1
|
Li K, Chen H, Li D, Yang C, Zhang H, Zhu Z. Empowering DNA-Based Information Processing: Computation and Data Storage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68749-68771. [PMID: 39648356 DOI: 10.1021/acsami.4c13948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Information processing is a critical topic in the digital age, as silicon-based circuits face unprecedented challenges such as data explosion, immense energy consumption, and approaching physical limits. Deoxyribonucleic acid (DNA), naturally selected as a carrier for storing and using genetic information, possesses unique advantages for information processing, which has given rise to the emerging fields of DNA computing and DNA data storage. To meet the growing practical demands, a wide variety of materials and interfaces have been introduced into DNA information processing technologies, leading to significant advancements. This review summarizes the advances in materials and interfaces that facilitate DNA computation and DNA data storage. We begin with a brief overview of the fundamental functions and principles of DNA computation and DNA data storage. Subsequently, we delve into DNA computing systems based on various materials and interfaces, including microbeads, nanomaterials, DNA nanostructures, hydrophilic-hydrophobic compartmentalization, hydrogels, metal-organic frameworks, and microfluidics. We also explore DNA data storage systems, encompassing encapsulation materials, microfluidics techniques, DNA nanostructures, and living cells. Finally, we discuss the current bottlenecks and obstacles in the fields and provide insights into potential future developments.
Collapse
Affiliation(s)
- Kunjie Li
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Heng Chen
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Dayang Li
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Huimin Zhang
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi Zhu
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Koball A, Obst F, Gaitzsch J, Voit B, Appelhans D. Boosting Microfluidic Enzymatic Cascade Reactions with pH-Responsive Polymersomes by Spatio-Chemical Activity Control. SMALL METHODS 2024; 8:e2400282. [PMID: 38989686 PMCID: PMC11671858 DOI: 10.1002/smtd.202400282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Microfluidic flow reactors permit the implementation of sensitive biocatalysts in polymeric environments (e.g., hydrogel dots), mimicking nature through the use of diverse microstructures within defined confinements. However, establishing complex hybrid structures to mimic biological processes and functions under continuous flow with optimal utilization of all components involved in the reaction process represents a significant scientific challenge. To achieve spatial, chemical, and temporal control for any microfluidic application, compartmentalization is required, as well as the unification of different sensitive compartments in the reaction chamber for the microfluidic flow design. This study presents a self-regulating microfluidic system fabricated by a sequential photostructuring process with an intermediate chemical process step to realize pH-sensitive hybrid structures for the fabrication of a microfluidic double chamber reactor for controlled enzymatic cascade reaction (ECR). The key point is the adaptation and retention of the function of pH-responsive horseradish peroxidase-loaded polymersomes in a microfluidic chip under continuous flow. ECR is successfully triggered and controlled by an interplay between glucose oxidase-converted glucose, the membrane state of pH-responsive polymersomes, and other parameters (e.g., flow rate and fluid composition). This study establishes a promising noninvasive regulatory platform for extended spatio-chemical control of current and future ECR and other cascade reaction systems.
Collapse
Affiliation(s)
- Andrea Koball
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
- Technische Universität DresdenFakultät Chemie und LebensmittelchemieOrganische Chemie der PolymereD‐01062DresdenGermany
| | - Franziska Obst
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
- Technische Universität DresdenInstitut für Halbleiter‐ und MikrosystemtechnikNöthnitzer Straße 64D‐01187DresdenGermany
| | - Jens Gaitzsch
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
| | - Brigitte Voit
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
- Technische Universität DresdenFakultät Chemie und LebensmittelchemieOrganische Chemie der PolymereD‐01062DresdenGermany
| | - Dietmar Appelhans
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
| |
Collapse
|
3
|
Akter M, Moghimianavval H, Luker GD, Liu AP. Light-triggered protease-mediated release of actin-bound cargo from synthetic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613133. [PMID: 39314483 PMCID: PMC11419145 DOI: 10.1101/2024.09.15.613133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion. Here, we designed and constructed a protein-based platform termed TEV Protease-mediated Releasable Actin-binding protein (TRAP) for selective, rapid, and triggerable secretion in synthetic cells. TRAP is designed to bind tightly to reconstituted actin networks and is proteolytically released from bound actin, followed by secretion via cell-penetrating peptide membrane translocation. We demonstrated TRAP's efficacy in facilitating light-activated secretion of both fluorescent and luminescent proteins. By equipping synthetic cells with a controlled secretion mechanism, TRAP paves the way for the development of stimuli-responsive biomaterials, versatile synthetic cell-based biosensing systems, and therapeutic applications through the integration of synthetic cells with living cells for targeted delivery of protein therapeutics.
Collapse
Affiliation(s)
- Mousumi Akter
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Gary D. Luker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
4
|
Palivan CG, Heuberger L, Gaitzsch J, Voit B, Appelhans D, Borges Fernandes B, Battaglia G, Du J, Abdelmohsen L, van Hest JCM, Hu J, Liu S, Zhong Z, Sun H, Mutschler A, Lecommandoux S. Advancing Artificial Cells with Functional Compartmentalized Polymeric Systems - In Honor of Wolfgang Meier. Biomacromolecules 2024; 25:5454-5467. [PMID: 39196319 DOI: 10.1021/acs.biomac.4c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The fundamental building block of living organisms is the cell, which is the universal biological base of all living entities. This micrometric mass of cytoplasm and the membrane border have fascinated scientists due to the highly complex and multicompartmentalized structure. This specific organization enables numerous metabolic reactions to occur simultaneously and in segregated spaces, without disturbing each other, but with a promotion of inter- and intracellular communication of biomolecules. At present, artificial nano- and microcompartments, whether as single components or self-organized in multicompartment architectures, hold significant value in the study of life development and advanced functional materials and in the fabrication of molecular devices for medical applications. These artificial compartments also possess the properties to encapsulate, protect, and control the release of bio(macro)molecules through selective transport processes, and they are capable of embedding or being connected with other types of compartments. The self-assembly mechanism of specific synthetic compartments and thus the fabrication of a simulated organelle membrane are some of the major aspects to gain insight. Considerable efforts have now been devoted to design various nano- and microcompartments and understand their functionality for precise control over properties. Of particular interest is the use of polymeric vesicles for communication in synthetic cells and colloidal systems to reinitiate chemical and biological communication and thus close the gap toward biological functions. Multicompartment systems can now be effectively created with a high level of hierarchical control. In this way, these structures can not only be explored to deepen our understanding of the functional organization of living cells, but also pave the way for many more exciting developments in the biomedical field.
Collapse
Affiliation(s)
- Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
| | - Lukas Heuberger
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
| | - Jens Gaitzsch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Barbara Borges Fernandes
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
| | - Giuseppe Battaglia
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Spain
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Loai Abdelmohsen
- Department of Chemistry and Chemical Engineering, Institute for Complex Molecular Systems, Bio-Organic Chemistry, Eindhoven University of Technology, Helix, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Jan C M van Hest
- Department of Chemistry and Chemical Engineering, Institute for Complex Molecular Systems, Bio-Organic Chemistry, Eindhoven University of Technology, Helix, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine and Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine and Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
- College of Pharmaceutical Sciences, and International College of Pharmaceutical Innovation, Soochow University, Suzhou 215123, P. R. China
| | - Huanli Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Angela Mutschler
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | |
Collapse
|
5
|
Ioannou IA, Monck C, Ceroni F, Brooks NJ, Kuimova MK, Elani Y. Nucleated synthetic cells with genetically driven intercompartment communication. Proc Natl Acad Sci U S A 2024; 121:e2404790121. [PMID: 39186653 PMCID: PMC11388312 DOI: 10.1073/pnas.2404790121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Eukaryotic cells are characterized by multiple chemically distinct compartments, one of the most notable being the nucleus. Within these compartments, there is a continuous exchange of information, chemicals, and signaling molecules, essential for coordinating and regulating cellular activities. One of the main goals of bottom-up synthetic biology is to enhance the complexity of synthetic cells by establishing functional compartmentalization. There is a need to mimic autonomous signaling between compartments, which in living cells, is often regulated at the genetic level within the nucleus. This advancement is key to unlocking the potential of synthetic cells as cell models and as microdevices in biotechnology. However, a technological bottleneck exists preventing the creation of synthetic cells with a defined nucleus-like compartment capable of genetically programmed intercompartment signaling events. Here, we present an approach for creating synthetic cells with distinct nucleus-like compartments that can encapsulate different biochemical mixtures in discrete compartments. Our system enables in situ protein expression of membrane proteins, enabling autonomous chemical communication between nuclear and cytoplasmic compartments, leading to downstream activation of enzymatic pathways within the cell.
Collapse
Affiliation(s)
- Ion A Ioannou
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, United Kingdom
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- fabriCELL, Imperial College London, London SW7 2AZ, United Kingdom
| | - Carolina Monck
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- fabriCELL, Imperial College London, London SW7 2AZ, United Kingdom
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Nicholas J Brooks
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, United Kingdom
- fabriCELL, Imperial College London, London SW7 2AZ, United Kingdom
| | - Marina K Kuimova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, United Kingdom
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- fabriCELL, Imperial College London, London SW7 2AZ, United Kingdom
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
6
|
Zhou Y, Zhang K, Moreno S, Temme A, Voit B, Appelhans D. Continuous Transformation from Membrane-Less Coacervates to Membranized Coacervates and Giant Vesicles: Toward Multicompartmental Protocells with Complex (Membrane) Architectures. Angew Chem Int Ed Engl 2024; 63:e202407472. [PMID: 38847278 DOI: 10.1002/anie.202407472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Indexed: 07/25/2024]
Abstract
The membranization of membrane-less coacervates paves the way for the exploitation of complex protocells with regard to structural and cell-like functional behaviors. However, the controlled transformation from membranized coacervates to vesicles remains a challenge. This can provide stable (multi)phase and (multi)compartmental architectures through the reconfiguration of coacervate droplets in the presence of (bioactive) polymers, bio(macro)molecules and/or nanoobjects. Herein, we present a continuous protocell transformation from membrane-less coacervates to membranized coacervates and, ultimately, to giant hybrid vesicles. This transformation process is orchestrated by altering the balance of non-covalent interactions through varying concentrations of an anionic terpolymer, leading to dynamic processes such as spontaneous membranization of terpolymer nanoparticles at the coacervate surface, disassembly of the coacervate phase mediated by the excess anionic charge, and the redistribution of coacervate components in membrane. The diverse protocells during the transformation course provide distinct structural features and molecular permeability. Notably, the introduction of multiphase coacervates in this continuous transformation process signifies advancements toward the creation of synthetic cells with different diffusible compartments. Our findings emphasize the highly controlled continuous structural reorganization of coacervate protocells and represents a novel step toward the development of advanced and sophisticated synthetic protocells with more precise compositions and complex (membrane) structures.
Collapse
Affiliation(s)
- Yang Zhou
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
- Organic Chemistry of Polymers, TUD Dresden University of Technology, Dresden, 01062, Germany
| | - Kehu Zhang
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
- Organic Chemistry of Polymers, TUD Dresden University of Technology, Dresden, 01062, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
| | - Achim Temme
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, 01307, Germany
- German Cancer Consortium (DKTK), partner site Dresden, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany, National Center for Tumor Diseases (NCT), Fetscherstraße 74, Dresden, 01307, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
- Organic Chemistry of Polymers, TUD Dresden University of Technology, Dresden, 01062, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
| |
Collapse
|
7
|
Samanta A, Baranda Pellejero L, Masukawa M, Walther A. DNA-empowered synthetic cells as minimalistic life forms. Nat Rev Chem 2024; 8:454-470. [PMID: 38750171 DOI: 10.1038/s41570-024-00606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 06/13/2024]
Abstract
Cells, the fundamental units of life, orchestrate intricate functions - motility, adaptation, replication, communication, and self-organization within tissues. Originating from spatiotemporally organized structures and machinery, coupled with information processing in signalling networks, cells embody the 'sensor-processor-actuator' paradigm. Can we glean insights from these processes to construct primitive artificial systems with life-like properties? Using de novo design approaches, what can we uncover about the evolutionary path of life? This Review discusses the strides made in crafting synthetic cells, utilizing the powerful toolbox of structural and dynamic DNA nanoscience. We describe how DNA can serve as a versatile tool for engineering entire synthetic cells or subcellular entities, and how DNA enables complex behaviour, including motility and information processing for adaptive and interactive processes. We chart future directions for DNA-empowered synthetic cells, envisioning interactive systems wherein synthetic cells communicate within communities and with living cells.
Collapse
Affiliation(s)
- Avik Samanta
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany.
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India.
| | | | - Marcos Masukawa
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany.
| |
Collapse
|
8
|
Yang S, Bögels BWA, Wang F, Xu C, Dou H, Mann S, Fan C, de Greef TFA. DNA as a universal chemical substrate for computing and data storage. Nat Rev Chem 2024; 8:179-194. [PMID: 38337008 DOI: 10.1038/s41570-024-00576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
DNA computing and DNA data storage are emerging fields that are unlocking new possibilities in information technology and diagnostics. These approaches use DNA molecules as a computing substrate or a storage medium, offering nanoscale compactness and operation in unconventional media (including aqueous solutions, water-in-oil microemulsions and self-assembled membranized compartments) for applications beyond traditional silicon-based computing systems. To build a functional DNA computer that can process and store molecular information necessitates the continued development of strategies for computing and data storage, as well as bridging the gap between these fields. In this Review, we explore how DNA can be leveraged in the context of DNA computing with a focus on neural networks and compartmentalized DNA circuits. We also discuss emerging approaches to the storage of data in DNA and associated topics such as the writing, reading, retrieval and post-synthesis editing of DNA-encoded data. Finally, we provide insights into how DNA computing can be integrated with DNA data storage and explore the use of DNA for near-memory computing for future information technology and health analysis applications.
Collapse
Affiliation(s)
- Shuo Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Bas W A Bögels
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Fei Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Can Xu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Stephen Mann
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China.
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, UK.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Tom F A de Greef
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
- Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Gao M, Wang D, Wilsch-Bräuninger M, Leng W, Schulte J, Morgner N, Appelhans D, Tang TYD. Cell Free Expression in Proteinosomes Prepared from Native Protein-PNIPAAm Conjugates. Macromol Biosci 2024; 24:e2300464. [PMID: 37925629 DOI: 10.1002/mabi.202300464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Indexed: 11/05/2023]
Abstract
Towards the goal of building synthetic cells from the bottom-up, the establishment of micrometer-sized compartments that contain and support cell free transcription and translation that couple cellular structure to function is of critical importance. Proteinosomes, formed from crosslinked cationized protein-polymer conjugates offer a promising solution to membrane-bound compartmentalization with an open, semi-permeable membrane. Critically, to date, there has been no demonstration of cell free transcription and translation within water-in-water proteinosomes. Herein, a novel approach to generate proteinosomes that can support cell free transcription and translation is presented. This approach generates proteinosomes directly from native protein-polymer (BSA-PNIPAAm) conjugates. These native proteinosomes offer an excellent alternative as a synthetic cell chassis to other membrane bound compartments. Significantly, the native proteinosomes are stable under high salt conditions that enables the ability to support cell free transcription and translation and offer enhanced protein expression compared to proteinosomes prepared from traditional methodologies. Furthermore, the integration of native proteinosomes into higher order synthetic cellular architectures with membrane free compartments such as liposomes is demonstrated. The integration of bioinspired architectural elements with the central dogma is an essential building block for realizing minimal synthetic cells and is key for exploiting artificial cells in real-world applications.
Collapse
Affiliation(s)
- Mengfei Gao
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Dishi Wang
- Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Strasse 6, 01069, Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01602, Dresden, Germany
| | - Michaela Wilsch-Bräuninger
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Weihua Leng
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Jonathan Schulte
- Goethe Universität Frankfurt, Institute of physical and theoretical chemistry, Max-von-Lauestrasse 13, 60438, Frankfurt am Main, Germany
| | - Nina Morgner
- Goethe Universität Frankfurt, Institute of physical and theoretical chemistry, Max-von-Lauestrasse 13, 60438, Frankfurt am Main, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Strasse 6, 01069, Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01602, Dresden, Germany
| | - T-Y Dora Tang
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
- Saarland University, Synthetic biology, Department of Biology, Campus B2.2, 66123, Saarbrücken, Germany
| |
Collapse
|
10
|
Yang R, Deng Y, Xie S, Liu M, Zou Y, Qian T, An Q, Chen J, Shen S, van den Berg A, Zhang M, Shui L. Controllable ingestion and release of guest components driven by interfacial molecular orientation of host liquid crystal droplets. J Colloid Interface Sci 2023; 652:557-566. [PMID: 37607418 DOI: 10.1016/j.jcis.2023.08.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 08/12/2023] [Indexed: 08/24/2023]
Abstract
Controllable construction and manipulation of artificial multi-compartmental structures are crucial in understanding and imitating smart molecular elements such as biological cells and on-demand delivery systems. Here, we report a liquid crystal droplet (LCD) based three-dimensional system for controllable and reversible ingestion and release of guest aqueous droplets (GADs). Induced by interfacial thermodynamic fluctuation and internal topological defect, microscale LCDs with perpendicular anchoring condition at the interface would spontaneously ingest external components from the surroundings and transform them as radially assembled tiny GADs inside LCDs. Landau-de Gennes free-energy model is applied to describe and explain the assembly dynamics and morphologies of these tiny GADs, which presents a good agreement with experimental observations. Furthermore, the release of these ingested GADs can be actively triggered by changing the anchoring conditions at the interface of LCDs. Since those ingestion and release processes are controllable and happen very gently at room temperature and neutral pH environment without extra energy input, these microscale LCDs are very prospective to provide a unique and viable route for constructing hierarchical 3D structures with tunable components and compartments.
Collapse
Affiliation(s)
- Ruizhi Yang
- Joint Laboratory of Optofluidic Technology and Systems (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Yueming Deng
- Joint Laboratory of Optofluidic Technology and Systems (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Shuting Xie
- Joint Laboratory of Optofluidic Technology and Systems (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Mengjun Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Yiying Zou
- Joint Laboratory of Optofluidic Technology and Systems (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Tiezheng Qian
- Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Qi An
- Joint Laboratory of Optofluidic Technology and Systems (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Jiamei Chen
- Joint Laboratory of Optofluidic Technology and Systems (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Shitao Shen
- Joint Laboratory of Optofluidic Technology and Systems (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Albert van den Berg
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Centre and Max Planck Centre for Complex Fluid Dynamics, University of Twente, AE, Enschede 7500, the Netherlands
| | - Minmin Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.
| | - Lingling Shui
- Joint Laboratory of Optofluidic Technology and Systems (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Perin GB, Moreno S, Zhou Y, Günther M, Boye S, Voit B, Felisberti MI, Appelhans D. Construction of Membraneless and Multicompartmentalized Coacervate Protocells Controlling a Cell Metabolism-like Cascade Reaction. Biomacromolecules 2023; 24:5807-5822. [PMID: 37984848 DOI: 10.1021/acs.biomac.3c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In recent years, there has been growing attention to designing synthetic protocells, capable of mimicking micrometric and multicompartmental structures and highly complex physicochemical and biological processes with spatiotemporal control. Controlling metabolism-like cascade reactions in coacervate protocells is still challenging since signal transduction has to be involved in sequential and parallelized actions mediated by a pH change. Herein, we report the hierarchical construction of membraneless and multicompartmentalized protocells composed of (i) a cytosol-like scaffold based on complex coacervate droplets stable under flow conditions, (ii) enzyme-active artificial organelles and a substrate nanoreservoir capable of triggering a cascade reaction between them in response to a pH increase, and (iii) a signal transduction component based on the urease enzyme capable of the conversion of an exogenous biological fuel (urea) into an endogenous signal (ammonia and pH increase). Overall, this strategy allows a synergistic communication between their components within the membraneless and multicompartment protocells and, thus, metabolism-like enzymatic cascade reactions. This signal communication is transmitted through a scaffold protocell from an "inactive state" (nonfluorescent protocell) to an "active state" (fluorescent protocell capable of consuming stored metabolites).
Collapse
Affiliation(s)
- Giovanni B Perin
- Institute of Chemistry, University of Campinas, 13083-970 Campinas, São Paulo, Brazil
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Yang Zhou
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Markus Günther
- Institute of Botany, Faculty of Biology, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Maria I Felisberti
- Institute of Chemistry, University of Campinas, 13083-970 Campinas, São Paulo, Brazil
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| |
Collapse
|
12
|
Allen ME, Hindley JW, O’Toole N, Cooke HS, Contini C, Law RV, Ces O, Elani Y. Biomimetic behaviors in hydrogel artificial cells through embedded organelles. Proc Natl Acad Sci U S A 2023; 120:e2307772120. [PMID: 37603747 PMCID: PMC10466294 DOI: 10.1073/pnas.2307772120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/13/2023] [Indexed: 08/23/2023] Open
Abstract
Artificial cells are biomimetic structures formed from molecular building blocks that replicate biological processes, behaviors, and architectures. Of these building blocks, hydrogels have emerged as ideal, yet underutilized candidates to provide a gel-like chassis in which to incorporate both biological and nonbiological componentry which enables the replication of cellular functionality. Here, we demonstrate a microfluidic strategy to assemble biocompatible cell-sized hydrogel-based artificial cells with a variety of different embedded functional subcompartments, which act as engineered synthetic organelles. The organelles enable the recreation of increasingly biomimetic behaviors, including stimulus-induced motility, content release through activation of membrane-associated proteins, and enzymatic communication with surrounding bioinspired compartments. In this way, we showcase a foundational strategy for the bottom-up construction of hydrogel-based artificial cell microsystems which replicate fundamental cellular behaviors, paving the way for the construction of next-generation biotechnological devices.
Collapse
Affiliation(s)
- Matthew E. Allen
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
- Department of Chemical Engineering, Imperial College London, South Kensington, LondonSW7 2AZ, UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
| | - James W. Hindley
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
| | - Nina O’Toole
- Department of Chemical Engineering, Imperial College London, South Kensington, LondonSW7 2AZ, UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
| | - Hannah S. Cooke
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
- Department of Chemical Engineering, Imperial College London, South Kensington, LondonSW7 2AZ, UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
| | - Claudia Contini
- Department of Chemical Engineering, Imperial College London, South Kensington, LondonSW7 2AZ, UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
| | - Robert V. Law
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
| | - Oscar Ces
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, South Kensington, LondonSW7 2AZ, UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub, LondonW12 0BZ, UK
| |
Collapse
|
13
|
Sharma C, Samanta A, Schmidt RS, Walther A. DNA-Based Signaling Networks for Transient Colloidal Co-Assemblies. J Am Chem Soc 2023; 145:17819-17830. [PMID: 37543962 DOI: 10.1021/jacs.3c04807] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Programmable chemical circuits inspired by signaling networks in living cells are a promising approach for the development of adaptive and autonomous self-assembling molecular systems and material functions. Progress has been made at the molecular level, but connecting molecular control circuits to self-assembling larger elements such as colloids that enable real-space studies and access to functional materials is sparse and can suffer from kinetic traps, flocculation, or difficult system integration protocols. Herein, we report a toehold-mediated DNA strand displacement reaction network capable of autonomously directing two different microgels into transient and self-regulating co-assemblies. The microgels are functionalized with DNA and become elemental components of the network. The flexibility of the circuit design allows the installation of delay phases or accelerators by chaining additional circuit modules upstream or downstream of the core circuit. The design provides an adaptable and robust route to regulate other building blocks for advanced biomimetic functions.
Collapse
Affiliation(s)
- Charu Sharma
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Avik Samanta
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Ricarda Sophia Schmidt
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
14
|
Stano P, Gentili PL, Damiano L, Magarini M. A Role for Bottom-Up Synthetic Cells in the Internet of Bio-Nano Things? Molecules 2023; 28:5564. [PMID: 37513436 PMCID: PMC10385758 DOI: 10.3390/molecules28145564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/29/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The potential role of bottom-up Synthetic Cells (SCs) in the Internet of Bio-Nano Things (IoBNT) is discussed. In particular, this perspective paper focuses on the growing interest in networks of biological and/or artificial objects at the micro- and nanoscale (cells and subcellular parts, microelectrodes, microvessels, etc.), whereby communication takes place in an unconventional manner, i.e., via chemical signaling. The resulting "molecular communication" (MC) scenario paves the way to the development of innovative technologies that have the potential to impact biotechnology, nanomedicine, and related fields. The scenario that relies on the interconnection of natural and artificial entities is briefly introduced, highlighting how Synthetic Biology (SB) plays a central role. SB allows the construction of various types of SCs that can be designed, tailored, and programmed according to specific predefined requirements. In particular, "bottom-up" SCs are briefly described by commenting on the principles of their design and fabrication and their features (in particular, the capacity to exchange chemicals with other SCs or with natural biological cells). Although bottom-up SCs still have low complexity and thus basic functionalities, here, we introduce their potential role in the IoBNT. This perspective paper aims to stimulate interest in and discussion on the presented topics. The article also includes commentaries on MC, semantic information, minimal cognition, wetware neuromorphic engineering, and chemical social robotics, with the specific potential they can bring to the IoBNT.
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | - Pier Luigi Gentili
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Luisa Damiano
- Department of Communication, Arts and Media, IULM University, 20143 Milan, Italy
| | - Maurizio Magarini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
15
|
Zong W, Shao X, Li J, Chai Y, Hu X, Zhang X. Synthetic Intracellular Environments: From Basic Science to Applications. Anal Chem 2023; 95:535-549. [PMID: 36625127 DOI: 10.1021/acs.analchem.2c04199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Wei Zong
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Qiqihar161006, China
| | - Xiaotong Shao
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Qiqihar161006, China
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Qiqihar161006, China.,Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar161006, China
| | - Yunhe Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Qiqihar161006, China
| | - Xinyu Hu
- Key Laboratory of Micro-Nano Optoelectronic Devices (Wenzhou), College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou325035, China
| | - Xunan Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Qiqihar161006, China
| |
Collapse
|
16
|
Ghosh B. Artificial cell design: reconstructing biology for life science applications. Emerg Top Life Sci 2022; 6:619-627. [PMID: 36398710 DOI: 10.1042/etls20220050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/12/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
Artificial cells are developed to redesign novel biological functions in a programmable and tunable manner. Although it aims to reconstitute living cell features and address 'origin of life' related questions, rapid development over the years has transformed artificial cells into an engineering tool with huge potential in applied biotechnology. Although the application of artificial cells was introduced decades ago as drug carriers, applications in other sectors are relatively new and could become possible with the technological advancement that can modulate its designing principles. Artificial cells are non-living system that includes no prerequisite designing modules for their formation and therefore allow freedom of assembling desired biological machinery within a physical boundary devoid of complex contemporary living-cell counterparts. As stimuli-responsive biomimetic tools, artificial cells are programmed to sense the surrounding, recognise their target, activate its function and perform the defined task. With the advantage of their customised design, artificial cells are being studied in biosensing, drug delivery, anti-cancer therapeutics or artificial photosynthesis type fields. This mini-review highlights those advanced fields where artificial cells with a minimalistic setup are developed as user-defined custom-made microreactors, targeting to reshape our future 'life'.
Collapse
Affiliation(s)
- Basusree Ghosh
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| |
Collapse
|