023] [Indexed: 05/18/2023]
Abstract
Vagal sensory neurons monitor mechanical and chemical stimuli in the gastrointestinal tract. Major efforts are underway to assign physiological functions to the many distinct subtypes of vagal sensory neurons. Here, we use genetically guided anatomical tracing, optogenetics, and electrophysiology to identify and characterize vagal sensory neuron subtypes expressing Prox2 and Runx3 in mice. We show that three of these neuronal subtypes innervate the esophagus and stomach in regionalized patterns, where they form intraganglionic laminar endings. Electrophysiological analysis revealed that they are low-threshold mechanoreceptors but possess different adaptation properties. Lastly, genetic ablation of Prox2 and Runx3 neurons demonstrated their essential roles for esophageal peristalsis in freely behaving mice. Our work defines the identity and function of the vagal neurons that provide mechanosensory feedback from the esophagus to the brain and could lead to better understanding and treatment of esophageal motility disorders.
Collapse
Affiliation(s)
- Elijah D Lowenstein
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin, Germany; NeuroCure Cluster of Excellence, CharitéUniversitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pierre-Louis Ruffault
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Aristotelis Misios
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin, Germany; NeuroCure Cluster of Excellence, CharitéUniversitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Kate L Osman
- Department of Otolaryngology - Head & Neck Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Huimin Li
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Rachel S Greenberg
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Rebecca Thompson
- Department of Otolaryngology - Head & Neck Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Kun Song
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Stephan Dietrich
- Development and Function of Neural Circuits, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Xun Li
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Nikita Vladimirov
- Systems Biology Imaging, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Andrew Woehler
- Systems Biology Imaging, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Jean-François Brunet
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École normale supérieure, PSL Research University, Paris, France
| | - Niccolò Zampieri
- Development and Function of Neural Circuits, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ralf Kühn
- Genome Engineering & Disease Models, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Stephen D Liberles
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Shiqi Jia
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Gary R Lewin
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Teresa E Lever
- Department of Otolaryngology - Head & Neck Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin, Germany; NeuroCure Cluster of Excellence, CharitéUniversitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
14
|
Huff A, Karlen-Amarante M, Oliveira LM, Ramirez JM. Role of the postinspiratory complex in regulating swallow-breathing coordination and other laryngeal behaviors. eLife 2023; 12:e86103. [PMID: 37272425 PMCID: PMC10264072 DOI: 10.7554/elife.86103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023] Open
Abstract
Breathing needs to be tightly coordinated with upper airway behaviors, such as swallowing. Discoordination leads to aspiration pneumonia, the leading cause of death in neurodegenerative disease. Here, we study the role of the postinspiratory complex (PiCo) in coordinating breathing and swallowing. Using optogenetic approaches in freely breathing anesthetized ChATcre:Ai32, Vglut2cre:Ai32 and intersectional recombination of ChATcre:Vglut2FlpO:ChR2 mice reveals PiCo mediates airway protective behaviors. Activation of PiCo during inspiration or the beginning of postinspiration triggers swallow behavior in an all-or-nothing manner, while there is a higher probability for stimulating only laryngeal activation when activated further into expiration. Laryngeal activation is dependent on stimulation duration. Sufficient bilateral PiCo activation is necessary for preserving the physiological swallow motor sequence since activation of only a few PiCo neurons or unilateral activation leads to blurred upper airway behavioral responses. We believe PiCo acts as an interface between the swallow pattern generator and the preBötzinger complex to coordinate swallow and breathing. Investigating PiCo's role in swallow and laryngeal coordination will aid in understanding discoordination with breathing in neurological diseases.
Collapse
Affiliation(s)
- Alyssa Huff
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Luiz M Oliveira
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- Department of Neurological Surgery, University of Washington School of MedicineSeattleUnited States
| |
Collapse
|
15
|
Liao SM, Kleinfeld D. A change in behavioral state switches the pattern of motor output that underlies rhythmic head and orofacial movements. Curr Biol 2023; 33:1951-1966.e6. [PMID: 37105167 PMCID: PMC10225163 DOI: 10.1016/j.cub.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
The breathing rhythm serves as a reference that paces orofacial motor actions and orchestrates active sensing. Past work has reported that pacing occurs solely at a fixed phase relative to sniffing. We re-evaluated this constraint as a function of exploratory behavior. Allocentric and egocentric rotations of the head and the electromyogenic activity of the motoneurons for head and orofacial movements were recorded in free-ranging rats as they searched for food. We found that a change in state from foraging to rearing is accompanied by a large phase shift in muscular activation relative to sniffing, and a concurrent change in the frequency of sniffing, so that pacing now occurs at one of the two phases. Further, head turning is biased such that an animal gathers a novel sample of its environment upon inhalation. In total, the coordination of active sensing has a previously unrealized computational complexity. This can emerge from hindbrain circuits with fixed architecture and credible synaptic time delays.
Collapse
Affiliation(s)
- Song-Mao Liao
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - David Kleinfeld
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA; Department of Neurobiology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Abstract
The rhythmicity of breath is vital for normal physiology. Even so, breathing is enriched with multifunctionality. External signals constantly change breathing, stopping it when under water or deepening it during exertion. Internal cues utilize breath to express emotions such as sighs of frustration and yawns of boredom. Breathing harmonizes with other actions that use our mouth and throat, including speech, chewing, and swallowing. In addition, our perception of breathing intensity can dictate how we feel, such as during the slow breathing of calming meditation and anxiety-inducing hyperventilation. Heartbeat originates from a peripheral pacemaker in the heart, but the automation of breathing arises from neural clusters within the brainstem, enabling interaction with other brain areas and thus multifunctionality. Here, we document how the recent transformation of cellular and molecular tools has contributed to our appreciation of the diversity of neuronal types in the breathing control circuit and how they confer the multifunctionality of breathing.
Collapse
Affiliation(s)
- Kevin Yackle
- Department of Physiology, University of California, San Francisco, California, USA;
| |
Collapse
|
17
|
Bokiniec P, Whitmire CJ, Leva TM, Poulet JFA. Brain-wide connectivity map of mouse thermosensory cortices. Cereb Cortex 2022; 33:4870-4885. [PMID: 36255325 PMCID: PMC10110442 DOI: 10.1093/cercor/bhac386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the thermal system, skin cooling is represented in the primary somatosensory cortex (S1) and the posterior insular cortex (pIC). Whether S1 and pIC are nodes in anatomically separate or overlapping thermal sensorimotor pathways is unclear, as the brain-wide connectivity of the thermal system has not been mapped. We address this using functionally targeted, dual injections of anterograde viruses or retrograde tracers into the forelimb representation of S1 (fS1) and pIC (fpIC). Our data show that inputs to fS1 and fpIC originate from separate neuronal populations, supporting the existence of parallel input pathways. Outputs from fS1 and fpIC are more widespread than their inputs, sharing a number of cortical and subcortical targets. While, axonal projections were separable, they were more overlapping than the clusters of input cells. In both fS1 and fpIC circuits, there was a high degree of reciprocal connectivity with thalamic and cortical regions, but unidirectional output to the midbrain and hindbrain. Notably, fpIC showed connectivity with regions associated with thermal processing. Together, these data indicate that cutaneous thermal information is routed to the cortex via parallel circuits and is forwarded to overlapping downstream regions for the binding of somatosensory percepts and integration with ongoing behavior.
Collapse
Affiliation(s)
- Phillip Bokiniec
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Clarissa J Whitmire
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Tobias M Leva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Institut für Biologie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - James F A Poulet
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
18
|
Molecular Organization and Patterning of the Medulla Oblongata in Health and Disease. Int J Mol Sci 2022; 23:ijms23169260. [PMID: 36012524 PMCID: PMC9409237 DOI: 10.3390/ijms23169260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The medulla oblongata, located in the hindbrain between the pons and the spinal cord, is an important relay center for critical sensory, proprioceptive, and motoric information. It is an evolutionarily highly conserved brain region, both structural and functional, and consists of a multitude of nuclei all involved in different aspects of basic but vital functions. Understanding the functional anatomy and developmental program of this structure can help elucidate potential role(s) of the medulla in neurological disorders. Here, we have described the early molecular patterning of the medulla during murine development, from the fundamental units that structure the very early medullary region into 5 rhombomeres (r7–r11) and 13 different longitudinal progenitor domains, to the neuronal clusters derived from these progenitors that ultimately make-up the different medullary nuclei. By doing so, we developed a schematic overview that can be used to predict the cell-fate of a progenitor group, or pinpoint the progenitor domain of origin of medullary nuclei. This schematic overview can further be used to help in the explanation of medulla-related symptoms of neurodevelopmental disorders, e.g., congenital central hypoventilation syndrome, Wold–Hirschhorn syndrome, Rett syndrome, and Pitt–Hopkins syndrome. Based on the genetic defects seen in these syndromes, we can use our model to predict which medullary nuclei might be affected, which can be used to quickly direct the research into these diseases to the likely affected nuclei.
Collapse
|
19
|
Mafa-dependent GABAergic activity promotes mouse neonatal apneas. Nat Commun 2022; 13:3284. [PMID: 35672398 PMCID: PMC9174494 DOI: 10.1038/s41467-022-30825-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 05/19/2022] [Indexed: 01/17/2023] Open
Abstract
While apneas are associated with multiple pathological and fatal conditions, the underlying molecular mechanisms remain elusive. We report that a mutated form of the transcription factor Mafa (Mafa4A) that prevents phosphorylation of the Mafa protein leads to an abnormally high incidence of breath holding apneas and death in newborn Mafa4A/4A mutant mice. This apneic breathing is phenocopied by restricting the mutation to central GABAergic inhibitory neurons and by activation of inhibitory Mafa neurons while reversed by inhibiting GABAergic transmission centrally. We find that Mafa activates the Gad2 promoter in vitro and that this activation is enhanced by the mutation that likely results in increased inhibitory drives onto target neurons. We also find that Mafa inhibitory neurons are absent from respiratory, sensory (primary and secondary) and pontine structures but are present in the vicinity of the hypoglossal motor nucleus including premotor neurons that innervate the geniohyoid muscle, to control upper airway patency. Altogether, our data reveal a role for Mafa phosphorylation in regulation of GABAergic drives and suggest a mechanism whereby reduced premotor drives to upper airway muscles may cause apneic breathing at birth. Apneas are associated with many pathological conditions. Here, the authors show in a mouse model that stabilization of the transcription factor Mafa in brainstem GABAergic neurons may contribute to apnea, by decreasing motor drive to muscles controlling the airways.
Collapse
|
20
|
Karthik S, Huang D, Delgado Y, Laing JJ, Peltekian L, Iverson GN, Grady F, Miller RL, McCann CM, Fritzsch B, Iskusnykh IY, Chizhikov VV, Geerling JC. Molecular ontology of the parabrachial nucleus. J Comp Neurol 2022; 530:1658-1699. [PMID: 35134251 PMCID: PMC9119955 DOI: 10.1002/cne.25307] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/07/2022]
Abstract
This article has been removed because of a technical problem in the rendering of the PDF. 11 February 2022.
Collapse
Affiliation(s)
| | - Dake Huang
- Department of NeurologyUniversity of IowaIowa CityIowaUSA
| | | | | | - Lila Peltekian
- Department of NeurologyUniversity of IowaIowa CityIowaUSA
| | | | - Fillan Grady
- Department of NeurologyUniversity of IowaIowa CityIowaUSA
| | - Rebecca L. Miller
- Department of Anatomy and NeurobiologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Corey M. McCann
- Department of Anatomy and NeurobiologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Bernd Fritzsch
- Iowa Neuroscience InstituteIowa CityIowaUSA
- Department of BiologyUniversity of IowaIowa CityIowaUSA
| | - Igor Y. Iskusnykh
- Department of Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Victor V. Chizhikov
- Department of Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Joel C. Geerling
- Department of NeurologyUniversity of IowaIowa CityIowaUSA
- Iowa Neuroscience InstituteIowa CityIowaUSA
| |
Collapse
|