1
|
Sultan MH, Zhan Q, Jin H, Jia X, Wang Y. Epigenetic modulation by oncolytic viruses: Implications for cancer therapeutic efficacy. Biochim Biophys Acta Rev Cancer 2025; 1880:189270. [PMID: 39855579 DOI: 10.1016/j.bbcan.2025.189270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Among various therapeutic agents, Oncolytic Viruses (OVs) are the most promising anticancer therapeutics because of their tumor-specific targeting and capability to mediate an antitumor immune response. In this review, we will discuss how epigenetic reprogramming of both the host and tumor can facilitate increased sensitivity of tumors to OV therapy. OVs infect tumor cells and modulate epigenetic landscapes, including DNA methylation, histone modifications, and chromatin remodeling, as well as non-coding RNA expression that consequently induces immune responses. These epigenetic changes, including hypermethylation of tumor-associated antigen genes and chromatin accessibility alterations, enhance the immunogenicity of tumors to facilitate recognition by the immune system. Here, we provide a general review addressing this question by discussing the potential benefits of combining OVs with epigenetic drugs to combat resistance and promote treatment efficacy. This information illustrates the importance of personalized OV therapy regarding epigenome in individual profiles and transitions. Still, it extends difficulty in inducing with acquisitions of viral-induced changes globally and making translatable steps by creating cancer-specific predictive treatment models.
Collapse
Affiliation(s)
- Muhammad Haris Sultan
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qi Zhan
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hao Jin
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaoyuan Jia
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yigang Wang
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
2
|
Tu T, McQuaid TJ, Jacobson IM. HBV-Induced Carcinogenesis: Mechanisms, Correlation With Viral Suppression, and Implications for Treatment. Liver Int 2025; 45:e16202. [PMID: 39720865 DOI: 10.1111/liv.16202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/29/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Chronic hepatitis B virus (HBV) infection is a common but underdiagnosed and undertreated health condition and is the leading cause of hepatocellular carcinoma (HCC) worldwide. HBV (rated a Grade 1 carcinogen by the International Agency for Research on Cancer) drives the transformation of hepatocytes in multiple ways by inducing viral DNA integrations, genetic dysregulation, chromosomal translocations, chronic inflammation, and oncogenic pathways facilitated by some HBV proteins. Importantly, these mechanisms are active throughout all phases of HBV infection. Nevertheless, most clinical guidelines for antiviral therapy recommend treatment based on a complex combination of HBV DNA levels, transaminasemia, liver histology, and demographic factors, rather than prompt treatment for all people with infection. AIMS To determine if current frameworks for antiviral treatment address the impacts of chronic HBV infection particularly preventing cancer development. MATERIALS AND METHODS We reviewed the recent data demonstrating pro-oncogenic factors acting throughout a chronic HBV infection can be inhibited by antiviral therapy. RESULTS We extensively reviewed Hepatitis B virology data and correlating clinical outcome data. From thi, we suggest that new findings support simplifying and expanding treatment initiation to reduce the incidence ofnew infections, progressive liver disease, and risk of hepatocellular carcinoma. We also consider lessons learned from other blood-borne pathogens, including the benefits of antiviral treatment in preventing transmission, reducing stigma, and reframing treatment as cancer prevention. CONCLUSION Incorporating these practice changes into treatment is likely to reduce the overall burden of chronic HBV infections and HCC. Through this, we may better achieve the World Health Organization's goal of eliminating viral hepatitis as a public health threat and minimise its impact on people's lives.
Collapse
Affiliation(s)
- Thomas Tu
- Storr Liver Centre, Westmead Clinical School, Centre for Infectious Diseases and Microbiology and Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
3
|
La Frazia S, Pauciullo S, Zulian V, Garbuglia AR. Viral Oncogenesis: Synergistic Role of Genome Integration and Persistence. Viruses 2024; 16:1965. [PMID: 39772271 PMCID: PMC11728759 DOI: 10.3390/v16121965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Persistence is a strategy used by many viruses to evade eradication by the immune system, ensuring their permanence and transmission within the host and optimizing viral fitness. During persistence, viruses can trigger various phenomena, including target organ damage, mainly due to an inflammatory state induced by infection, as well as cell proliferation and/or immortalization. In addition to immune evasion and chronic inflammation, factors contributing to viral persistence include low-level viral replication, the accumulation of viral mutants, and, most importantly, maintenance of the viral genome and reliance on viral oncoprotein production. This review focuses on the process of genome integration, which may occur at different stages of infection (e.g., HBV), during the chronic phase of infection (e.g., HPV, EBV), or as an essential part of the viral life cycle, as seen in retroviruses (HIV, HTLV-1). It also explores the close relationship between integration, persistence, and oncogenesis. Several models have been proposed to describe the genome integration process, including non-homologous recombination, looping, and microhomology models. Integration can occur either randomly or at specific genomic sites, often leading to genome destabilization. In some cases, integration results in the loss of genomic regions or impairs the regulation of oncogene and/or oncosuppressor expression, contributing to tumor development.
Collapse
Affiliation(s)
- Simone La Frazia
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Silvia Pauciullo
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.); (A.R.G.)
| | - Verdiana Zulian
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.); (A.R.G.)
| | - Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.); (A.R.G.)
| |
Collapse
|
4
|
Zoulim F, Chen PJ, Dandri M, Kennedy PT, Seeger C. Hepatitis B virus DNA integration: Implications for diagnostics, therapy, and outcome. J Hepatol 2024; 81:1087-1099. [PMID: 38971531 DOI: 10.1016/j.jhep.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
Hepatitis B virus (HBV) DNA integration - originally recognised as a non-functional byproduct of the HBV life cycle - has now been accepted as a significant contributor to HBV pathogenesis and hepatitis D virus (HDV) persistence. Integrated HBV DNA is derived from linear genomic DNA present in viral particles or produced from aberrantly processed relaxed circular genomic DNA following an infection, and can drive expression of hepatitis B surface antigen (HBsAg) and HBx. DNA integration events accumulate over the course of viral infection, ranging from a few percent during early phases to nearly 100 percent of infected cells after prolonged chronic infections. HBV DNA integration events have primarily been investigated in the context of hepatocellular carcinoma development as they can activate known oncogenes and other growth promoting genes, cause chromosomal instability and, presumably, induce epigenetic alterations, promoting tumour growth. More recent evidence suggests that HBsAg expression from integrated DNA might contribute to HBV pathogenesis by attenuating the immune response. Integrated DNA provides a source for envelope proteins required for HDV replication and hence represents a means for HDV persistence. Because integrated DNA is responsible for persistence of HBsAg in the absence of viral replication it impacts established criteria for the resolution of HBV infection, which rely on HBsAg as a diagnostic marker. Integrated HBV DNA has been useful in assessing the turnover of infected hepatocytes which occurs during all phases of chronic hepatitis B including the initial phase of infection historically termed immune tolerant. HBV DNA integration has also been shown to impact the development of novel therapies targeting viral RNAs.
Collapse
Affiliation(s)
- Fabien Zoulim
- Université Claude Bernard Lyon 1, Hospices Civils de Lyon, INSERM, Lyon Hepatology Institute, Lyon, France.
| | - Pei-Jer Chen
- Hepatitis Research Center and Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Maura Dandri
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Partner Site, Germany
| | - Patrick T Kennedy
- Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | | |
Collapse
|
5
|
Mak L, Yee LJ, Wong RJ, Ramers CB, Frenette C, Hsu Y. Hepatocellular carcinoma among patients with chronic hepatitis B in the indeterminate phase. J Viral Hepat 2024; 31 Suppl 2:27-35. [PMID: 38717914 PMCID: PMC11619554 DOI: 10.1111/jvh.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 12/06/2024]
Abstract
Hepatitis B virus (HBV) infection is a dynamic disease where patients progress through several stages defined by HBV e-antigen (HBeAg) status, HBV-DNA levels and transaminase elevations, with antiviral therapy indicated only in specific stages. However, some patients cannot be classified into one of the stages and are said to fall into an 'indeterminate phase' or 'grey zone'. Exact definitions of the indeterminate phase vary from guideline to guideline as a result of different cut-off values for biomarker measurements. Data suggest that as many as 50% of HBV patients may be in an indeterminate phase and may not rapidly transition out of this phase. Clinical data that suggest these patients are at increased risk of hepatocellular carcinoma (HCC) are complemented by molecular evidence of integrations of HBV-DNA into the host genome, chromosomal translocations and immune activation despite liver enzymes that may suggest lack of inflammation. Antiviral therapy reduces these hepatocarcinogenic mechanisms and is reflected in a reduction of fibrosis and HCC risk. We review key data on patients in the indeterminate phase, with emphasis on HCC as an outcome. We take a holistic approach and link new biological data with clinical observations as well as examine the potential role of antiviral therapy in reducing HCC risk among patients in the indeterminate phase. With the availability of safe and effective oral antivirals, consideration must be given as to how much residual risk of HCC should be tolerated among patients in the indeterminate phase.
Collapse
Affiliation(s)
- Lung‐Yi Mak
- Department of Medicine, Queen Mary HospitalThe University of Hong KongHong KongSpecial Administrative RegionChina
| | | | - Robert J. Wong
- Division of Gastroenterology and HepatologyStanford University School of MedicinePalo AltoCaliforniaUSA
- Division of Gastroenterology and HepatologyVeterans Affairs Palo Alto Health Care SystemPalo AltoCaliforniaUSA
| | - Christian B. Ramers
- Laura Rodriguez Research InstituteFamily Health Centers of San DiegoSan DiegoCaliforniaUSA
- University of CaliforniaSan Diego School of MedicineLa JollaCaliforniaUSA
| | | | - Yao‐Chun Hsu
- Division of Gastroenterology and HepatologyE‐Da HospitalKaohsiungTaiwan
- School of Medicine, College of MedicineI‐Shou UniversityKaohsiungTaiwan
- Institute of Biomedical InformaticsNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Division of Gastroenterology and HepatologyFu‐Jen Catholic University HospitalNew TaipeiTaiwan
| |
Collapse
|
6
|
Hung JH, Teng CF, Hung HC, Chen YL, Chen PJ, Ho CL, Chuang CH, Huang W. Genomic instabilities in hepatocellular carcinoma: biomarkers and application in immunotherapies. Ann Hepatol 2024; 29:101546. [PMID: 39147130 DOI: 10.1016/j.aohep.2024.101546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/16/2024] [Accepted: 06/18/2024] [Indexed: 08/17/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers. For patients with advanced HCC, liver function decompensation often occurs, which leads to poor tolerance to chemotherapies and other aggressive treatments. Therefore, it remains critical to develop effective therapeutic strategies for HCC. Etiological factors for HCC are complex and multifaceted, including hepatitis virus infection, alcohol, drug abuse, chronic metabolic abnormalities, and others. Thus, HCC has been categorized as a "genomically unstable" cancer due to the typical manifestation of chromosome breakage and aneuploidy, and oxidative DNA damage. In recent years, immunotherapy has provided a new option for cancer treatments, and the degree of genomic instability positively correlates with immunotherapy efficacies. This article reviews the endogenous and exogenous causes that affect the genomic stability of liver cells; it also updates the current biomarkers and their detection methods for genomic instabilities and relevant applications in cancer immunotherapies. Including genomic instability biomarkers in consideration of cancer treatment options shall increase the patients' well-being.
Collapse
Affiliation(s)
- Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Chiao-Feng Teng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan; Program for Cancer Biology and Drug Development, China Medical University, Taichung, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Hsu-Chin Hung
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Lin Chen
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Pin-Jun Chen
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Liang Ho
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Hsiang Chuang
- Department of Life Science, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Wenya Huang
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Diseases and Signal Transduction, National Cheng Kung University, Tainan, Taiwan..
| |
Collapse
|
7
|
Pan DZ, Soulette CM, Aggarwal A, Han D, van Buuren N, Wu P, Feierbach B, Lin JT, Tseng CH, Chen CY, Downie B, Mo H, Diehl L, Li L, Fletcher SP, Balsitis S, Ramirez R, Suri V, Hsu YC. Effects of tenofovir disoproxil fumarate on intrahepatic viral burden and liver immune microenvironment in patients with chronic hepatitis B. Gut 2024:gutjnl-2024-332526. [PMID: 39384203 DOI: 10.1136/gutjnl-2024-332526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/20/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND The impact of nucleos(t)ide analogues on intrahepatic viral burden and immune microenvironment in patients with chronic hepatitis B (CHB) is not clear. OBJECTIVE We aimed to characterise the effects of tenofovir disoproxil fumarate (TDF) on intrahepatic viral burden and the liver immune microenvironment in patients with CHB. DESIGN Core liver biopsies were collected at baseline and year 3 from patients with CHB with minimally raised serum alanine aminotransferase in a double-blind placebo-controlled trial (NCT01522625). Paired biopsies were analysed by RNA-sequencing (n=119 pairs), a custom multiplex immunofluorescence assay (n=30 pairs), and HBV-targeted long-read DNA sequencing (n=49 pairs). RESULTS Both non-integrated and integrated HBV DNA were present in all patients at baseline, with >65% having interchromosomal translocations. Treatment significantly reduced the frequency of HBV core+ hepatocytes and intrahepatic (integrated and non-integrated) HBV DNA, but had no effect on HBsAg+ hepatocytes. Clonally expanded integrations were enriched for HBsAg coding regions and showed dysregulation of nearby genes. At baseline, there was significant enrichment of intrahepatic CD8+ T cell proximity to HBV core+ hepatocytes, but not to HBsAg+ cells. The densities of T cells and B cells were significantly reduced by TDF. Transcriptomic analyses found TDF induced widespread downregulation of immune-related genes including inhibitory and regulatory genes. CONCLUSION TDF significantly reduced intrahepatic integrated and non-integrated HBV DNA, exerting disparate effects on HBV core+ and HBsAg+ cells and on different immune cell subsets. Our data suggest there may be differential cytotoxic T cell-mediated killing of HBV core+ versus HBsAg+ hepatocytes, providing insights for HBV cure strategies.
Collapse
Affiliation(s)
- David Z Pan
- Gilead Sciences Inc, Foster City, California, USA
| | | | | | - Dong Han
- Gilead Sciences Inc, Foster City, California, USA
| | | | - Peiwen Wu
- Gilead Sciences Inc, Foster City, California, USA
| | | | - Jaw-Town Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Cheng-Hao Tseng
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chi-Yi Chen
- Department of Internal Medicine, Chiayi Christian Hospital, Chia-Yi, Taiwan
| | - Bryan Downie
- Gilead Sciences Inc, Foster City, California, USA
| | - Hongmei Mo
- Gilead Sciences Inc, Foster City, California, USA
| | - Lauri Diehl
- Gilead Sciences Inc, Foster City, California, USA
| | - Li Li
- Gilead Sciences Inc, Foster City, California, USA
| | | | | | | | - Vithika Suri
- Gilead Sciences Inc, Foster City, California, USA
| | - Yao-Chun Hsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, Colleage of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Li W, Wang S, Jin Y, Mu X, Guo Z, Qiao S, Jiang S, Liu Q, Cui X. The role of the hepatitis B virus genome and its integration in the hepatocellular carcinoma. Front Microbiol 2024; 15:1469016. [PMID: 39309526 PMCID: PMC11412822 DOI: 10.3389/fmicb.2024.1469016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The integration of Hepatitis B Virus (HBV) is now known to be closely associated with the occurrence of liver cancer and can impact the functionality of liver cells through multiple dimensions. However, despite the detailed understanding of the characteristics of HBV integration and the mechanisms involved, the subsequent effects on cellular function are still poorly understood in current research. This study first systematically discusses the relationship between HBV integration and the occurrence of liver cancer, and then analyzes the status of the viral genome produced by HBV replication, highlighting the close relationship and structure between double-stranded linear (DSL)-HBV DNA and the occurrence of viral integration. The integration of DSL-HBV DNA leads to a certain preference for HBV integration itself. Additionally, exploration of HBV integration hotspots reveals obvious hotspot areas of HBV integration on the human genome. Virus integration in these hotspot areas is often associated with the occurrence and development of liver cancer, and it has been determined that HBV integration can promote the occurrence of cancer by inducing genome instability and other aspects. Furthermore, a comprehensive study of viral integration explored the mechanisms of viral integration and the internal integration mode, discovering that HBV integration may form extrachromosomal DNA (ecDNA), which exists outside the chromosome and can integrate into the chromosome under certain conditions. The prospect of HBV integration as a biomarker was also probed, with the expectation that combining HBV integration research with CRISPR technology will vigorously promote the progress of HBV integration research in the future. In summary, exploring the characteristics and mechanisms in HBV integration holds significant importance for an in-depth comprehension of viral integration.
Collapse
Affiliation(s)
- Weiyang Li
- Jining Medical University, Jining, China
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Suhao Wang
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Yani Jin
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Xiao Mu
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Zhenzhen Guo
- Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Sen Qiao
- Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Shulong Jiang
- Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Qingbin Liu
- Jining First People's Hospital, Shandong First Medical University, Jining, China
- Clinical Medical Laboratory Center, Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Xiaofang Cui
- Jining Medical University, Jining, China
- School of Biological Science, Jining Medical University, Rizhao, China
| |
Collapse
|
9
|
Kasperski A, Heng HH. The Spiral Model of Evolution: Stable Life Forms of Organisms and Unstable Life Forms of Cancers. Int J Mol Sci 2024; 25:9163. [PMID: 39273111 PMCID: PMC11395208 DOI: 10.3390/ijms25179163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
If one must prioritize among the vast array of contributing factors to cancer evolution, environmental-stress-mediated chromosome instability (CIN) should easily surpass individual gene mutations. CIN leads to the emergence of genomically unstable life forms, enabling them to grow dominantly within the stable life form of the host. In contrast, stochastic gene mutations play a role in aiding the growth of the cancer population, with their importance depending on the initial emergence of the new system. Furthermore, many specific gene mutations among the many available can perform this function, decreasing the clinical value of any specific gene mutation. Since these unstable life forms can respond to treatment differently than stable ones, cancer often escapes from drug treatment by forming new systems, which leads to problems during the treatment for patients. To understand how diverse factors impact CIN-mediated macroevolution and genome integrity-ensured microevolution, the concept of two-phased cancer evolution is used to reconcile some major characteristics of cancer, such as bioenergetic, unicellular, and multicellular evolution. Specifically, the spiral of life function model is proposed, which integrates major historical evolutionary innovations and conservation with information management. Unlike normal organismal evolution in the microevolutionary phase, where a given species occupies a specific location within the spiral, cancer populations are highly heterogenous at multiple levels, including epigenetic levels. Individual cells occupy different levels and positions within the spiral, leading to supersystems of mixed cellular populations that exhibit both macro and microevolution. This analysis, utilizing karyotype to define the genetic networks of the cellular system and CIN to determine the instability of the system, as well as considering gene mutation and epigenetics as modifiers of the system for information amplification and usage, explores the high evolutionary potential of cancer. It provides a new, unified understanding of cancer as a supersystem, encouraging efforts to leverage the dynamics of CIN to develop improved treatment options. Moreover, it offers a historically contingent model for organismal evolution that reconciles the roles of both evolutionary innovation and conservation through macroevolution and microevolution, respectively.
Collapse
Affiliation(s)
- Andrzej Kasperski
- Department of Biotechnology, Laboratory of Bioinformatics and Control of Bioprocesses, Institute of Biological Sciences, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland
| | - Henry H Heng
- Center for Molecular Medicine and Genetics, Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
10
|
Zhang M, Chen H, Liu H, Tang H. The impact of integrated hepatitis B virus DNA on oncogenesis and antiviral therapy. Biomark Res 2024; 12:84. [PMID: 39148134 PMCID: PMC11328401 DOI: 10.1186/s40364-024-00611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/29/2024] [Indexed: 08/17/2024] Open
Abstract
The global burden of hepatitis B virus (HBV) infection remains high, with chronic hepatitis B (CHB) patients facing a significantly increased risk of developing cirrhosis and hepatocellular carcinoma (HCC). The ultimate objective of antiviral therapy is to achieve a sterilizing cure for HBV. This necessitates the elimination of intrahepatic covalently closed circular DNA (cccDNA) and the complete eradication of integrated HBV DNA. This review aims to summarize the oncogenetic role of HBV integration and the significance of clearing HBV integration in sterilizing cure. It specifically focuses on the molecular mechanisms through which HBV integration leads to HCC, including modulation of the expression of proto-oncogenes and tumor suppressor genes, induction of chromosomal instability, and expression of truncated mutant HBV proteins. The review also highlights the impact of antiviral therapy in reducing HBV integration and preventing HBV-related HCC. Additionally, the review offers insights into future objectives for the treatment of CHB. Current strategies for HBV DNA integration inhibition and elimination include mainly antiviral therapies, RNA interference and gene editing technologies. Overall, HBV integration deserves further investigation and can potentially serve as a biomarker for CHB and HBV-related HCC.
Collapse
Affiliation(s)
- Mingming Zhang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Huan Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Puvvula PK, Johnson A, Bernal-Mizrachi L. Unveiling retrotransposon-derived DNA zip code for myeloma cell internalization. Oncoscience 2024; 11:58-64. [PMID: 39015604 PMCID: PMC11251427 DOI: 10.18632/oncoscience.606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Indexed: 07/18/2024] Open
Affiliation(s)
| | - Anthony Johnson
- Kodikaz Therapeutic Solutions, (INC), New York, NY 10014, USA
| | - Leon Bernal-Mizrachi
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
12
|
Qian Z, Liang J, Huang R, Song W, Ying J, Bi X, Zhao J, Shi Z, Liu W, Liu J, Li Z, Zhou J, Huang Z, Zhang Y, Zhao D, Wu J, Wang L, Chen X, Mao R, Zhou Y, Guo L, Hu H, Ge D, Li X, Luo Z, Yao J, Li T, Chen Q, Wang B, Wei Z, Chen K, Qu C, Cai J, Jiao Y, Bao L, Zhao H. HBV integrations reshaping genomic structures promote hepatocellular carcinoma. Gut 2024; 73:1169-1182. [PMID: 38395437 PMCID: PMC11187386 DOI: 10.1136/gutjnl-2023-330414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVE Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), mostly characterised by HBV integrations, is prevalent worldwide. Previous HBV studies mainly focused on a few hotspot integrations. However, the oncogenic role of the other HBV integrations remains unclear. This study aimed to elucidate HBV integration-induced tumourigenesis further. DESIGN Here, we illuminated the genomic structures encompassing HBV integrations in 124 HCCs across ages using whole genome sequencing and Nanopore long reads. We classified a repertoire of integration patterns featured by complex genomic rearrangement. We also conducted a clustered regularly interspaced short palindromic repeat (CRISPR)-based gain-of-function genetic screen in mouse hepatocytes. We individually activated each candidate gene in the mouse model to uncover HBV integration-mediated oncogenic aberration that elicits tumourigenesis in mice. RESULTS These HBV-mediated rearrangements are significantly enriched in a bridge-fusion-bridge pattern and interchromosomal translocations, and frequently led to a wide range of aberrations including driver copy number variations in chr 4q, 5p (TERT), 6q, 8p, 16q, 9p (CDKN2A/B), 17p (TP53) and 13q (RB1), and particularly, ultra-early amplifications in chr8q. Integrated HBV frequently contains complex structures correlated with the translocation distance. Paired breakpoints within each integration event usually exhibit different microhomology, likely mediated by different DNA repair mechanisms. HBV-mediated rearrangements significantly correlated with young age, higher HBV DNA level and TP53 mutations but were less prevalent in the patients subjected to prior antiviral therapies. Finally, we recapitulated the TONSL and TMEM65 amplification in chr8q led by HBV integration using CRISPR/Cas9 editing and demonstrated their tumourigenic potentials. CONCLUSION HBV integrations extensively reshape genomic structures and promote hepatocarcinogenesis (graphical abstract), which may occur early in a patient's life.
Collapse
Affiliation(s)
- Zhaoyang Qian
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Junbo Liang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Rong Huang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Bi
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianjun Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenyu Shi
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenjie Liu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianmei Liu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiyu Li
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianguo Zhou
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Huang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yefan Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongbing Zhao
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianxiong Wu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Chen
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Mao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanchi Zhou
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Guo
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hanjie Hu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dazhuang Ge
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingchen Li
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwen Luo
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinjie Yao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tengyan Li
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qichen Chen
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingzhi Wang
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhewen Wei
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun Chen
- Department of Immunology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunfeng Qu
- Department of Immunology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Cai
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuchen Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Bao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hong Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Yu X, Gong Q, Yu D, Chen Y, Jing Y, Zoulim F, Zhang X. Spatial transcriptomics reveals a low extent of transcriptionally active hepatitis B virus integration in patients with HBsAg loss. Gut 2024; 73:797-809. [PMID: 37968095 PMCID: PMC11041573 DOI: 10.1136/gutjnl-2023-330577] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023]
Abstract
OBJECTIVE Hepatitis B virus (HBV) can integrate into the chromosomes of infected hepatocytes, contributing to the production of hepatitis B surface antigen (HBsAg) and to hepatocarcinogenesis. In this study, we aimed to explore whether transcriptionally active HBV integration events spread throughout the liver tissue in different phases of chronic HBV infection, especially in patients with HBsAg loss. DESIGN We constructed high-resolution spatial transcriptomes of liver biopsies containing 13 059 tissue spots from 18 patients with chronic HBV infection to analyse the occurrence and relative distribution of transcriptionally active viral integration events. Immunohistochemistry was performed to evaluate the expression of HBsAg and HBV core antigen. Intrahepatic covalently closed circular DNA (cccDNA) levels were quantified by real-time qPCR. RESULTS Spatial transcriptome sequencing identified the presence of 13 154 virus-host chimeric reads in 7.86% (1026 of 13 059) of liver tissue spots in all patients, including three patients with HBsAg loss. These HBV integration sites were randomly distributed on chromosomes and can localise in host genes involved in hepatocarcinogenesis, such as ALB, CLU and APOB. Patients who were receiving or had received antiviral treatment had a significantly lower percentage of viral integration-containing spots and significantly fewer chimeric reads than treatment-naïve patients. Intrahepatic cccDNA levels correlated well with viral integration events. CONCLUSION Transcriptionally active HBV integration occurred in chronically HBV-infected patients at different phases, including in patients with HBsAg loss. Antiviral treatment was associated with a decreased number and extent of transcriptionally active viral integrations, implying that early treatment intervention may further reduce the number of viral integration events.
Collapse
Affiliation(s)
- Xiaoqi Yu
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Qiming Gong
- Department of Infectious Diseases, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Demin Yu
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Yongyan Chen
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Ying Jing
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, China
| | - Fabien Zoulim
- INSERM U1052- Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, UMR_S1052, CRCL, Lyon, France
- Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Xinxin Zhang
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| |
Collapse
|
14
|
Zhang Y, Ji L, Wen H, Chu Y, Xing W, Tian G, Yao Y, Yang J. Pan-cancer analyses reveal the stratification of patient prognosis by viral composition in tumor tissues. Comput Biol Med 2023; 167:107586. [PMID: 37907029 DOI: 10.1016/j.compbiomed.2023.107586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/20/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023]
Abstract
The associations between cancer and bacteria/fungi have been extensively studied, but the implications of cancer-associated viruses have not been thoroughly examined. In this study, we comprehensively characterized the cancer virome of tissue samples across 31 cancer types, as well as blood samples from 23 cancer types. Our findings demonstrated the presence of viral DNA at low abundances in both tissue and blood across major human cancers, with significant differences in viral community composition observed among various cancer types. Furthermore, Cox regression analyses conducted on four cancers, including Head and Neck squamous cell carcinoma (HNSC), Kidney renal clear cell carcinoma (KIRC), Stomach adenocarcinoma (STAD), and Uterine Corpus Endometrial Carcinoma (UCEC), revealed strong correlation between viral composition/abundance in tissues and patient survival. Additionally, we identified virus-associated prognostic signatures (VAPS) for these four cancers, and discerned differences in the interplay between VAPS and dominant bacteria in tissues among patients with varying survival risks. Notably, clinically relevant analyses revealed prognostic capacities of the VAPS in these four cancers. Taken together, our study provides novel insights into the role of viruses in tissue in the prognosis of multiple cancers and offers guidance on the use of tissue viruses to stratify prognosis for patients with cancer.
Collapse
Affiliation(s)
- Yumeng Zhang
- School of Mathematics and Statistics, Hainan Normal University, Haikou, 571158, China; Geneis Beijing Co., Ltd., Beijing, 100102, China
| | - Lei Ji
- Geneis Beijing Co., Ltd., Beijing, 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, 266000, China
| | - Huakai Wen
- School of Mathematics and Statistics, Hainan Normal University, Haikou, 571158, China
| | - Yuwen Chu
- Geneis Beijing Co., Ltd., Beijing, 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, 266000, China; School of Electrical & Information Engineering, Anhui University of Technology, Anhui, 243002, China
| | - Weipeng Xing
- Geneis Beijing Co., Ltd., Beijing, 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, 266000, China; School of Electrical & Information Engineering, Anhui University of Technology, Anhui, 243002, China
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing, 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, 266000, China
| | - Yuhua Yao
- School of Mathematics and Statistics, Hainan Normal University, Haikou, 571158, China; Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China; Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China.
| | - Jialiang Yang
- Geneis Beijing Co., Ltd., Beijing, 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, 266000, China.
| |
Collapse
|
15
|
Wu YJ, Wang J, Zhang P, Yuan LX, Ju LL, Wang HX, Chen L, Cao YL, Cai WH, Ni Y, Li M. PIWIL1 interacting RNA piR-017724 inhibits proliferation, invasion, and migration, and inhibits the development of HCC by silencing PLIN3. Front Oncol 2023; 13:1203821. [PMID: 37503320 PMCID: PMC10369847 DOI: 10.3389/fonc.2023.1203821] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) accounts for the majority of primary liver cancers. Worldwide, liver cancer is the fourth most common cause of cancer-related death. Recent studies have found that PIWI-interacting RNAs (piRNAs) participate in the occurrence and development of various tumors and are closely related to the growth, invasion, metastasis and prognosis of malignant tumors. Studies on the role and functional mechanism of piRNAs in HCC development and progression are limited. Methods Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) were used to detect the expression of piR-017724 in both HCC tissues and cells. Based on the clinical data of HCC patients, the clinical and prognostic value of piR-017724 was further analyzed. Then, targeted silencing and overexpressing of piR-017724 in HCC cells was further used to examine the biological functions of piR-017724. In addition, the downstream target protein of piR-017724 was predicted and validated through high-throughput sequencing and public databases. Results The piR-017724 was significantly downregulated in HCC tissues and cells, and the downregulation of piR-017724 was associated with tumor stage and poor prognosis in HCC. The piR-017724 inhibitor promoted the proliferation, migration and invasion of HCC cells, while the piR-017724 mimic had the opposite effect. However, the piR-017724 did not affect apoptosis of HCC cells. High-throughput sequencing and qRT-PCR confirmed a reciprocal relationship between piR-017724 and PLIN3. Therefore, we speculate that piR-017724 may inhibit the development and progression of HCC by affecting the downstream protein PLIN3. Conclusions Our study shows that piR-017724, which is lowly expressed in HCC, inhibits the proliferation, migration and invasion of HCC cells and may affect the development of hepatocellular liver cancer through PLIN3, which provides new insights into the clinical application of piR-017724 in the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yi-Jing Wu
- Medical School of Nantong University, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Jie Wang
- Medical School of Nantong University, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Peng Zhang
- Nantong Institute of Liver Disease, Department of Hepatobiliary Surgery, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Liu-Xia Yuan
- Nantong Institute of Liver Disease, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Lin-Ling Ju
- Nantong Institute of Liver Disease, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Hui-Xuan Wang
- Nantong Institute of Liver Disease, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Lin Chen
- Nantong Institute of Liver Disease, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Ya-Li Cao
- Preventive Health Department, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Wei-Hua Cai
- Department of Hepatobiliary Surgery, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Yi Ni
- Thyroid and Breast Surgery, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Min Li
- Integrating Traditional Chinese Medicine with Hepatology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| |
Collapse
|
16
|
Kojima R, Nakamoto S, Kogure T, Ma Y, Ogawa K, Iwanaga T, Qiang N, Ao J, Nakagawa R, Muroyama R, Nakamura M, Chiba T, Kato J, Kato N. Re-analysis of hepatitis B virus integration sites reveals potential new loci associated with oncogenesis in hepatocellular carcinoma. World J Virol 2023; 12:209-220. [PMID: 37396703 PMCID: PMC10311580 DOI: 10.5501/wjv.v12.i3.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/12/2023] [Accepted: 04/12/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is a major cause of hepatocellular carcinoma (HCC). HBV DNA can get integrated into the hepatocyte genome to promote carcinogenesis. However, the precise mechanism by which the integrated HBV genome promotes HCC has not been elucidated. AIM To analyze the features of HBV integration in HCC using a new reference database and integration detection method. METHODS Published data, consisting of 426 Liver tumor samples and 426 paired adjacent non-tumor samples, were re-analyzed to identify the integration sites. Genome Reference Consortium Human Build 38 (GRCh38) and Telomere-to-Telomere Consortium CHM13 (T2T-CHM13 (v2.0)) were used as the human reference genomes. In contrast, human genome 19 (hg19) was used in the original study. In addition, GRIDSS VIRUSBreakend was used to detect HBV integration sites, whereas high-throughput viral integration detection (HIVID) was applied in the original study (HIVID-hg19). RESULTS A total of 5361 integration sites were detected using T2T-CHM13. In the tumor samples, integration hotspots in the cancer driver genes, such as TERT and KMT2B, were consistent with those in the original study. GRIDSS VIRUSBreakend detected integrations in more samples than by HIVID-hg19. Enrichment of integration was observed at chromosome 11q13.3, including the CCND1 pro-moter, in tumor samples. Recurrent integration sites were observed in mitochondrial genes. CONCLUSION GRIDSS VIRUSBreakend using T2T-CHM13 is accurate and sensitive in detecting HBV integration. Re-analysis provides new insights into the regions of HBV integration and their potential roles in HCC development.
Collapse
Affiliation(s)
- Ryuta Kojima
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Shingo Nakamoto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tadayoshi Kogure
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yaojia Ma
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Keita Ogawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Terunao Iwanaga
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Na Qiang
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Junjie Ao
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Ryo Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Ryosuke Muroyama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Masato Nakamura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Jun Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
17
|
Cui X, Li Y, Xu H, Sun Y, Jiang S, Li W. Characteristics of Hepatitis B virus integration and mechanism of inducing chromosome translocation. NPJ Genom Med 2023; 8:11. [PMID: 37268616 DOI: 10.1038/s41525-023-00355-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
Hepatitis B virus (HBV) integration is closely associated with the onset and progression of tumors. This study utilized the DNA of 27 liver cancer samples for high-throughput Viral Integration Detection (HIVID), with the overarching goal of detecting HBV integration. KEGG pathway analysis of breakpoints was performed using the ClusterProfiler software. The breakpoints were annotated using the latest ANNOVAR software. We identified 775 integration sites and detected two new hotspot genes for virus integration, N4BP1 and WASHP, along with 331 new genes. Furthermore, we conducted a comprehensive analysis to determine the critical impact pathways of virus integration by combining our findings with the results of three major global studies on HBV integration. Meanwhile, we found common characteristics of virus integration hotspots among different ethnic groups. To specify the direct impact of virus integration on genomic instability, we explained the causes of inversion and the frequent occurrence of translocation due to HBV integration. This study detected a series of hotspot integration genes and specified common characteristics of critical hotspot integration genes. These hotspot genes are universal across different ethnic groups, providing an effective target for better research on the pathogenic mechanism. We also demonstrated more comprehensive key pathways affected by HBV integration and elucidated the mechanism for inversion and frequent translocation events due to virus integration. Apart from the great significance of the rule of HBV integration, the current study also provides valuable insights into the mechanism of virus integration.
Collapse
Affiliation(s)
- Xiaofang Cui
- Jining Medical University, Jining, Shandong, China
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Yiyan Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hanshi Xu
- Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yuhui Sun
- BGI-Shenzhen, 518083, Shenzhen, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Shandong First Medical University, Jining, China.
| | - Weiyang Li
- Jining Medical University, Jining, Shandong, China.
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China.
| |
Collapse
|
18
|
MacLennan SA, Marra MA. Oncogenic Viruses and the Epigenome: How Viruses Hijack Epigenetic Mechanisms to Drive Cancer. Int J Mol Sci 2023; 24:ijms24119543. [PMID: 37298494 DOI: 10.3390/ijms24119543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Globally, viral infections substantially contribute to cancer development. Oncogenic viruses are taxonomically heterogeneous and drive cancers using diverse strategies, including epigenomic dysregulation. Here, we discuss how oncogenic viruses disrupt epigenetic homeostasis to drive cancer and focus on how virally mediated dysregulation of host and viral epigenomes impacts the hallmarks of cancer. To illustrate the relationship between epigenetics and viral life cycles, we describe how epigenetic changes facilitate the human papillomavirus (HPV) life cycle and how changes to this process can spur malignancy. We also highlight the clinical impact of virally mediated epigenetic changes on cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Signe A MacLennan
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Marco A Marra
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| |
Collapse
|
19
|
Comaills V, Castellano-Pozo M. Chromosomal Instability in Genome Evolution: From Cancer to Macroevolution. BIOLOGY 2023; 12:671. [PMID: 37237485 PMCID: PMC10215859 DOI: 10.3390/biology12050671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
The integrity of the genome is crucial for the survival of all living organisms. However, genomes need to adapt to survive certain pressures, and for this purpose use several mechanisms to diversify. Chromosomal instability (CIN) is one of the main mechanisms leading to the creation of genomic heterogeneity by altering the number of chromosomes and changing their structures. In this review, we will discuss the different chromosomal patterns and changes observed in speciation, in evolutional biology as well as during tumor progression. By nature, the human genome shows an induction of diversity during gametogenesis but as well during tumorigenesis that can conclude in drastic changes such as the whole genome doubling to more discrete changes as the complex chromosomal rearrangement chromothripsis. More importantly, changes observed during speciation are strikingly similar to the genomic evolution observed during tumor progression and resistance to therapy. The different origins of CIN will be treated as the importance of double-strand breaks (DSBs) or the consequences of micronuclei. We will also explain the mechanisms behind the controlled DSBs, and recombination of homologous chromosomes observed during meiosis, to explain how errors lead to similar patterns observed during tumorigenesis. Then, we will also list several diseases associated with CIN, resulting in fertility issues, miscarriage, rare genetic diseases, and cancer. Understanding better chromosomal instability as a whole is primordial for the understanding of mechanisms leading to tumor progression.
Collapse
Affiliation(s)
- Valentine Comaills
- Andalusian Center for Molecular Biology and Regenerative Medicine—CABIMER, University of Pablo de Olavide—University of Seville—CSIC, Junta de Andalucía, 41092 Seville, Spain
| | - Maikel Castellano-Pozo
- Andalusian Center for Molecular Biology and Regenerative Medicine—CABIMER, University of Pablo de Olavide—University of Seville—CSIC, Junta de Andalucía, 41092 Seville, Spain
- Genetic Department, Faculty of Biology, University of Seville, 41080 Seville, Spain
| |
Collapse
|
20
|
Nevola R, Beccia D, Rosato V, Ruocco R, Mastrocinque D, Villani A, Perillo P, Imbriani S, Delle Femine A, Criscuolo L, Alfano M, La Montagna M, Russo A, Marfella R, Cozzolino D, Sasso FC, Rinaldi L, Marrone A, Adinolfi LE, Claar E. HBV Infection and Host Interactions: The Role in Viral Persistence and Oncogenesis. Int J Mol Sci 2023; 24:7651. [PMID: 37108816 PMCID: PMC10145402 DOI: 10.3390/ijms24087651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatitis B virus (HBV) is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Despite the advent of vaccines and potent antiviral agents able to suppress viral replication, recovery from chronic HBV infection is still an extremely difficult goal to achieve. Complex interactions between virus and host are responsible for HBV persistence and the risk of oncogenesis. Through multiple pathways, HBV is able to silence both innate and adaptive immunological responses and become out of control. Furthermore, the integration of the viral genome into that of the host and the production of covalently closed circular DNA (cccDNA) represent reservoirs of viral persistence and account for the difficult eradication of the infection. An adequate knowledge of the virus-host interaction mechanisms responsible for viral persistence and the risk of hepatocarcinogenesis is necessary for the development of functional cures for chronic HBV infection. The purpose of this review is, therefore, to analyze how interactions between HBV and host concur in the mechanisms of infection, persistence, and oncogenesis and what are the implications and the therapeutic perspectives that follow.
Collapse
Affiliation(s)
- Riccardo Nevola
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Domenico Beccia
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Valerio Rosato
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| | - Rachele Ruocco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Davide Mastrocinque
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| | - Angela Villani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Pasquale Perillo
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Augusto Delle Femine
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Livio Criscuolo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Marco La Montagna
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Antonio Russo
- Department of Mental Health and Public Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Domenico Cozzolino
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Aldo Marrone
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Luigi Elio Adinolfi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Ernesto Claar
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| |
Collapse
|
21
|
Svicher V, Salpini R, D’Anna S, Piermatteo L, Iannetta M, Malagnino V, Sarmati L. New insights into hepatitis B virus lymphotropism: Implications for HBV-related lymphomagenesis. Front Oncol 2023; 13:1143258. [PMID: 37007163 PMCID: PMC10050604 DOI: 10.3389/fonc.2023.1143258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
HBV is one of the most widespread hepatitis viruses worldwide, and a correlation between chronic infection and liver cancer has been clearly reported. The carcinogenic capacity of HBV has been reported for other solid tumors, but the largest number of studies focus on its possible lymphomagenic role. To update the correlation between HBV infection and the occurrence of lymphatic or hematologic malignancies, the most recent evidence from epidemiological and in vitro studies has been reported. In the context of hematological malignancies, the strongest epidemiological correlations are with the emergence of lymphomas, in particular non-Hodgkin's lymphoma (NHL) (HR 2.10 [95% CI 1.34-3.31], p=0.001) and, more specifically, all NHL B subtypes (HR 2.14 [95% CI 1.61-2.07], p<0.001). Questionable and unconfirmed associations are reported between HBV and NHL T subtypes (HR 1.11 [95% CI 0.88-1.40], p=0.40) and leukemia. The presence of HBV DNA in peripheral blood mononuclear cells has been reported by numerous studies, and its integration in the exonic regions of some genes is considered a possible source of carcinogenesis. Some in vitro studies have shown the ability of HBV to infect, albeit not productively, both lymphomonocytes and bone marrow stem cells, whose differentiation is halted by the virus. As demonstrated in animal models, HBV infection of blood cells and the persistence of HBV DNA in peripheral lymphomonocytes and bone marrow stem cells suggests that these cellular compartments may act as HBV reservoirs, allowing replication to resume later in the immunocompromised patients (such as liver transplant recipients) or in subjects discontinuing effective antiviral therapy. The pathogenetic mechanisms at the basis of HBV carcinogenic potential are not known, and more in-depth studies are needed, considering that a clear correlation between chronic HBV infection and hematological malignancies could benefit both antiviral drugs and vaccines.
Collapse
Affiliation(s)
- Valentina Svicher
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Romina Salpini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Stefano D’Anna
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Lorenzo Piermatteo
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Marco Iannetta
- Clinical Infectious Diseases, Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Vincenzo Malagnino
- Clinical Infectious Diseases, Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Loredana Sarmati
- Clinical Infectious Diseases, Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
22
|
Hepatitis Virus and Hepatocellular Carcinoma: Recent Advances. Cancers (Basel) 2023; 15:cancers15020533. [PMID: 36672482 PMCID: PMC9856776 DOI: 10.3390/cancers15020533] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge, causing 600,000 deaths each year. Infectious factors, including hepatitis B virus (HBV), hepatitis C virus (HCV) and hepatitis D virus (HDV), have long been considered the major risk factors for the development and progression of HCC. These pathogens induce hepatocyte transformation through a variety of mechanisms, including insertional mutations caused by viral gene integration, epigenetic changes, and the induction of long-term immune dysfunction. The discovery of these mechanisms, while advancing our understanding of the disease, also provides targets for new diagnostic and therapeutic approaches. In addition, the discovery and research of chronic HEV infection over the past decade indicate that this common hepatitis virus also seems to have the potential to induce HCC. In this review, we provide an overview of recent studies on the link between hepatitis virus and HCC, as well as new diagnostic and therapeutic approaches to HCC based on these findings. Finally, we also discuss the potential relationship between HEV and HCC. In conclusion, these associations will further optimize the diagnosis and treatment of infection-associated HCC and call for better management policies.
Collapse
|
23
|
Yeh SH, Li CL, Lin YY, Ho MC, Wang YC, Tseng ST, Chen PJ. Hepatitis B Virus DNA Integration Drives Carcinogenesis and Provides a New Biomarker for HBV-related HCC. Cell Mol Gastroenterol Hepatol 2023; 15:921-929. [PMID: 36690297 PMCID: PMC9972564 DOI: 10.1016/j.jcmgh.2023.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/24/2022] [Accepted: 01/02/2023] [Indexed: 01/25/2023]
Abstract
Hepatitis B virus (HBV) DNA integration is an incidental event in the virus replication cycle and occurs in less than 1% of infected hepatocytes during viral infection. However, HBV DNA is present in the genome of approximately 90% of HBV-related HCCs and is the most common somatic mutation. Whole genome sequencing of liver tissues from chronic hepatitis B patients showed integration occurring at random positions in human chromosomes; however, in the genomes of HBV-related HCC patients, there are integration hotspots. Both the enrichment of the HBV-integration proportion in HCC and the emergence of integration hotspots suggested a strong positive selection of HBV-integrated hepatocytes to progress to HCC. The activation of HBV integration hotspot genes, such as telomerase (TERT) or histone methyltransferase (MLL4/KMT2B), resembles insertional mutagenesis by oncogenic animal retroviruses. These candidate oncogenic genes might shed new light on HBV-related HCC biology and become targets for new cancer therapies. Finally, the HBV integrations in individual HCC contain unique sequences at the junctions, such as virus-host chimera DNA (vh-DNA) presumably being a signature molecule for individual HCC. HBV integration may thus provide a new cell-free tumor DNA biomarker to monitor residual HCC after curative therapies or to track the development of de novo HCC.
Collapse
Affiliation(s)
- Shiou-Hwei Yeh
- Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan; National Taiwan University Center for Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Chiao-Ling Li
- Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - You-Yu Lin
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University College of Life Science, Taipei, Taiwan
| | - Ming-Chih Ho
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | - Pei-Jer Chen
- National Taiwan University Center for Genomic Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
24
|
Liang W, Wang S, Wang H, Li X, Meng Q, Zhao Y, Zheng C. When 3D genome technology meets viral infection, including SARS-CoV-2. J Med Virol 2022; 94:5627-5639. [PMID: 35916043 PMCID: PMC9538846 DOI: 10.1002/jmv.28040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/09/2022] [Accepted: 07/30/2022] [Indexed: 01/06/2023]
Abstract
Mammalian chromosomes undergo varying degrees of compression to form three-dimensional genome structures. These three-dimensional structures undergo dynamic and precise chromatin interactions to achieve precise spatial and temporal regulation of gene expression. Most eukaryotic DNA viruses can invade their genomes into the nucleus. However, it is still poorly understood how the viral genome is precisely positioned after entering the host cell nucleus to find the most suitable location and whether it can specifically interact with the host genome to hijack the host transcriptional factories or even integrate into the host genome to complete its transcription and replication rapidly. Chromosome conformation capture technology can reveal long-range chromatin interactions between different chromosomal sites in the nucleus, potentially providing a reference for viral DNA-host chromatin interactions. This review summarized the research progress on the three-dimensional interaction between virus and host genome and the impact of virus integration into the host genome on gene transcription regulation, aiming to provide new insights into chromatin interaction and viral gene transcription regulation, laying the foundation for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Weizheng Liang
- Central LaboratoryThe First Affiliated Hospital of Hebei North UniversityZhangjiakouChina
- Department of Immunology, School of Basic Medical SciencesFujian Medical UniversityFuzhouChina
| | - Shuangqing Wang
- Department of NeurologyShenzhen University General Hospital, Shenzhen UniversityShenzhen, Guangdong ProvinceChina
| | - Hao Wang
- Department of Obstetrics and GynecologyShenzhen University General HospitalShenzhen, GuangdongChina
| | - Xiushen Li
- Department of Obstetrics and GynecologyShenzhen University General HospitalShenzhen, GuangdongChina
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen, GuangdongChina
- Shenzhen Key LaboratoryShenzhen University General HospitalShenzhen, GuangdongChina
| | - Qingxue Meng
- Central LaboratoryThe First Affiliated Hospital of Hebei North UniversityZhangjiakouChina
| | - Yan Zhao
- Department of Mathematics and Computer ScienceFree University BerlinBerlinGermany
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical SciencesFujian Medical UniversityFuzhouChina
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryAlbertaCanada
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotChina
| |
Collapse
|
25
|
Testa U, Pelosi E, Castelli G. Clinical value of identifying genes that inhibit hepatocellular carcinomas. Expert Rev Mol Diagn 2022; 22:1009-1035. [PMID: 36459631 DOI: 10.1080/14737159.2022.2154658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
INTRODUCTION Primary liver cancer is a major health problem being the sixth most frequent cancer in the world and the fourth most frequent cause of cancer-related death in the world. The most common histological type of liver cancer is hepatocellular carcinoma (HCC, 75-80%). AREAS COVERED Based on primary literature, this review provides an updated analysis of studies of genetic characterization of HCC at the level of gene mutation profiling, copy number alterations and gene expression, with definition of molecular subgroups and identification of some molecular biomarkers and therapeutic targets. EXPERT OPINION A detailed and comprehensive study of the genetic abnormalities characterizing different HCC subsets represents a fundamental tool for a better understanding of the disease heterogeneity and for the identification of subgroups of patients responding or resistant to targeted treatments and for the discovery of new therapeutic targets. It is expected that a comprehensive characterization of these tumors may provide a fundamental contribution to improve the survival of a subset of HCC patients. Immunotherapy represents a new fundamental strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore Di Sanità, ROME, ITALY
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore Di Sanità, ROME, ITALY
| | - Germana Castelli
- Department of Oncology, Istituto Superiore Di Sanità, ROME, ITALY
| |
Collapse
|
26
|
Identification of Warning Transition Points from Hepatitis B to Hepatocellular Carcinoma Based on Mutation Accumulation for the Early Diagnosis and Potential Drug Treatment of HBV-HCC. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3472179. [PMID: 36105485 PMCID: PMC9467738 DOI: 10.1155/2022/3472179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022]
Abstract
The accumulation of multiple genetic mutations is essential during the occurrence and development of hepatocellular carcinoma induced by hepatitis B (HBV-HCC), but understanding their cooperative effects and identifying the warning transition point from hepatitis B to HCC are challenges. In the genomic analysis of somatic mutations of the patient with HBV-HCC in a patient-specific protein-protein interaction (ps-PPI) network, we find mutation influence can propagate along the ps-PPI network. Therefore, in the article, we got the mutation cluster as a new research unit using the Random Walks with Restarts algorithm that is used to describe the efficient boundary of mutation influences. The connection of mutation cluster leads to dysregulation of signaling pathways corresponding to HCC, while dysregulated signaling pathways accumulate gradually and experience a process from quantitative to qualitative changes including a critical mutation cluster called transition point (TP) from hepatitis B to HCC. Moreover, two subtypes of HCC patients with different prognosis and their corresponding biological and clinical characteristics were identified according to TP. The poor prognosis HCC subtype was associated with significant metabolic pathway dysregulation and lower immune cell infiltration, while we also identified several preventive drugs to block the transformation of hepatitis B to hepatocellular carcinoma. The network-level study integrated multiomics data not only showed the sequence of multiple somatic mutations and their cooperative effect but also identified the warning transition point in HCC tumorigenesis for each patient. Our study provides new insight into exploring the cooperative molecular mechanism of chronic inflammatory malignancy in the liver and lays the foundation for the development of new approaches for early prediction and diagnosis of hepatocellular carcinoma and personalized targeted therapy.
Collapse
|
27
|
Linden N, Jones RB. Potential multi-modal effects of provirus integration on HIV-1 persistence: lessons from other viruses. Trends Immunol 2022; 43:617-629. [PMID: 35817699 PMCID: PMC9429957 DOI: 10.1016/j.it.2022.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/29/2022]
Abstract
Despite antiretroviral therapy (ART), HIV-1 persists as proviruses integrated into the genomic DNA of CD4+ T cells. The mechanisms underlying the persistence and clonal expansion of these cells remain incompletely understood. Cases have been described in which proviral integration can alter host gene expression to drive cellular proliferation. Here, we review observations from other genome-integrating human viruses to propose additional putative modalities by which HIV-1 integration may alter cellular function to favor persistence, such as by altering susceptibility to cytotoxicity in virus-expressing cells. We propose that signals implicating such mechanisms may have been masked thus far by the preponderance of defective and/or nonreactivatable HIV-1 proviruses, but could be revealed by focusing on the integration sites of intact proviruses with expression potential.
Collapse
Affiliation(s)
- Noemi Linden
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - R Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
28
|
Dong ML, Wen X, He X, Ren JH, Yu HB, Qin YP, Yang Z, Yang ML, Zhou CY, Zhang H, Cheng ST, Chen J. HBx Mediated Increase of DDX17 Contributes to HBV-Related Hepatocellular Carcinoma Tumorigenesis. Front Immunol 2022; 13:871558. [PMID: 35784274 PMCID: PMC9243429 DOI: 10.3389/fimmu.2022.871558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
HBV is strongly associated with HCC development and DEAD-box RNA helicase 17 (DDX17) is a very important member of the DEAD box family that plays key roles in HCC development by promoting cancer metastasis. However, the important role of DDX17 in the pathogenesis of HBV-related HCC remains unclear. In this study, we investigated the role of DDX17 in the replication of HBV and the development of HBV-associated HCC. Based on data from the GEO database and HBV-infected cells, we found that DDX17 was upregulated by the HBV viral protein X (HBx). Mechanistically, increased DDX17 expression promoted HBV replication and transcription by upregulating ZWINT. Further study showed that DDX17 could promote HBx-mediated HCC metastasis. Finally, the promotive effect of DDX17 on HBV and HBV-related HCC was confirmed in vivo. In summary, the results revealed the novel role of DDX17 in the replication of HBV and the metastasis of HBV-associated HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Juan Chen
- *Correspondence: Juan Chen, ; Sheng-Tao Cheng,
| |
Collapse
|
29
|
Cosenza MR, Rodriguez-Martin B, Korbel JO. Structural Variation in Cancer: Role, Prevalence, and Mechanisms. Annu Rev Genomics Hum Genet 2022; 23:123-152. [DOI: 10.1146/annurev-genom-120121-101149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Somatic rearrangements resulting in genomic structural variation drive malignant phenotypes by altering the expression or function of cancer genes. Pan-cancer studies have revealed that structural variants (SVs) are the predominant class of driver mutation in most cancer types, but because they are difficult to discover, they remain understudied when compared with point mutations. This review provides an overview of the current knowledge of somatic SVs, discussing their primary roles, prevalence in different contexts, and mutational mechanisms. SVs arise throughout the life history of cancer, and 55% of driver mutations uncovered by the Pan-Cancer Analysis of Whole Genomes project represent SVs. Leveraging the convergence of cell biology and genomics, we propose a mechanistic classification of somatic SVs, from simple to highly complex DNA rearrangement classes. The actions of DNA repair and DNA replication processes together with mitotic errors result in a rich spectrum of SV formation processes, with cascading effects mediating extensive structural diversity after an initiating DNA lesion has formed. Thanks to new sequencing technologies, including the sequencing of single-cell genomes, open questions about the molecular triggers and the biomolecules involved in SV formation as well as their mutational rates can now be addressed. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
| | | | - Jan O. Korbel
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
30
|
Song X, Coulter FJ, Yang M, Smith JL, Tafesse FG, Messer WB, Reif JH. A lyophilized colorimetric RT-LAMP test kit for rapid, low-cost, at-home molecular testing of SARS-CoV-2 and other pathogens. Sci Rep 2022; 12:7043. [PMID: 35487969 PMCID: PMC9052177 DOI: 10.1038/s41598-022-11144-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Access to fast and reliable nucleic acid testing continues to play a key role in controlling the COVID-19 pandemic, especially in the context of increased vaccine break-through risks due to new variants. We report a rapid, low-cost (~ 2 USD), simple-to-use nucleic acid test kit for self-administered at-home testing without lab instrumentation. The entire sample-to-answer workflow takes < 60 min, including noninvasive sample collection, one-step RNA preparation, reverse-transcription loop-mediated isothermal amplification (RT-LAMP) in a thermos, and direct visual inspection of a colorimetric test result. To facilitate long-term storage without cold-chain, a fast one-pot lyophilization protocol was developed to preserve all required biochemical reagents of the colorimetric RT-LAMP test in a single microtube. Notably, the lyophilized RT-LAMP assay demonstrated reduced false positives as well as enhanced tolerance to a wider range of incubation temperatures compared to solution-based RT-LAMP reactions. We validated our RT-LAMP assay using simulated infected samples, and detected a panel of SARS-CoV-2 variants with successful detection of all variants that were available to us at the time. With a simple change of the primer set, our lyophilized RT-LAMP home test can be easily adapted as a low-cost surveillance platform for other pathogens and infectious diseases of global public health importance.
Collapse
Affiliation(s)
- Xin Song
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, USA. .,Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA. .,Department of Computer Science, Duke University, Durham, NC, 27708, USA.
| | - Felicity J Coulter
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Ming Yang
- Department of Computer Science, Duke University, Durham, NC, 27708, USA
| | - Jessica L Smith
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Fikadu G Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - William B Messer
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, 97239, USA. .,Department of Medicine, Division of Infectious Diseases, Oregon Health and Science University, Portland, OR, 97239, USA. .,Program in Epidemiology, OHSU-PSU School of Public Health, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - John H Reif
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, USA. .,Department of Computer Science, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
31
|
Hepatitis B and the liver cancer endgame. Nature 2022; 603:S64-S65. [DOI: 10.1038/d41586-022-00821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
van Buuren N, Ramirez R, Soulette C, Suri V, Han D, May L, Turner S, Parvangada P, Martin R, Chan HLY, Marcellin P, Buti M, Bui N, Bhardwaj N, Gaggar A, Li L, Mo H, Feierbach B. Targeted long-read sequencing reveals clonally expanded HBV-associated chromosomal translocations in patients with chronic hepatitis B. JHEP Rep 2022; 4:100449. [PMID: 35295767 PMCID: PMC8918852 DOI: 10.1016/j.jhepr.2022.100449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 01/08/2023] Open
Abstract
Background & Aims Methods Results Conclusions Lay summary Fresh frozen liver biopsies from patients with CHB were subjected to targeted long-read RNA and DNA sequencing. Inter-chromosomal translocations associated with HBV integration events detected in one-third of patients. Chromosomal translocations were unique to each biopsy sample, suggesting that each originated randomly. A larger fraction of the HBV transcriptome originates from cccDNA in patients who are HBeAg-positive.
Collapse
|
33
|
Salpini R, D’Anna S, Benedetti L, Piermatteo L, Gill U, Svicher V, Kennedy PTF. Hepatitis B virus DNA integration as a novel biomarker of hepatitis B virus-mediated pathogenetic properties and a barrier to the current strategies for hepatitis B virus cure. Front Microbiol 2022; 13:972687. [PMID: 36118192 PMCID: PMC9478028 DOI: 10.3389/fmicb.2022.972687] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic infection with Hepatitis B Virus (HBV) is a major cause of liver-related morbidity and mortality worldwide. HBV-DNA integration into the human genome is recognized as a frequent event occurring during the early phases of HBV infection and characterizing the entire course of HBV natural history. The development of refined molecular biology technologies sheds new light on the functional implications of HBV-DNA integration into the human genome, including its role in the progression of HBV-related pathogenesis and in triggering the establishment of pro-oncogenic mechanisms, promoting the development of hepatocellular carcinoma. The present review provides an updated and comprehensive overview of the current body of knowledge on HBV-DNA integration, focusing on the molecular mechanisms underlying HBV-DNA integration and its occurrence throughout the different phases characterizing the natural history of HBV infection. Furthermore, here we discuss the main clinical implications of HBV integration as a biomarker of HBV-related pathogenesis, particularly in reference to hepatocarcinogenesis, and how integration may act as a barrier to the achievement of HBV cure with current and novel antiviral therapies. Overall, a more refined insight into the mechanisms and functionality of HBV integration is paramount, since it can potentially inform the design of ad hoc diagnostic tools with the ability to reveal HBV integration events perturbating relevant intracellular pathways and for identifying novel therapeutic strategies targeting alterations directly related to HBV integration.
Collapse
Affiliation(s)
- Romina Salpini
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Stefano D’Anna
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Livia Benedetti
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Lorenzo Piermatteo
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Upkar Gill
- Barts Liver Centre, Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Valentina Svicher
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
- *Correspondence: Valentina Svicher,
| | - Patrick T. F. Kennedy
- Barts Liver Centre, Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, United Kingdom
- Patrick T. F. Kennedy,
| |
Collapse
|