1
|
Monory K, de Azua IR, Lutz B. Genetic Tools in Rodents to Study Cannabinoid Functions. Curr Top Behav Neurosci 2024. [PMID: 39680319 DOI: 10.1007/7854_2024_550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
During the past 30 years, the endocannabinoid system (ECS) has emerged as a major signalling system in the mammalian brain regulating neurotransmission in numerous brain regions and in various cell populations. Endocannabinoids are able to regulate specific physiological functions and thus modify their behavioural manifestations and allostatic alterations of the ECS linked to different pathological conditions. As discussed in detail in other chapters of this book, endocannabinoids are involved in learning and memory, stress, and anxiety, feeding, energy balance, development, and ageing. Likewise, many CNS disorders (e.g. schizophrenia, epilepsy, substance use disorders, and multiple sclerosis) are associated with dysregulation of the ECS. Discerning the physiological functions of the synthetic and degrading enzymes of endocannabinoids and their receptors is a challenging task because of their distinct and complex expression patterns. Techniques of genetic engineering have been able to shed light on a number of complex ECS-related tasks during the past years. In this chapter, first, we take a critical look at the toolbox available to researchers who would like to investigate cannabinoid effects using genetic engineering techniques, then we comprehensively discuss genetically modified rodent models in various neuronal and non-neuronal cell populations, both within and outside the nervous system.
Collapse
Affiliation(s)
- Krisztina Monory
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
- Leibniz Institute for Resilience Research (LIR) gGmbH, Mainz, Germany.
| |
Collapse
|
2
|
Lin Z, Huo H, Huang M, Tao J, Yang Y, Guo J. Fufang Zhenzhu Tiaozhi (FTZ) capsule ameliorates diabetic kidney disease in mice via inhibiting the SGLT2/glycolysis pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118698. [PMID: 39151712 DOI: 10.1016/j.jep.2024.118698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/21/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufang Zhenzhu Tiaozhi (FTZ) capsule is a hospital preparation of a patented traditional Chinese medicine compound. FTZ has been clinically used for nearly 13 years in the treatment of diabetes and glycolipid metabolic diseases. With the significant benefits of SGLT2 inhibitor in patients with diabetic kidney disease (DKD), it provides a research avenue to explore the mechanism of FTZ in treating this disease based on glycolysis pathway. AIM OF THE STUDY To explore the pharmacological characteristics of FTZ in DKD mice and its impact on the glycolysis pathway. MATERIALS AND METHODS We induced a DKD model in C57BL/6 mice by injection of streptozotocin (STZ) combined with long-term high-fat diet. We administered three doses of FTZ for 12 weeks of treatment. Kidney function, blood lipid levels, glucose tolerance, and key glycolytic enzymes were evaluated. Renal pathological changes were observed using HE, MASSON, and PAS staining. The potential targets of the active ingredients of FTZ in the glycolysis pathway were predicted using network pharmacology and molecular docking. Validation was performed using immunohistochemistry and Western blotting. RESULTS FTZ effectively reduces blood glucose, total cholesterol, triglyceride, low density lipoprotein cholesterol, 24 h proteinuria, serum creatinine, blood urea nitrogen, and increases urinary glucose levels. Glucose tolerance and renal pathological changes were significantly improved by FTZ treatment. Pinusolidic acid, a component of FTZ, shows good binding affinity with three active pockets of SGLT2. WB and immunohistochemistry revealed that FTZ significantly inhibits the expression of SGLT2 and its glycolytic related proteins (GLUT2/PKM2/HK2). Hexokinase, pyruvate kinase, and lactate dehydrogenase in the kidney were also significantly inhibited by FTZ in a dose-dependent manner. CONCLUSION FTZ may alleviate the progression of DKD by inhibiting the activation of the SGLT2/glycolytic pathway. Our study provides new insights into the clinical application of FTZ in DKD.
Collapse
Affiliation(s)
- Ziyang Lin
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega Centre, Guangzhou, PR China
| | - Hongyan Huo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega Centre, Guangzhou, PR China
| | - Minyi Huang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega Centre, Guangzhou, PR China
| | - Jie Tao
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega Centre, Guangzhou, PR China
| | - Yiqi Yang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega Centre, Guangzhou, PR China.
| | - Jiao Guo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega Centre, Guangzhou, PR China.
| |
Collapse
|
3
|
Didik S, Palygin O, Chandy M, Staruschenko A. The effects of cannabinoids on the kidney. Acta Physiol (Oxf) 2024; 240:e14247. [PMID: 39445706 DOI: 10.1111/apha.14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Cannabinoids are a class of drugs derived from the Cannabis plant that are widely used for the treatment of various medical conditions and recreational use. Common examples include Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), spice, and 2-arachidonoylglycerol (2-AG). With more than 100 cannabinoids identified, their influence on the nervous system, role in pain management, and effects due to illicit use have been extensively studied. However, their effects on peripheral organs, such as the kidneys, require further examination. With dramatic rises in use, production, and legalization, it is essential to understand the impact and mechanistic properties of these drugs as they pertain to renal and cardiovascular physiology. The goal of this review is to summarize prior literature on the expression of cannabinoid receptors and how cannabinoids influence renal function. This review first discusses the interaction of the endocannabinoid system (ECS) and renal physiology and pathophysiology. Following, we briefly discuss the role of the ECS in various kidney diseases and the potential therapeutic applications of drugs targeting the cannabinoid system. Lastly, recent studies have identified several detrimental effects of cannabinoids, not only on the kidney but also in contributing to adverse cardiovascular outcomes. Thus, the negative impact of cannabinoids on renal function and the development of various cardiovascular diseases is also discussed.
Collapse
Affiliation(s)
- Steven Didik
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
- James A. Haley Veterans Hospital, Tampa, Florida, USA
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mark Chandy
- Department of Medicine, Western University, London, Ontario, Canada
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
- James A. Haley Veterans Hospital, Tampa, Florida, USA
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
4
|
Wreven E, Ruiz de Adana MS, Hardivillé S, Gmyr V, Kerr-Conte J, Chetboun M, Pasquetti G, Delalleau N, Thévenet J, Coddeville A, Vallejo Herrera MJ, Hinden L, Benavides Espínola IC, Gómez Duro M, Sanchez Salido L, Linares F, Bermúdez-Silva FJ, Tam J, Bonner C, Egan JM, Olveira G, Colomo N, Pattou F, González-Mariscal I. Pharmaceutical targeting of the cannabinoid type 1 receptor impacts the crosstalk between immune cells and islets to reduce insulitis in humans. Diabetologia 2024; 67:1877-1896. [PMID: 38864887 PMCID: PMC11410908 DOI: 10.1007/s00125-024-06193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/22/2024] [Indexed: 06/13/2024]
Abstract
AIMS/HYPOTHESIS Insulitis, a hallmark of inflammation preceding autoimmune type 1 diabetes, leads to the eventual loss of functional beta cells. However, functional beta cells can persist even in the face of continuous insulitis. Despite advances in immunosuppressive treatments, maintaining functional beta cells to prevent insulitis progression and hyperglycaemia remains a challenge. The cannabinoid type 1 receptor (CB1R), present in immune cells and beta cells, regulates inflammation and beta cell function. Here, we pioneer an ex vivo model mirroring human insulitis to investigate the role of CB1R in this process. METHODS CD4+ T lymphocytes were isolated from peripheral blood mononuclear cells (PBMCs) from male and female individuals at the onset of type 1 diabetes and from non-diabetic individuals, RNA was extracted and mRNA expression was analysed by real-time PCR. Single beta cell expression from donors with type 1 diabetes was obtained from data mining. Patient-derived human islets from male and female cadaveric donors were 3D-cultured in solubilised extracellular matrix gel in co-culture with the same donor PBMCs, and incubated with cytokines (IL-1β, TNF-α, IFN-γ) for 24-48 h in the presence of vehicle or increasing concentrations of the CB1R blocker JD-5037. Expression of CNR1 (encoding for CB1R) was ablated using CRISPR/Cas9 technology. Viability, intracellular stress and signalling were assayed by live-cell probing and real-time PCR. The islet function measured as glucose-stimulated insulin secretion was determined in a perifusion system. Infiltration of immune cells into the islets was monitored by microscopy. Non-obese diabetic mice aged 7 weeks were treated for 1 week with JD-5037, then euthanised. Profiling of immune cells infiltrated in the islets was performed by flow cytometry. RESULTS CNR1 expression was upregulated in circulating CD4+ T cells from individuals at type 1 diabetes onset (6.9-fold higher vs healthy individuals) and in sorted islet beta cells from donors with type 1 diabetes (3.6-fold higher vs healthy counterparts). The peripherally restricted CB1R inverse agonist JD-5037 arrested the initiation of insulitis in humans and mice. Mechanistically, CB1R blockade prevented islet NO production and ameliorated the ATF6 arm of the unfolded protein response. Consequently, cyto/chemokine expression decreased in human islets, leading to sustained islet cell viability and function. CONCLUSIONS/INTERPRETATION These results suggest that CB1R could be an interesting target for type 1 diabetes while highlighting the regulatory mechanisms of insulitis. Moreover, these findings may apply to type 2 diabetes where islet inflammation is also a pathophysiological factor. DATA AVAILABILITY Transcriptomic analysis of sorted human beta cells are from Gene Expression Omnibus database, accession no. GSE121863, available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3448161 .
Collapse
Affiliation(s)
- Elise Wreven
- Inserm UMR1190 - Translational Research for Diabetes, Université de Lille, CHU Lille, Institut Pasteur de Lille, Inserm, European Genomic Institute for Diabetes, Lille, France
| | - María Soledad Ruiz de Adana
- Servicio de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA-Plataforma BIONAND, Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Málaga, Spain
| | - Stéphan Hardivillé
- CNRS UMR8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Lille, France
| | - Valery Gmyr
- Inserm UMR1190 - Translational Research for Diabetes, Université de Lille, CHU Lille, Institut Pasteur de Lille, Inserm, European Genomic Institute for Diabetes, Lille, France
| | - Julie Kerr-Conte
- Inserm UMR1190 - Translational Research for Diabetes, Université de Lille, CHU Lille, Institut Pasteur de Lille, Inserm, European Genomic Institute for Diabetes, Lille, France
| | - Mikael Chetboun
- Inserm UMR1190 - Translational Research for Diabetes, Université de Lille, CHU Lille, Institut Pasteur de Lille, Inserm, European Genomic Institute for Diabetes, Lille, France
| | - Gianni Pasquetti
- Inserm UMR1190 - Translational Research for Diabetes, Université de Lille, CHU Lille, Institut Pasteur de Lille, Inserm, European Genomic Institute for Diabetes, Lille, France
| | - Nathalie Delalleau
- Inserm UMR1190 - Translational Research for Diabetes, Université de Lille, CHU Lille, Institut Pasteur de Lille, Inserm, European Genomic Institute for Diabetes, Lille, France
| | - Julien Thévenet
- Inserm UMR1190 - Translational Research for Diabetes, Université de Lille, CHU Lille, Institut Pasteur de Lille, Inserm, European Genomic Institute for Diabetes, Lille, France
| | - Anaïs Coddeville
- Inserm UMR1190 - Translational Research for Diabetes, Université de Lille, CHU Lille, Institut Pasteur de Lille, Inserm, European Genomic Institute for Diabetes, Lille, France
| | - María José Vallejo Herrera
- Servicio de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA-Plataforma BIONAND, Málaga, Spain
| | - Liad Hinden
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Inmaculada Concepción Benavides Espínola
- Servicio de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA-Plataforma BIONAND, Málaga, Spain
| | - Mireia Gómez Duro
- Inserm UMR1190 - Translational Research for Diabetes, Université de Lille, CHU Lille, Institut Pasteur de Lille, Inserm, European Genomic Institute for Diabetes, Lille, France
| | - Lourdes Sanchez Salido
- Servicio de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA-Plataforma BIONAND, Málaga, Spain
| | - Francisca Linares
- Servicio de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA-Plataforma BIONAND, Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Málaga, Spain
| | - Francisco-Javier Bermúdez-Silva
- Servicio de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA-Plataforma BIONAND, Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Málaga, Spain
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Caroline Bonner
- Inserm UMR1190 - Translational Research for Diabetes, Université de Lille, CHU Lille, Institut Pasteur de Lille, Inserm, European Genomic Institute for Diabetes, Lille, France
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Gabriel Olveira
- Servicio de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA-Plataforma BIONAND, Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Málaga, Spain
- Departamento de Medicina y Cirugía, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Natalia Colomo
- Servicio de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA-Plataforma BIONAND, Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Málaga, Spain
| | - François Pattou
- Inserm UMR1190 - Translational Research for Diabetes, Université de Lille, CHU Lille, Institut Pasteur de Lille, Inserm, European Genomic Institute for Diabetes, Lille, France
| | - Isabel González-Mariscal
- Inserm UMR1190 - Translational Research for Diabetes, Université de Lille, CHU Lille, Institut Pasteur de Lille, Inserm, European Genomic Institute for Diabetes, Lille, France.
- Servicio de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA-Plataforma BIONAND, Málaga, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Málaga, Spain.
- Grupo de Trabajo de Investigación Básica en Diabetes, Sociedad Española de Diabetes, Madrid, Spain.
| |
Collapse
|
5
|
Zhang J, Wu T, Li C, Du J. A glycopolymersome strategy for 'drug-free' treatment of diabetic nephropathy. J Control Release 2024; 372:347-361. [PMID: 38908757 DOI: 10.1016/j.jconrel.2024.06.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/08/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
Diabetic nephropathy is a severe complication of diabetes. Treatment of diabetic nephropathy is an important challenge due to persistent hyperglycemia and elevated levels of reactive oxygen species (ROS) in the kidney. Herein, we designed a glycopolymersome that can treat type 2 diabetic nephropathy by effectively inhibiting hyperglycemia and ROS-associated diabetic nephropathy pathogenesis. The glycopolymersome is self-assembled from phenylboronic acid derivative-containing copolymer, poly(ethylene oxide)45-block-poly[(aspartic acid)13-stat-glucosamine24-stat-(phenylboronic acid)18-stat-(phenylboronic acid pinacol ester)3] [PEO45-b-P(Asp13-stat-GA24-stat-PBA18-stat-PAPE3)]. PBA segment can reversibly bind blood glucose or GA segment for long-term regulation of blood glucose levels; PAPE segment can scavenge excessive ROS for renoprotection. In vitro studies confirmed that the glycopolymersomes exhibit efficient blood glucose responsiveness within 2 h and satisfactory ROS-scavenging ability with 500 μM H2O2. Moreover, the glycopolymersomes display long-acting regulation of blood glucose levels in type 2 diabetic nephropathy mice within 32 h. Dihydroethidium staining revealed that these glycopolymersomes reduced ROS to normal levels in the kidney, which led to 61.7% and 76.6% reduction in creatinine and urea levels, respectively, along with suppressing renal apoptosis, collagen accumulation, and glycogen deposition in type 2 diabetic nephropathy mice. Notably, the polypeptide-based glycopolymersome was synthesized by ring-opening polymerization (ROP) of N-carboxyanhydrides (NCAs), thereby exhibiting favorable biodegradability. Overall, we proposed a new glycopolymersome strategy for 'drug-free' treatment of diabetic nephropathy, which could be extended to encompass the design of various multifunctional nanoparticles targeting diabetes and its associated complications.
Collapse
Affiliation(s)
- Jiamin Zhang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Tong Wu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China; Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Chang Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Institute for Advanced Study, Tongji University, Shanghai 200092, China.
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China..
| |
Collapse
|
6
|
Rein JL, Zeng H, Faulkner GB, Chauhan K, Siew ED, Wurfel MM, Garg AX, Tan TC, Kaufman JS, Chinchilli VM, Coca SG. A Retrospective Cohort Study That Examined the Impact of Cannabis Consumption on Long-Term Kidney Outcomes. Cannabis Cannabinoid Res 2024; 9:635-645. [PMID: 36791309 PMCID: PMC10998018 DOI: 10.1089/can.2022.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Background: Cannabis consumption for recreational and medical use is increasing worldwide. However, the long-term effects on kidney health and disease are largely unknown. Materials and Methods: Post hoc analysis of cannabis use as a risk factor for kidney disease was performed using data from the Assessment, Serial Evaluation, and Subsequent Sequelae of Acute Kidney Injury (ASSESS-AKI) study that enrolled hospitalized adults with and without acute kidney injury from four U.S. centers during 2009-2015. Associations between self-reported cannabis consumption and the categorical and continuous outcomes were determined using multivariable Cox regression and linear mixed models, respectively. Results: Over a mean follow-up of 4.5±1.8 years, 94 participants without chronic kidney disease (CKD) (estimated glomerular filtration rate [eGFR] >60 mL/min/1.73 m2) who consumed cannabis had similar rates of annual eGFR decline versus 889 nonconsumers (mean difference=-0.02 mL/min/1.73 m2/year, p=0.9) and incident CKD (≥25% reduction in eGFR compared with the 3-month post-hospitalization measured eGFR and achieving CKD stage 3 or higher) (adjusted hazard ratio [aHR]=1.2; 95% confidence interval [CI]=0.7-2.0). Nineteen participants with CKD (eGFR <60 mL/min/1.73 m2) who consumed cannabis had more rapid eGFR decline versus 597 nonconsumers (mean difference=-1.3 mL/min/1.73 m2/year; p=0.02) that was not independently associated with an increased risk of CKD progression (≥50% reduction in eGFR compared with the 3-month post-hospitalization eGFR, reaching CKD stage 5, or receiving kidney replacement therapy) (aHR=1.6; 95% CI=0.7-3.5). Cannabis consumption was not associated with the rate of change in urine albumin to creatinine ratio (UACR) over time among those with (p=0.7) or without CKD (p=0.4). Conclusions: Cannabis consumption did not adversely affect the kidney function of participants without CKD but was associated with a faster annual eGFR decline among participants with CKD. Cannabis consumption was not associated with changes in UACR over time, incident CKD, or progressive CKD regardless of baseline kidney function. Additional research is needed to investigate the kidney endocannabinoid system and the impact of cannabis use on kidney disease outcomes.
Collapse
Affiliation(s)
- Joshua L. Rein
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hui Zeng
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Georgia Brown Faulkner
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Kinsuk Chauhan
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Edward D. Siew
- Division of Nephrology and Hypertension, Vanderbilt O'Brien Center for Kidney Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark M. Wurfel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Amit X. Garg
- Division of Nephrology, Department of Medicine, Western University, London, Ontario, Canada
| | - Thida C. Tan
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - James S. Kaufman
- Division of Nephrology, Department of Medicine, VA New York Harbor Healthcare System and New York University School of Medicine, New York, New York, USA
| | - Vernon M. Chinchilli
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Steven G. Coca
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
7
|
Akhouri V, Majumder S, Gaikwad AB. Targeting DNA methylation in diabetic kidney disease: A new perspective. Life Sci 2023; 335:122256. [PMID: 37949210 DOI: 10.1016/j.lfs.2023.122256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Diabetic kidney disease (DKD) is a leading diabetic complication causing significant mortality among people around the globe. People with poor glycemic control accompanied by hyperinsulinemia, dyslipidemia, hypertension, and obesity develop diabetic complications. These diabetic patients develop epigenetic changes and suffer from diabetic kidney complications even after subsequent glucose control, the phenomenon that is recognized as metabolic memory. DNA methylation is an essential epigenetic modification that contributes to the development and progression of several diabetic complications, including DKD. The aberrant DNA methylation pattern at CpGs sites within several genes, such as mTOR, RPTOR, IRS2, GRK5, SLC27A3, LCAT, and SLC1A5, associated with the accompanying risk factors exacerbate the DKD progression. Although drugs such as azacytidine and decitabine have been approved to target DNA methylation for diseases such as hematological malignancies, none have been approved for the treatment of DKD. More importantly, no DNA hypomethylation-targeting drugs have been approved for any disease conditions. Understanding the alteration in DNA methylation and its association with the disease risk factors is essential to target DKD effectively. This review has discussed the abnormal DNA methylation pattern and the kidney tissue-specific expression of critical genes involved in DKD onset and progression. Moreover, we also discuss the new possible therapeutic approach that can be exploited for treating DNA methylation aberrancy in a site-specific manner against DKD.
Collapse
Affiliation(s)
- Vivek Akhouri
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
8
|
Sri Hari A, Banerji R, Liang LP, Fulton RE, Huynh CQ, Fabisiak T, McElroy PB, Roede JR, Patel M. Increasing glutathione levels by a novel posttranslational mechanism inhibits neuronal hyperexcitability. Redox Biol 2023; 67:102895. [PMID: 37769522 PMCID: PMC10539966 DOI: 10.1016/j.redox.2023.102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Glutathione (GSH) depletion, and impaired redox homeostasis have been observed in experimental animal models and patients with epilepsy. Pleiotropic strategies that elevate GSH levels via transcriptional regulation have been shown to significantly decrease oxidative stress and seizure frequency, increase seizure threshold, and rescue certain cognitive deficits. Whether elevation of GSH per se alters neuronal hyperexcitability remains unanswered. We previously showed that thiols such as dimercaprol (DMP) elevate GSH via post-translational activation of glutamate cysteine ligase (GCL), the rate limiting GSH biosynthetic enzyme. Here, we asked if elevation of cellular GSH by DMP altered neuronal hyperexcitability in-vitro and in-vivo. Treatment of primary neuronal-glial cerebrocortical cultures with DMP elevated GSH and inhibited a voltage-gated potassium channel blocker (4-aminopyridine, 4AP) induced neuronal hyperexcitability. DMP increased GSH in wildtype (WT) zebrafish larvae and significantly attenuated convulsant pentylenetetrazol (PTZ)-induced acute 'seizure-like' swim behavior. DMP treatment increased GSH and inhibited convulsive, spontaneous 'seizure-like' swim behavior in the Dravet Syndrome (DS) zebrafish larvae (scn1Lab). Furthermore, DMP treatment significantly decreased spontaneous electrographic seizures and associated seizure parameters in scn1Lab zebrafish larvae. We investigated the role of the redox-sensitive mammalian target of rapamycin (mTOR) pathway due to the presence of several cysteine-rich proteins and their involvement in regulating neuronal excitability. Treatment of primary neuronal-glial cerebrocortical cultures with 4AP or l-buthionine-(S,R)-sulfoximine (BSO), an irreversible inhibitor of GSH biosynthesis, significantly increased mTOR complex I (mTORC1) activity which was rescued by pre-treatment with DMP. Furthermore, BSO-mediated GSH depletion oxidatively modified the tuberous sclerosis protein complex (TSC) consisting of hamartin (TSC1), tuberin (TSC2), and TBC1 domain family member 7 (TBC1D7) which are critical negative regulators of mTORC1. In summary, our results suggest that DMP-mediated GSH elevation by a novel post-translational mechanism can inhibit neuronal hyperexcitability both in-vitro and in-vivo and a plausible link is the redox sensitive mTORC1 pathway.
Collapse
Affiliation(s)
- Ashwini Sri Hari
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rajeswari Banerji
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ruth E Fulton
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Christopher Quoc Huynh
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Timothy Fabisiak
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Pallavi Bhuyan McElroy
- The Janssen Pharmaceutical Companies of Johnson & Johnson, Greater Philadelphia Area, Horsham, PA, 19044, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
9
|
Permyakova A, Rothner A, Knapp S, Nemirovski A, Ben-Zvi D, Tam J. Renal Endocannabinoid Dysregulation in Obesity-Induced Chronic Kidney Disease in Humans. Int J Mol Sci 2023; 24:13636. [PMID: 37686443 PMCID: PMC10487429 DOI: 10.3390/ijms241713636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
The endocannabinoid system (ECS) regulates various physiological processes, including energy homeostasis and kidney function. ECS upregulation in obese animals and humans suggests a potential link to obesity-induced chronic kidney disease (CKD). However, obesity-induced ECS changes in the kidney are mainly studied in rodents, leaving the impact on obese humans unknown. In this study, a total of 21 lean and obese males (38-71 years) underwent a kidney biopsy. Biochemical analysis, histology, and endocannabinoid (eCB) assessment were performed on kidney tissue and blood samples. Correlations between different parameters were evaluated using a comprehensive matrix. The obese group exhibited kidney damage, reflected in morphological changes, and elevated kidney injury and fibrotic markers. While serum eCB levels were similar between the lean and obese groups, kidney eCB analysis revealed higher anandamide in obese patients. Obese individuals also exhibited reduced expression of cannabinoid-1 receptor (CB1R) in the kidney, along with increased activity of eCB synthesizing and degrading enzymes. Correlation analysis highlighted connections between renal eCBs, kidney injury markers, obesity, and related pathologies. In summary, this study investigates obesity's impact on renal eCB "tone" in humans, providing insights into the ECS's role in obesity-induced CKD. Our findings enhance the understanding of the intricate interplay among obesity, the ECS, and kidney function.
Collapse
Affiliation(s)
- Anna Permyakova
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.P.); (A.R.); (A.N.)
| | - Ariel Rothner
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.P.); (A.R.); (A.N.)
| | - Sarah Knapp
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hadassah Medical School–The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (S.K.); (D.B.-Z.)
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.P.); (A.R.); (A.N.)
| | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hadassah Medical School–The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (S.K.); (D.B.-Z.)
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.P.); (A.R.); (A.N.)
| |
Collapse
|
10
|
Arceri L, Nguyen TK, Gibson S, Baker S, Wingert RA. Cannabinoid Signaling in Kidney Disease. Cells 2023; 12:1419. [PMID: 37408253 DOI: 10.3390/cells12101419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 07/07/2023] Open
Abstract
Endocannabinoid signaling plays crucial roles in human physiology in the function of multiple systems. The two cannabinoid receptors, CB1 and CB2, are cell membrane proteins that interact with both exogenous and endogenous bioactive lipid ligands, or endocannabinoids. Recent evidence has established that endocannabinoid signaling operates within the human kidney, as well as suggests the important role it plays in multiple renal pathologies. CB1, specifically, has been identified as the more prominent ECS receptor within the kidney, allowing us to place emphasis on this receptor. The activity of CB1 has been repeatedly shown to contribute to both diabetic and non-diabetic chronic kidney disease (CKD). Interestingly, recent reports of acute kidney injury (AKI) have been attributed to synthetic cannabinoid use. Therefore, the exploration of the ECS, its receptors, and its ligands can help provide better insight into new methods of treatment for a range of renal diseases. This review explores the endocannabinoid system, with a focus on its impacts within the healthy and diseased kidney.
Collapse
Affiliation(s)
- Liana Arceri
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Thanh Khoa Nguyen
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shannon Gibson
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sophia Baker
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
11
|
Jacquot L, Pointeau O, Roger-Villeboeuf C, Passilly-Degrace P, Belkaid R, Regazzoni I, Leemput J, Buch C, Demizieux L, Vergès B, Degrace P, Crater G, Jourdan T. Therapeutic potential of a novel peripherally restricted CB1R inverse agonist on the progression of diabetic nephropathy. FRONTIERS IN NEPHROLOGY 2023; 3:1138416. [PMID: 37675364 PMCID: PMC10479578 DOI: 10.3389/fneph.2023.1138416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/28/2023] [Indexed: 09/08/2023]
Abstract
Objective This study assessed the efficacy of INV-202, a novel peripherally restricted cannabinoid type-1 receptor (CB1R) inverse agonist, in a streptozotocin-induced type-1 diabetes nephropathy mouse model. Methods Diabetes was induced in 8-week-old C57BL6/J male mice via intraperitoneal injection of streptozotocin (45 mg/kg/day for 5 days); nondiabetic controls received citrate buffer. Diabetic mice were randomized to 3 groups based on blood glucose, polyuria, and albuminuria, and administered daily oral doses for 28-days of INV-202 at 0.3 or 3 mg/kg or vehicle. Results INV-202 did not affect body weight but decreased kidney weight compared with the vehicle group. While polyuria was unaffected by INV-202 treatment, urinary urea (control 30.77 ± 14.93; vehicle 189.81 ± 31.49; INV-202 (0.3 mg/kg) 127.76 ± 20; INV-202 (3 mg/kg) 93.70 ± 24.97 mg/24h) and albumin (control 3.06 ± 0.38; vehicle 850.08 ± 170.50; INV-202 (0.3 mg/kg) 290.65 ± 88.70; INV-202 (3 mg/kg) 111.29 ± 33.47 µg/24h) excretion both decreased compared with vehicle-treated diabetic mice. Compared with the vehicle group, there was a significant improvement in the urinary albumin to creatinine ratio across INV-202 groups. Regardless of the dose, INV-202 significantly reduced angiotensin II excretion in diabetic mice. The treatment also decreased Agtr1a renal expression in a dose-dependent manner. Compared with nondiabetic controls, the glomerular filtration rate was increased in the vehicle group and significantly decreased by INV-202 at 3 mg/kg. While the vehicle group showed a significant loss in the mean number of podocytes per glomerulus, INV-202 treatment limited podocyte loss in a dose-dependent manner. Moreover, in both INV-202 groups, expression of genes coding for podocyte structural proteins nephrin (Nphs1), podocin (Nphs2), and podocalyxin (Pdxl) were restored to levels similar to nondiabetic controls. INV-202 partially limited the proximal tubular epithelial cell (PTEC) hyperplasia and normalized genetic markers for PTEC lesions. INV-202 also reduced expression of genes contributing to oxidative stress (Nox2, Nox4, and P47phox) and inflammation (Tnf). In addition, diabetes-induced renal fibrosis was significantly reduced by INV-202. Conclusions INV-202 reduced glomerular injury, preserved podocyte structure and function, reduced injury to PTECs, and ultimately reduced renal fibrosis in a streptozotocin-induced diabetic nephropathy mouse model. These results suggest that INV-202 may represent a new therapeutic option in the treatment of diabetic kidney disease.
Collapse
Affiliation(s)
- Laetitia Jacquot
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Océane Pointeau
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Célia Roger-Villeboeuf
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Patricia Passilly-Degrace
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Rim Belkaid
- ImaFlow core facility, UMR1231 INSERM, University of Burgundy, Dijon, France
| | - Isaline Regazzoni
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Julia Leemput
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Chloé Buch
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Laurent Demizieux
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Bruno Vergès
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pascal Degrace
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | | | - Tony Jourdan
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
12
|
Fujino M, Morito N, Hayashi T, Ojima M, Ishibashi S, Kuno A, Koshiba S, Yamagata K, Takahashi S. Transcription factor c-Maf deletion improves streptozotocin-induced diabetic nephropathy by directly regulating Sglt2 and Glut2. JCI Insight 2023; 8:163306. [PMID: 36787192 PMCID: PMC10070115 DOI: 10.1172/jci.insight.163306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
The transcription factor c-Maf has been widely studied and has been reported to play a critical role in embryonic kidney development; however, the postnatal functions of c-Maf in adult kidneys remain unknown as c-Maf-null C57BL/6J mice exhibit embryonic lethality. In this study, we investigated the role of c-Maf in adult mouse kidneys by comparing the phenotypes of tamoxifen-inducible (TAM-inducible) c-Maf-knockout mice (c-Maffl/fl; CAG-Cre-ERTM mice named "c-MafΔTAM") with those of c-Maffl/fl control mice, 10 days after TAM injection [TAM(10d)]. In addition, we examined the effects of c-Maf deletion on diabetic conditions by injecting the mice with streptozotocin, 4 weeks before TAM injection. c-MafΔTAM mice displayed primary glycosuria caused by sodium-glucose cotransporter 2 (Sglt2) and glucose transporter 2 (Glut2) downregulation in the kidneys without diabetes, as well as morphological changes and life-threatening injuries in the kidneys on TAM(10d). Under diabetic conditions, c-Maf deletion promoted recovery from hyperglycemia and suppressed albuminuria and diabetic nephropathy by causing similar effects as did Sglt2 knockout and SGLT2 inhibitors. In addition to demonstrating the potentially unique gene regulation of c-Maf, these findings highlight the renoprotective effects of c-Maf deficiency under diabetic conditions and suggest that c-Maf could be a novel therapeutic target gene for treating diabetic nephropathy.
Collapse
Affiliation(s)
- Mitsunori Fujino
- Department of Anatomy and Embryology, Faculty of Medicine
- PhD Program in Human Biology, School of Integrative and Global Majors
| | - Naoki Morito
- Department of Nephrology, Faculty of Medicine; and
| | - Takuto Hayashi
- Department of Anatomy and Embryology, Faculty of Medicine
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Masami Ojima
- Department of Anatomy and Embryology, Faculty of Medicine
| | - Shun Ishibashi
- Department of Anatomy and Embryology, Faculty of Medicine
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine
| | - Seizo Koshiba
- Tohoku Medical Megabank Organization and
- Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai, Japan
| | | | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine
- Laboratory Animal Resource Center
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)
- International Institute for Integrative Sleep Medicine (WPI-IIIS), and
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
13
|
Inhibition of SGLT2 co-transporter by dapagliflozin ameliorates tubular proteinuria and tubule-interstitial injury at the early stage of diabetic kidney disease. Eur J Pharmacol 2023; 942:175521. [PMID: 36681317 DOI: 10.1016/j.ejphar.2023.175521] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Diabetic kidney disease (DKD) is characterized by progressive impairment of kidney function. It has been postulated that tubule-interstitial injury, associated with tubular albuminuria, precedes glomerular damage in the early stage of DKD. Here, we wanted to determine if the development of tubule-interstitial injury at the early stage of DKD implies modulation of megalin-mediated protein reabsorption in proximal tubule epithelial cells (PTECs) by SGLT2-dependent high glucose influx. Rats with streptozotocin (STZ)-induced diabetes were treated or not with dapagliflozin (DAPA) for 8 weeks. Four experimental groups were generated: (1) CONT, control; (2) DAPA, rats treated with DAPA; (3) STZ, diabetic rats; (4) STZ + DAPA, diabetic rats treated with DAPA. No changes in glomerular structure and function were observed. The STZ group presented proteinuria and albuminuria associated with an increase in the fractional excretion of proteins. A positive correlation between glycemia and proteinuria was found. These phenomena were linked to a decrease in luminal and total megalin expression and, consequently, in albumin reabsorption in PTECs. We also observed tubule-interstitial injury characterized by an increase in urinary tubular injury biomarkers and changes in tubular histomorphometry parameters. In addition, inverse correlations were found between cortical albumin uptake and tubule-interstitial injury or glycemia. All these modifications were attenuated in the STZ + DAPA group. These results suggest that SGLT2-dependent high glucose influx into PTECs promotes a harmful effect on the PTECs, leading to the development of tubular albuminuria and tubule-interstitial injury preceding glomerular damage. These results expand current knowledge on the renoprotective effects of gliflozins.
Collapse
|
14
|
Bibliometric Analysis and Visualization of Research Progress in the Diabetic Nephropathy Field from 2001 to 2021. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:4555609. [PMID: 36718276 PMCID: PMC9884171 DOI: 10.1155/2023/4555609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/14/2022] [Accepted: 12/01/2022] [Indexed: 01/22/2023]
Abstract
Methods The PubMed database was searched to identify all studies related to DN that were published from 2001 to 2021, with these studies being separated into four time-based groups. The characteristics of these studies were analyzed and extracted using BICOMB. Biclustering analyses for each of these groups were then performed using gCLUTO, with these results then being analyzed and GraphPad Prism 5 being used to construct strategy diagrams. The social network analyses (SNAs) for each group of studies were conducted using NetDraw and UCINET. Results In total, 18,889 DN-associated studies published from 2001 to 2021 and included in the PubMed database were incorporated into the present bibliometric analysis. Biclustering analysis and strategy diagrams revealed that active areas of research interest in the DN field include studies of the drug-based treatment, diagnosis, etiology, pathology, physiopathology, and epidemiology of DN. The specific research topics associated with these individual areas, however, have evolved over time in a dynamic manner. Strategy diagrams and SNA results revealed podocyte metabolism as an emerging research hotspot in the DN research field from 2010 to 2015, while DN-related microRNAs, signal transduction, and mesangial cell metabolism have emerged as more recent research hotspots in the interval from 2016 to 2021. Conclusion Through analyses of PubMed-indexed studies pertaining to DN published since 2001, the results of this bibliometric analysis offer a knowledge framework and insight into active and historical research hotspots in the DN research space, enabling investigators to readily understand the dynamic evolution of this field over the past two decades. Importantly, these analyses also enable the prediction of future DN-related research hotspots, thereby potentially guiding more focused and impactful research efforts.
Collapse
|
15
|
Naik AS, Brosius FC. Cannabinoid Signaling in the Diabetic Proximal Tubule: Of Mice and Men. Am J Kidney Dis 2023; 81:110-113. [PMID: 36126758 PMCID: PMC9780186 DOI: 10.1053/j.ajkd.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/11/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Abhijit S Naik
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan.
| | - Frank C Brosius
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Medicine, University of Arizona, Tucson, Arizona.
| |
Collapse
|
16
|
Ahmad M, Abramovich I, Agranovich B, Nemirovski A, Gottlieb E, Hinden L, Tam J. Kidney Proximal Tubule GLUT2-More than Meets the Eye. Cells 2022; 12:cells12010094. [PMID: 36611887 PMCID: PMC9818791 DOI: 10.3390/cells12010094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Tubulopathy plays a central role in the pathophysiology of diabetic kidney disease (DKD). Under diabetic conditions, the kidney proximal tubule cells (KPTCs) are exposed to an extensive amount of nutrients, most notably glucose; these nutrients deteriorate KPTCs function and promote the development and progression of DKD. Recently, the facilitative glucose transporter 2 (GLUT2) in KPTCs has emerged as a central regulator in the pathogenesis of DKD. This has been demonstrated by identifying its specific role in enhancing glucose reabsorption and glucotoxicity, and by deciphering its effect in regulating the expression of the sodium-glucose transporter 2 (SGLT2) in KPTCs. Moreover, reduction/deletion of KPTC-GLUT2 has been recently found to ameliorate DKD, raising the plausible idea of considering it as a therapeutic target against DKD. However, the underlying molecular mechanisms by which GLUT2 exerts its deleterious effects in KPTCs remain vague. Herein, we review the current findings on the proximal tubule GLUT2 biology and function under physiologic conditions, and its involvement in the pathophysiology of DKD. Furthermore, we shed new light on its cellular regulation during diabetic conditions.
Collapse
Affiliation(s)
- Majdoleen Ahmad
- Obesity and Metabolism Laboratory, Faculty of Medicine, The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ifat Abramovich
- Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 3525422, Israel
| | - Bella Agranovich
- Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 3525422, Israel
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, Faculty of Medicine, The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Eyal Gottlieb
- Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 3525422, Israel
| | - Liad Hinden
- Obesity and Metabolism Laboratory, Faculty of Medicine, The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- Correspondence: (L.H.); (J.T.); Tel.: +972-2-675-7650 (L.H.); +972-2-675-7645 (J.T.)
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Faculty of Medicine, The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- Correspondence: (L.H.); (J.T.); Tel.: +972-2-675-7650 (L.H.); +972-2-675-7645 (J.T.)
| |
Collapse
|
17
|
Wang M. mTORC1 under the control of CB 1R. Nat Rev Nephrol 2022; 18:345. [PMID: 35508705 DOI: 10.1038/s41581-022-00582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|