1
|
Zhao T, Tan Y, Li Y, Wang X. Ionic fuel-powered hydrogel actuators for soft robotics. J Colloid Interface Sci 2025; 677:739-749. [PMID: 39121658 DOI: 10.1016/j.jcis.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
HYPOTHESIS Hydrogel actuators powered by chemical fuels are pivotal in autonomous soft robotics. Nevertheless, chemical waste accumulation caused by chemical fuels hampers the development of programmable and reusable hydrogel actuating systems. We propose the concept of ionic fuel-powered soft robotics which are constructed by programmable salt-responsive actuators and use waste-free ionic fuels. EXPERIMENTS Herein, soft hydrogel actuators were developed by orchestrating the Janus bilayer hydrogels' capacity for swelling and shrinking. Decomposable and easily removable ionic fuels were applied to power the actuators. Swelling tests were used to evaluate the deformability of the hydrogels. Tensile tests were performed to investigate the modulus of the hydrogels. The bonded interface composed of the interpenetrating polymer chains from both hydrogel layers bilayer was evidenced by the optical microscopy and scanning electron microscopy. The ionic conductivities of solutions were determined by a conductivity meter. Furthermore, a range of biomimetic soft robots with various shapes and asymmetrical structures have been designed and fabricated to execute complex functions. FINDINGS The programmable actuators powered by ionic fuel exhibit adjustable bending orientations, amplitudes, and durations, along with consistent cyclic actuations enabled by replenishment of the fuel without noticeable loss in performance. Many life-like programmable soft robotic systems were designed, indicating spatiotemporally controllable functions.
Collapse
Affiliation(s)
- Ting Zhao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Yu Tan
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Yitan Li
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China; Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, PR China.
| |
Collapse
|
2
|
Wu F, Xia Z, Sun D, Huang X, Hu X, Wu Y, Wang Y, Pei M, Han X, Liu S. Expanding the Color Range of Photoresponsive Multicolor Luminescent System Through Host-Guest Interaction. J Org Chem 2024; 89:14898-14907. [PMID: 39356286 DOI: 10.1021/acs.joc.4c01656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Photoresponsive multicolor luminescent systems offer interesting functions, which have led to applications in anticounterfeiting and biological imaging. However, expanding the color range of these materials remains a challenging task. Herein, a carbazole-modified dithienylethene derivative (DTE-CZ) that exhibits modulated fluorescence color changes through the photocyclization reaction and photolysis reaction is synthesized. DTE-CZ emits orange fluorescence, and it can release a fluorophore which emits blue fluorescence by the photolysis reaction, resulting in the color change. Upon complexation of DTE-CZ with cucurbit[10]uril (CB[10]), the fluorescence wavelength will have a blue shift and the photolysis reaction will be inhibited. Benefiting from the influence of CB[10] and the photolysis reaction of free guests, the color range of the photoresponsive system which is composed of free guests and host-guest complexes is further extended. White light emission along with a color shift from yellow-green to blue was achieved by adjusting the ratio of free guests to host-guest complexes. Finally, the photoresponsive multicolor systems are utilized to construct a photostimulated PVA film and an information encryption system. This work provides an alternative strategy for the preparing of photoresponsive multicolor luminescent system and modulation of its color range.
Collapse
Affiliation(s)
- Fangwei Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Zengyan Xia
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Dongdong Sun
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xin Huang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xianchen Hu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yong Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yanmei Wang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Mengqi Pei
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xie Han
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Simin Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
3
|
Yu W, Kothapalli SSK, Yang Z, Guo X, Li X, Cai Y, Feng W, Yuan L. Light-Controlled Interconvertible Self-Assembly of Non-Photoresponsive Suprastructures. Molecules 2024; 29:4842. [PMID: 39459210 PMCID: PMC11509933 DOI: 10.3390/molecules29204842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Achieving light-induced manipulation of controlled self-assembly in nanosized structures is essential for developing artificially dynamic smart materials. Herein, we demonstrate an approach using a non-photoresponsive hydrogen-bonded (H-bonded) macrocycle to control the self-assembly and disassembly of nanostructures in response to light. The present system comprises a photoacid (merocyanine, 1-MEH), a pseudorotaxane formed by two H-bonded macrocycles, dipyridinyl acetylene, and zinc ions. The operation of such a system is examined according to the alternation of self-assembly through proton transfer, which is mediated by the photoacid upon exposure to visible light. The host-guest complexation between the macrocycle and bipyridium guests was investigated by NMR spectroscopy, and one of the guests with the highest affinity for the ring was selected for use as one of the components of the system, which forms the host-guest complex with the ring in a 2:1 stoichiometry. In solution, a dipyridine and the ring, having no interaction with each other, rapidly form a complex in the presence of 1-MEH when exposed to light and thermally relax back to the free ring without entrapped guests after 4 h. Furthermore, the addition of zinc ions to the solution above leads to the formation of a polypseudorotaxane with its morphology responsive to photoirradiation. This work exemplifies the light-controlled alteration of self-assembly in non-photoresponsive systems based on interactions between the guest and the H-bonded macrocycle in the presence of a photoacid.
Collapse
Affiliation(s)
- Wentao Yu
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| | | | - Zhiyao Yang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| | - Xuwen Guo
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| | - Xiaowei Li
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| | - Yimin Cai
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| | - Wen Feng
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| | - Lihua Yuan
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| |
Collapse
|
4
|
Zhang S, Zhang L, Chen A, An Y, Chen XM, Yang H, Li Q. Cucurbit[8]uril-Mediated Supramolecular Heterodimerisation and Photoinduced [2+2] Heterocycloaddition to Generate Unexpected [2]Rotaxanes. Angew Chem Int Ed Engl 2024; 63:e202410130. [PMID: 38932636 DOI: 10.1002/anie.202410130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
In contrast to the self-assembly of homosupramolecules, the self-assembly of heterosupramolecules is more challenging and significant in various fields. Herein, we design and investigate a cucurbit[8]uril-mediated heterodimerisation based on an arene-fluoroarene strategy. Furthermore, the heteroternary complex is found to be able to undergo a photoinduced [2+2] heterocycloaddition, resulting in the formation of an unexpected [2]rotaxane. This work demonstrates a novel supramolecular heterodimerisation system that not only contributes to the development of photoisomerisation systems, but also enriches synthetic methods for mechanically interlocked molecules.
Collapse
Affiliation(s)
- Shu Zhang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Liyan Zhang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Aocheng Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yi An
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xu-Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Hong Yang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Materials Science Graduate Program, Kent State University, Kent, OH-44242, USA
| |
Collapse
|
5
|
Dong L, Li L, Chen H, Cao Y, Lei H. Mechanochemistry: Fundamental Principles and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403949. [PMID: 39206931 DOI: 10.1002/advs.202403949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Mechanochemistry is an emerging research field at the interface of physics, mechanics, materials science, and chemistry. Complementary to traditional activation methods in chemistry, such as heat, electricity, and light, mechanochemistry focuses on the activation of chemical reactions by directly or indirectly applying mechanical forces. It has evolved as a powerful tool for controlling chemical reactions in solid state systems, sensing and responding to stresses in polymer materials, regulating interfacial adhesions, and stimulating biological processes. By combining theoretical approaches, simulations and experimental techniques, researchers have gained intricate insights into the mechanisms underlying mechanochemistry. In this review, the physical chemistry principles underpinning mechanochemistry are elucidated and a comprehensive overview of recent significant achievements in the discovery of mechanically responsive chemical processes is provided, with a particular emphasis on their applications in materials science. Additionally, The perspectives and insights into potential future directions for this exciting research field are offered.
Collapse
Affiliation(s)
- Liang Dong
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Luofei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Huiyan Chen
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Hai Lei
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
- Institute of Advanced Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| |
Collapse
|
6
|
Xu X, Gao C, Emusani R, Jia C, Xiang D. Toward Practical Single-Molecule/Atom Switches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400877. [PMID: 38810145 PMCID: PMC11304318 DOI: 10.1002/advs.202400877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/29/2024] [Indexed: 05/31/2024]
Abstract
Electronic switches have been considered to be one of the most important components of contemporary electronic circuits for processing and storing digital information. Fabricating functional devices with building blocks of atomic/molecular switches can greatly promote the minimization of the devices and meet the requirement of high integration. This review highlights key developments in the fabrication and application of molecular switching devices. This overview offers valuable insights into the switching mechanisms under various stimuli, emphasizing structural and energy state changes in the core molecules. Beyond the molecular switches, typical individual metal atomic switches are further introduced. A critical discussion of the main challenges for realizing and developing practical molecular/atomic switches is provided. These analyses and summaries will contribute to a comprehensive understanding of the switch mechanisms, providing guidance for the rational design of functional nanoswitch devices toward practical applications.
Collapse
Affiliation(s)
- Xiaona Xu
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| | - Chunyan Gao
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| | - Ramya Emusani
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| | - Chuancheng Jia
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| | - Dong Xiang
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| |
Collapse
|
7
|
Polev K, Paneru G, Visyn V, Cybulski O, Lach S, Kolygina DV, Edel E, Grzybowski BA. Light-Driven, Dynamic Assembly of Micron-To-Centimeter Parts, Micromachines and Microbot Swarms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402263. [PMID: 38924658 PMCID: PMC11348064 DOI: 10.1002/advs.202402263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/27/2024] [Indexed: 06/28/2024]
Abstract
This work describes light-driven assembly of dynamic formations and functional particle swarms controlled by appropriately programmed light patterns. The system capitalizes on the use of a fluidic bed whose low thermal conductivity assures that light-generated heat remains "localized" and sets strong convective flows in the immediate vicinity of the particles being irradiated. In this way, even low-power laser light or light from a desktop slide projector can be used to organize dynamic formations of objects spanning four orders of magnitude in size (from microns to centimeters) and over nine orders of magnitude in terms of mass. These dynamic assemblies include open-lattice structures with individual particles performing intricate translational and/or rotational motions, density-gradient particle arrays, nested architectures of mechanical components (e.g., planetary gears), or swarms of light-actuated microbots controlling assembly of other objects.
Collapse
Affiliation(s)
- Konstantin Polev
- Center for Algorithmic and Robotized Synthesis (CARS)Korea's Institute for Basic Science (IBS)Ulsan44919South Korea
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919South Korea
| | - Govind Paneru
- Center for Algorithmic and Robotized Synthesis (CARS)Korea's Institute for Basic Science (IBS)Ulsan44919South Korea
- Department of PhysicsUlsan National Institute of Science and Technology (UNIST)Ulsan44919South Korea
| | - Valentin Visyn
- Center for Algorithmic and Robotized Synthesis (CARS)Korea's Institute for Basic Science (IBS)Ulsan44919South Korea
| | - Olgierd Cybulski
- Center for Algorithmic and Robotized Synthesis (CARS)Korea's Institute for Basic Science (IBS)Ulsan44919South Korea
| | - Slawomir Lach
- Center for Algorithmic and Robotized Synthesis (CARS)Korea's Institute for Basic Science (IBS)Ulsan44919South Korea
| | - Diana V. Kolygina
- Center for Algorithmic and Robotized Synthesis (CARS)Korea's Institute for Basic Science (IBS)Ulsan44919South Korea
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919South Korea
| | - Evelyn Edel
- Center for Algorithmic and Robotized Synthesis (CARS)Korea's Institute for Basic Science (IBS)Ulsan44919South Korea
| | - Bartosz A. Grzybowski
- Center for Algorithmic and Robotized Synthesis (CARS)Korea's Institute for Basic Science (IBS)Ulsan44919South Korea
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST)Ulsan44919South Korea
| |
Collapse
|
8
|
Hassan F, Tang Y, Bisoyi HK, Li Q. Photochromic Carbon Nanomaterials: An Emerging Class of Light-Driven Hybrid Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401912. [PMID: 38847224 DOI: 10.1002/adma.202401912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/04/2024] [Indexed: 06/28/2024]
Abstract
Photochromic molecules have remarkable potential in memory and optical devices, as well as in driving and manipulating molecular motors or actuators and many other systems using light. When photochromic molecules are introduced into carbon nanomaterials (CNMs), the resulting hybrids provide unique advantages and create new functions that can be employed in specific applications and devices. This review highlights the recent developments in diverse photochromic CNMs. Photochromic molecules and CNMs are also introduced. The fundamentals of different photochromic CNMs are discussed, including design principles and the types of interactions between CNMs and photochromic molecules via covalent interactions and non-covalent bonding such as π-π stacking, amphiphilic, electrostatic, and hydrogen bonding. Then the properties of photochromic CNMs, e.g., in photopatterning, fluorescence modulation, actuation, and photoinduced surface-relief gratings, and their applications in energy storage (solar thermal fuels, photothermal batteries, and supercapacitors), nanoelectronics (transistors, molecular junctions, photo-switchable conductance, and photoinduced electron transfer), sensors, and bioimaging are highlighted. Finally, an outlook on the challenges and opportunities in the future of photochromic CNMs is presented. This review discusses a vibrant interdisciplinary research field and is expected to stimulate further developments in nanoscience, advanced nanotechnology, intelligently responsive materials, and devices.
Collapse
Affiliation(s)
- Fathy Hassan
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, El-Gharbia, Egypt
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| |
Collapse
|
9
|
Islam M, Baroi MK, Das BK, Kumari A, Das K, Ahmed S. Chemically fueled dynamic switching between assembly-encoded emissions. MATERIALS HORIZONS 2024; 11:3104-3114. [PMID: 38687299 DOI: 10.1039/d4mh00251b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Self-assembly provides access to non-covalently synthesized supramolecular materials with distinct properties from a single building block. However, dynamic switching between functional states still remains challenging, but holds enormous potential in material chemistry to design smart materials. Herein, we demonstrate a chemical fuel-mediated strategy to dynamically switch between two distinctly emissive aggregates, originating from the self-assembly of a naphthalimide-appended peptide building block. A molecularly dissolved building block shows very weak blue emission, whereas, in the assembled state (Agg-1), it shows cyan emission through π stacking-mediated excimer emission. The addition of a chemical fuel, ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC), converts the terminal aspartic acid present in the building block to an intra-molecularly cyclized anhydride in situ forming a second aggregated state, Agg-2, by changing the molecular packing, thereby transforming the emission to strong blue. Interestingly, the anhydride gets hydrolyzed gradually to reform Agg-1 and the initial cyan emission is restored. The kinetic stability of the strong blue emissive aggregate, Agg-2, can be regulated by the added concentration of the chemical fuel. Moreover, we expand the scope of this system within an agarose gel matrix, which allows us to gain spatiotemporal control over the properties, thereby producing a self-erasable writing system where the chemical fuel acts as the ink.
Collapse
Affiliation(s)
- Manirul Islam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Kolkata 700054, India.
| | - Malay Kumar Baroi
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Basab Kanti Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Aanchal Kumari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Kolkata 700054, India.
| | - Krishnendu Das
- Department of Molecules and Materials & MESA+ Institute, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands.
| | - Sahnawaz Ahmed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Kolkata 700054, India.
| |
Collapse
|
10
|
Zhao P, Xu L, Li B, Zhao Y, Zhao Y, Lu Y, Cao M, Li G, Weng TC, Wang H, Zheng Y. Non-Equilibrium Assembly of Atomically-Precise Copper Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311818. [PMID: 38294175 DOI: 10.1002/adma.202311818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/12/2024] [Indexed: 02/01/2024]
Abstract
Accurate structure control in dissipative assemblies (DSAs) is vital for precise biological functions. However, accuracy and functionality of artificial DSAs are far from this objective. Herein, a novel approach is introduced by harnessing complex chemical reaction networks rooted in coordination chemistry to create atomically-precise copper nanoclusters (CuNCs), specifically Cu11(µ9-Cl)(µ3-Cl)3L6Cl (L = 4-methyl-piperazine-1-carbodithioate). Cu(I)-ligand ratio change and dynamic Cu(I)-Cu(I) metallophilic/coordination interactions enable the reorganization of CuNCs into metastable CuL2, finally converting into equilibrium [CuL·Y]Cl (Y = MeCN/H2O) via Cu(I) oxidation/reorganization and ligand exchange process. Upon adding ascorbic acid (AA), the system goes further dissipative cycles. It is observed that the encapsulated/bridging halide ions exert subtle influence on the optical properties of CuNCs and topological changes of polymeric networks when integrating CuNCs as crosslink sites. CuNCs duration/switch period could be controlled by varying the ions, AA concentration, O2 pressure and pH. Cu(I)-Cu(I) metallophilic and coordination interactions provide a versatile toolbox for designing delicate life-like materials, paving the way for DSAs with precise structures and functionalities. Furthermore, CuNCs can be employed as modular units within polymers for materials mechanics or functionalization studies.
Collapse
Affiliation(s)
- Peng Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Linjie Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Bohan Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yuanfeng Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yingshuai Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yan Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Minghui Cao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Guoqi Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yijun Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
11
|
Chen X, Hou XF, Chen XM, Li Q. An ultrawide-range photochromic molecular fluorescence emitter. Nat Commun 2024; 15:5401. [PMID: 38926352 PMCID: PMC11208420 DOI: 10.1038/s41467-024-49670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Photocontrollable luminescent molecular switches capable of changing emitting color have been regarded as the ideal integration between intelligent and luminescent materials. A remaining challenge is to combine good luminescence properties with wide range of wavelength transformation, especially when confined in a single molecular system that forms well-defined nanostructures. Here, we report a π-expanded photochromic molecular photoswitch, which allows for the comprehensive achievements including wide emission wavelength variation (240 nm wide, 400-640 nm), high photoisomerization extent (95%), and pure emission color (<100 nm of full width at half maximum). We take the advantageous mechanism of modulating self-assembly and intramolecular charge transfer in the synthesis and construction, and further realize the full color emission by simple photocontrol. Based on this, both photoactivated anti-counterfeiting function and self-erasing photowriting films are achieved of fluorescence. This work will provide insight into the design of intelligent optical materials.
Collapse
Affiliation(s)
- Xiao Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xiao-Fang Hou
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xu-Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
- Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
12
|
Solra M, Kapila R, Das S, Bhatt P, Rana S. Transient Metallo-Lipidoid Assemblies Amplify Covalent Catalysis of Aqueous and Non-Aqueous Reactions. Angew Chem Int Ed Engl 2024; 63:e202400348. [PMID: 38315883 DOI: 10.1002/anie.202400348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Dissipative supramolecular assemblies are hallmarks of living systems, contributing to their complex, dynamic structures and emerging functions. Living cells can spatiotemporally control diverse biochemical reactions in membrane compartments and condensates, regulating metabolite levels, signal transduction or remodeling of the cytoskeleton. Herein, we constructed membranous compartments using self-assembly of lipid-like amphiphiles (lipidoid) in aqueous medium. The new double-tailed lipidoid features Cu(II) coordinated with a tetravalent chelator that dictates the binding of two amphiphilic ligands in cis-orientation. Hydrophobic interactions between the lipidoids coupled with intermolecular hydrogen bonding led to a well-defined bilayer vesicle structure. Oil-soluble SNAr reaction is efficiently upregulated in the hydrophobic cavity, acting as a catalytic crucible. The modular system allows easy incorporation of exposed primary amine groups, which augments the catalysis of retro aldol and C-N bond formation reactions. Moreover, a higher-affinity chelator enables consumption of the Cu(II) template leveraging the differential thermodynamic stability, which allows a controllable lifetime of the vesicular assemblies. Concomitant temporal upregulation of the catalytic reactions could be tuned by the metal ion concentration. This work offers new possibilities for metal ion-mediated dynamic supramolecular systems, opening up a massive repertoire of functionally active dynamic "life-like" materials.
Collapse
Affiliation(s)
- Manju Solra
- Materials Research Centre, Division of Chemical Sciences, Indian Institute of Science, C. V. Raman Road, Bangalore, 560012, India
| | - Rohit Kapila
- Materials Research Centre, Division of Chemical Sciences, Indian Institute of Science, C. V. Raman Road, Bangalore, 560012, India
| | - Sourav Das
- Materials Research Centre, Division of Chemical Sciences, Indian Institute of Science, C. V. Raman Road, Bangalore, 560012, India
| | - Preeti Bhatt
- Materials Research Centre, Division of Chemical Sciences, Indian Institute of Science, C. V. Raman Road, Bangalore, 560012, India
| | - Subinoy Rana
- Materials Research Centre, Division of Chemical Sciences, Indian Institute of Science, C. V. Raman Road, Bangalore, 560012, India
| |
Collapse
|
13
|
Liu S, Zhang Y, Li J, Wang C, Chen Y, Liu Y. Water/Light Multiregulated Supramolecular Polypseudorotaxane Gel with Switchable Room-Temperature Phosphorescence. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5149-5157. [PMID: 38247294 DOI: 10.1021/acsami.3c17214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Water/light regulated room-temperature phosphorescence (RTP) of polypseudorotaxane supramolecular gel is constructed by threading the poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG) chain with the bromoaromatic aldehyde into mono-(6-ethylenediamine-6-deoxygenated)-β-cyclodextrin (ECD) cavities and further assembling with negatively charged Laponite XLG (CNS) and diarylethene derivative (DAE) through electrostatic interaction. This hydrogel exhibits significant blue fluorescence emission; instead, after lyophilization to xerogel, the system exhibits both blue fluorescence and yellow RTP based on the rigid network structure of the xerogel, which restricts the vibration of the phosphor and suppresses the nonradiative relaxation process. Interestingly, the addition of excess ECDs to the gel system can enhance the RTP emission. Furthermore, the reversible luminescence behavior can be adjusted by the photoresponsive isomerism of DAE and humidity. This polypseudorotaxane supramolecular gel system provides a novel strategy for constructing tunable RTP materials.
Collapse
Affiliation(s)
- Songen Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yi Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jianqiu Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Conghui Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
14
|
Hurst PJ, Mulvey JT, Bone RA, Selmani S, Hudson RF, Guan Z, Green JR, Patterson JP. CryoEM reveals the complex self-assembly of a chemically driven disulfide hydrogel. Chem Sci 2024; 15:1106-1116. [PMID: 38239701 PMCID: PMC10793653 DOI: 10.1039/d3sc05790a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Inspired by the adaptability of biological materials, a variety of synthetic, chemically driven self-assembly processes have been developed that result in the transient formation of supramolecular structures. These structures form through two simultaneous reactions, forward and backward, which generate and consume a molecule that undergoes self-assembly. The dynamics of these assembly processes have been shown to differ from conventional thermodynamically stable molecular assemblies. However, the evolution of nanoscale morphologies in chemically driven self-assembly and how they compare to conventional assemblies has not been resolved. Here, we use a chemically driven redox system to separately carry out the forward and backward reactions. We analyze the forward and backward reactions both sequentially and synchronously with time-resolved cryogenic transmission electron microscopy (cryoEM). Quantitative image analysis shows that the synchronous process is more complex and heterogeneous than the sequential process. Our key finding is that a thermodynamically unstable stacked nanorod phase, briefly observed in the backward reaction, is sustained for ∼6 hours in the synchronous process. Kinetic Monte Carlo modeling show that the synchronous process is driven by multiple cycles of assembly and disassembly. The collective data suggest that chemically driven self-assembly can create sustained morphologies not seen in thermodynamically stable assemblies by kinetically stabilizing transient intermediates. This finding provides plausible design principles to develop and optimize supramolecular materials with novel properties.
Collapse
Affiliation(s)
- Paul Joshua Hurst
- Department of Chemistry, University of California, Irvine Irvine California 92697 USA
- Center for Complex and Active Materials, University of California, Irvine Irvine California 92697 USA
| | - Justin T Mulvey
- Center for Complex and Active Materials, University of California, Irvine Irvine California 92697 USA
- Department of Materials Science and Engineering, University of California, Irvine Irvine California 92697 USA
| | - Rebecca A Bone
- Department of Chemistry, University of Massachusetts Boston Boston Massachusetts 02125 USA
| | - Serxho Selmani
- Department of Chemistry, University of California, Irvine Irvine California 92697 USA
- Center for Complex and Active Materials, University of California, Irvine Irvine California 92697 USA
| | - Redford F Hudson
- Department of Computer Science, University of California, Irvine Irvine California 92697 USA
| | - Zhibin Guan
- Department of Chemistry, University of California, Irvine Irvine California 92697 USA
- Center for Complex and Active Materials, University of California, Irvine Irvine California 92697 USA
- Department of Materials Science and Engineering, University of California, Irvine Irvine California 92697 USA
- Department of Chemical and Biomolecular Engineering, University of California, Irvine Irvine California 92697 USA
- Department of Biomedical Engineering, University of California, Irvine Irvine California 92697 USA
| | - Jason R Green
- Department of Chemistry, University of Massachusetts Boston Boston Massachusetts 02125 USA
- Department of Physics, University of Massachusetts Boston Boston Massachusetts 02125 USA
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine Irvine California 92697 USA
- Center for Complex and Active Materials, University of California, Irvine Irvine California 92697 USA
- Department of Materials Science and Engineering, University of California, Irvine Irvine California 92697 USA
| |
Collapse
|
15
|
Zhang R, Chen Y, Liu Y. Light-Driven Reversible Multicolor Supramolecular Shuttle. Angew Chem Int Ed Engl 2023; 62:e202315749. [PMID: 37971202 DOI: 10.1002/anie.202315749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Light-driven multicolor supramolecular systems mainly rely on the doping of dyes or a photo-reaction to produce unidirectional luminescence. Herein, we use visible light to drive the bidirectional reversible multicolor supramolecular shuttle from blue to green, white, yellow, up to orange by simple encapsulation of spiropyran-modified cyanostilbene (BCNMC) by the macrocyclic cucurbit[8]uril (CB[8]) monomer. The resultant host-guest complex displayed enhanced fluorescence properties, i.e. the multicolor fluorescence shuttle changed from blue to orange in the dark within 2 hours and reverted to the original state upon visible light irradiation for 30 s. Benefiting from the sensitivity of the spiropyran moiety to light, it can spontaneously isomerize from the ring-opened state to a ring-closed isomer in aqueous solution, and this photo-isomerization reaction is a reversible process under visible light irradiation, leading to the multicolor luminescence supramolecular shuttle as a result of intramolecular energy transfer. In addition, the light also drove the reversible conversion of the topological morphology of the host-guest complex from two-dimensional nanoplatelets to nanospheres. Different from the widely reported molecular rotaxane "shuttle", the spiropyran supramolecular shuttle confined in the macrocyclic host CB[8] not only modulated a reversible topological morphology by light but also exhibited multicolor luminescence, which was successfully applied in programmed and rewritable information encryption.
Collapse
Affiliation(s)
- Rong Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, P. R. China
| |
Collapse
|
16
|
Zhang D, Li M, Jiang B, Liu S, Yang J, Yang X, Ma K, Yuan X, Yi T. Three-step cascaded artificial light-harvesting systems with tunable efficiency based on metallacycles. J Colloid Interface Sci 2023; 652:1494-1502. [PMID: 37659317 DOI: 10.1016/j.jcis.2023.08.184] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
It is still challenging to develop multi-step cascaded artificial light-harvesting systems (ALHSs) with tunable efficiency. Here, we designed novel cascaded ALHSs with AIE-active metallacycles as the light-harvesting antenna, Eosin Y (ESY) and sulforhodamine 101 (SR101) as conveyors, near-infrared emissive chlorin-e6 (Ce6) as the final acceptor. The close contact and fair spectral overlap between donor and acceptor molecules at each level ensured the efficient sequential three-step energy transfer. The excited energy was sequentially and efficiently funneled to Ce6 along the cascaded line MTPEPt1 → ESY → SR101 → Ce6. Additionally, a unique strategy for regulating the efficiency of ALHS was illustrated by adjusting hydrophilic and hydrophobic interactions.
Collapse
Affiliation(s)
- Dengqing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China.
| | - Man Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China
| | - Bei Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China
| | - Senkun Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China
| | - Jie Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China
| | - Xiang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China
| | - Ke Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China
| | - Xiaojuan Yuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
17
|
Luo X, Zhang C, Yue C, Jiang Y, Yang F, Xian Y. A near-infrared light-activated nanoprobe for simultaneous detection of hydrogen polysulfide and sulfur dioxide in myocardial ischemia-reperfusion injury. Chem Sci 2023; 14:14290-14301. [PMID: 38098706 PMCID: PMC10718178 DOI: 10.1039/d3sc04937j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Ischemia-reperfusion-induced cardiomyocyte mortality constitutes a prominent contributor to global morbidity and mortality. However, early diagnosis and preventive treatment of cardiac I/R injury remains a challenge. Given the close relationship between ferroptosis and I/R injury, monitoring their pathological processes holds promise for advancing early diagnosis and treatment of the disease. Herein, we report a near-infrared (NIR) light-activated dual-responsive nanoprobe (UCNP@mSiO2@SP-NP-NAP) for controllable detection of hydrogen polysulfide (H2Sn) and sulfur dioxide (SO2) during ferroptosis-related myocardial I/R injury. The nanoprobe's responsive sites could be activated by NIR and Vis light modulation, reversibly alternating for at least 5 cycles. We employed the nanoprobe to monitor the fluctuation levels of H2Sn and SO2 in H9C2 cardiomyocytes and mice, revealing that H2Sn and SO2 levels were up-regulated during I/R. The NIR light-activated dual-responsive nanoprobe could be a powerful tool for myocardial I/R injury diagnosis. Moreover, we also found that inhibiting the initiation of the ferroptosis process contributed to attenuating cardiac I/R injury, which indicated great potential for treating I/R injury.
Collapse
Affiliation(s)
- Xianzhu Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Cuiling Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Chenyang Yue
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Yuelin Jiang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Fei Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Yuezhong Xian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| |
Collapse
|
18
|
Ren C, Sun W, Zhao T, Li C, Jiang C, Duan P. A Single-Enantiomer Emitter Enabled Superstructural Helix Inversion for Upconverting and Downshifting Luminescence with Bidirectional Circular Polarization. Angew Chem Int Ed Engl 2023; 62:e202315136. [PMID: 37902429 DOI: 10.1002/anie.202315136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 10/31/2023]
Abstract
The helical twisting tendency of liquid crystals (LCs) is generally governed by the inherent configuration of the chiral emitter. Here, we introduce the multistage inversion of supramolecular chirality as well as circularly polarized luminescence (CPL) by manipulating the ratio of single enantiomeric emitters (R-PCP) to LC monomers (5CB). Increasing the content of R-PCP from 1 wt % to 3 wt % inverted the helix of LCs from left-handed to right-handed, accompanying a CPL sign changed from positive to negative. The biaxiality of chiral emitters, as well as the steric effect of chiral-chiral and chiral-achiral interaction, were identified as the reasons for helical sense inversion. Due to the strong helical twisting power, 4 wt % R-PCP drove the photonic band gap (PBG) of chiral LCs to match up with their emission range, leading to an inversion of the CPL again with a high dissymmetry factor (≈1.2). Directly adjusting the PBG using chiral emitters is seldom achieved in cholesteric LCs. On this basis, an achiral sensitizer PtTPBP was assembled into the helical superstructure. The generation of triplet-triplet annihilation-induced upconverted CPL from R-PCP and the downshifting CPL from PtTPBP with opposite rotation was achieved in a single chiral LC system by tuning the position of the PBG.
Collapse
Affiliation(s)
- Chao Ren
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Wenjing Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Tonghan Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Chengxi Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, 100049, Beijing, P. R. China
| | - Chengyu Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, 100049, Beijing, P. R. China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, 100049, Beijing, P. R. China
| |
Collapse
|
19
|
Cheng Q, Ma XK, Zhou X, Zhang YM, Liu Y. Polymerization Based on Modified β-Cyclodextrin Achieves Efficient Phosphorescence Energy Transfer for Anti-Counterfeiting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2309732. [PMID: 38054610 DOI: 10.1002/smll.202309732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/16/2023] [Indexed: 12/07/2023]
Abstract
Supramolecular polymerization can not only activate guest phosphorescence, but also promote phosphorescence Förster resonance energy transfer and induce effective delayed fluorescence. Herein, the solid supramolecular assemblies of ternary copolymers based on acrylamide, modified β-cyclodextrin (CD), and carbazole (CZ) are reported. After doping with polyvinyl alcohol (PVA) and dyes, a NIR luminescence supramolecular composite with a lifetime of 1.07 s, an energy transfer efficiency of up to 97.4% is achieved through tandem phosphorescence energy transfer. The ternary copolymers can realize macrocyclic enrichment of dyes in comparison to CZ and acrylamide copolymers without CD, which can facilitate energy transfer between triplet and singlet with a high donor-acceptor ratio. Additionally, the flexible polymeric films exhibit regulable lifetime, tunable luminescence color, and repeatable switchable afterglow by adjusting the excitation wavelength, donor-acceptor ratio, and wet/dry stimuli. The luminescence materials are successfully applied to information encryption and anti-counterfeiting.
Collapse
Affiliation(s)
- Qingwen Cheng
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xin-Kun Ma
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaolu Zhou
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ying-Ming Zhang
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
20
|
Tang J, Cheng Y, Ding M, Wang C. Bio-Inspired Far-From-Equilibrium Hydrogels: Design Principles and Applications. Chempluschem 2023; 88:e202300449. [PMID: 37787015 DOI: 10.1002/cplu.202300449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Inspired from dynamic living systems that operate under out-of-equilibrium conditions in biology, developing supramolecular hydrogels with self-regulating and autonomously dynamic properties to further advance adaptive hydrogels with life-like behavior is important. This review presents recent progress of bio-inspired supramolecular hydrogels out-of-equilibrium. The principle of out-of-equilibrium self-assembly for creating bio-inspired hydrogels is discussed. Various design strategies have been identified, such as chemical-driven reaction cycles with feedback control and physically oscillatory systems. These strategies can be coupled with hydrogels to achieve temporal and spatial control over structural and mechanical properties as well as programmable lifetime. These studies open up huge opportunities for potential applications, such as fluidic guidance, information storage, drug delivery, actuators and more. Finally, we address the challenges ahead of us in the coming years, and future possibilities and prospects are identified.
Collapse
Affiliation(s)
- Jiadong Tang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
| | - Yibo Cheng
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Muhua Ding
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Chen Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
| |
Collapse
|
21
|
Kong S, Wang H, Ubba E, Xiao Y, Yu T, Huang W. Recent Developments of Photodeformable Polymers: From Materials to Applications. RESEARCH (WASHINGTON, D.C.) 2023; 6:0242. [PMID: 37779636 PMCID: PMC10540999 DOI: 10.34133/research.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
Photodeformable polymer materials have a far influence in the fields of flexibility and intelligence. The stimulation energy is converted into mechanical energy through molecular synergy. Among kinds of photodeformable polymer materials, liquid crystalline polymer (LCP) photodeformable materials have been a hot topic in recent years. Chromophores such as azobenzene, α-cyanostilbene, and 9,10-dithiopheneanthracene have been widely used in LCP, which are helpful for designing functional molecules to increase the penetration depth of light to change physical properties. Due to the various applications of photodeformable polymer materials, there are many excellent reports in intelligent field. In this review, we have systematized LCP containing azobenzene into 3 categories depending on the degree of crosslinking liquid crystalline elastomers, liquid crystalline networks, and linear LCPs. Other structural, typical polymer materials and their applications are discussed. Current issues faced and future directions to be developed for photodeformable polymer materials are also summarized.
Collapse
Affiliation(s)
- Shuting Kong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Hailan Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Eethamukkala Ubba
- OMC Research Laboratory, Department of Chemistry,
School of Advanced Sciences, VITVellore, Tamilnadu, India
| | - Yuxin Xiao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Tao Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM),
Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
- State Key Laboratory of Organic Electronics and Information Displays &Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
22
|
Li J, Jia X. Photo-Controlled Self-Assembly of Nanoparticles: A Promising Strategy for Development of Novel Structures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2562. [PMID: 37764591 PMCID: PMC10535597 DOI: 10.3390/nano13182562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Photo-controlled self-assembly of nanoparticles (NPs) is an advanced and promising approach to address a series of material issues from the molecular level to the nano/micro scale, owing to the fact that light stimulus is typically precise and rapid, and can provide contactless spatial and temporal control. The traditional photo-controlled assembly of NPs is based on photochemical processes through NPs modified by photo-responsive molecules, which are realized through the change in chemical structure under irradiation. Moreover, photoexcitation-induced assembly of NPs is another promising physical strategy, and such a strategy aims to employ molecular conformational change in the excited state (rather than the chemical structure) to drive molecular motion and assembly. The exploration and control of NP assembly through such a photo-controlled strategy can open a new paradigm for scientists to deal with "bottom-up" behaviors and develop unprecedented optoelectronic functional materials.
Collapse
Affiliation(s)
| | - Xiaoyong Jia
- Henan Key Laboratory of Photovoltaic Materials, College of Future Technical, Henan University, Kaifeng 475004, China;
| |
Collapse
|
23
|
Zhong W, Liang K, Liu W, Shang L. Ligand-protected nanocluster-mediated photoswitchable fluorescent nanoprobes towards dual-color cellular imaging. Chem Sci 2023; 14:8823-8830. [PMID: 37621438 PMCID: PMC10445476 DOI: 10.1039/d3sc03593j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023] Open
Abstract
Development of robust multi-color photoswitchable fluorescent probes is critical for many optical applications, but it remains a challenge to rationally design these probes. Here, we report a new design of Förster resonance energy transfer-based dual-color photoswitchable fluorescent nanoparticles (DPF NPs) by taking advantage of the distinct properties of ligand-protected gold nanoclusters (AuNCs). Detailed photophysical studies revealed that ultrasmall-sized AuNCs not only act as the FRET donors due to their intrinsic fluorescence properties, but also play a significant role in regulating the photochromic and aggregate properties of spiropyran through ligand-spiropyran interactions. These DPF NPs exhibit a high fluorescence on/off ratio (∼90%) for both green and red fluorescence emission, and good reversibility during cycled photo-stimulation. Cell imaging experiments showed that DPF NPs could specifically accumulate in lipid droplets, and enable photoswitchable dual-color imaging in living cells. Moreover, by labeling mitochondria with a green-emitting marker, we demonstrated that DPF NPs can distinguish different targets based on dynamic and static fluorescence signals at the sub-cellular level in two emission channels reliably. This study provides a new strategy for designing robust photoswitchable fluorescent probes by modulating the properties of photochromic dyes through ligand-protected nanoclusters, which can be generalized for the development of other photoswitch systems towards advanced optical applications.
Collapse
Affiliation(s)
- Wencheng Zhong
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Kangqiang Liang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Wenfeng Liu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) Xi'an 710072 China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen Shenzhen 518057 China
- Chongqing Science and Technology Innovation Center of Northwestern Polytechnical University Chongqing 401135 China
| |
Collapse
|
24
|
Yagihara S, Watanabe S, Abe Y, Asano M, Shimizu K, Saito H, Maruyama Y, Kita R, Shinyashiki N, Kundu SK. Universal Behavior of Fractal Water Structures Observed in Various Gelation Mechanisms of Polymer Gels, Supramolecular Gels, and Cement Gels. Gels 2023; 9:506. [PMID: 37504385 PMCID: PMC10379185 DOI: 10.3390/gels9070506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 07/29/2023] Open
Abstract
So far, it has been difficult to directly compare diverse characteristic gelation mechanisms over different length and time scales. This paper presents a universal water structure analysis of several gels with different structures and gelation mechanisms including polymer gels, supramolecular gels composed of surfactant micelles, and cement gels. The spatial distribution of water molecules was analyzed at molecular level from a diagram of the relaxation times and their distribution parameters (τ-β diagrams) with our database of the 10 GHz process for a variety of aqueous systems. Polymer gels with volume phase transition showed a small decrease in the fractal dimension of the hydrogen bond network (HBN) with gelation. In supramolecular gels with rod micelle precursor with amphipathic molecules, both the elongation of the micelles and their cross-linking caused a reduction in the fractal dimension. Such a reduction was also found in cement gels. These results suggest that the HBN inevitably breaks at each length scale with relative increase in steric hindrance due to cross-linking, resulting in the fragmentation of collective structures of water molecules. The universal analysis using τ-β diagrams presented here has broad applicability as a method to characterize diverse gel structures and evaluate gelation processes.
Collapse
Affiliation(s)
- Shin Yagihara
- Department of Physics, School of Science, Tokai University, Hiratsuka-shi 259-1292, Japan
| | - Seiei Watanabe
- Course of Physics, Graduate School of Science, Tokai University, Hiratsuka-shi 259-1292, Japan
| | - Yuta Abe
- Department of Physics, School of Science, Tokai University, Hiratsuka-shi 259-1292, Japan
| | - Megumi Asano
- Department of Physics, School of Science, Tokai University, Hiratsuka-shi 259-1292, Japan
| | - Kenta Shimizu
- Course of Physics, Graduate School of Science, Tokai University, Hiratsuka-shi 259-1292, Japan
| | - Hironobu Saito
- Department of Physics, School of Science, Tokai University, Hiratsuka-shi 259-1292, Japan
| | - Yuko Maruyama
- Department of Physics, School of Science, Tokai University, Hiratsuka-shi 259-1292, Japan
| | - Rio Kita
- Department of Physics, School of Science, Tokai University, Hiratsuka-shi 259-1292, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka-shi 259-1292, Japan
| | - Naoki Shinyashiki
- Department of Physics, School of Science, Tokai University, Hiratsuka-shi 259-1292, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka-shi 259-1292, Japan
| | - Shyamal Kumar Kundu
- Department of Physics, School of Basic and Applied Sciences, Galgotias University, Greater Noida 201306, India
| |
Collapse
|
25
|
Zhang W, Fan W, Wang X, Li P, Zhang W, Wang H, Tang B. Uncovering Endoplasmic Reticulum Superoxide Regulating Hepatic Ischemia-Reperfusion Injury by Dynamic Reversible Fluorescence Imaging. Anal Chem 2023; 95:8367-8375. [PMID: 37200499 DOI: 10.1021/acs.analchem.3c01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a relatively common complication of liver resection and transplantation that is intimately connected to oxidative stress. The superoxide anion radical (O2•-), as the first reactive oxygen species produced by organisms, is an important marker of HIRI. The endoplasmic reticulum (ER) is an essential site for O2•- production, especially ER oxidative stress, which is closely linked to HIRI. Thus, dynamic variations in ER O2•- may accurately indicate the HIRI extent. However, there is still a lack of tools for the dynamic reversible detection of ER O2•-. Therefore, we designed and prepared an ER-targeted fluorescent reversible probe DPC for real-time tracing of O2•- fluctuations. We successfully observed a marked increase in ER O2•- levels in HIRI mice. A potential NADPH oxidase 4-ER O2•--SERCA2b-caspase 4 signaling pathway in HIRI mice was also revealed. Attractively, DPC was successfully used for precise fluorescent navigation and excision of HIRI sites.
Collapse
Affiliation(s)
- Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wenjie Fan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
26
|
Shimizu K, Abe F, Kishi Y, Kita R, Shinyashiki N, Yagihara S. Dielectric Study on Supramolecular Gels by Fiber Structure Formation from Low-Molecular-Weight Gelator/Water Mixtures. Gels 2023; 9:gels9050408. [PMID: 37233000 DOI: 10.3390/gels9050408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
There are various types of gel materials used in a wide range of fields, and their gelation mechanisms are extremely diverse. Furthermore, in the case of hydrogels, there exist some difficulties in understanding complicated molecular mechanisms especially with water molecules interacting through hydrogen bonding as solvents. In the present work, the molecular mechanism of the structural formation of fibrous super-molecular gel by the low molecular weight gelator, N-oleyl lactobionamide/water mixture was elucidated using the broadband dielectric spectroscopy (BDS) method. The dynamic behaviors observed for the solute and water molecules indicated hierarchical structure formation processes in various time scales. The relaxation curves obtained at various temperatures in the cooling and heating processes showed relaxation processes respectively reflecting the dynamic behaviors of water molecules in the 10 GHz frequency region, solute molecules interacting with water in MHz region, and ion-reflecting structures of the sample and electrode in kHz region. These relaxation processes, characterized by the relaxation parameters, showed remarkable changes around the sol-gel transition temperature, 37.8 °C, determined by the falling ball method and over the temperature range, around 53 °C. The latter change suggested a structure formation of rod micelles appearing as precursors before cross-linking into the three-dimensional network of the supramolecular gels. These results clearly demonstrate how effective relaxation parameter analysis is for understanding the gelation mechanism in detail.
Collapse
Affiliation(s)
- Kenta Shimizu
- Graduate School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi 259-1292, Japan
| | - Fumiya Abe
- Graduate School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi 259-1292, Japan
| | - Yasuhiro Kishi
- Graduate School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi 259-1292, Japan
| | - Rio Kita
- Department of Physics, School of Science, Tokai University, Hiratsuka-shi 259-1292, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka-shi 259-1292, Japan
| | - Naoki Shinyashiki
- Department of Physics, School of Science, Tokai University, Hiratsuka-shi 259-1292, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka-shi 259-1292, Japan
| | - Shin Yagihara
- Department of Physics, School of Science, Tokai University, Hiratsuka-shi 259-1292, Japan
| |
Collapse
|
27
|
Hou XF, Chen XM, Bisoyi HK, Qi Q, Xu T, Chen D, Li Q. Light-Driven Aqueous Dissipative Pseudorotaxanes with Tunable Fluorescence Enabling Deformable Nano-Assemblies. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11004-11015. [PMID: 36802465 DOI: 10.1021/acsami.2c20276] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Developing an artificial dynamic nanoscale molecular machine that dissipatively self-assembles far from equilibrium is fundamentally important but is significantly challenging. Herein, we report dissipatively self-assembling light-activated convertible pseudorotaxanes (PRs) that show tunable fluorescence and enable deformable nano-assemblies. A pyridinium-conjugated sulfonato-merocyanine derivative (EPMEH) and cucurbit[8]uril (CB[8]) form the 2EPMEH ⊂ CB[8] [3]PR in a 2:1 stoichiometry, which phototransforms into a transient spiropyran containing 1:1 EPSP ⊂ CB[8] [2]PR when exposed to light. The transient [2]PR thermally relaxes (reversibly) to the [3]PR in the dark accompanied by periodic fluorescence changes that include near-infrared emission. Moreover, octahedral and spherical nanoparticles are formed through the dissipative self-assembly of the two PRs, and the Golgi apparatus is dynamically imaged using fluorescent dissipative nano-assemblies.
Collapse
Affiliation(s)
- Xiao-Fang Hou
- Key Lab of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xu-Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, Ohio 44242, United States
| | - Qi Qi
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Tianchi Xu
- Key Lab of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dongzhong Chen
- Key Lab of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
28
|
Ye N, Pei YR, Han Q, Jin LY. Photoresponsive reversible self-assembly of rod-coil amphiphiles containing spiropyran groups. SOFT MATTER 2023; 19:1540-1548. [PMID: 36745471 DOI: 10.1039/d2sm01690g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Stimuli-responsive assembly deformation is a key feature in constructing smart soft materials, which makes them versatile and autonomous. In this study, rod-coil amphiphilic compounds containing spiropyran (SP) groups were developed and synthesized to investigate their stimuli-responsive assembly in a solution system with 99% water content. In addition to photochromic phenomena, reversible light-mediated morphological alterations occurred in these molecular aggregates. Based on the different flexible chain segments of rod-coil amphiphiles, the initial assemblies underwent a dissociation-reassembly process under ultraviolet (UV) irradiation, whereupon they deformed or disassembled to assemblies. Furthermore, as the UV source was removed, the original nanostructures were gradually recovered again via the ring-closing reaction process. These compounds, interestingly, can selectively combine with copper ions to produce cross-linked co-assembled nanostructures. The copper ion complex solution of rod-coil amphiphilic compounds emitted unique bright blue fluorescence, which allowed for the specific visual identification of copper ions in aqueous solutions.
Collapse
Affiliation(s)
- Nan Ye
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Yi-Rong Pei
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Qingqing Han
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| |
Collapse
|
29
|
Giona RM, Vitorazi L, Loh W. Assessing the Contribution of the Neutral Blocks in DNA/Block-Copolymer Polyplexes: Poly(acrylamide) vs. Poly(ethylene Oxide). Molecules 2023; 28:molecules28010398. [PMID: 36615592 PMCID: PMC9824764 DOI: 10.3390/molecules28010398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023] Open
Abstract
The interaction of DNA with different block copolymers, namely poly (trimethylammonium chloride methacryloyoxy)ethyl)-block-poly(acrylamide), i.e., (PTEA)-b-(PAm), and poly (trimethylammonium chloride methacryloyoxy)ethyl)-block-poly(ethylene oxide), i.e., (PTEA)-b-(PEO), was studied. The nature of the cationic block was maintained fixed (PTEA), whereas the neutral blocks contained varying amounts of acrylamide or (ethylene oxide) units. According to results from isothermal titration microcalorimetry measurements, the copolymers interaction with DNA is endothermic with an enthalpy around 4.0 kJ mol−1 of charges for (PTEA)-b-(PAm) and 5.5 kJ mol−1 of charges for (PTEA)-b-(PEO). The hydrodynamic diameters of (PTEA)-b-(PEO)/DNA and (PTEA)-b-(PAm)/DNA polyplexes prepared by titration were around 200 nm at charge ratio (Z+/−) < 1. At Z+/− close and above 1, the (PTEA)50-b-(PAm)50/DNA and (PTEA)50-b-(PAm)200/DNA polyplexes precipitated. Interestingly, (PTEA)50-b-(PAm)1000/DNA polyplexes remained with a size of around 300 nm even after charge neutralization, probably due to the size of the neutral block. Conversely, for (PTEA)96-b-(PEO)100/DNA polyplexes, the size distribution was broad, indicating a more heterogeneous system. Polyplexes were also prepared by direct mixture at Z+/− of 2.0, and they displayed diameters around 120−150 nm, remaining stable for more than 10 days. Direct and reverse titration experiments showed that the order of addition affects both the size and charge of the resulting polyplexes.
Collapse
Affiliation(s)
- Renata Mello Giona
- LaMaFI—Laboratório de Materiais e Fenômenos de Interface, Chemistry Department, Universidade Tecnológica Federal do Paraná (UTFPR), Medianeira, Curitiba 85884-000, Paraná (PR), Brazil
- Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6154, Campinas 13083-970, São Paulo State (SP), Brazil
| | - Letícia Vitorazi
- Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6154, Campinas 13083-970, São Paulo State (SP), Brazil
- Laboratório de Materiais Poliméricos, EEIMVR, Universidade Federal Fluminense, Volta Redonda 27255-125, Rio de Janeiro (RJ), Brazil
| | - Watson Loh
- Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6154, Campinas 13083-970, São Paulo State (SP), Brazil
- Correspondence:
| |
Collapse
|
30
|
Polyethyleneimine-Based Drug Delivery Systems for Cancer Theranostics. J Funct Biomater 2022; 14:jfb14010012. [PMID: 36662059 PMCID: PMC9862060 DOI: 10.3390/jfb14010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
With the development of nanotechnology, various types of polymer-based drug delivery systems have been designed for biomedical applications. Polymer-based drug delivery systems with desirable biocompatibility can be efficiently delivered to tumor sites with passive or targeted effects and combined with other therapeutic and imaging agents for cancer theranostics. As an effective vehicle for drug and gene delivery, polyethyleneimine (PEI) has been extensively studied due to its rich surface amines and excellent water solubility. In this work, we summarize the surface modifications of PEI to enhance biocompatibility and functionalization. Additionally, the synthesis of PEI-based nanoparticles is discussed. We further review the applications of PEI-based drug delivery systems in cancer treatment, cancer imaging, and cancer theranostics. Finally, we thoroughly consider the outlook and challenges relating to PEI-based drug delivery systems.
Collapse
|
31
|
Wang J, Avram L, Diskin-Posner Y, Białek MJ, Stawski W, Feller M, Klajn R. Altering the Properties of Spiropyran Switches Using Coordination Cages with Different Symmetries. J Am Chem Soc 2022; 144:21244-21254. [DOI: 10.1021/jacs.2c08901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jinhua Wang
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michał J. Białek
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie Street, 50383 Wrocław, Poland
| | - Wojciech Stawski
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moran Feller
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rafal Klajn
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
32
|
Kim J, Park H, Yoon C. Advances in Biodegradable Soft Robots. Polymers (Basel) 2022; 14:polym14214574. [PMID: 36365570 PMCID: PMC9658808 DOI: 10.3390/polym14214574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
Biodegradable soft robots have been proposed for a variety of intelligent applications in soft robotics, flexible electronics, and bionics. Biodegradability offers an extraordinary functional advantage to soft robots for operations accompanying smart shape transformation in response to external stimuli such as heat, pH, and light. This review primarily surveyed the current advanced scientific and engineering strategies for integrating biodegradable materials within stimuli-responsive soft robots. It also focused on the fabrication methodologies of multiscale biodegradable soft robots, and highlighted the role of biodegradable soft robots in enhancing the multifunctional properties of drug delivery capsules, biopsy tools, smart actuators, and sensors. Lastly, the current challenges and perspectives on the future development of intelligent soft robots for operation in real environments were discussed.
Collapse
Affiliation(s)
- Jiwon Kim
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
| | - Harim Park
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
| | - ChangKyu Yoon
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
- Institute of Advanced Materials and Systems, Sookmyung Women’s University, Seoul 04310, Korea
- Correspondence:
| |
Collapse
|
33
|
Wang L, Hao A, Xing P. Steroid-Aromatics Clathrates as Chiroptical Materials with Circularly Polarized Luminescence and Phosphorescence. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44902-44908. [PMID: 36134641 DOI: 10.1021/acsami.2c15187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Solid-state host-guest complexation shows great potential in the fabrication of chiroptical and phosphorescent materials. Developing chiral hosts toward achiral guests with a wide guest scope would expand the chiroptical application, which however remains a major challenge. Here, we report the steroid-aromatic compound complexation in the solid state that could realize effective chirality transfer, circularly polarized luminescence, and room temperature phosphorescence (RTP). Progesterone shows cocrystallization behavior toward a wide scope of guests through CH-π interaction, which also offers a rigid yet chiral microenvironment to entrap aromatic luminophores within the cavities or channels. Depending on the geometry of the guests, the handedness of the Cotton effects and circularly polarized luminescence could be tuned. Host-guest complexation not only gave rise to Cotton effects and circularly polarized luminescence but also stabilized the triplet state of bromo-compounds to achieve RTP and circularly polarized phosphorescence. This work first illustrates the application of steroid complexation in the chiroptical and phosphorescent materials, which shows potential in the display and information aspects.
Collapse
Affiliation(s)
- Lin Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
34
|
Lou L, Xu T, Li Y, Zhang C, Wang B, Zhang X, Zhang H, Qiu Y, Yang J, Wang D, Cao H, He W, Yang Z. H-Bonding Room Temperature Phosphorescence Materials via Facile Preparation for Water-Stimulated Photoluminescent Ink. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196482. [PMID: 36235020 PMCID: PMC9571649 DOI: 10.3390/molecules27196482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Pure organic room-temperature phosphorescence (RTP) materials built upon noncovalent interactions have attracted much attention because of their high efficiency, long lifetime, and stimulus-responsive behavior. However, there are limited reports of noncovalent RTP materials because of the lack of specific design principles and clear mechanisms. Here, we report on a noncovalent material prepared via facile grinding that can emit fluorescence and RTP emission differing from their components’ photoluminescent behavior. Exciplex can be formed during the preparation process to act as the minimum emission unit. We found that H-bonds in the RTP system provide restriction to nonradiative transition but also enhance energy transformation and energy level degeneracy in the system. Moreover, water-stimulated photoluminescent ink is produced from the materials to achieve double-encryption application with good resolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Zhou Yang
- Correspondence: ; Tel.: +86-010-62333759
| |
Collapse
|
35
|
Visualization of Antimicrobial-Induced Bacterial Membrane Disruption with a Bicolor AIEgen. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Gram-negative bacteria are difficult to kill due to their complex cell envelope, including the outer membrane (OM) and cytoplasmic membrane (CM). To monitor the membranolytic action of antimicrobials on Gram-negative bacteria would facilitate the development of effective antimicrobials. In this paper, an aggregation-induced emission luminogen (AIEgen) with microenvironment-sensitive properties was employed to indicate the interaction of antimicrobials with the OM and CM of Gram-negative bacteria. The damaged extent of OM and CM caused by antimicrobials with the change of dosage and incubation time can be visually captured based on the variation of two emission colors of IQ-Cm responding to OM-defective (green) and CM-disruptive bacteria (orange). Meanwhile, the activity assessment of antimicrobials can be easily realized within 1~2 h based on the distinct response of IQ-Cm to live and dead E. coli, which is much faster than the agar plate culture. This probe may shed light on the understanding of the interaction between the membrane-active antimicrobials and cell envelope of Gram-negative bacteria and contribute to the future development of antimicrobials.
Collapse
|