1
|
Li J, Wu W, Chen J, Xu Z, Yang B, He Q, Yang X, Yan H, Luo P. Development and safety of investigational and approved drugs targeting the RAS function regulation in RAS mutant cancers. Toxicol Sci 2024; 202:167-178. [PMID: 39378126 DOI: 10.1093/toxsci/kfae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
The RAS gene family holds a central position in controlling key cellular activities such as migration, survival, metabolism, and other vital biological processes. The activation of RAS signaling cascades is instrumental in the development of various cancers. Although several RAS inhibitors have gained approval from the US Food and Drug Administration for their substantial antitumor effects, their widespread and severe adverse reactions significantly curtail their practical usage in the clinic. Thus, there exists a pressing need for a comprehensive understanding of these adverse events, ensuring the clinical safety of RAS inhibitors through the establishment of precise management guidelines, suitable intermittent dosing schedules, and innovative combination regimens. This review centers on the evolution of RAS inhibitors in cancer therapy, delving into the common adverse effects associated with these inhibitors, their underlying mechanisms, and the potential strategies for mitigation.
Collapse
Affiliation(s)
- Jinjin Li
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wentong Wu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Chen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310018, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| |
Collapse
|
2
|
Graham S, Dmitrieva M, Vendramini-Costa DB, Francescone R, Trujillo MA, Cukierman E, Wood LD. From precursor to cancer: decoding the intrinsic and extrinsic pathways of pancreatic intraepithelial neoplasia progression. Carcinogenesis 2024; 45:801-816. [PMID: 39514554 DOI: 10.1093/carcin/bgae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores the progression of pancreatic intraepithelial neoplasia (PanIN) to pancreatic ductal adenocarcinoma through a dual lens of intrinsic molecular alterations and extrinsic microenvironmental influences. PanIN development begins with Kirsten rat sarcoma viral oncogene (KRAS) mutations driving PanIN initiation. Key additional mutations in cyclin-dependent kinase inhibitor 2A (CDKN2A), tumor protein p53 (TP53), and mothers against decapentaplegic homolog 4 (SMAD4) disrupt cell cycle control and genomic stability, crucial for PanIN progression from low-grade to high-grade dysplasia. Additional molecular alterations in neoplastic cells, including epigenetic modifications and chromosomal alterations, can further contribute to neoplastic progression. In parallel with these alterations in neoplastic cells, the microenvironment, including fibroblast activation, extracellular matrix remodeling, and immune modulation, plays a pivotal role in PanIN initiation and progression. Crosstalk between neoplastic and stromal cells influences nutrient support and immune evasion, contributing to tumor development, growth, and survival. This review underscores the intricate interplay between cell-intrinsic molecular drivers and cell-extrinsic microenvironmental factors, shaping PanIN predisposition, initiation, and progression. Future research aims to unravel these interactions to develop targeted therapeutic strategies and early detection techniques, aiming to alleviate the severe impact of pancreatic cancer by addressing both genetic predispositions and environmental influences.
Collapse
Affiliation(s)
- Sarah Graham
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Mariia Dmitrieva
- Cancer Signaling & Microenvironment Program, M&C Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA 19111, United States
| | - Debora Barbosa Vendramini-Costa
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, United States
| | - Ralph Francescone
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, United States
| | - Maria A Trujillo
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Edna Cukierman
- Cancer Signaling & Microenvironment Program, M&C Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA 19111, United States
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21231, United States
| |
Collapse
|
3
|
Zhao Y, Qin C, Lin C, Li Z, Zhao B, Li T, Zhang X, Wang W. Pancreatic ductal adenocarcinoma cells reshape the immune microenvironment: Molecular mechanisms and therapeutic targets. Biochim Biophys Acta Rev Cancer 2024; 1879:189183. [PMID: 39303859 DOI: 10.1016/j.bbcan.2024.189183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a digestive system malignancy characterized by challenging early detection, limited treatment alternatives, and generally poor prognosis. Although there have been significant advancements in immunotherapy for hematological malignancies and various solid tumors in recent decades, with impressive outcomes in recent preclinical and clinical trials, the effectiveness of these therapies in treating PDAC continues to be modest. The unique immunological microenvironment of PDAC, especially the abnormal distribution, complex composition, and variable activation states of tumor-infiltrating immune cells, greatly restricts the effectiveness of immunotherapy. Undoubtedly, integrating data from both preclinical models and human studies helps accelerate the identification of reliable molecules and pathways responsive to targeted biological therapies and immunotherapies, thereby continuously optimizing therapeutic combinations. In this review, we delve deeply into how PDAC cells regulate the immune microenvironment through complex signaling networks, affecting the quantity and functional status of immune cells to promote immune escape and tumor progression. Furthermore, we explore the multi-modal immunotherapeutic strategies currently under development, emphasizing the transformation of the immunosuppressive environment into an anti-tumor milieu by targeting specific molecular and cellular pathways, providing insights for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Chen Lin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Xiangyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| |
Collapse
|
4
|
Noè R, Carrer A. Diet predisposes to pancreatic cancer through cellular nutrient sensing pathways. FEBS Lett 2024; 598:2470-2481. [PMID: 38886112 DOI: 10.1002/1873-3468.14959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Pancreatic cancer is a lethal disease with limited effective treatments. A deeper understanding of its molecular mechanisms is crucial to reduce incidence and mortality. Epidemiological evidence suggests a link between diet and disease risk, though dietary recommendations for at-risk individuals remain debated. Here, we propose that cell-intrinsic nutrient sensing pathways respond to specific diet-derived cues to facilitate oncogenic transformation of pancreatic epithelial cells. This review explores how diet influences pancreatic cancer predisposition through nutrient sensing and downstream consequences for (pre-)cancer cell biology. We also examine experimental evidence connecting specific food intake to pancreatic cancer progression, highlighting nutrient sensing as a promising target for therapeutic development to mitigate disease risk.
Collapse
Affiliation(s)
- Roberta Noè
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Biology, University of Padova, Padua, Italy
| | - Alessandro Carrer
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Biology, University of Padova, Padua, Italy
| |
Collapse
|
5
|
Shao L, Yu H, Wang M, Chen L, Ji B, Wu T, Teng X, Su M, Han X, Shi W, Hu X, Wang Z, He H, Han G, Zhang Y, Wu Q. DKK1-SE recruits AP1 to activate the target gene DKK1 thereby promoting pancreatic cancer progression. Cell Death Dis 2024; 15:566. [PMID: 39107271 PMCID: PMC11303742 DOI: 10.1038/s41419-024-06915-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/09/2024]
Abstract
Super-enhancers are a class of DNA cis-regulatory elements that can regulate cell identity, cell fate, stem cell pluripotency, and even tumorigenesis. Increasing evidence shows that epigenetic modifications play an important role in the pathogenesis of various types of cancer. However, the current research is far from enough to reveal the complex mechanism behind it. This study found a super-enhancer enriched with abnormally active histone modifications in pancreatic ductal adenocarcinoma (PDAC), called DKK1-super-enhancer (DKK1-SE). The major active component of DKK1-SE is component enhancer e1. Mechanistically, AP1 induces chromatin remodeling in component enhancer e1 and activates the transcriptional activity of DKK1. Moreover, DKK1 was closely related to the malignant clinical features of PDAC. Deletion or knockdown of DKK1-SE significantly inhibited the proliferation, colony formation, motility, migration, and invasion of PDAC cells in vitro, and these phenomena were partly mitigated upon rescuing DKK1 expression. In vivo, DKK1-SE deficiency not only inhibited tumor proliferation but also reduced the complexity of the tumor microenvironment. This study identifies that DKK1-SE drives DKK1 expression by recruiting AP1 transcription factors, exerting oncogenic effects in PDAC, and enhancing the complexity of the tumor microenvironment.
Collapse
Affiliation(s)
- Lan Shao
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Haoran Yu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Mengyun Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Lu Chen
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Boshu Ji
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Xiangqi Teng
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Mu Su
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Xiao Han
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Weikai Shi
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Xin Hu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Ziwen Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Hongjuan He
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Guiping Han
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qiong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
6
|
Khan A, Khan B, Hussain S, Wang Y, Mai W, Hou Y. Permethrin exposure impacts zebrafish lipid metabolism via the KRAS-PPAR-GLUT signaling pathway, which is mediated by oxidative stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107021. [PMID: 38996480 DOI: 10.1016/j.aquatox.2024.107021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Permethrin (Per) is a widely used and frequently detected pyrethroid pesticide in agricultural products and the environment. It may pose potential toxicity to non-target organisms. Per has been reported to affect lipid homeostasis, although the mechanism is undefined. This study aims to explore the characteristic transcriptomic profiles and clarify the underlying signaling pathways of Per-induced lipid metabolism disorder in zebrafish liver. The results showed that environmental exposure to Per caused changes in the liver index, histopathology, and oxidative stress in zebrafish. Moreover, transcriptome results showed that Per heavily altered the pathways involved in metabolism, the immune system, and the endocrine system. We conducted a more in-depth analysis of the genes associated with lipid metabolism. Our findings revealed that exposure to Per led to a disruption in lipid metabolism by activating the KRAS-PPAR-GLUT signaling pathways through oxidative stress. The disruption of lipid homeostasis caused by exposure to Per may also contribute to obesity, hepatitis, and other diseases. The results may provide new insights for the risk of Permethrin to aquatic organisms and new horizons for the pathogenesis of hepatotoxicity.
Collapse
Affiliation(s)
- Afrasyab Khan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013
| | - Bibimaryam Khan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013
| | - Shakeel Hussain
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013
| | - Yuhan Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013
| | - Weijun Mai
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013.
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China 212013.
| |
Collapse
|
7
|
Zhang S, Xiao X, Yi Y, Wang X, Zhu L, Shen Y, Lin D, Wu C. Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets. Signal Transduct Target Ther 2024; 9:149. [PMID: 38890350 PMCID: PMC11189549 DOI: 10.1038/s41392-024-01848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 06/20/2024] Open
Abstract
Tumorigenesis is a multistep process, with oncogenic mutations in a normal cell conferring clonal advantage as the initial event. However, despite pervasive somatic mutations and clonal expansion in normal tissues, their transformation into cancer remains a rare event, indicating the presence of additional driver events for progression to an irreversible, highly heterogeneous, and invasive lesion. Recently, researchers are emphasizing the mechanisms of environmental tumor risk factors and epigenetic alterations that are profoundly influencing early clonal expansion and malignant evolution, independently of inducing mutations. Additionally, clonal evolution in tumorigenesis reflects a multifaceted interplay between cell-intrinsic identities and various cell-extrinsic factors that exert selective pressures to either restrain uncontrolled proliferation or allow specific clones to progress into tumors. However, the mechanisms by which driver events induce both intrinsic cellular competency and remodel environmental stress to facilitate malignant transformation are not fully understood. In this review, we summarize the genetic, epigenetic, and external driver events, and their effects on the co-evolution of the transformed cells and their ecosystem during tumor initiation and early malignant evolution. A deeper understanding of the earliest molecular events holds promise for translational applications, predicting individuals at high-risk of tumor and developing strategies to intercept malignant transformation.
Collapse
Affiliation(s)
- Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyi Xiao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yonglin Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyu Wang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Lingxuan Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Changping Laboratory, 100021, Beijing, China
| | - Yanrong Shen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, 100006, Beijing, China.
| |
Collapse
|
8
|
Zuo X, Kiyasu Y, Liu Y, Deguchi Y, Liu F, Moussalli M, Tan L, Wei B, Wei D, Yang P, Shureiqi I. Colorectal ALOX15 as a host factor determinant of EPA and DHA effects on colorectal carcinogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592224. [PMID: 38746303 PMCID: PMC11092629 DOI: 10.1101/2024.05.02.592224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), omega-3 polyunsaturated fatty acids (ω-3 PUFAs) derived from fish oil, are widely used as dietary supplements and FDA-approved treatments for hypertriglyceridemia. However, studies investigating the effects of EPA and DHA on colorectal carcinogenesis (CRC) have yielded conflicting results. The factors that determine these discrepant results remain unknown. Resolvins, oxidative metabolites of EPA and DHA, inhibit key pro-tumorigenic cytokine and chemokine signaling of colorectal cancer (e.g., IL-6, IL-1β, and CCL2). 15-lipoxygenase-1 (ALOX15), a critical enzyme for resolvin generation is commonly lost during human CRC. Whether ALOX15 expression, as a host factor, modulates the effects of EPA and DHA on CRC remains unknown. Therefore, we evaluated the effects of ALOX15 transgenic expression in colonic epithelial cells on resolvin generation by EPA and DHA and CRC in mouse models representative of human CRC. Our results revealed that 1) EPA and DHA effects on CRC were diverse, ranging from suppressive to promotive, and these effects were occasionally altered by the formulations of EPA and DHA (free fatty acid, ethyl ester, triglyceride); 2) EPA and DHA uniformly suppressed CRC in the presence of intestinal ALOX15 transgenic expression, which induced the production of resolvins, decreased colonic CCL3-5 and CXCL-5 expression and tumor associated macrophages while increasing CD8 T cell abundance in tumor microenvironment; and 3) RvD5, the predominant resolvin produced by ALOX15, inhibited macrophage generation of pro-tumorigenic cytokines. These findings demonstrate the significance of intestinal ALOX15 expression as a host factor in determining the effects of EPA and DHA on CRC. Significance Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are widely used as dietary supplements and FDA-approved treatments for hypertriglyceridemia. Studies of EPA and DHA effects on colorectal carcinogenesis (CRC) have revealed inconsistencies; factors determining the direction of their impact on CRC have remained unidentified. Our data show that EPA and DHA effects on CRC were divergent and occasionally influenced by their formulations. More importantly, intestinal 15-lipoxgenase-1 (ALOX15) expression modulated EPA and DHA effects on CRC, leading to their consistent suppression of CRC. ALOX15 promoted EPA and DHA oxidative metabolism to generate resolvins, which inhibited key pro-tumorigenic inflammatory cytokines and chemokines, including IL-6. IL-1β, and CCL2. ALOX15 is therefore an important host factor in determining EPA and DHA effects on CRC.
Collapse
|
9
|
Duan H, Gao L, Asikaer A, Liu L, Huang K, Shen Y. Prognostic Model Construction of Disulfidptosis-Related Genes and Targeted Anticancer Drug Research in Pancreatic Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01131-8. [PMID: 38575817 DOI: 10.1007/s12033-024-01131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024]
Abstract
Pancreatic cancer stands as one of the most lethal malignancies, characterized by delayed diagnosis, high mortality rates, limited treatment efficacy, and poor prognosis. Disulfidptosis, a recently unveiled modality of cell demise induced by disulfide stress, has emerged as a critical player intricately associated with the onset and progression of various cancer types. It has emerged as a promising candidate biomarker for cancer diagnosis, prognosis assessment, and treatment strategies. In this study, we have effectively established a prognostic risk model for pancreatic cancer by incorporating multiple differentially expressed long non-coding RNAs (DElncRNAs) closely linked to disulfide-driven cell death. Our investigation delved into the nuanced relationship between the DElncRNA-based predictive model for disulfide-driven cell death and the therapeutic responses to anticancer agents. Our findings illuminate that the high-risk subgroup exhibits heightened susceptibility to the small molecule compound AZD1208, positioning it as a prospective therapeutic agent for pancreatic cancer. Finally, we have elucidated the underlying mechanistic potential of AZD1208 in ameliorating pancreatic cancer through its targeted inhibition of the peroxisome proliferator-activated receptor-γ (PPARG) protein, employing an array of comprehensive analytical methods, including molecular docking and molecular dynamics (MD) simulations. This study explores disulfidptosis-related genes, paving the way for the development of targeted therapies for pancreatic cancer and emphasizing their significance in the field of oncology. Furthermore, through computational biology approaches, the drug AZD1208 was identified as a potential treatment targeting the PPARG protein for pancreatic cancer. This discovery opens new avenues for exploring targets and screening drugs for pancreatic cancer.
Collapse
Affiliation(s)
- Hongtao Duan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Li Gao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Aiminuer Asikaer
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Lingzhi Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Kuilong Huang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Yan Shen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China.
| |
Collapse
|
10
|
Amoah AS, Pestov NB, Korneenko TV, Prokhorenko IA, Kurakin GF, Barlev NA. Lipoxygenases at the Intersection of Infection and Carcinogenesis. Int J Mol Sci 2024; 25:3961. [PMID: 38612771 PMCID: PMC11011848 DOI: 10.3390/ijms25073961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The persisting presence of opportunistic pathogens like Pseudomonas aeruginosa poses a significant threat to many immunocompromised cancer patients with pulmonary infections. This review highlights the complexity of interactions in the host's defensive eicosanoid signaling network and its hijacking by pathogenic bacteria to their own advantage. Human lipoxygenases (ALOXs) and their mouse counterparts are integral elements of the innate immune system, mostly operating in the pro-inflammatory mode. Taking into account the indispensable role of inflammation in carcinogenesis, lipoxygenases have counteracting roles in this process. In addition to describing the structure-function of lipoxygenases in this review, we discuss their roles in such critical processes as cancer cell signaling, metastases, death of cancer and immune cells through ferroptosis, as well as the roles of ALOXs in carcinogenesis promoted by pathogenic infections. Finally, we discuss perspectives of novel oncotherapeutic approaches to harness lipoxygenase signaling in tumors.
Collapse
Affiliation(s)
- Abdul-Saleem Amoah
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (A.-S.A.); (N.A.B.)
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Nikolay B. Pestov
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (A.-S.A.); (N.A.B.)
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (T.V.K.); (I.A.P.)
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
- Vavilov Institute of General Genetics, Moscow 119991, Russia
| | - Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (T.V.K.); (I.A.P.)
| | - Igor A. Prokhorenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (T.V.K.); (I.A.P.)
| | - Georgy F. Kurakin
- Department of Biochemistry, Pirogov Russian National Research Medical University, Moscow 117513, Russia;
| | - Nickolai A. Barlev
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (A.-S.A.); (N.A.B.)
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| |
Collapse
|
11
|
Enzler T, Shi J, McGue J, Griffith BD, Sun L, Sahai V, Nathan H, Frankel TL. A Comparison of Spatial and Phenotypic Immune Profiles of Pancreatic Ductal Adenocarcinoma and Its Precursor Lesions. Int J Mol Sci 2024; 25:2953. [PMID: 38474199 PMCID: PMC10932200 DOI: 10.3390/ijms25052953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a 5-year survival rate of 12.5%. PDAC predominantly arises from non-cystic pancreatic intraepithelial neoplasia (PanIN) and cystic intraductal papillary mucinous neoplasm (IPMN). We used multiplex immunofluorescence and computational imaging technology to characterize, map, and compare the immune microenvironments (IMEs) of PDAC and its precursor lesions. We demonstrate that the IME of IPMN was abundantly infiltrated with CD8+ T cells and PD-L1-positive antigen-presenting cells (APCs), whereas the IME of PanIN contained fewer CD8+ T cells and fewer PD-L1-positive APCs but elevated numbers of immunosuppressive regulatory T cells (Tregs). Thus, immunosuppression in IPMN and PanIN seems to be mediated by different mechanisms. While immunosuppression in IPMN is facilitated by PD-L1 expression on APCs, Tregs seem to play a key role in PanIN. Our findings suggest potential immunotherapeutic interventions for high-risk precursor lesions, namely, targeting PD-1/PD-L1 in IPMN and CTLA-4-positive Tregs in PanIN to restore immunosurveillance and prevent progression to cancer. Tregs accumulate with malignant transformation, as observed in PDAC, and to a lesser extent in IPMN-associated PDAC (IAPA). High numbers of Tregs in the microenvironment of PDAC went along with a markedly decreased interaction between CD8+ T cells and cancerous epithelial cells (ECs), highlighting the importance of Tregs as key players in immunosuppression in PDAC. We found evidence that a defect in antigen presentation, further aggravated by PD-L1 expression on APC, may contribute to immunosuppression in IAPA, suggesting a role for PD-L1/PD-1 immune checkpoint inhibitors in the treatment of IAPA.
Collapse
Affiliation(s)
- Thomas Enzler
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiaqi Shi
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Jake McGue
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.); (B.D.G.); (L.S.); (H.N.)
| | - Brian D. Griffith
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.); (B.D.G.); (L.S.); (H.N.)
| | - Lei Sun
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.); (B.D.G.); (L.S.); (H.N.)
| | - Vaibhav Sahai
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hari Nathan
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.); (B.D.G.); (L.S.); (H.N.)
| | - Timothy L. Frankel
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.); (B.D.G.); (L.S.); (H.N.)
| |
Collapse
|
12
|
Zhang Y, Xiao B, Liu Y, Wu S, Xiang Q, Xiao Y, Zhao J, Yuan R, Xie K, Li L. Roles of PPAR activation in cancer therapeutic resistance: Implications for combination therapy and drug development. Eur J Pharmacol 2024; 964:176304. [PMID: 38142851 DOI: 10.1016/j.ejphar.2023.176304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Therapeutic resistance is a major obstacle to successful treatment or effective containment of cancer. Peroxisome proliferator-activated receptors (PPARs) play an essential role in regulating energy homeostasis and determining cell fate. Despite of the pleiotropic roles of PPARs in cancer, numerous studies have suggested their intricate relationship with therapeutic resistance in cancer. In this review, we provided an overview of the roles of excessively activated PPARs in promoting resistance to modern anti-cancer treatments, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. The mechanisms through which activated PPARs contribute to therapeutic resistance in most cases include metabolic reprogramming, anti-oxidant defense, anti-apoptosis signaling, proliferation-promoting pathways, and induction of an immunosuppressive tumor microenvironment. In addition, we discussed the mechanisms through which activated PPARs lead to multidrug resistance in cancer, including drug efflux, epithelial-to-mesenchymal transition, and acquisition and maintenance of the cancer stem cell phenotype. Preliminary studies investigating the effect of combination therapies with PPAR antagonists have suggested the potential of these antagonists in reversing resistance and facilitating sustained cancer management. These findings will provide a valuable reference for further research on and clinical translation of PPAR-targeting treatment strategies.
Collapse
Affiliation(s)
- Yanxia Zhang
- School of Medicine, The South China University of Technology, Guangzhou, 510006, China; Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yunduo Liu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Shunhong Wu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Qin Xiang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yuhan Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Junxiu Zhao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Ruanfei Yuan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Keping Xie
- School of Medicine, The South China University of Technology, Guangzhou, 510006, China.
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| |
Collapse
|
13
|
Li Y, Pan Y, Zhao X, Wu S, Li F, Wang Y, Liu B, Zhang Y, Gao X, Wang Y, Zhou H. Peroxisome proliferator-activated receptors: A key link between lipid metabolism and cancer progression. Clin Nutr 2024; 43:332-345. [PMID: 38142478 DOI: 10.1016/j.clnu.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023]
Abstract
Lipids represent the essential components of membranes, serve as fuels for high-energy processes, and play crucial roles in signaling and cellular function. One of the key hallmarks of cancer is the reprogramming of metabolic pathways, especially abnormal lipid metabolism. Alterations in lipid uptake, lipid desaturation, de novo lipogenesis, lipid droplets, and fatty acid oxidation in cancer cells all contribute to cell survival in a changing microenvironment by regulating feedforward oncogenic signals, key oncogenic functions, oxidative and other stresses, immune responses, or intercellular communication. Peroxisome proliferator-activated receptors (PPARs) are transcription factors activated by fatty acids and act as core lipid sensors involved in the regulation of lipid homeostasis and cell fate. In addition to regulating whole-body energy homeostasis in physiological states, PPARs play a key role in lipid metabolism in cancer, which is receiving increasing research attention, especially the fundamental molecular mechanisms and cancer therapies targeting PPARs. In this review, we discuss how cancer cells alter metabolic patterns and regulate lipid metabolism to promote their own survival and progression through PPARs. Finally, we discuss potential therapeutic strategies for targeting PPARs in cancer based on recent studies from the last five years.
Collapse
Affiliation(s)
- Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yujie Pan
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaodong Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shouwang Wu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Xin Gao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
14
|
Bhattacharyya S, Oon C, Diaz L, Sandborg H, Stempinski ES, Saoi M, Morgan TK, López CS, Cross JR, Sherman MH. Autotaxin-lysolipid signaling suppresses a CCL11-eosinophil axis to promote pancreatic cancer progression. NATURE CANCER 2024; 5:283-298. [PMID: 38195933 PMCID: PMC10899115 DOI: 10.1038/s43018-023-00703-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/06/2023] [Indexed: 01/11/2024]
Abstract
Lipids and their modifying enzymes regulate diverse features of the tumor microenvironment and cancer progression. The secreted enzyme autotaxin (ATX) hydrolyzes extracellular lysophosphatidylcholine to generate the multifunctional lipid mediator lysophosphatidic acid (LPA) and supports the growth of several tumor types, including pancreatic ductal adenocarcinoma (PDAC). Here we show that ATX suppresses the accumulation of eosinophils in the PDAC microenvironment. Genetic or pharmacologic ATX inhibition increased the number of intratumor eosinophils, which promote tumor cell apoptosis locally and suppress tumor progression. Mechanistically, ATX suppresses eosinophil accumulation via an autocrine feedback loop, wherein ATX-LPA signaling negatively regulates the activity of the AP-1 transcription factor c-Jun, in turn suppressing the expression of the potent eosinophil chemoattractant CCL11 (eotaxin-1). Eosinophils were identified in human PDAC specimens, and rare individuals with high intratumor eosinophil abundance had the longest overall survival. Together with recent findings, this study reveals the context-dependent, immune-modulatory potential of ATX-LPA signaling in cancer.
Collapse
Affiliation(s)
- Sohinee Bhattacharyya
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chet Oon
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luis Diaz
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Holly Sandborg
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erin S Stempinski
- Multiscale Microscopy Core Facility, Oregon Health & Science University, Portland, OR, USA
| | - Michelle Saoi
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Terry K Morgan
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Claudia S López
- Multiscale Microscopy Core Facility, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mara H Sherman
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
15
|
Lekan AA, Weiner LM. The Role of Chemokines in Orchestrating the Immune Response to Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:559. [PMID: 38339310 PMCID: PMC10854906 DOI: 10.3390/cancers16030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Chemokines are small molecules that function as chemotactic factors which regulate the migration, infiltration, and accumulation of immune cells. Here, we comprehensively assess the structural and functional role of chemokines, examine the effects of chemokines that are present in the pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment (TME), specifically those produced by cancer cells and stromal components, and evaluate their impact on immune cell trafficking, both in promoting and suppressing anti-tumor responses. We further explore the impact of chemokines on patient outcomes in PDAC and their role in the context of immunotherapy treatments, and review clinical trials that have targeted chemokine receptors and ligands in the treatment of PDAC. Lastly, we highlight potential strategies that can be utilized to harness chemokines in order to increase cytotoxic immune cell infiltration and the anti-tumor effects of immunotherapy.
Collapse
Affiliation(s)
| | - Louis M. Weiner
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20057, USA;
| |
Collapse
|
16
|
Béchade D, Palmieri LJ, Bonhomme B, Pernot S, Léna J, Fonck M, Pesqué S, Boillet G, Italiano A, Roseau G. Echoendoscopic ultrasound pancreatic adenocarcinoma diagnosis and theranostic approach: should KRAS mutation research be recommended in everyday practice? Therap Adv Gastroenterol 2024; 17:17562848231224943. [PMID: 38250014 PMCID: PMC10798086 DOI: 10.1177/17562848231224943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/16/2023] [Indexed: 01/23/2024] Open
Abstract
Background The impact of KRAS mutation testing on pancreatic ductal adenocarcinoma (PDAC) samples by endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) for reducing the need to repeat EUS-FNA has been demonstrated. Such testing however is not part of standard practice for endoscopic ultrasound-guided fine-needle biopsy (EUS-FNB). Objectives We aim to analyse the proportion of non-contributive samples by EUS-FNB and to evaluate the impact of KRAS mutation testing on the diagnosis, theranostics and survival. Design In this retrospective study, the impact on diagnosis and survival of KRAS testing for contributive and non-contributive samples by EUS-FNB was analysed. Methods The EUS-FNB samples, combined with KRAS testing using the Idylla® technique on liquid-based cytology from patients with PDAC between February 2019 and May 2023, were retrospectively reviewed. The cytology results were classified according to the guidelines of the World Health Organization System for Reporting Pancreaticobiliary Cytopathology (WHOSRPC). Results A total of 85 EUS-FNB specimens were reviewed. In all, 25 EUS-FNB samples did not lead to a formal diagnosis of PDAC according to the WHOSRPC (30.2%). Out of these 25, 11 (44%) could have been considered positive for a PDAC diagnosis thanks to the KRAS mutation test without carrying out further diagnosis procedures. The sensitivity of KRAS mutation testing using the Idylla technique was 98.6%. According to the available data, survival rates were not statistically different depending on the type of mutation. Conclusion KRAS mutation testing on liquid-based cytology using the Idylla or equivalent technique, combined with the PDAC EUS-FNB sample, should become a standard for diagnosis to avoid delaying treatment by doing another biopsy. Furthermore, knowledge of the KRAS status from treatment initiation could be used to isolate mutations requiring targeted treatments or inclusion in clinical research trials, especially for wild-type KRAS PDAC.
Collapse
Affiliation(s)
- Dominique Béchade
- Department of Medical Oncology, Institut Bergonié, Comprehensive Cancer Center, 229 Cours de L’Argonne, Bordeaux F-33000, France
| | - Lola-Jade Palmieri
- Department of Medical Oncology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
| | - Benjamin Bonhomme
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
| | - Simon Pernot
- Department of Medical Oncology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | - Jeanne Léna
- Department of Medical Oncology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
| | - Marianne Fonck
- Department of Medical Oncology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
| | - Sophie Pesqué
- Department of Medical Oncology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
- Hôpital Suburbain du Bouscat, Le Bouscat, France
| | - Gautier Boillet
- Department of Medical Oncology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
| | - Antoine Italiano
- Department of Medical Oncology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | - Gilles Roseau
- Gastroenterology and Digestive Oncology Unit, Hôpital Cochin, APHP Centre, Paris, France
| |
Collapse
|
17
|
Srilatha M, Malla R, Adem MP, Foote JB, Nagaraju GP. Obesity associated pancreatic ductal adenocarcinoma: Therapeutic challenges. Semin Cancer Biol 2023; 97:12-20. [PMID: 37926347 DOI: 10.1016/j.semcancer.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Obesity is a prominent health issue worldwide and directly impacts pancreatic health, with obese individuals exhibiting a significant risk for increasing pancreatic ductal adenocarcinoma (PDAC). Several factors potentially explain the increased risk for the development of PDAC, including obesity-induced chronic inflammation within and outside of the pancreas, development of insulin resistance and metabolic dysfunction, promotion of immune suppression within the pancreas during inflammation, pre- and malignant stages, variations in hormones levels (adiponectin, ghrelin, and leptin) produced from the adipose tissue, and acquisition of somatic mutations in tumor once- and suppressor proteins critical for pancreatic tumorigenesis. In this manuscript, we will explore the broad impact of these obesity-induced risk factors on the development and progression of PDAC, focusing on changes within the tumor microenvironment (TME) as they pertain to prevention, current therapeutic strategies, and future directions for targeting obesity management as they relate to the prevention of pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati, Andhra Pradesh 517502, India
| | - Ramarao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India
| | - Megha Priya Adem
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam (Women's University), Tirupati, Andhra Pradesh 517502, India
| | - Jeremy B Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | |
Collapse
|
18
|
Liu Y, Wei D, Deguchi Y, Xu W, Tian R, Liu F, Xu M, Mao F, Li D, Chen W, Valentin LA, Deguchi E, Yao JC, Shureiqi I, Zuo X. PPARδ dysregulation of CCL20/CCR6 axis promotes gastric adenocarcinoma carcinogenesis by remodeling gastric tumor microenvironment. Gastric Cancer 2023; 26:904-917. [PMID: 37572185 PMCID: PMC10640489 DOI: 10.1007/s10120-023-01418-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Peroxisome proliferator-activated receptor delta (PPARδ) promotes inflammation and carcinogenesis in many organs, but the underlying mechanisms remains elusive. In stomachs, PPARδ significantly increases chemokine Ccl20 expression in gastric epithelial cells while inducing gastric adenocarcinoma (GAC). CCR6 is the sole receptor of CCL20. Here, we examine the role of PPARδ-mediated Ccl20/Ccr6 signaling in GAC carcinogenesis and investigate the underlying mechanisms. METHODS The effects of PPARδ inhibition by its specific antagonist GSK3787 on GAC were examined in the mice with villin-promoter-driven PPARδ overexpression (PpardTG). RNAscope Duplex Assays were used to measure Ccl20 and Ccr6 levels in stomachs and spleens. Subsets of stomach-infiltrating immune cells were measured via flow cytometry or immunostaining in PpardTG mice fed GSK3787 or control diet. A panel of 13 optimized proinflammatory chemokines in mouse sera were quantified by an enzyme-linked immunosorbent assay. RESULTS GSK3787 significantly suppressed GAC carcinogenesis in PpardTG mice. PPARδ increased Ccl20 level to chemoattract Ccr6+ immunosuppressive cells, including tumor-associated macrophages, myeloid-derived suppressor cells and T regulatory cells, but decreased CD8+ T cells in gastric tissues. GSK3787 suppressed PPARδ-induced gastric immunosuppression by inhibiting Ccl20/Ccr6 axis. Furthermore, Ccl20 protein levels increased in sera of PpardTG mice starting at the age preceding gastric tumor development and further increased with GAC progression as the mice aged. GSK3787 decreased the PPARδ-upregulated Ccl20 levels in sera of the mice. CONCLUSIONS PPARδ dysregulation of Ccl20/Ccr6 axis promotes GAC carcinogenesis by remodeling gastric tumor microenvironment. CCL20 might be a potential biomarker for the early detection and progression of GAC.
Collapse
Affiliation(s)
- Yi Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yasunori Deguchi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Weiguo Xu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rui Tian
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fuyao Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Min Xu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fei Mao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Weidong Chen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lovie Ann Valentin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Eriko Deguchi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - James C Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Imad Shureiqi
- Rogel Cancer Center and Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiangsheng Zuo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Goswami S, Zhang Q, Celik CE, Reich EM, Yilmaz ÖH. Dietary fat and lipid metabolism in the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2023; 1878:188984. [PMID: 37722512 PMCID: PMC10937091 DOI: 10.1016/j.bbcan.2023.188984] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023]
Abstract
Metabolic reprogramming has been considered a core hallmark of cancer, in which excessive accumulation of lipids promote cancer initiation, progression and metastasis. Lipid metabolism often includes the digestion and absorption of dietary fat, and the ways in which cancer cells utilize lipids are often influenced by the complex interactions within the tumor microenvironment. Among multiple cancer risk factors, obesity has a positive association with multiple cancer types, while diets like calorie restriction and fasting improve health and delay cancer. Impact of these diets on tumorigenesis or cancer prevention are generally studied on cancer cells, despite heterogeneity of the tumor microenvironment. Cancer cells regularly interact with these heterogeneous microenvironmental components, including immune and stromal cells, to promote cancer progression and metastasis, and there is an intricate metabolic crosstalk between these compartments. Here, we focus on discussing fat metabolism and response to dietary fat in the tumor microenvironment, focusing on both immune and stromal components and shedding light on therapeutic strategies surrounding lipid metabolic and signaling pathways.
Collapse
Affiliation(s)
- Swagata Goswami
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Qiming Zhang
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Cigdem Elif Celik
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Hacettepe Univ, Canc Inst, Department Basic Oncol, Ankara TR-06100, Turkiye
| | - Ethan M Reich
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Massachusetts General Hospital and Beth Israel Deaconness Medical Center and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
20
|
Burgermeister E. Mitogen-Activated Protein Kinase and Exploratory Nuclear Receptor Crosstalk in Cancer Immunotherapy. Int J Mol Sci 2023; 24:14546. [PMID: 37833991 PMCID: PMC10572424 DOI: 10.3390/ijms241914546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The three major mitogen-activated protein kinase (MAPK) pathways (ERK1/2, p38, and JNK/SAPK) are upstream regulators of the nuclear receptor superfamily (NRSF). These ligand-activated transcription factors are divided into subclasses comprising receptors for endocrine hormones, metabolic compounds (e.g., vitamins, diet), xenobiotics, and mediators released from host immune reactions such as tissue injury and inflammation. These internal and external cues place the NRSF at the frontline as sensors and translators of information from the environment towards the genome. For most of the former "orphan" receptors, physiological and synthetic ligands have been identified, opening intriguing opportunities for combination therapies with existing cancer medications. Hitherto, only preclinical data are available, warranting further validation in clinical trials in patients. The current review summarized the existing literature covering the expression and function of NRSF subclasses in human solid tumors and hematopoietic malignancies and their modulatory effects on innate (e.g., macrophages, dendritic cells) and adaptive (i.e., T cell subsets) immune cells, encouraging mechanistic and pharmacological studies in combination with current clinically approved therapeutics against immune checkpoint molecules (e.g., PD1).
Collapse
Affiliation(s)
- Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| |
Collapse
|
21
|
Liu Y, Xie B, Chen Q. RAS signaling and immune cells: a sinister crosstalk in the tumor microenvironment. J Transl Med 2023; 21:595. [PMID: 37670322 PMCID: PMC10481548 DOI: 10.1186/s12967-023-04486-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023] Open
Abstract
The rat sarcoma virus (RAS) gene is the most commonly mutated oncogene in cancer, with about 19% of cancer patients carrying RAS mutations. Studies on the interaction between RAS mutation and tumor immune microenvironment (TIM) have been flourishing in recent years. More and more evidence has proved that RAS signals regulate immune cells' recruitment, activation, and differentiation while assisting tumor cells to evade immune surveillance. This review concluded the direct and indirect treatment strategies for RAS mutations. In addition, we updated the underlying mechanisms by which RAS signaling modulated immune infiltration and immune escape. Finally, we discussed advances in RAS-targeted immunotherapies, including cancer vaccines and adoptive cell therapies, with a particular focus on combination strategies with personalized therapy and great potential to achieve lasting clinical benefits.
Collapse
Affiliation(s)
- Yongting Liu
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Bin Xie
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Chen
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
22
|
Urbanova M, Cihova M, Buocikova V, Slopovsky J, Dubovan P, Pindak D, Tomas M, García-Bermejo L, Rodríguez-Garrote M, Earl J, Kohl Y, Kataki A, Dusinska M, Sainz B, Smolkova B, Gabelova A. Nanomedicine and epigenetics: New alliances to increase the odds in pancreatic cancer survival. Biomed Pharmacother 2023; 165:115179. [PMID: 37481927 DOI: 10.1016/j.biopha.2023.115179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest cancers worldwide, primarily due to its robust desmoplastic stroma and immunosuppressive tumor microenvironment (TME), which facilitate tumor progression and metastasis. In addition, fibrous tissue leads to sparse vasculature, high interstitial fluid pressure, and hypoxia, thereby hindering effective systemic drug delivery and immune cell infiltration. Thus, remodeling the TME to enhance tumor perfusion, increase drug retention, and reverse immunosuppression has become a key therapeutic strategy. In recent years, targeting epigenetic pathways has emerged as a promising approach to overcome tumor immunosuppression and cancer progression. Moreover, the progress in nanotechnology has provided new opportunities for enhancing the efficacy of conventional and epigenetic drugs. Nano-based drug delivery systems (NDDSs) offer several advantages, including improved drug pharmacokinetics, enhanced tumor penetration, and reduced systemic toxicity. Smart NDDSs enable precise targeting of stromal components and augment the effectiveness of immunotherapy through multiple drug delivery options. This review offers an overview of the latest nano-based approaches developed to achieve superior therapeutic efficacy and overcome drug resistance. We specifically focus on the TME and epigenetic-targeted therapies in the context of PDAC, discussing the advantages and limitations of current strategies while highlighting promising new developments. By emphasizing the immense potential of NDDSs in improving therapeutic outcomes in PDAC, our review paves the way for future research in this rapidly evolving field.
Collapse
Affiliation(s)
- Maria Urbanova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Marina Cihova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Verona Buocikova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Jan Slopovsky
- 2nd Department of Oncology, National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia; Faculty of Medicine, Comenius University, Spitalska 24, 813 72 Bratislava, Slovakia
| | - Peter Dubovan
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; Department of Surgical Oncology, National CancerInstitute in Bratislava, Klenova 1, 833 10 Bratislava, Slovakia; Faculty of Medicine, Slovak Medical University in Bratislava, Limbová12, 833 03 Bratislava
| | - Daniel Pindak
- Department of Surgical Oncology, National CancerInstitute in Bratislava, Klenova 1, 833 10 Bratislava, Slovakia; Faculty of Medicine, Slovak Medical University in Bratislava, Limbová12, 833 03 Bratislava
| | - Miroslav Tomas
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; Department of Surgical Oncology, National CancerInstitute in Bratislava, Klenova 1, 833 10 Bratislava, Slovakia; Faculty of Medicine, Slovak Medical University in Bratislava, Limbová12, 833 03 Bratislava
| | - Laura García-Bermejo
- Biomarkers and Therapeutic Targets Group, Area4, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain
| | - Mercedes Rodríguez-Garrote
- Molecular Epidemiology and Predictive Tumor Markers Group, Area 3, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; CIBERONC, Madrid, Spain
| | - Julie Earl
- Molecular Epidemiology and Predictive Tumor Markers Group, Area 3, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; CIBERONC, Madrid, Spain
| | - Yvonne Kohl
- Department Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany
| | - Agapi Kataki
- 1st Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Vasilissis Sofias 114, 11527 Athens, Greece
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Bruno Sainz
- CIBERONC, Madrid, Spain; Instituto de Investigaciones Biomédicas"Alberto Sols" (IIBM), CSIC-UAM, 28029 Madrid, Spain; Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3, Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Alena Gabelova
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia..
| |
Collapse
|
23
|
Luo Y, Li C, Zhang Y, Liu P, Chen H, Zhao Z, Wang Y, Zhou Z, Song H, Su B, Li C, Li X, Zhang T, You H, Wu Y, Tian Z, Zhang S, Guo Y, Fan H, Chen Q, Jiang C, Sun T. Gradient Tumor Microenvironment-Promoted Penetrating Micelles for Hypoxia Relief and Immunosuppression Reversion in Pancreatic Cancer Treatment. Acta Biomater 2023:S1742-7061(23)00314-8. [PMID: 37276955 DOI: 10.1016/j.actbio.2023.05.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
The tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) is the main block for the penetration of chemotherapy. In the tumor microenvironment, a dense matrix composed of fibrin is formed on the exterior, while the interior is featured by high reduction, hypoxia and low pH. How to match the special microenvironment to on-demand drug release is the key to improve chemotherapeutic efficacy. Herein, a microenvironment-responsive micellar system is developed to deepen tumoral penetration. Briefly, the conjugation of a fibrin-targeting peptide to PEG-poly amino acid has been utilized to achieve accumulation of micelles in the tumor stroma. By modification of micelles with hypoxia-reducible nitroimidazole which becomes protonated under acidic conditions, their surface charge is more positive, facilitating deeper penetration into tumors. Paclitaxel was loaded onto the micelles via a disulfide bond to enable glutathione (GSH)-responsive release. Therefore, the immunosuppressive microenvironment is relived through the alleviation of hypoxia and depletion of GSH. Hopefully, this work could establish paradigms by designing sophisticated drug-delivery systems to tactfully employ and retroact the tamed tumoral microenvironment to improve the therapeutic efficacy based on understanding the multiple hallmarks and learning the mutual regulation. STATEMENT OF SIGNIFICANCE: : Tumor microenvironment(TME) is an unique pathological feature of pancreatic cancer and an inherent barrier to chemotherapy. Numerous studies regard TME as the targets for drug delivery. In this work, we propose a hypoxia-responsive nanomicellar drug delivery system that aiming hypoxia TME of pancreatic cancer. The nanodrug delivery system could respond to the hypoxic microenvironment and enhance the penetration of the inner tumor at the same time preserving the outer tumor stroma, thus achieving targeted treatment of PDAC by preserving the integrity of the outer stroma. Simultaneously, the responsive group can reverse the degree of hypoxia in TME by disrupting the redox balance in the tumor region, thus achieving precise treatment of PDAC by matching the pathological characteristics of TME. We believe our article would provide new design ideas for the future treatments for pancreatic cancer.
Collapse
Affiliation(s)
- Yifan Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Chao Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Yiwen Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Peixin Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Hongyi Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Zhenhao Zhao
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Yu Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Zheng Zhou
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Haolin Song
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Boyu Su
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Chufeng Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Xuwen Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Tongyu Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Haoyu You
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Yuxing Wu
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Zonghua Tian
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Shilin Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Yun Guo
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Hongrui Fan
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Qinjun Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Chen Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China.
| | - Tao Sun
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Minhang Hospital; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China.
| |
Collapse
|
24
|
Gurreri E, Genovese G, Perelli L, Agostini A, Piro G, Carbone C, Tortora G. KRAS-Dependency in Pancreatic Ductal Adenocarcinoma: Mechanisms of Escaping in Resistance to KRAS Inhibitors and Perspectives of Therapy. Int J Mol Sci 2023; 24:9313. [PMID: 37298264 PMCID: PMC10253344 DOI: 10.3390/ijms24119313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is still one of the deadliest cancers in oncology because of its increasing incidence and poor survival rate. More than 90% of PDAC patients are KRAS mutated (KRASmu), with KRASG12D and KRASG12V being the most common mutations. Despite this critical role, its characteristics have made direct targeting of the RAS protein extremely difficult. KRAS regulates development, cell growth, epigenetically dysregulated differentiation, and survival in PDAC through activation of key downstream pathways, such as MAPK-ERK and PI3K-AKT-mammalian target of rapamycin (mTOR) signaling, in a KRAS-dependent manner. KRASmu induces the occurrence of acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN) and leads to an immunosuppressive tumor microenvironment (TME). In this context, the oncogenic mutation of KRAS induces an epigenetic program that leads to the initiation of PDAC. Several studies have identified multiple direct and indirect inhibitors of KRAS signaling. Therefore, KRAS dependency is so essential in KRASmu PDAC that cancer cells have secured several compensatory escape mechanisms to counteract the efficacy of KRAS inhibitors, such as activation of MEK/ERK signaling or YAP1 upregulation. This review will provide insights into KRAS dependency in PDAC and analyze recent data on inhibitors of KRAS signaling, focusing on how cancer cells establish compensatory escape mechanisms.
Collapse
Affiliation(s)
- Enrico Gurreri
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (E.G.); (A.A.); (G.P.); (G.T.)
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77025, USA; (G.G.); (L.P.)
| | - Giannicola Genovese
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77025, USA; (G.G.); (L.P.)
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77025, USA
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77025, USA
- Translational Research to Advance Therapeutics and Innovation in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77025, USA
| | - Luigi Perelli
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77025, USA; (G.G.); (L.P.)
| | - Antonio Agostini
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (E.G.); (A.A.); (G.P.); (G.T.)
| | - Geny Piro
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (E.G.); (A.A.); (G.P.); (G.T.)
| | - Carmine Carbone
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (E.G.); (A.A.); (G.P.); (G.T.)
| | - Giampaolo Tortora
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (E.G.); (A.A.); (G.P.); (G.T.)
- Medical Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
25
|
Qian Q, Song J, Pu Q, Chen C, Yan J, Wang H. Acute/chronic exposure to bisphenol A induced immunotoxicity in zebrafish and its potential association with pancreatic cancer risk. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106514. [PMID: 37019016 DOI: 10.1016/j.aquatox.2023.106514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Previous studies have confirmed that bisphenol A (BPA) induced immune toxicity and affected diseases, however, the underlying mechanism remains unknown. In the present study, zebrafish was employed as the model to assess the immunotoxicity and the potential disease risk of BPA exposure. Upon BPA exposure, a series of abnormalities were found, which included the increased oxidative stress, damaged innate and adaptive immune functions and the elevated insulin and blood glucose levels. According to the target prediction and RNA sequencing data of BPA, the differential expression genes were found enriched in immune- and pancreatic cancer-related pathway and process, and the potential role of stat3 in the regulation of these processes was revealed. The key immune- and pancreatic cancer-related genes were selected for further confirmation by RT-qPCR. Based on the changes in the expression levels of these genes, our hypothesis that BPA induced the occurrence of pancreatic cancer by modulating immune responses was further evidenced. Deeper mechanism was further disclosed by molecular dock simulation and survival analysis of key genes, proving that BPA stably bound to STAT3 and IL10 and STAT3 may serve as the target of BPA-inducing pancreatic cancer. These results are of great significance in deepening the molecular mechanism of immunotoxicity induced by BPA and our understanding of the risk assessment of contaminants.
Collapse
Affiliation(s)
- Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR. China
| | - Jie Song
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR. China
| | - Qian Pu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR. China
| | - Chen Chen
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR. China
| | - Jin Yan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR. China
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR. China.
| |
Collapse
|
26
|
O’Sullivan É, Keogh A, Henderson B, Finn SP, Gray SG, Gately K. Treatment Strategies for KRAS-Mutated Non-Small-Cell Lung Cancer. Cancers (Basel) 2023; 15:1635. [PMID: 36980522 PMCID: PMC10046549 DOI: 10.3390/cancers15061635] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Activating mutations in KRAS are highly prevalent in solid tumours and are frequently found in 35% of lung, 45% of colorectal, and up to 90% of pancreatic cancers. Mutated KRAS is a prognostic factor for disease-free survival (DFS) and overall survival (OS) in NSCLC and is associated with a more aggressive clinical phenotype, highlighting the need for KRAS-targeted therapy. Once considered undruggable due to its smooth shallow surface, a breakthrough showed that the activated G12C-mutated KRAS isozyme can be directly inhibited via a newly identified switch II pocket. This discovery led to the development of a new class of selective small-molecule inhibitors against the KRAS G12C isoform. Sotorasib and adagrasib are approved in locally advanced or metastatic NSCLC patients who have received at least one prior systemic therapy. Currently, there are at least twelve KRAS G12C inhibitors being tested in clinical trials, either as a single agent or in combination. In this study, KRAS mutation prevalence, subtypes, rates of occurrence in treatment-resistant invasive mucinous adenocarcinomas (IMAs), and novel drug delivery options are reviewed. Additionally, the current status of KRAS inhibitors, multiple resistance mechanisms that limit efficacy, and their use in combination treatment strategies and novel multitargeted approaches in NSCLC are discussed.
Collapse
Affiliation(s)
- Éabha O’Sullivan
- Thoracic Oncology Research Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James’s Hospital, D08 W9RT Dublin, Ireland
| | - Anna Keogh
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James’s Hospital, D08 RX0X Dublin, Ireland
| | - Brian Henderson
- Thoracic Oncology Research Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James’s Hospital, D08 W9RT Dublin, Ireland
| | - Stephen P. Finn
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James’s Hospital, D08 RX0X Dublin, Ireland
| | - Steven G. Gray
- Thoracic Oncology Research Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James’s Hospital, D08 W9RT Dublin, Ireland
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James’s Hospital, D08 RX0X Dublin, Ireland
| | - Kathy Gately
- Thoracic Oncology Research Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James’s Hospital, D08 W9RT Dublin, Ireland
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James’s Hospital, D08 RX0X Dublin, Ireland
| |
Collapse
|
27
|
Watterson A, Coelho MA. Cancer immune evasion through KRAS and PD-L1 and potential therapeutic interventions. Cell Commun Signal 2023; 21:45. [PMID: 36864508 PMCID: PMC9979509 DOI: 10.1186/s12964-023-01063-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/31/2023] [Indexed: 03/04/2023] Open
Abstract
Oncogenic driver mutations have implications that extend beyond cancer cells themselves. Aberrant tumour cell signalling has various effects on the tumour microenvironment and anti-tumour immunity, with important consequences for therapy response and resistance. We provide an overview of how mutant RAS, one of the most prevalent oncogenic drivers in cancer, can instigate immune evasion programs at the tumour cell level and through remodelling interactions with the innate and adaptive immune cell compartments. Finally, we describe how immune evasion networks focused on RAS, and the immune checkpoint molecule PD-L1 can be disrupted through therapeutic intervention, and discuss potential strategies for combinatorial treatment. Video abstract.
Collapse
Affiliation(s)
- Alex Watterson
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK.,Open Targets, Cambridge, UK
| | - Matthew A Coelho
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK. .,Open Targets, Cambridge, UK.
| |
Collapse
|
28
|
Falcomatà C, Bärthel S, Schneider G, Rad R, Schmidt-Supprian M, Saur D. Context-Specific Determinants of the Immunosuppressive Tumor Microenvironment in Pancreatic Cancer. Cancer Discov 2023; 13:278-297. [PMID: 36622087 PMCID: PMC9900325 DOI: 10.1158/2159-8290.cd-22-0876] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 01/10/2023]
Abstract
Immunotherapies have shown benefits across a range of human cancers, but not pancreatic ductal adenocarcinoma (PDAC). Recent evidence suggests that the immunosuppressive tumor microenvironment (TME) constitutes an important roadblock to their efficacy. The landscape of the TME differs substantially across PDAC subtypes, indicating context-specific principles of immunosuppression. In this review, we discuss how PDAC cells, the local TME, and systemic host and environmental factors drive immunosuppression in context. We argue that unraveling the mechanistic drivers of the context-specific modes of immunosuppression will open new possibilities to target PDAC more efficiently by using multimodal (immuno)therapeutic interventions. SIGNIFICANCE Immunosuppression is an almost universal hallmark of pancreatic cancer, although this tumor entity is highly heterogeneous across its different subtypes and phenotypes. Here, we provide evidence that the diverse TME of pancreatic cancer is a central executor of various different context-dependent modes of immunosuppression, and discuss key challenges and novel opportunities to uncover, functionalize, and target the central drivers and functional nodes of immunosuppression for therapeutic exploitation.
Collapse
Affiliation(s)
- Chiara Falcomatà
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefanie Bärthel
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Günter Schneider
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- University Medical Center Göttingen, Department of General, Visceral and Pediatric Surgery, Göttingen, Germany
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marc Schmidt-Supprian
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
29
|
PPARs and the Kynurenine Pathway in Melanoma-Potential Biological Interactions. Int J Mol Sci 2023; 24:ijms24043114. [PMID: 36834531 PMCID: PMC9960262 DOI: 10.3390/ijms24043114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors involved in various physiological and pathological processes within the skin. PPARs regulate several processes in one of the most aggressive skin cancers, melanoma, including proliferation, cell cycle, metabolic homeostasis, cell death, and metastasis. In this review, we focused not only on the biological activity of PPAR isoforms in melanoma initiation, progression, and metastasis but also on potential biological interactions between the PPAR signaling and the kynurenine pathways. The kynurenine pathway is a major pathway of tryptophan metabolism leading to nicotinamide adenine dinucleotide (NAD+) production. Importantly, various tryptophan metabolites exert biological activity toward cancer cells, including melanoma. Previous studies confirmed the functional relationship between PPAR and the kynurenine pathway in skeletal muscles. Despite the fact this interaction has not been reported in melanoma to date, some bioinformatics data and biological activity of PPAR ligands and tryptophan metabolites may suggest a potential involvement of these metabolic and signaling pathways in melanoma initiation, progression, and metastasis. Importantly, the possible relationship between the PPAR signaling pathway and the kynurenine pathway may relate not only to the direct biological effect on melanoma cells but also to the tumor microenvironment and the immune system.
Collapse
|
30
|
Mahmood R, Voisin A, Olof H, Khorasaniha R, Lawal SA, Armstrong HK. Host Microbiomes Influence the Effects of Diet on Inflammation and Cancer. Cancers (Basel) 2023; 15:521. [PMID: 36672469 PMCID: PMC9857231 DOI: 10.3390/cancers15020521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Cancer is the second leading cause of death globally, and there is a growing appreciation for the complex involvement of diet, microbiomes, and inflammatory processes culminating in tumorigenesis. Although research has significantly improved our understanding of the various factors involved in different cancers, the underlying mechanisms through which these factors influence tumor cells and their microenvironment remain to be completely understood. In particular, interactions between the different microbiomes, specific dietary factors, and host cells mediate both local and systemic immune responses, thereby influencing inflammation and tumorigenesis. Developing an improved understanding of how different microbiomes, beyond just the colonic microbiome, can interact with dietary factors to influence inflammatory processes and tumorigenesis will support our ability to better understand the potential for microbe-altering and dietary interventions for these patients in future.
Collapse
Affiliation(s)
- Ramsha Mahmood
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Athalia Voisin
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Hana Olof
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Reihane Khorasaniha
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Samuel A. Lawal
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Heather K. Armstrong
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
31
|
Abrego J, Sanford-Crane H, Oon C, Xiao X, Betts CB, Sun D, Nagarajan S, Diaz L, Sandborg H, Bhattacharyya S, Xia Z, Coussens LM, Tontonoz P, Sherman MH. A Cancer Cell-Intrinsic GOT2-PPARδ Axis Suppresses Antitumor Immunity. Cancer Discov 2022; 12:2414-2433. [PMID: 35894778 PMCID: PMC9533011 DOI: 10.1158/2159-8290.cd-22-0661] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/10/2022] [Accepted: 07/22/2022] [Indexed: 01/16/2023]
Abstract
Despite significant recent advances in precision medicine, pancreatic ductal adenocarcinoma (PDAC) remains near uniformly lethal. Although immune-modulatory therapies hold promise to meaningfully improve outcomes for patients with PDAC, the development of such therapies requires an improved understanding of the immune evasion mechanisms that characterize the PDAC microenvironment. Here, we show that cancer cell-intrinsic glutamic-oxaloacetic transaminase 2 (GOT2) shapes the immune microenvironment to suppress antitumor immunity. Mechanistically, we find that GOT2 functions beyond its established role in the malate-aspartate shuttle and promotes the transcriptional activity of nuclear receptor peroxisome proliferator-activated receptor delta (PPARδ), facilitated by direct fatty acid binding. Although GOT2 is dispensable for cancer cell proliferation in vivo, the GOT2-PPARδ axis promotes spatial restriction of both CD4+ and CD8+ T cells from the tumor microenvironment. Our results demonstrate a noncanonical function for an established mitochondrial enzyme in transcriptional regulation of immune evasion, which may be exploitable to promote a productive antitumor immune response. SIGNIFICANCE Prior studies demonstrate the important moonlighting functions of metabolic enzymes in cancer. We find that the mitochondrial transaminase GOT2 binds directly to fatty acid ligands that regulate the nuclear receptor PPARδ, and this functional interaction critically regulates the immune microenvironment of pancreatic cancer to promote tumor progression. See related commentary by Nwosu and di Magliano, p. 2237.. This article is highlighted in the In This Issue feature, p. 2221.
Collapse
Affiliation(s)
- Jaime Abrego
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Hannah Sanford-Crane
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Chet Oon
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Xu Xiao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Courtney B. Betts
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Duanchen Sun
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon
| | - Shanthi Nagarajan
- Medicinal Chemistry Core, Oregon Health & Science University, Portland, Oregon
| | - Luis Diaz
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Holly Sandborg
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Sohinee Bhattacharyya
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Zheng Xia
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Lisa M. Coussens
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California
| | - Mara H. Sherman
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
32
|
Wagner N, Wagner KD. Peroxisome Proliferator-Activated Receptors and the Hallmarks of Cancer. Cells 2022; 11:cells11152432. [PMID: 35954274 PMCID: PMC9368267 DOI: 10.3390/cells11152432] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) function as nuclear transcription factors upon the binding of physiological or pharmacological ligands and heterodimerization with retinoic X receptors. Physiological ligands include fatty acids and fatty-acid-derived compounds with low specificity for the different PPAR subtypes (alpha, beta/delta, and gamma). For each of the PPAR subtypes, specific pharmacological agonists and antagonists, as well as pan-agonists, are available. In agreement with their natural ligands, PPARs are mainly focused on as targets for the treatment of metabolic syndrome and its associated complications. Nevertheless, many publications are available that implicate PPARs in malignancies. In several instances, they are controversial for very similar models. Thus, to better predict the potential use of PPAR modulators for personalized medicine in therapies against malignancies, it seems necessary and timely to review the three PPARs in relation to the didactic concept of cancer hallmark capabilities. We previously described the functions of PPAR beta/delta with respect to the cancer hallmarks and reviewed the implications of all PPARs in angiogenesis. Thus, the current review updates our knowledge on PPAR beta and the hallmarks of cancer and extends the concept to PPAR alpha and PPAR gamma.
Collapse
Affiliation(s)
- Nicole Wagner
- Correspondence: (N.W.); (K.-D.W.); Tel.: +33-489-153-713 (K.-D.W.)
| | | |
Collapse
|
33
|
Jiao J, Cheng CS, Xu P, Yang P, Ruan L, Chen Z. A Mouse Model of Damp-Heat Syndrome in Traditional Chinese Medicine and Its Impact on Pancreatic Tumor Growth. Front Oncol 2022; 12:947238. [PMID: 35957897 PMCID: PMC9357947 DOI: 10.3389/fonc.2022.947238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background Damp-heat syndrome is one of the most important syndrome types in the traditional Chinese medicine (TCM) syndrome differentiation and treatment system, as well as the core pathogenesis of pancreatic cancer (PC) which remains a challenge to medical researchers due to its insidious onset and poor prognosis. Great attention has been given to the impact of damp-heat syndrome on tumorigenesis and progression, but less attention has been given to damp-heat modeling per se. Studying PC in a proper damp-heat syndrome animal model can recapitulate the actual pathological process and contribute to treatment strategy improvement. Methods Here, an optimized damp-heat syndrome mouse model was established based on our prior experience. The Fibonacci method was applied to determine the maximum tolerated dosage of alcohol for mice. Damp-heat syndrome modeling with the old and new methods was performed in parallel of comparative study about general appearance, food intake, water consumption and survival. Major organs, including the liver, kidneys, lungs, pancreas, spleen, intestines and testes, were collected for histological evaluation. Complete blood counts and biochemical tests were conducted to characterize changes in blood circulation. PC cells were subcutaneously inoculated into mice with damp-heat syndrome to explore the impact of damp-heat syndrome on PC growth. Hematoxylin-eosin staining, Masson staining and immunohistochemistry were performed for pathological evaluation. A chemokine microarray was applied to screen the cytokines mediating the proliferation-promoting effects of damp-heat syndrome, and quantitative polymerase chain reaction and Western blotting were conducted for results validation. Results The new modeling method has the advantages of mouse-friendly features, easily accessible materials, simple operation, and good stability. More importantly, a set of systematic indicators was proposed for model evaluation. The new modeling method verified the pancreatic tumor-promoting role of damp-heat syndrome. Damp-heat syndrome induced the proliferation of cancer-associated fibroblasts and promoted desmoplasia. In addition, circulating and tumor-located chemokine levels were altered by damp-heat syndrome, characterized by tumor promotion and immune suppression. Conclusions This study established a stable and reproducible murine model of damp-heat syndrome in TCM with systematic evaluation methods. Cancer associated fibroblast-mediated desmoplasia and chemokine production contribute to the tumor-promoting effect of damp-heat syndrome on PC.
Collapse
Affiliation(s)
- Juying Jiao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chien-shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Panling Xu
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peiwen Yang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Linjie Ruan
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Zhen Chen,
| |
Collapse
|
34
|
Effects of TP53 Mutations and miRs on Immune Responses in the Tumor Microenvironment Important in Pancreatic Cancer Progression. Cells 2022; 11:cells11142155. [PMID: 35883598 PMCID: PMC9318640 DOI: 10.3390/cells11142155] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/27/2023] Open
Abstract
Approximately 90% of pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC). PDAC is the fourth leading cause of cancer death world-wide. Therapies for PDAC are largely ineffective due to the dense desmoplastic tumor microenvironment which prevents chemotherapeutic drugs and small molecule inhibitors from exerting effective anti-cancer effects. In this review, we will discuss the roles of TP53 and miRs on the PDAC tumor microenvironment and how loss of the normal functions of TP53 promote tumor progression. The TP53 gene is mutated in approximately 50% of pancreatic cancers. Often, these TP53 mutations are point mutations which confer additional functions for the TP53 proteins. These are called gain of function (GOF) mutations (mut). Another class of TP53 mutations are deletions which result in loss of the TP53 protein; these are referred to TP53-null mutations. We have organized this review into various components/properties of the PDAC microenvironment and how they may be altered in the presence of mutant TP53 and loss of certain miR expression.
Collapse
|