1
|
Singh S, Patel NA, Soundararajan A, Pattabiraman PP. High Glucose-Induced Transcriptomic Changes in Human Trabecular Meshwork Cells. RESEARCH SQUARE 2024:rs.3.rs-5690041. [PMID: 39764143 PMCID: PMC11703349 DOI: 10.21203/rs.3.rs-5690041/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Glaucoma is a leading cause of irreversible blindness, often associated with elevated intraocular pressure (IOP) due to trabecular meshwork (TM) dysfunction. Diabetes mellitus (DM) is recognized as a significant risk factor for glaucoma; however, the molecular mechanisms through which hyperglycemia affects TM function remain unclear. This study investigated the impact of high glucose on gene expression in human TM (HTM) cells to uncover pathways that contribute to TM dysfunction and glaucoma pathogenesis under diabetic conditions. Primary HTM cells were cultured under normoglycemic (5.5 mM) and hyperglycemic (30 mM) conditions for seven days, followed by mRNA sequencing (mRNA-seq) to identify differentially expressed genes, with quantitative PCR (qPCR) used for confirmatory analysis. STRING network analysis was performed to predict interactions among upregulated and downregulated proteins. mRNA-seq analysis revealed 25 significantly differentially expressed genes in high glucose conditions, including upregulated genes associated with oxidative stress, apoptosis, autophagy, immune response, and fibrosis. Notably, TXNIP was significantly upregulated, indicating increased oxidative stress and apoptosis in TM cells, while downregulation of autophagy-related genes, such as HSPA6 and LAMP3, suggests compromised protein quality control. Immune response genes, including CCL7 and CHI3L1, were upregulated, suggesting an inflammatory response to oxidative stress. Increased expression of fibrosis-related genes, such as SNAI1, FGF7, and KRT19, supports the hypothesis of ECM accumulation in diabetic conditions, potentially elevating IOP. Chronic hyperglycemia in diabetic patients could therefore lead to TM dysfunction, impair aqueous humor outflow, and elevate IOP, thereby increasing glaucoma risk. Targeting oxidative stress and fibrosis pathways offers therapeutic strategies to mitigate glaucoma progression in diabetic populations.
Collapse
|
2
|
Khan MZ, Zugaza JL, Torres Aleman I. The signaling landscape of insulin-like growth factor 1. J Biol Chem 2024; 301:108047. [PMID: 39638246 PMCID: PMC11748690 DOI: 10.1016/j.jbc.2024.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
The sheer amplitude of biological actions of insulin-like growth factor I (IGF-1) affecting all types of cells in all tissues suggests a vast signaling landscape for this ubiquitous humoral signal. While the canonical signaling pathways primarily involve the Ras/MAPK and PI3K/AKT cascades, the evolutionary conservation of insulin-like peptides (ILPs) and their pathways hints at the potential for novel functions to emerge over time. Indeed, the evolutionary trajectory of ILPs opens the possibility of either novel functions for these two pathways, novel downstream routes, or both. Evidence supporting this notion includes observations of neofunctionalization in bony fishes or crustaceans, and the involvement of ILPs pathways in invertebrate eusociality or in vertebrate bone physiology, respectively. Such evolutionary processes likely contribute to the rich diversity of ILPs signaling observed today. Moreover, the interplay between conserved signaling pathways, such as those implicated in aging (predominantly involving the PI3K-AKT route), and lesser known pathways, such as those mediated by biased G-protein coupled receptors and others even less known, may underpin the context-dependent actions characteristic of ILPs signaling. While canonical IGF-1 signaling is often assumed to account for the intracellular pathways utilized by this growth factor, a comprehensive analysis of all the pathways mediated by the IGF-1 receptor (IGF-1R) remains lacking. This review aims to explore both canonical and non-canonical routes of IGF-1R action across various cell types, offering a detailed examination of the mechanisms underlying IGF-1 signaling and highlighting the significant gaps in our current understanding.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain
| | - Jose Luis Zugaza
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque Science Foundation, Bilbao, Spain
| | - Ignacio Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain; Ikerbasque Science Foundation, Bilbao, Spain.
| |
Collapse
|
3
|
Chen YI, Tien SC, Ko YL, Chang CC, Hsu MF, Chien HJ, Peng HY, Jeng YM, Tien YW, Chang YT, Chang MC, Hu CM. SEMA7A-mediated juxtacrine stimulation of IGFBP-3 upregulates IL-17RB at pancreatic cancer invasive front. Cancer Gene Ther 2024; 31:1840-1855. [PMID: 39448803 PMCID: PMC11645274 DOI: 10.1038/s41417-024-00849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Tumor invasion is the hallmark of tumor malignancy. The invasive infiltration pattern of tumor cells located at the leading edge is highly correlated with metastasis and unfavorable patient outcomes. However, the regulatory mechanisms governing tumor malignancy at the invasive margin remain unclear. The IL-17B/IL-17RB pathway is known to promote pancreatic cancer invasion and metastasis, yet the specific mechanisms underlying IL-17RB upregulation during invasion are poorly understood. In this study, we unveiled a multistep process for IL-17RB upregulation at the invasive margin, which occurs through direct communication between tumor cells and fibroblasts. Tumor ATP1A1 facilitates plasma membrane expression of SEMA7A, which binds to and induces IGFBP-3 secretion from fibroblasts. The resulting gradient of IGFBP-3 influences the direction and enhances IL-17RB expression to regulate SNAI2 in invasion. These findings highlight the importance of local tumor-fibroblast interactions in promoting cancer cell invasiveness, potentially leading to the development of new therapeutic strategies targeting this communication.
Collapse
Affiliation(s)
- Yi-Ing Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Sui-Chih Tien
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Ko
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Min-Fen Hsu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hung Jen Chien
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsuan-Yu Peng
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yun-Wen Tien
- Department of Surgery, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Chang
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- National Taiwan University Hospital Hsin-Chu Branch, Hsinchu County, Taiwan
| | - Ming-Chu Chang
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
4
|
Yang L, Han Y, Zhang T, Dong X, Ge J, Roy A, Zhu J, Lu T, Jeya Vandana J, de Silva N, Robertson CC, Xiang JZ, Pan C, Sun Y, Que J, Evans T, Liu C, Wang W, Naji A, Parker SCJ, Schwartz RE, Chen S. Human vascularized macrophage-islet organoids to model immune-mediated pancreatic β cell pyroptosis upon viral infection. Cell Stem Cell 2024; 31:1612-1629.e8. [PMID: 39232561 PMCID: PMC11546835 DOI: 10.1016/j.stem.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/05/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
There is a paucity of human models to study immune-mediated host damage. Here, we utilized the GeoMx spatial multi-omics platform to analyze immune cell changes in COVID-19 pancreatic autopsy samples, revealing an accumulation of proinflammatory macrophages. Single-cell RNA sequencing (scRNA-seq) analysis of human islets exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coxsackievirus B4 (CVB4) viruses identified activation of proinflammatory macrophages and β cell pyroptosis. To distinguish viral versus proinflammatory-macrophage-mediated β cell pyroptosis, we developed human pluripotent stem cell (hPSC)-derived vascularized macrophage-islet (VMI) organoids. VMI organoids exhibited enhanced marker expression and function in both β cells and endothelial cells compared with separately cultured cells. Notably, proinflammatory macrophages within VMI organoids induced β cell pyroptosis. Mechanistic investigations highlighted TNFSF12-TNFRSF12A involvement in proinflammatory-macrophage-mediated β cell pyroptosis. This study established hPSC-derived VMI organoids as a valuable tool for studying immune-cell-mediated host damage and uncovered the mechanism of β cell damage during viral exposure.
Collapse
Affiliation(s)
- Liuliu Yang
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institute of Health Science, Tianjin 301600, China.
| | - Yuling Han
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Tuo Zhang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Xue Dong
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Jian Ge
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aadita Roy
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Jiajun Zhu
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Tiankun Lu
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - J Jeya Vandana
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Neranjan de Silva
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Catherine C Robertson
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jenny Z Xiang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chendong Pan
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yanjie Sun
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jianwen Que
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Wei Wang
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
5
|
Ruisch IH, Widomska J, De Witte W, Mota NR, Fanelli G, Van Gils V, Jansen WJ, Vos SJB, Fóthi A, Barta C, Berkel S, Alam KA, Martinez A, Haavik J, O'Leary A, Slattery D, Sullivan M, Glennon J, Buitelaar JK, Bralten J, Franke B, Poelmans G. Molecular landscape of the overlap between Alzheimer's disease and somatic insulin-related diseases. Alzheimers Res Ther 2024; 16:239. [PMID: 39465382 PMCID: PMC11514822 DOI: 10.1186/s13195-024-01609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial disease with both genetic and environmental factors contributing to its etiology. Previous evidence has implicated disturbed insulin signaling as a key mechanism that plays a role in both neurodegenerative diseases such as AD and comorbid somatic diseases such as diabetes mellitus type 2 (DM2). In this study, we analysed available genome-wide association studies (GWASs) of AD and somatic insulin-related diseases and conditions (SID), i.e., DM2, metabolic syndrome and obesity, to identify genes associated with both AD and SID that could increase our insights into their molecular underpinnings. We then performed functional enrichment analyses of these genes. Subsequently, using (additional) GWAS data, we conducted shared genetic etiology analyses between AD and SID, on the one hand, and blood and cerebrospinal fluid (CSF) metabolite levels on the other hand. Further, integrating all these analysis results with elaborate literature searches, we built a molecular landscape of the overlap between AD and SID. From the landscape, multiple functional themes emerged, including insulin signaling, estrogen signaling, synaptic transmission, lipid metabolism and tau signaling. We also found shared genetic etiologies between AD/SID and the blood/CSF levels of multiple metabolites, pointing towards "energy metabolism" as a key metabolic pathway that is affected in both AD and SID. Lastly, the landscape provided leads for putative novel drug targets for AD (including MARK4, TMEM219, FKBP5, NDUFS3 and IL34) that could be further developed into new AD treatments.
Collapse
Affiliation(s)
- I Hyun Ruisch
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joanna Widomska
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ward De Witte
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nina R Mota
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Giuseppe Fanelli
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Veerle Van Gils
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Willemijn J Jansen
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Stephanie J B Vos
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Abel Fóthi
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Csaba Barta
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Simone Berkel
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Kazi A Alam
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Aet O'Leary
- Department of Psychiatry, University Hospital, Frankfurt, Germany
| | - David Slattery
- Department of Psychiatry, Psychosomatics and Psychotherapy, Goethe-Universität, Frankfurt, Germany
| | - Mairéad Sullivan
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jeffrey Glennon
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Geert Poelmans
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Gao J, He L, Zhang J, Xi L, Feng H. Development of a diagnostic model based on glycolysis-related genes and immune infiltration in intervertebral disc degeneration. Heliyon 2024; 10:e36158. [PMID: 39247348 PMCID: PMC11379615 DOI: 10.1016/j.heliyon.2024.e36158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/03/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024] Open
Abstract
Background The glycolytic pathway and immune response play pivotal roles in the intervertebral disc degeneration (IDD) progression. This study aimed to develop a glycolysis-related diagnostic model and analyze its relationship with the immune response to IDD. Methods GSE70362, GSE23130, and GSE15227 datasets were collected and merged from the Gene Expression Omnibus, and differential expression analysis was performed. Glycolysis-related differentially expressed genes (GLRDEGs) were identified, and a machine learning-based diagnostic model was constructed and validated, followed by Gene Set Enrichment Analysis (GSEA). Gene Ontology functional enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed, and mRNA-miRNA and mRNA-transcription factor (TF) interaction networks were constructed. Immune infiltration was analyzed using single-sample GSEA (ssGSEA) and cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm between high- and low-risk groups. Results In the combined dataset, samples from 31 patients with IDD and 55 normal controls were analyzed, revealing differential expression of 16 GLRDEGs between the two groups. Using advanced machine learning techniques (LASSO, support vector machine, and random forest algorithms), we identified eight common GLRDEGs (PXK, EIF3D, WSB1, ZNF185, IGFBP3, CKAP4, RPL15, and, SSR1) and developed a diagnostic model, which demonstrated high accuracy in distinguishing IDD from control samples (area under the curve, 0.935). We identified 42 mRNA-miRNA and 33 mRNA-TF interaction pairs. Using the RiskScore from the diagnostic model, the combined dataset was stratified into high- and low-risk groups. SsGSEA revealed significant differences in the infiltration abundances of the four immune cell types between the groups. The CIBERSORT algorithm revealed the strongest correlation between resting natural killer (NK) cells and ZNF185 in the low-risk group and between CD8+ T cells and SSR1 in the high-risk group. Conclusions Our study reveals a potential interplay between glycolysis-associated genes and immune infiltration in IDD pathogenesis. These findings contribute to our understanding of IDD and may guide development of novel diagnostic markers and therapeutic interventions.
Collapse
Affiliation(s)
- Jian Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032, Taiyuan, China
| | - Liming He
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032, Taiyuan, China
| | - Jianguo Zhang
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032, Taiyuan, China
| | - Leimin Xi
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032, Taiyuan, China
| | - Haoyu Feng
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032, Taiyuan, China
| |
Collapse
|
7
|
Yang L, Han Y, Zhang T, Dong X, Ge J, Roy A, Zhu J, Lu T, Vandana JJ, de Silva N, Robertson CC, Xiang JZ, Pan C, Sun Y, Que J, Evans T, Liu C, Wang W, Naji A, Parker SC, Schwartz RE, Chen S. Human Vascularized Macrophage-Islet Organoids to Model Immune-Mediated Pancreatic β cell Pyroptosis upon Viral Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606734. [PMID: 39149298 PMCID: PMC11326194 DOI: 10.1101/2024.08.05.606734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
There is a paucity of human models to study immune-mediated host damage. Here, we utilized the GeoMx spatial multi-omics platform to analyze immune cell changes in COVID-19 pancreatic autopsy samples, revealing an accumulation of proinflammatory macrophages. Single cell RNA-seq analysis of human islets exposed to SARS-CoV-2 or Coxsackievirus B4 (CVB4) viruses identified activation of proinflammatory macrophages and β cell pyroptosis. To distinguish viral versus proinflammatory macrophage-mediated β cell pyroptosis, we developed human pluripotent stem cell (hPSC)-derived vascularized macrophage-islet (VMI) organoids. VMI organoids exhibited enhanced marker expression and function in both β cells and endothelial cells compared to separately cultured cells. Notably, proinflammatory macrophages within VMI organoids induced β cell pyroptosis. Mechanistic investigations highlighted TNFSF12-TNFRSF12A involvement in proinflammatory macrophage-mediated β cell pyroptosis. This study established hPSC-derived VMI organoids as a valuable tool for studying immune cell-mediated host damage and uncovered mechanism of β cell damage during viral exposure.
Collapse
Affiliation(s)
- Liuliu Yang
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institute of Health Science, Tianjin 301600, China
| | - Yuling Han
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Tuo Zhang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Xue Dong
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Jian Ge
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aadita Roy
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Jiajun Zhu
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Tiankun Lu
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - J. Jeya Vandana
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Neranjan de Silva
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Catherine C. Robertson
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jenny Z Xiang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chendong Pan
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yanjie Sun
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jianwen Que
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Wei Wang
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Stephen C.J. Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Robert E. Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA. New York 10021, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| |
Collapse
|
8
|
Chen X, Shao C, Liu J, Sun H, Yao B, Ma C, Xu H, Zhu W. ULK2 suppresses ovarian cancer cell migration and invasion by elevating IGFBP3. PeerJ 2024; 12:e17628. [PMID: 38952983 PMCID: PMC11216209 DOI: 10.7717/peerj.17628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/03/2024] [Indexed: 07/03/2024] Open
Abstract
Background Ovarian cancer is an aggressive malignancy with high mortality known for its considerable metastatic potential. This study aimed to explore the expression and functional role of Unc-51 like autophagy activating kinase 2 (ULK2) in the progression of ovarian cancer. Methods ULK2 expression patterns in ovarian cancer tissues as well as benign tumor control samples obtained from our institution were evaluated using immunohistochemistry. Cell counting kit 8 and Transwell assays were applied to assess the effects of ULK2 overexpression on cell proliferation, migration and invasion, respectively. RNA sequencing was performed to explore potential mechanisms of action of ULK2 beyond its classical autophagy modulation. Results Our experiments showed significant downregulation of ULK2 in ovarian cancer tissues. Importantly, low expression of ULK2 was markedly correlated with decreased overall survival. In vitro functional studies further demonstrated that overexpression of ULK2 significantly suppressed tumor cell proliferation, migration, and invasion. RNA sequencing analysis revealed a potential regulatory role of ULK2 in the insulin signaling pathway through upregulation of insulin-like growth factor binding protein-3 (IGFBP3) in ovarian cancer cells. Conclusions In summary, the collective data indicated that ULK2 acted as a tumor suppressor in ovarian cancer by upregulating the expression of IGFBP3. Our study underscores the potential utility of ULK2 as a valuable prognostic marker for ovarian cancer.
Collapse
Affiliation(s)
- Xiaoxi Chen
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
- The Second Affiliated Hospital of Soochow University, Soochow University, Soochow, Jiangsu, China
| | - Changxiang Shao
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Jing Liu
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Huizhen Sun
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Chengbin Ma
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Han Xu
- Department of General Surgery, Jing’an District Center Hospital of Shanghai, Shanghai, China
| | - Weipei Zhu
- The Second Affiliated Hospital of Soochow University, Soochow University, Soochow, Jiangsu, China
| |
Collapse
|
9
|
Hu F, Xiong L, Li Z, Li L, Wang L, Wang X, Zhou X, Zheng Y. Deciphering the shared mechanisms of Gegen Qinlian Decoction in treating type 2 diabetes and ulcerative colitis via bioinformatics and machine learning. Front Med (Lausanne) 2024; 11:1406149. [PMID: 38962743 PMCID: PMC11220276 DOI: 10.3389/fmed.2024.1406149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024] Open
Abstract
Background Although previous clinical studies and animal experiments have demonstrated the efficacy of Gegen Qinlian Decoction (GQD) in treating Type 2 Diabetes Mellitus (T2DM) and Ulcerative Colitis (UC), the underlying mechanisms of its therapeutic effects remain elusive. Purpose This study aims to investigate the shared pathogenic mechanisms between T2DM and UC and elucidate the mechanisms through which GQD modulates these diseases using bioinformatics approaches. Methods Data for this study were sourced from the Gene Expression Omnibus (GEO) database. Targets of GQD were identified using PharmMapper and SwissTargetPrediction, while targets associated with T2DM and UC were compiled from the DrugBank, GeneCards, Therapeutic Target Database (TTD), DisGeNET databases, and differentially expressed genes (DEGs). Our analysis encompassed six approaches: weighted gene co-expression network analysis (WGCNA), immune infiltration analysis, single-cell sequencing analysis, machine learning, DEG analysis, and network pharmacology. Results Through GO and KEGG analysis of weighted gene co-expression network analysis (WGCNA) modular genes and DEGs intersection, we found that the co-morbidity between T2DM and UC is primarily associated with immune-inflammatory pathways, including IL-17, TNF, chemokine, and toll-like receptor signaling pathways. Immune infiltration analysis supported these findings. Three distinct machine learning studies identified IGFBP3 as a biomarker for GQD in treating T2DM, while BACE2, EPHB4, and EPHA2 emerged as biomarkers for GQD in UC treatment. Network pharmacology revealed that GQD treatment for T2DM and UC mainly targets immune-inflammatory pathways like Toll-like receptor, IL-17, TNF, MAPK, and PI3K-Akt signaling pathways. Conclusion This study provides insights into the shared pathogenesis of T2DM and UC and clarifies the regulatory mechanisms of GQD on these conditions. It also proposes novel targets and therapeutic strategies for individuals suffering from T2DM and UC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xuemei Zhou
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yujiao Zheng
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
10
|
Annicchiarico A, Barile B, Buccoliero C, Nicchia GP, Brunetti G. Alternative therapeutic strategies in diabetes management. World J Diabetes 2024; 15:1142-1161. [PMID: 38983831 PMCID: PMC11229975 DOI: 10.4239/wjd.v15.i6.1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/17/2024] [Accepted: 04/12/2024] [Indexed: 06/11/2024] Open
Abstract
Diabetes is a heterogeneous metabolic disease characterized by elevated blood glucose levels resulting from the destruction or malfunction of pancreatic β cells, insulin resistance in peripheral tissues, or both, and results in a non-sufficient production of insulin. To adjust blood glucose levels, diabetic patients need exogenous insulin administration together with medical nutrition therapy and physical activity. With the aim of improving insulin availability in diabetic patients as well as ameliorating diabetes comorbidities, different strategies have been investigated. The first approaches included enhancing endogenous β cell activity or transplanting new islets. The protocol for this kind of intervention has recently been optimized, leading to standardized procedures. It is indicated for diabetic patients with severe hypoglycemia, complicated by impaired hypoglycemia awareness or exacerbated glycemic lability. Transplantation has been associated with improvement in all comorbidities associated with diabetes, quality of life, and survival. However, different trials are ongoing to further improve the beneficial effects of transplantation. Furthermore, to overcome some limitations associated with the availability of islets/pancreas, alternative therapeutic strategies are under evaluation, such as the use of mesenchymal stem cells (MSCs) or induced pluripotent stem cells for transplantation. The cotransplantation of MSCs with islets has been successful, thus providing protection against proinflammatory cytokines and hypoxia through different mechanisms, including exosome release. The use of induced pluripotent stem cells is recent and requires further investigation. The advantages of MSC implantation have also included the improvement of diabetes-related comorbidities, such as wound healing. Despite the number of advantages of the direct injection of MSCs, new strategies involving biomaterials and scaffolds have been developed to improve the efficacy of mesenchymal cell delivery with promising results. In conclusion, this paper offered an overview of new alternative strategies for diabetes management while highlighting some limitations that will need to be overcome by future approaches.
Collapse
Affiliation(s)
- Alessia Annicchiarico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Cinzia Buccoliero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| |
Collapse
|
11
|
Dewar MB, Ehsan F, Izumi A, Zhang H, Zhou YQ, Shah H, Langburt D, Suresh H, Wang T, Hacker A, Hinz B, Gillis J, Husain M, Heximer SP. Defining Transcriptomic Heterogeneity between Left and Right Ventricle-Derived Cardiac Fibroblasts. Cells 2024; 13:327. [PMID: 38391940 PMCID: PMC10887120 DOI: 10.3390/cells13040327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
Cardiac fibrosis is a key aspect of heart failure, leading to reduced ventricular compliance and impaired electrical conduction in the myocardium. Various pathophysiologic conditions can lead to fibrosis in the left ventricle (LV) and/or right ventricle (RV). Despite growing evidence to support the transcriptomic heterogeneity of cardiac fibroblasts (CFs) in healthy and diseased states, there have been no direct comparisons of CFs in the LV and RV. Given the distinct natures of the ventricles, we hypothesized that LV- and RV-derived CFs would display baseline transcriptomic differences that influence their proliferation and differentiation following injury. Bulk RNA sequencing of CFs isolated from healthy murine left and right ventricles indicated that LV-derived CFs may be further along the myofibroblast transdifferentiation trajectory than cells isolated from the RV. Single-cell RNA-sequencing analysis of the two populations confirmed that Postn+ CFs were more enriched in the LV, whereas Igfbp3+ CFs were enriched in the RV at baseline. Notably, following pressure overload injury, the LV developed a larger subpopulation of pro-fibrotic Thbs4+/Cthrc1+ injury-induced CFs, while the RV showed a unique expansion of two less-well-characterized CF subpopulations (Igfbp3+ and Inmt+). These findings demonstrate that LV- and RV-derived CFs display baseline subpopulation differences that may dictate their diverging responses to pressure overload injury. Further study of these subpopulations will elucidate their role in the development of fibrosis and inform on whether LV and RV fibrosis require distinct treatments.
Collapse
Affiliation(s)
- Michael Bradley Dewar
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Fahad Ehsan
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Aliya Izumi
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Hangjun Zhang
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Yu-Qing Zhou
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
- Institute of Biomaterial & Biomedical Engineering, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Haisam Shah
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Dylan Langburt
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Hamsini Suresh
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Tao Wang
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
| | - Alison Hacker
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Jesse Gillis
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Mansoor Husain
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
| | - Scott Patrick Heximer
- Department of Physiology, University of Toronto, Toronto, ON M5G 1M1, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
12
|
Zhou SM, Yao XM, Cheng Y, Xing YJ, Sun Y, Hua Q, Wan SJ, Meng XJ. Metformin enhances METTL14-Mediated m6A methylation to alleviate NIT-1 cells apoptosis induced by hydrogen peroxide. Heliyon 2024; 10:e24432. [PMID: 38312705 PMCID: PMC10835167 DOI: 10.1016/j.heliyon.2024.e24432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Injuries to pancreatic β-cells are intricately linked to the onset of diabetes mellitus (DM). Metformin (Met), one of the most widely prescribed medications for diabetes and metabolic disorders, has been extensively studied for its antioxidant, anti-aging, anti-glycation, and hepatoprotective activities. N6-methyladenosine (m6A) plays a crucial role in the regulation of β-cell growth and development, and its dysregulation is associated with metabolic disorders. This study aimed to elucidate the mechanistic basis of m6A involvement in the protective effects of Met against oxidative damage in pancreatic β-cells. Hydrogen peroxide (H2O2) was employed to induce β-cell damage. Remarkably, Met treatment effectively increased methylation levels and the expression of the methyltransferase METTL14, subsequently reducing H2O2-induced apoptosis. Knocking down METTL14 expression using siRNA significantly compromised cell viability. Conversely, targeted overexpression of METTL14 specifically in β-cells substantially enhanced their capacity to withstand H2O2-induced stress. Molecular evidence suggests that the anti-apoptotic properties of Met may be mediated through Bcl-xL and Bim proteins. In conclusion, our findings indicate that Met induces METTL14-mediated alterations in m6A methylation levels, thereby shielding β-cells from apoptosis and oxidative damage induced by oxidative stress.
Collapse
Affiliation(s)
- Si-Min Zhou
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Wannan Medical College, Wuhu, 241002, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241002, China
| | - Xin-Ming Yao
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Wannan Medical College, Wuhu, 241002, China
| | - Yi Cheng
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Wannan Medical College, Wuhu, 241002, China
| | - Yu-Jie Xing
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Wannan Medical College, Wuhu, 241002, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241002, China
| | - Yue Sun
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Wannan Medical College, Wuhu, 241002, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241002, China
| | - Qiang Hua
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Wannan Medical College, Wuhu, 241002, China
| | - Shu-Jun Wan
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241002, China
| | - Xiang-Jian Meng
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Wannan Medical College, Wuhu, 241002, China
| |
Collapse
|
13
|
D'Addio F, Assi E, Maestroni A, Rossi G, Usuelli V, Petrazzuolo A, Nardini M, Loretelli C, Ben Nasr M, Fiorina P. TMEM219 regulates the transcription factor expression and proliferation of beta cells. Front Endocrinol (Lausanne) 2024; 15:1306127. [PMID: 38318298 PMCID: PMC10839017 DOI: 10.3389/fendo.2024.1306127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Pancreatic beta cells replenishment is considered the next therapeutic option for type 1 diabetes; while stimulating endogenous beta cells proliferation is the "holy grail" for those patients with exhausted beta cell mass. Here we are demonstrating that the pro-apoptotic receptor TMEM219 is expressed in fetal pancreas, in beta cell precursors and in in vitro embryonic-derived endocrine progenitors. TMEM219 signaling negatively regulates beta cells at early stages and induces Caspase 8-mediated cell death. Pharmacological blockade of TMEM219 further rescued beta cell precursor and proliferation markers, and decreased cell death, both in islets and in in vitro-derived endocrine progenitors, allowing for beta cell preservation. While addressing the upstream controlling TMEM219 expression, we determined the TMEM219 miRNet; indeed, one of those miRNAs, miR-129-2, is highly expressed in human islets, particularly in patients at risk or with established type 1 diabetes. miR-129-2 mimic downregulated TMEM219 expression in islets, in in vitro embryonic-derived endocrine progenitors and in highly proliferating insulinoma-derived cells. Moreover, miR-129-2 inhibitor induced a TMEM219 overexpression in insulinoma-derived cells, which restored cell proliferation and functional markers, thus acting as endogenous regulator of TMEM219 expression. The TMEM219 upstream regulator miR129-2 controls the fate of beta cell precursors and may unleash their regenerative potentials to replenish beta cells in type 1 diabetes.
Collapse
Affiliation(s)
- Francesca D'Addio
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Emma Assi
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
| | - Anna Maestroni
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
| | - Giada Rossi
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
| | - Vera Usuelli
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
| | - Adriana Petrazzuolo
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
| | - Marta Nardini
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital and Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Cristian Loretelli
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
| | - Moufida Ben Nasr
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital and Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Paolo Fiorina
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
- Nephrology Division, Boston Children's Hospital and Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Cai Y, Liu S, Zhao X, Ren L, Liu X, Gang X, Wang G. Pathogenesis, clinical features, and treatment of plurihormonal pituitary adenoma. Front Neurosci 2024; 17:1323883. [PMID: 38260014 PMCID: PMC10800528 DOI: 10.3389/fnins.2023.1323883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Plurihormonal pituitary adenoma (PPA) is a type of pituitary tumor capable of producing two or more hormones and usually presents as an aggressive, large adenoma. As yet, its pathogenesis remains unclear. This is the first study to systematically summarize the underlying pathogenesis of PPA. The pathogenesis is related to plurihormonal primordial stem cells, co-transcription factors, hormone co-expression, differential gene expression, and cell transdifferentiation. We conducted a literature review of PPA and analyzed its clinical characteristics. We found that the average age of patients with PPA was approximately 40 years, and most showed only one clinical symptom. The most common manifestation was acromegaly. Currently, PPA is treated with surgical resection. However, recent studies suggest that immunotherapy may be a potentially effective treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Yang B, Wang L, Bao W. Identify Diabetes-related Targets based on ForgeNet_GPC. Curr Comput Aided Drug Des 2024; 20:1042-1054. [PMID: 38173214 DOI: 10.2174/0115734099258183230929173855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/06/2023] [Accepted: 08/15/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Research on potential therapeutic targets and new mechanisms of action can greatly improve the efficiency of new drug development. AIMS Polygenic genetic diseases, such as diabetes, are caused by the interaction of multiple gene loci and environmental factors. OBJECTIVES In this study, a disease target identification algorithm based on protein recognition is proposed. MATERIALS AND METHODS In this method, the related and unrelated targets are collected from literature databases for treating diabetes. The transcribed proteins corresponding to each target are queried in order to construct a protein dataset. Six protein feature extraction algorithms (AAC, CKSAAGP, DDE, DPC, GAAP, and TPC) are utilized to obtain the feature vectors of each protein, which are merged into the full feature vectors. RESULTS A novel classifier (forgeNet_GPC) based on forgeNet and Gaussian process classifier (GPC) is proposed to classify the proteins. CONCLUSION In forgeNet_GPC, forgeNet is utilized to select the important features, and GPC is utilized to solve the classification problem. The experimental results reveal that forgeNet_GPC performs better than 22 classifiers in terms of ROC-AUC, PR-AUC, MCC, Youden Index, and Kappa.
Collapse
Affiliation(s)
- Bin Yang
- School of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Linlin Wang
- School of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Wenzheng Bao
- School of Information and Electrical Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| |
Collapse
|
16
|
Xu G, Chen J, Lu B, Sethupathy P, Qian WJ, Shalev A. Verapamil Prevents Decline of IGF-I in Subjects With Type 1 Diabetes and Promotes β-Cell IGF-I Signaling. Diabetes 2023; 72:1460-1469. [PMID: 37494660 PMCID: PMC10545554 DOI: 10.2337/db23-0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Verapamil promotes functional β-cell mass and improves glucose homeostasis in diabetic mice and humans with type 1 diabetes (T1D). Now, our global proteomics analysis of serum from subjects with T1D at baseline and after 1 year of receiving verapamil or placebo revealed IGF-I as a protein with significantly changed abundance over time. IGF-I, which promotes β-cell survival and insulin secretion, decreased during disease progression, and this decline was blunted by verapamil. In addition, we found that verapamil reduces β-cell expression of IGF-binding protein 3 (IGFBP3), whereas IGFBP3 was increased in human islets exposed to T1D-associated cytokines and in diabetic NOD mouse islets. IGFBP3 binds IGF-I and blocks its downstream signaling, which has been associated with increased β-cell apoptosis and impaired glucose homeostasis. Consistent with the downregulation of IGFBP3, we have now discovered that verapamil increases β-cell IGF-I signaling and phosphorylation/activation of the IGF-I receptor (IGF1R). Moreover, we found that thioredoxin-interacting protein (TXNIP), a proapoptotic factor downregulated by verapamil, promotes IGFBP3 expression and inhibits the phosphorylation/activation of IGF1R. Thus, our results reveal IGF-I signaling as yet another previously unappreciated pathway affected by verapamil and TXNIP that may contribute to the beneficial verapamil effects in the context of T1D. ARTICLE HIGHLIGHTS Verapamil prevents the decline of IGF-I in subjects with type 1 diabetes (T1D). Verapamil decreases the expression of β-cell IGF-binding protein 3 (IGFBP3), whereas IGFBP3 is increased in human and mouse islets under T1D conditions. Verapamil promotes β-cell IGF-I signaling by increasing phosphorylation of IGF-I receptor and its downstream effector AKT. Thioredoxin-interacting protein (TXNIP) increases IGFBP3 expression and inhibits the phosphorylation/activation of IGF1R in β-cells. Regulation of IGFBP3 and IGF-I signaling by verapamil and TXNIP may contribute to the beneficial verapamil effects in the context of T1D.
Collapse
Affiliation(s)
- Guanlan Xu
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Junqin Chen
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Brian Lu
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Anath Shalev
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
17
|
Baxter RC. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. Endocr Rev 2023; 44:753-778. [PMID: 36974712 PMCID: PMC10502586 DOI: 10.1210/endrev/bnad008] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The 6 high-affinity insulin-like growth factor binding proteins (IGFBPs) are multifunctional proteins that modulate cell signaling through multiple pathways. Their canonical function at the cellular level is to impede access of insulin-like growth factor (IGF)-1 and IGF-2 to their principal receptor IGF1R, but IGFBPs can also inhibit, or sometimes enhance, IGF1R signaling either through their own post-translational modifications, such as phosphorylation or limited proteolysis, or by their interactions with other regulatory proteins. Beyond the regulation of IGF1R activity, IGFBPs have been shown to modulate cell survival, migration, metabolism, and other functions through mechanisms that do not appear to involve the IGF-IGF1R system. This is achieved by interacting directly or functionally with integrins, transforming growth factor β family receptors, and other cell-surface proteins as well as intracellular ligands that are intermediates in a wide range of pathways. Within the nucleus, IGFBPs can regulate the diverse range of functions of class II nuclear hormone receptors and have roles in both cell senescence and DNA damage repair by the nonhomologous end-joining pathway, thus potentially modifying the efficacy of certain cancer therapeutics. They also modulate some immune functions and may have a role in autoimmune conditions such as rheumatoid arthritis. IGFBPs have been proposed as attractive therapeutic targets, but their ubiquity in the circulation and at the cellular level raises many challenges. By understanding the diversity of regulatory pathways with which IGFBPs interact, there may still be therapeutic opportunities based on modulation of IGFBP-dependent signaling.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital,St Leonards, NSW 2065, Australia
| |
Collapse
|
18
|
Limanaqi F, Vicentini C, Saulle I, Clerici M, Biasin M. The role of endoplasmic reticulum aminopeptidases in type 1 diabetes mellitus. Life Sci 2023; 323:121701. [PMID: 37059356 DOI: 10.1016/j.lfs.2023.121701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Type-I diabetes mellitus (T1DM) is generally considered as a chronic, T-cell mediated autoimmune disease. This notwithstanding, both the endogenous characteristics of β-cells, and their response to environmental factors and exogenous inflammatory stimuli are key events in disease progression and exacerbation. As such, T1DM is now recognized as a multifactorial condition, with its onset being influenced by both genetic predisposition and environmental factors, among which, viral infections represent major triggers. In this frame, endoplasmic reticulum aminopeptidase 1 (ERAP1) and 2 (ERAP2) hold center stage. ERAPs represent the main hydrolytic enzymes specialized in trimming of N-terminal antigen peptides to be bound by MHC class I molecules and presented to CD8+ T cells. Thus, abnormalities in ERAPs expression alter the peptide-MHC-I repertoire both quantitatively and qualitatively, fostering both autoimmune and infectious diseases. Although only a few studies succeeded in determining direct associations between ERAPs variants and T1DM susceptibility/outbreak, alterations of ERAPs do impinge on a plethora of biological events which might indeed contribute to the disease development/exacerbation. Beyond abnormal self-antigen peptide trimming, these include preproinsulin processing, nitric oxide (NO) production, ER stress, cytokine responsiveness, and immune cell recruitment/activity. The present review brings together direct and indirect evidence focused on the immunobiological role of ERAPs in T1DM onset and progression, covering both genetic and environmental aspects.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Chiara Vicentini
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy; Don C. Gnocchi Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation, Via A. Capecelatro 66, 20148 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy.
| |
Collapse
|
19
|
Frørup C, Gerwig R, Svane CAS, Mendes Lopes de Melo J, Henriksen K, Fløyel T, Pociot F, Kaur S, Størling J. Characterization of the functional and transcriptomic effects of pro-inflammatory cytokines on human EndoC-βH5 beta cells. Front Endocrinol (Lausanne) 2023; 14:1128523. [PMID: 37113489 PMCID: PMC10126300 DOI: 10.3389/fendo.2023.1128523] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/10/2023] [Indexed: 04/29/2023] Open
Abstract
Objective EndoC-βH5 is a newly established human beta-cell model which may be superior to previous model systems. Exposure of beta cells to pro-inflammatory cytokines is widely used when studying immune-mediated beta-cell failure in type 1 diabetes. We therefore performed an in-depth characterization of the effects of cytokines on EndoC-βH5 cells. Methods The sensitivity profile of EndoC-βH5 cells to the toxic effects of interleukin-1β (IL-1β), interferon γ (IFNγ) and tumor necrosis factor-α (TNFα) was examined in titration and time-course experiments. Cell death was evaluated by caspase-3/7 activity, cytotoxicity, viability, TUNEL assay and immunoblotting. Activation of signaling pathways and major histocompatibility complex (MHC)-I expression were examined by immunoblotting, immunofluorescence, and real-time quantitative PCR (qPCR). Insulin and chemokine secretion were measured by ELISA and Meso Scale Discovery multiplexing electrochemiluminescence, respectively. Mitochondrial function was evaluated by extracellular flux technology. Global gene expression was characterized by stranded RNA sequencing. Results Cytokines increased caspase-3/7 activity and cytotoxicity in EndoC-βH5 cells in a time- and dose-dependent manner. The proapoptotic effect of cytokines was primarily driven by IFNγ signal transduction. Cytokine exposure induced MHC-I expression and chemokine production and secretion. Further, cytokines caused impaired mitochondrial function and diminished glucose-stimulated insulin secretion. Finally, we report significant changes to the EndoC-βH5 transcriptome including upregulation of the human leukocyte antigen (HLA) genes, endoplasmic reticulum stress markers, and non-coding RNAs, in response to cytokines. Among the differentially expressed genes were several type 1 diabetes risk genes. Conclusion Our study provides detailed insight into the functional and transcriptomic effects of cytokines on EndoC-βH5 cells. This information should be useful for future studies using this novel beta-cell model.
Collapse
Affiliation(s)
- Caroline Frørup
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Rebekka Gerwig
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | | | - Joana Mendes Lopes de Melo
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Kristine Henriksen
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Tina Fløyel
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simranjeet Kaur
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Joachim Størling
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Ji L, Guo W. Single-cell RNA sequencing highlights the roles of C1QB and NKG7 in the pancreatic islet immune microenvironment in type 1 diabetes mellitus. Pharmacol Res 2023; 187:106588. [PMID: 36464147 DOI: 10.1016/j.phrs.2022.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq) technology is a powerful tool for characterizing individual cells and elucidating biological mechanisms at the cellular level. Using this technology, this study focuses on the mechanism of C1QB and NKG7 in pancreatic islet immune microenvironment in type 1 diabetes mellitus (T1DM). T1DM-related scRNA-seq data were downloaded from GEO database, followed by batch effect removal, cluster analysis, cell annotation and enrichment analysis. Thereafter, T1DM-related Bulk RNA-seq data were downloaded from GEO database. The infiltrating immune cell abundance was estimated and its correlation with the expression of immune cell marker genes was determined. Functional assays were performed in a constructed rat model of T1DM and cultured monocytes and lymphocytes for further validation. A large number of highly variable genes were found in pancreatic islet samples in T1DM. T1DM islet-derived cells may consist of 14 cell types. Macrophages and T lymphocytes were the major cells in pancreatic islet immune microenvironment. C1QB and NKG7 may be the key genes affecting macrophages and T lymphocytes, respectively. Silencing C1QB inhibited the differentiation of monocytes into macrophages and reduced the number of macrophages. Silencing NKG7 prevented T lymphocyte activation and proliferation. In vivo data confirmed that silencing C1QB and NKG7 reduced the number of macrophages and T lymphocytes in the pancreatic islet of T1DM rats, respectively, and alleviated pancreatic islet β-cell damage. Overall, C1QB and NKG7 can increase the number of macrophages and T lymphocytes, respectively, causing pancreatic islet β-cell damage and promoting T1DM in rats.
Collapse
Affiliation(s)
- Lili Ji
- Department of Emergency Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, PR China
| | - Wei Guo
- Department of Emergency Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, PR China.
| |
Collapse
|
21
|
Huang S, Li Z, Sun Y, Chen B, Jiang Y, Hong F. Increased CD34 in pancreatic islet negatively predict islet β-cell decrease in type1 diabetes model. Front Physiol 2022; 13:1032774. [PMID: 36467676 PMCID: PMC9716098 DOI: 10.3389/fphys.2022.1032774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/07/2022] [Indexed: 03/04/2024] Open
Abstract
Islet β-cell biomarkers can reflect changes in the number and function of islet β-cells in the prediabetes or early diabetes stage. CD34 is a commonly used stem cell biomarker; however, its expression and function in pancreatic islets remain unclear. In the present study, double immunofluorescence staining, proteomic bioinformatics analysis, and correlation analysis were used to explore the potential of CD34 as an islet β-cell biomarker. Bioinformatics analysis revealed that the amino acid sequence of CD34 was conserved among multiple species and abundantly expressed on mouse and human pancreatic tissues. Immunofluorescence demonstrated that in the control rat pancreas, CD34 was expressed on glucagon-labeled islet α-cells but not on insulin-labeled islet β-cells. Furthermore, the proportion of CD34-positive cells, which were also positive for glucagon, was significantly increased in alloxan-induced diabetes models. Statistical analysis revealed that the expression of CD34 was negatively correlated with the number of insulin-labeled islet β-cells during diabetes progression in dose-dependent fashion in alloxan-induced diabetes models. Furthermore, the results suggested that the transdifferentiation of islet β-cells into islet α-cells may occur in the process of diabetes. Thus, the present study demonstrated that CD34 is expressed on islet α-cells, and its number is linearly and negatively correlated with the number of islet β-cells, suggesting that CD34 can be used as a prospective biomarker for islet β-cells in the early diagnosis of diabetes. The study also suggests the transformation of β-cells to α-cells in diabetes which provide a potential to be applied towards diabetes mechanism research.
Collapse
Affiliation(s)
- Shichen Huang
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
- School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Zhiyuan Li
- School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Yuhan Sun
- School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Baiyi Chen
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern CA, Los Angeles, CA, United States
| | - Yuxin Jiang
- Jiaxing Key Laboratory of Virus-Related Infectious Diseases, The First Hospital of Jiaxing City, Jiaxing University, Jiaxing, China
| | - Feng Hong
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
22
|
Bolla AM, Montefusco L, Pastore I, Lunati ME, Ben Nasr M, Fiorina P. Benefits and Hurdles of Pancreatic β-Cell Replacement. Stem Cells Transl Med 2022; 11:1029-1039. [PMID: 36073717 PMCID: PMC9585952 DOI: 10.1093/stcltm/szac058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/02/2022] [Indexed: 11/13/2022] Open
Abstract
Insulin represents a life-saving treatment in patients with type 1 diabetes, and technological advancements have improved glucose control in an increasing number of patients. Despite this, adequate control is often still difficult to achieve and insulin remains a therapy and not a cure for the disease. β-cell replacement strategies can potentially restore pancreas endocrine function and aim to maintain normoglycemia; both pancreas and islet transplantation have greatly progressed over the last decades and, in subjects with extreme glycemic variability and diabetes complications, represent a concrete and effective treatment option. Some issues still limit the adoption of this approach on a larger scale. One is represented by the strict selection criteria for the recipient who can benefit from a transplant and maintain the lifelong immunosuppression necessary to avoid organ rejection. Second, with regard to islet transplantation, up to 40% of islets can be lost during hepatic engraftment. Recent studies showed very preliminarily but promising results to overcome these hurdles: the ability to induce β-cell maturation from stem cells may represent a solution to the organ shortage, and the creation of semi-permeable membranes that envelope or package cells in either micro- or macro- encapsulation strategies, together with engineering cells to be hypo-immunogenic, pave the way for developing strategies without immunosuppression. The aim of this review is to describe the state of the art in β-cell replacement with a focus on its efficacy and clinical benefits, on the actual limitations and still unmet needs, and on the latest findings and future directions.
Collapse
Affiliation(s)
| | - Laura Montefusco
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Ida Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | | | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy.,Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paolo Fiorina
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy.,International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy.,Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Dutta BJ, Singh S, Seksaria S, Das Gupta G, Singh A. Inside the diabetic brain: Insulin resistance and molecular mechanism associated with cognitive impairment and its possible therapeutic strategies. Pharmacol Res 2022; 182:106358. [PMID: 35863719 DOI: 10.1016/j.phrs.2022.106358] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/02/2022] [Accepted: 07/15/2022] [Indexed: 01/21/2023]
Abstract
Type 2 diabetes mellitus (T2DM) the most prevalent metabolic disease that has evolved into a major public health issue. Concerning about its secondary complications, a growing body of evidence links T2DM to cognitive impairment and neurodegenerative disorders. The underlying pathology behind this secondary complication disease is yet to be fully known. Nonetheless, they are likely to be associated with poor insulin signaling as a result of insulin resistance. We have combed through a rising body of literature on insulin signaling in the normal and diabetic brains along with various factors like insulin resistance, hyperglycemia, obesity, oxidative stress, neuroinflammation and Aβ plaques which can act independently or synergistically to link T2DM with cognitive impairments. Finally, we explored several pharmacological and non-pharmacological methods in the hopes of accelerating the rational development of medications for cognitive impairment in T2DM by better understanding these shared pathways.
Collapse
Affiliation(s)
- Bhaskar Jyoti Dutta
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Sanket Seksaria
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Amrita Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India.
| |
Collapse
|