1
|
Verissimo L, Fang ZL, Xu WJ, Martinho JMG, Yuan W, Zhang WX, Kholkin A, Rocha J. Hydrogen-Bonding-Driven Design of Organic-Inorganic Hybrid Ferroelastics with Reversible Photoisomerization. Inorg Chem 2025. [PMID: 39846875 DOI: 10.1021/acs.inorgchem.5c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The development of photoresponsive ferroelastics, which couple light-induced macroscopic mechanical and microscopic domain properties, represents a frontier in materials science with profound implications for advanced functional applications. In this study, we report the rational design and synthesis of two new organic-inorganic hybrid ferroelastic crystals, (MA)(Me4N)[Fe(CN)5(NO)] (MA = methylammonium) (1) and (MA)(Me3NOH)[Fe(CN)5(NO)] (2), using a dual-organic molecular design strategy that exploits hydrogen-bonding interactions for tailoring ferroelastic properties. Specifically, 1 exhibits a two-step phase transition at 138 and 242 K, while the introduction of a hydroxyl group in 2 stabilizes its ferroelastic phase to a significantly higher temperature, achieving a phase transition at 328 K, 86 K above that of 1. This enhancement is attributed to hydrogen bonding between the hydroxyl group of Me3NOH+ and the nitroprusside anion, which suppresses lattice dynamics and reinforces structural stability. Remarkably, 2 demonstrates a large spontaneous strain of 0.153, vastly exceeding the 0.021 of 1, and undergoes an 11% size change along the b-axis in response to thermal stimuli. Both compounds exhibit reversible, photoinduced nitrosyl-linkage isomerization, as confirmed by IR spectroscopy, transitioning between the ground state (N-bound nitrosyl) and the metastable state (O-bound nitrosyl). This integration of photoresponsive functionality with ferroelastic properties establishes a versatile platform for energy-efficient actuation, adaptive devices, and multifunctional sensing applications. These findings offer an innovative pathway for designing next-generation hybrid materials with enhanced tunable properties.
Collapse
Affiliation(s)
- Luis Verissimo
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Zi-Luo Fang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei-Jian Xu
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - José M G Martinho
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Wei Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei-Xiong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Andrei Kholkin
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Institute of Solid State Physics, University of Latvia, LV-1063 Riga, Latvia
| | - João Rocha
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
2
|
Gui LA, Zhang YF, Peng Y, Hu ZB, Song Y. Synergetic Responses of Multiple Functions Induced by Phase Transition in Molecular Materials. Chemphyschem 2024; 25:e202400297. [PMID: 38797706 DOI: 10.1002/cphc.202400297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Materials that integrate magnetism, electricity and luminescence can not only improve the operational efficiency of devices, but also potentially generate new functions through their coupling. Therefore, multifunctional synergistic effects have broad application prospects in fields such as optoelectronic devices, information storage and processing, and quantum computing. However, in the research field of molecular materials, there are few reports on the synergistic multifunctional properties. The main reason is that there is insufficient awareness of how to obtain such material. In this brief review, we summarized the molecular materials with this characteristic. The structural phase transition of substances will cause changes in their physical properties, as the electronic configurations of the active unit in different structural phases are different. Therefore, we will classify and describe the multifunctional synergistic complexes based on the structural factors that cause the first-order phase transition of the complexes. This enables us to quickly screen complexes with synergistic responses to these properties through structural phase transitions, providing ideas for studying the synergistic response of physical properties in molecular materials.
Collapse
Affiliation(s)
- Ling-Ao Gui
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, China
| | - Yi-Fan Zhang
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, China
| | - Yan Peng
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, China
| | - Zhao-Bo Hu
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, China
| | - You Song
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Pan Q, Gu ZX, Zhou RJ, Feng ZJ, Xiong YA, Sha TT, You YM, Xiong RG. The past 10 years of molecular ferroelectrics: structures, design, and properties. Chem Soc Rev 2024; 53:5781-5861. [PMID: 38690681 DOI: 10.1039/d3cs00262d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Ferroelectricity, which has diverse important applications such as memory elements, capacitors, and sensors, was first discovered in a molecular compound, Rochelle salt, in 1920 by Valasek. Owing to their superiorities of lightweight, biocompatibility, structural tunability, mechanical flexibility, etc., the past decade has witnessed the renaissance of molecular ferroelectrics as promising complementary materials to commercial inorganic ferroelectrics. Thus, on the 100th anniversary of ferroelectricity, it is an opportune time to look into the future, specifically into how to push the boundaries of material design in molecular ferroelectric systems and finally overcome the hurdles to their commercialization. Herein, we present a comprehensive and accessible review of the appealing development of molecular ferroelectrics over the past 10 years, with an emphasis on their structural diversity, chemical design, exceptional properties, and potential applications. We believe that it will inspire intense, combined research efforts to enrich the family of high-performance molecular ferroelectrics and attract widespread interest from physicists and chemists to better understand the structure-function relationships governing improved applied functional device engineering.
Collapse
Affiliation(s)
- Qiang Pan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Zhu-Xiao Gu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, P. R. China.
| | - Ru-Jie Zhou
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Zi-Jie Feng
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Yu-An Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Tai-Ting Sha
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Ren-Gen Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| |
Collapse
|
4
|
Wang P, Tong YQ, Yin SQ, Gu QJ, Huang B, Zhu AX. Exceptional structural phase transition near room temperature in an organic-inorganic hybrid ferroelectric. Chem Commun (Camb) 2023; 59:13651-13654. [PMID: 37905986 DOI: 10.1039/d3cc04186g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
An organic-inorganic hybrid ferroelectric, (C6H5CH2CH2NH3)2[HgI4], undergoes an exceptional structural phase transition near room temperature, triggered by a flip of half the organic cations and an order-disorder transition of the inorganic anions, and may be regarded as a displacive-type ferroelectric. This finding provides a new structural phase transition mechanism in molecule-based ferroelectrics.
Collapse
Affiliation(s)
- Ping Wang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Yu-Qiao Tong
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Shi-Qing Yin
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Qian-Jun Gu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Bo Huang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Ai-Xin Zhu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
5
|
Du Y, Liao WQ, Li Y, Huang CR, Gan T, Chen XG, Lv HP, Song XJ, Xiong RG, Wang ZX. A Homochiral Fulgide Organic Ferroelectric Crystal with Photoinduced Molecular Orbital Breaking. Angew Chem Int Ed Engl 2023:e202315189. [PMID: 37919233 DOI: 10.1002/anie.202315189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
Thermally triggered spatial symmetry breaking in traditional ferroelectrics has been extensively studied for manipulation of the ferroelectricity. However, photoinduced molecular orbital breaking, which is promising for optical control of ferroelectric polarization, has been rarely explored. Herein, for the first time, we synthesized a homochiral fulgide organic ferroelectric crystal (E)-(R)-3-methyl-3-cyclohexylidene-4-(diphenylmethylene)dihydro-2,5-furandione (1), which exhibits both ferroelectricity and photoisomerization. Significantly, 1 shows a photoinduced reversible change in its molecular orbitals from the 3 π molecular orbitals in the open-ring isomer to 2 π and 1 σ molecular orbitals in the closed-ring isomer, which enables reversible ferroelectric domain switching by optical manipulation. To our knowledge, this is the first report revealing the manipulation of ferroelectric polarization in homochiral ferroelectric crystal by photoinduced breaking of molecular orbitals. This finding sheds light on the exploration of molecular orbital breaking in ferroelectrics for optical manipulation of ferroelectricity.
Collapse
Affiliation(s)
- Ye Du
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
| | - Wei-Qiang Liao
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Yibao Li
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
| | - Chao-Ran Huang
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
| | - Tian Gan
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Xiao-Gang Chen
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Hui-Peng Lv
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Xian-Jiang Song
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Zhong-Xia Wang
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
| |
Collapse
|
6
|
Huang YL, Ying TT, Zhao YR, Tang YZ, Tan YH, Li QL, Liu WF, Wan MY, Wang FX. Zero-Dimensional Sn-Based Enantiomeric Phase-Transition Materials with High-Tc and Dielectric Switching. Chemistry 2023; 29:e202301499. [PMID: 37493075 DOI: 10.1002/chem.202301499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/27/2023]
Abstract
The combination of chirality and phase-transition materials has broad application prospects. Therefore, based on the quasi-spherical theory and the thought strategy of introducing chirality, we have successfully synthesized a pair of chiral enantiomeric ligands (R/S)-triethyl-(2-hydroxypropyl)ammonium iodide, which can be combined with a tin hexachloride anion to obtain a pair of new organic-inorganic hybrid enantiomeric high-temperature plastic phase-transition materials: (R/S)-[CH3 CH(OH)CH2 N(CH2 CH3 )3 ]2 SnCl6 (1-R/1-S), which have a high temperature phase transition of Tc =384 K, crystallize in the P21 chiral space group at room temperature, and have obvious CD signals. In addition, compounds 1-R and 1-S have a good low-loss dielectric switch and broadband gap. This work is conducive to the research into chiral high-temperature reversible plastic phase-transition materials, and promotes the development of multi-functional phase-transition materials.
Collapse
Affiliation(s)
- Yan-Le Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, P. R. China
| | - Ting-Ting Ying
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, P. R. China
| | - Yi-Ran Zhao
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, P. R. China
| | - Yun-Zhi Tang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, P. R. China
| | - Yu-Hui Tan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, P. R. China
| | - Qiao-Lin Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, P. R. China
| | - Wei-Fei Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, P. R. China
| | - Ming-Yang Wan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, P. R. China
| | - Fang-Xin Wang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, 156 Hakka Avenue, Jiangxi, Ganzhou, 341000, P. R. China
| |
Collapse
|
7
|
Chen Y, Lu S, Abbas Abedi SA, Jeong M, Li H, Hwa Kim M, Park S, Liu X, Yoon J, Chen X. Janus-Type ESIPT Chromophores with Distinctive Intramolecular Hydrogen-bonding Selectivity. Angew Chem Int Ed Engl 2023; 62:e202311543. [PMID: 37602709 DOI: 10.1002/anie.202311543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/22/2023]
Abstract
Excited-state intramolecular proton transfer (ESIPT)-based solid luminescent materials with multiple hydrogen bond acceptors (HBAs) remain unexplored. Herein, we introduced a family of Janus-type ESIPT chromophores featuring distinctive hydrogen bond (H-bond) selectivity between competitive HBAs in a single molecule. Our investigations showed that the central hydroxyl group preferentially forms intramolecular H-bonds with imines in imine-modified 2-hydroxyphenyl benzothiazole (HBT) chromophores but tethers the benzothiazole moiety in hydrazone-modified HBT chromophores. Imine-derived HBTs generally exhibit higher fluorescence efficiency, while hydrazone-derived HBTs show a reduced overlap between the absorption and fluorescence bands. Quantum chemical calculations unveiled the molecular origins of the biased intramolecular H-bonds and their impact on the ESIPT process. This Janus-type ESIPT chromophore skeleton provides new opportunities for the design of solid luminescent materials.
Collapse
Affiliation(s)
- Yahui Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 211816, Nanjing, China
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760, Seoul, Korea
- New and Renewable Energy Research Center, Ewha Womans University, 03760, Seoul, Korea
| | - Sheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 211816, Nanjing, China
| | - Syed Ali Abbas Abedi
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Minseok Jeong
- Department of Chemistry and Research Institute for Natural Science, Korea University, 02841, Seoul, Korea
| | - Haidong Li
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, 116024, Dalian, China
| | - Myung Hwa Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760, Seoul, Korea
- New and Renewable Energy Research Center, Ewha Womans University, 03760, Seoul, Korea
| | - Sungnam Park
- Department of Chemistry and Research Institute for Natural Science, Korea University, 02841, Seoul, Korea
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760, Seoul, Korea
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 211816, Nanjing, China
| |
Collapse
|
8
|
Liu JC, Ai Y, Liu Q, Zeng YP, Chen XG, Lv HP, Xiong RG, Liao WQ. Solid-Liquid Crystal Biphasic Ferroelectrics with Tunable Biferroelectricity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302436. [PMID: 37202898 DOI: 10.1002/adma.202302436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/27/2023] [Indexed: 05/20/2023]
Abstract
Ferroelectricity has been separately found in numerous solid and liquid crystal materials since its first discovery in 1920. However, a single material with biferroelectricity existing in both solid and liquid crystal phases is very rare, and the regulation of biferroelectricity has never been studied. Here, solid-liquid crystal biphasic ferroelectrics, cholestanyl 4-X-benzoate (4X-CB, X = Cl, Br, and I), which exhibits biferroelectricity in both the solid and liquid crystal phases, is presented. It is noted that the ferroelectric liquid crystal phase of 4X-CB is a cholesteric one, distinct from the ordinary chiral smectic ferroelectric liquid crystal phase. Moreover, 4X-CB shows solid-solid and solid-liquid crystal phase transitions, of which the transition temperatures gradually increase from Cl to Br to I substitution. The spontaneous polarization (Ps ) of 4X-CB in both solid and liquid crystal phases can also be regulated by different halogen substitutions, where the 4Br-CB has the optimal Ps because of the larger molecular dipole moment. To the authors' knowledge, 4X-CB is the first ferroelectric with tunable biferroelectricity, which offers a feasible case for the performance optimization of solid-liquid crystal biphasic ferroelectrics.
Collapse
Affiliation(s)
- Jun-Chao Liu
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Yong Ai
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Qin Liu
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Yi-Piao Zeng
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Xiao-Gang Chen
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Hui-Peng Lv
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Wei-Qiang Liao
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
9
|
Peng H, Xu ZK, Du Y, Li PF, Wang ZX, Xiong RG, Liao WQ. The First Enantiomeric Stereogenic Sulfur-Chiral Organic Ferroelectric Crystals. Angew Chem Int Ed Engl 2023; 62:e202306732. [PMID: 37272456 DOI: 10.1002/anie.202306732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/06/2023]
Abstract
Chiral ferroelectric crystals with intriguing features have attracted great interest and many with point or axial chirality based on the stereocarbon have been successively developed in recent years. However, ferroelectric crystals with stereogenic heteroatomic chirality have never been documented so far. Here, we discover and report a pair of enantiomeric stereogenic sulfur-chiral single-component organic ferroelectric crystals, Rs -tert-butanesulfinamide (Rs -tBuSA) and Ss -tert-butanesulfinamide (Ss -tBuSA) through the deep understanding of the chemical design of molecular ferroelectric crystals. Both enantiomers adopt chiral-polar point group 2 (C2 ) and exhibit mirror-image relationships. They undergo high-temperature 432F2-type plastic ferroelectric phase transition around 348 K. The ferroelectricity has been well confirmed by ferroelectric hysteresis loops and domains. Polarized light microscopy records the evolution of the ferroelastic domains, according with the fact that the 432F2-type phase transition is both ferroelectric and ferroelastic. The very soft characteristics with low elastic modulus and hardness reveals their excellent mechanical flexibility. This finding indicates the first stereosulfur chiral molecular ferroelectric crystals, opening up new fertile ground for exploring molecular ferroelectric crystals with great application prospects.
Collapse
Affiliation(s)
- Hang Peng
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Zhe-Kun Xu
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Ye Du
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
| | - Peng-Fei Li
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Zhong-Xia Wang
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Wei-Qiang Liao
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
10
|
Xu WJ, Li MF, Garcia AR, Romanyuk K, Martinho JMG, Zelenovskii P, Tselev A, Verissimo L, Zhang WX, Chen XM, Kholkin A, Rocha J. Molecular Design of a Metal-Nitrosyl Ferroelectric with Reversible Photoisomerization. J Am Chem Soc 2023. [PMID: 37329320 DOI: 10.1021/jacs.3c01530] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The development of photo-responsive ferroelectrics whose polarization may be remotely controlled by optical means is of fundamental importance for basic research and technological applications. Herein, we report the design and synthesis of a new metal-nitrosyl ferroelectric crystal (DMA)(PIP)[Fe(CN)5(NO)] (1) (DMA = dimethylammonium, PIP = piperidinium) with potential phototunable polarization via a dual-organic-cation molecular design strategy. Compared to the parent non-ferroelectric (MA)2[Fe(CN)5(NO)] (MA = methylammonium) material with a phase transition at 207 K, the introduction of larger dual organic cations both lowers the crystal symmetry affording robust ferroelectricity and increases the energy barrier of molecular motions, endowing 1 with a large polarization of up to 7.6 μC cm-2 and a high Curie temperature (Tc) of 316 K. Infrared spectroscopy shows that the reversible photoisomerization of the nitrosyl ligand is accomplished by light irradiation. Specifically, the ground state with the N-bound nitrosyl ligand conformation can be reversibly switched to both the metastable state I (MSI) with isonitrosyl conformation and the metastable state II (MSII) with side-on nitrosyl conformation. Quantum chemistry calculations suggest that the photoisomerization significantly changes the dipole moment of the [Fe(CN)5(NO)]2- anion, thus leading to three ferroelectric states with different values of macroscopic polarization. Such optical accessibility and controllability of different ferroelectric states via photoinduced nitrosyl linkage isomerization open up a new and attractive route to optically controllable macroscopic polarization.
Collapse
Affiliation(s)
- Wei-Jian Xu
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mao-Fan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ana R Garcia
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Konstantin Romanyuk
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José M G Martinho
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Pavel Zelenovskii
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alexander Tselev
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luís Verissimo
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Wei-Xiong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Andrei Kholkin
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Rocha
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
11
|
Du Y, Huang CR, Xu ZK, Hu W, Li PF, Xiong RG, Wang ZX. Photochromic Single-Component Organic Fulgide Ferroelectric with Photo-Triggered Polarization Response. JACS AU 2023; 3:1464-1471. [PMID: 37234120 PMCID: PMC10207094 DOI: 10.1021/jacsau.3c00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Organic photochromic compounds have been widely investigated for optical memory storage and switches. Very recently, we pioneeringly discovered optical control of ferroelectric polarization switching in organic photochromic salicylaldehyde Schiff base and diarylethene derivatives, differently from the traditional ferroelectrics. However, the study of such intriguing photo-triggered ferroelectrics is still in its infancy and relatively scarce. In this manuscript, we synthesized a pair of new organic single-component fulgide isomers, (E and Z)-3-(1-(4-(tert-butyl)phenyl)ethylidene)-4-(propan-2-ylidene)dihydrofuran-2,5-dione (1E and 1Z). They undergo prominent photochromism from yellow to red. Interestingly, only polar 1E has been proven to be ferroelectric, while the centrosymmetric 1Z does not meet the basic requirement for ferroelectricity. Besides, experimental evidence shows that the Z-form can be converted to the E-form by light irradiation. More importantly, the ferroelectric domains of 1E can be manipulated by light in the absence of an electric field, benefiting from the remarkable photoisomerization. 1E also adopts good fatigue resistance to the photocyclization reaction. As far as we know, this is the first example of organic fulgide ferroelectric reported with photo-triggered ferroelectric polarization response. This work has developed a new system for studying photo-triggered ferroelectrics and would also provide an expected perspective on developing ferroelectrics for optical applications in trap future.
Collapse
Affiliation(s)
- Ye Du
- College
of Chemistry and Chemical Engineering, Gannan
Normal University, Ganzhou 341000, People’s
Republic of China
| | - Chao-Ran Huang
- College
of Chemistry and Chemical Engineering, Gannan
Normal University, Ganzhou 341000, People’s
Republic of China
| | - Zhe-Kun Xu
- Ordered
Matter Science Research Center, Nanchang
University, Nanchang 330031, People’s
Republic of China
| | - Wei Hu
- Ordered
Matter Science Research Center, Nanchang
University, Nanchang 330031, People’s
Republic of China
| | - Peng-Fei Li
- Ordered
Matter Science Research Center, Nanchang
University, Nanchang 330031, People’s
Republic of China
| | - Ren-Gen Xiong
- Ordered
Matter Science Research Center, Nanchang
University, Nanchang 330031, People’s
Republic of China
| | - Zhong-Xia Wang
- College
of Chemistry and Chemical Engineering, Gannan
Normal University, Ganzhou 341000, People’s
Republic of China
- Ordered
Matter Science Research Center, Nanchang
University, Nanchang 330031, People’s
Republic of China
| |
Collapse
|
12
|
Zhang HY, Zhang N, Zhang Y, Jiang HH, Zeng YL, Tang SY, Li PF, Tang YY, Xiong RG. Ferroelectric Phase Transition Driven by Switchable Covalent Bonds. PHYSICAL REVIEW LETTERS 2023; 130:176802. [PMID: 37172248 DOI: 10.1103/physrevlett.130.176802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/05/2023] [Indexed: 05/14/2023]
Abstract
The mechanism on ferroelectric phase transitions is mainly attributed to the displacive and/or order-disorder transition of internal components since the discovery of the ferroelectricity in 1920, rather than the breaking and recombination of chemical bonds. Here, we demonstrate how to utilize the chemical bond rearrangement in a diarylethene-based crystal to realize the light-driven mm2F1-type ferroelectric phase transition. Such a photoinduced phase transition is entirely driven by switchable covalent bonds with breaking and reformation, enabling the reversible light-controllable ferroelectric polarization switching, dielectric and nonlinear optical bistability. Moreover, light as quantized energy can achieve contactless, nondestructive, and remote-control operations. This work proposes a new mechanism of ferroelectric phase transition, and highlights the significance of photochromic molecules in designing new ferroelectrics for photocontrol data storage and sensing.
Collapse
Affiliation(s)
- Han-Yue Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Nan Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Yao Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Huan-Huan Jiang
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Yu-Ling Zeng
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Shu-Yu Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Peng-Fei Li
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yuan-Yuan Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Ren-Gen Xiong
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| |
Collapse
|