1
|
Wang D, Wang J, Yang L, Wang X, Huang S. Dexmedetomidine plays a protective role in sepsis-associated myocardial injury by repressing PRMT5-mediated ferroptosis. Toxicol Res (Camb) 2025; 14:tfaf010. [PMID: 39902345 PMCID: PMC11787764 DOI: 10.1093/toxres/tfaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/26/2024] [Accepted: 01/16/2025] [Indexed: 02/05/2025] Open
Abstract
Sepsis rapidly contributed to multiorgan failure, most typically damaging the cardiovascular system, and there were no effective treatments. Dexmedetomidine (Dex) has good therapeutic effects on sepsis-induced organ injury. Our work aimed to probe the pharmacological effects of Dex on ferroptosis in sepsis-associated myocardial injury (S-MI) and define underlying mechanism of action. Cardiomyocytes were exposed to lipopolysaccharide (LPS) for mimicking S-MI model in vitro. The septic mice were constructed by cecum ligation and puncture operation. The mRNA and protein expressions were assessed using quantitative real-time polymerase chain reaction or western blot. Cell survival was determined by cell counting kit-8, lactic dehydrogenase release, and flow cytometry assays. 2',7'-Dichlorodihydrofluorescein diacetate staining measured cellular reactive oxygen species level. The secretion levels of inflammatory cytokines, ferroptosis-related indicators were analyzed by enzyme-linked immunosorbent assay. The N6-methyladenosine (m6A) modification level of protein arginine methyltransferase 5 (PRMT5) mRNA was examined by methylated RNA binding protein immunoprecipitation (Me-RIP) assay. The interaction between methyltransferase like 3 (METTL3)/fat mass and obesity-associated protein (FTO) and PRMT5 was analyzed by RNA immunoprecipitation assay. Dex treatment alleviated LPS-induced cardiomyocyte injury and ferroptosis, while these effects of Dex were reversed by Erastin treatment. Mechanically, Dex ameliorated PRMT5 expression in LPS-induced cardiomyocytes by regulating METTL3/FTO catalyzed m6A modification on PRMT5 mRNA. Rescue experiments confirmed that PRMT5 overexpression abolished Dex-mediated inhibitory roles on LPS-induced cardiomyocyte injury and ferroptosis. Moreover, Dex administration alleviated inflammation, ferroptosis, and myocardial injury in septic mice. Taken together, Dex repressed PMRT5 expression in a m6A-dependent manner, thus lightening LPS-triggered ferroptosis to alleviate cardiomyocyte injury.
Collapse
Affiliation(s)
- Dan Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Furong District, Changsha, Hunan Province 410011, P.R. China
| | - Jun Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Furong District, Changsha, Hunan Province 410011, P.R. China
| | - Li Yang
- Department of Neurology, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Furong District, Changsha, Hunan Province 410011, P.R. China
| | - Xin Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Furong District, Changsha, Hunan Province 410011, P.R. China
| | - Sijian Huang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Furong District, Changsha, Hunan Province 410011, P.R. China
| |
Collapse
|
2
|
Cao L, Li B, Zheng S, Zhang Q, Qian Y, Ren Y, Wang H, Wang M, Wu X, Zhang J, Xu K. Reprogramming of fibroblasts into cancer-associated fibroblasts via IGF2-mediated autophagy promotes metastasis of lung cancer cells. iScience 2024; 27:111269. [PMID: 39759028 PMCID: PMC11700637 DOI: 10.1016/j.isci.2024.111269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/29/2024] [Accepted: 10/24/2024] [Indexed: 01/07/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are major component of stromal cells. Growing evidence suggests that CAFs promote tumor growth and metastasis; however, the reprogramming of normal fibroblasts (NFs) into CAFs by tumor cells still remains largely unknown. In this study, we found that non-small cell lung cancer (NSCLC) cells activated NFs into CAFs via autophagy induction. Insulin-like growth factor 2 (IGF2) secreted by NSCLC cells mediated NSCLC cells' effect on autophagy induction and CAFs activation. Importantly, the activated CAFs promoted NSCLC cells growth, migration, and invasion. Further study showed that the activated CAFs facilitated NSCLC cells invasion via promoting epithelial-mesenchymal transition (EMT) process, upregulating metastasis-related genes, releasing CXCL12, and activating its downstream AKT serine/threonine kinase 1 (AKT)/ nuclear factor κB (NF-κB) signaling pathway. These findings revealed that IGF2-mediated autophagy plays a critical role in CAFs activation and suggested the IGF2-autophagy cascade in fibroblasts could be a potential target for lung cancer therapy.
Collapse
Affiliation(s)
- Limin Cao
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bingbing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Sijia Zheng
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qicheng Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yongmei Qian
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yinghui Ren
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Huimin Wang
- Department of Clinical Laboratory, Tianjin First Central Hospital, Tianjin 300192, China
| | - Min Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiang Wu
- Core Facility Center, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiayi Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
3
|
Bao Y, Ma Y, Huang W, Bai Y, Gao S, Xiu L, Xie Y, Wan X, Shan S, Chen C, Qu L. Regulation of autophagy and cellular signaling through non-histone protein methylation. Int J Biol Macromol 2024; 291:139057. [PMID: 39710032 DOI: 10.1016/j.ijbiomac.2024.139057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Autophagy is a highly conserved catabolic pathway that is precisely regulated and plays a significant role in maintaining cellular metabolic balance and intracellular homeostasis. Abnormal autophagy is directly linked to the development of various diseases, particularly immune disorders, neurodegenerative conditions, and tumors. The precise regulation of proteins is crucial for proper cellular function, and post-translational modifications (PTMs) are key epigenetic mechanisms in the regulation of numerous biological processes. Multiple proteins undergo PTMs that influence autophagy regulation. Methylation modifications on non-histone lysine and arginine residues have been identified as common PTMs critical to various life processes. This paper focused on the regulatory effects of non-histone methylation modifications on autophagy, summarizing related research on signaling pathways involved in autophagy-related non-histone methylation, and discussing current challenges and clinical significance. Our review concludes that non-histone methylation plays a pivotal role in the regulation of autophagy and its associated signaling pathways. Targeting non-histone methylation offers a promising strategy for therapeutic interventions in diseases related to autophagy dysfunction, such as cancer and neurodegenerative disorders. These findings provide a theoretical basis for the development of non-histone-methylation-targeted drugs for clinical use.
Collapse
Affiliation(s)
- Yongfen Bao
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning 437000, China; School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China
| | - Yaoyao Ma
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning 437000, China; School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China
| | - Wentao Huang
- Department of Physiology, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Yujie Bai
- Department of Scientific Research and Education, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330000, China
| | - Siying Gao
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Luyao Xiu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuyang Xie
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinrong Wan
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Shigang Shan
- School of Public Health and Nursing, Hubei University of Science and Technology, Hubei 437000, China
| | - Chao Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lihua Qu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning 437000, China; School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China.
| |
Collapse
|
4
|
Cao Z, Jiang J, Wang Y, Lu Y, Wu M, Zhen X, Cai X, Sun H, Yan G. Role of PRMT5 mediated HOXA10 arginine 337 methylation in endometrial epithelial cell receptivity. Biochem Biophys Res Commun 2024; 739:151004. [PMID: 39550865 DOI: 10.1016/j.bbrc.2024.151004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
A successful embryo implantation relies heavily on the receptivity of the endometrial epithelium, a process regulated by various molecular mechanisms. Evaluating endometrial receptivity in infertility patients undergoing assisted reproductive treatment, particularly those with adenomyosis related infertility, poses significant challenges due to limitations associated with conventional assessment methods. In this study, we collected residual endometrial epithelial cells from the tips of embryo transfer catheters in patients with adenomyosis related infertility. High throughput sequencing revealed a marked downregulation of protein arginine methyltransferase 5 (PRMT5) in these cells. Functional assays demonstrated that PRMT5 interacts with and methylates homeobox A10 (HOXA10), a crucial transcription factor for endometrial receptivity and implantation. The methylation of HOXA10 at arginine 337 by PRMT5 enhances its stability and promotes the transcriptional activation of genes essential for endometrial differentiation and adhesion. The downregulation of PRMT5 led to decreased HOXA10 activity, resulting in impaired endometrial receptivity and subsequent implantation failure. These findings elucidate a critical pathway where PRMT5 downregulation negatively impacts HOXA10 function, providing new insights into the molecular mechanisms underlying implantation failure in adenomyosis related infertility. This study not only advances our understanding of the regulatory mechanisms governing endometrial receptivity but also identifies potential therapeutic targets for enhancing endometrial function in affected patients.
Collapse
Affiliation(s)
- Zhiwen Cao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Jinwen Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yiting Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yuhang Lu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Min Wu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xin Zhen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xinyu Cai
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Haixiang Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210032, Nanjing, China.
| | - Guijun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210032, Nanjing, China.
| |
Collapse
|
5
|
Yao Z, Chen H. Everolimus in pituitary tumor: a review of preclinical and clinical evidence. Front Endocrinol (Lausanne) 2024; 15:1456922. [PMID: 39736867 PMCID: PMC11682973 DOI: 10.3389/fendo.2024.1456922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Although pituitary tumors (PTs) are mostly benign, some PTs are characterized by low surgical resection rates, high recurrence rates, and poor response to conventional treatments and profoundly affect patients' quality of life. Everolimus (EVE) is the only FDA-approved mTOR inhibitor, which can be used for oral treatment. It effectively inhibits tumor cell proliferation and angiogenesis. It has been administered for various neuroendocrine tumors of the digestive tract, lungs, and pancreas. EVE not only suppresses the growth and proliferation of APT cells but also enhances their sensitivity to radiotherapy and chemotherapy. This review introduces the role of the PI3K/AKT/mTOR pathway in the development of APTs, comprehensively explores the current status of preclinical and clinical research of EVE in APTs, and discusses the blood-brain barrier permeability and safety of EVE.
Collapse
Affiliation(s)
- Zihong Yao
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hui Chen
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Kong J, Dong Y, Li M, Fan J, Wang T. Protein arginine methyltransferase 5 confers the resistance of triple-negative breast cancer to nanoparticle albumin-bound paclitaxel by enhancing autophagy through the dimethylation of ULK1. Toxicol Appl Pharmacol 2024; 493:117145. [PMID: 39521146 DOI: 10.1016/j.taap.2024.117145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/11/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Chemotherapy remains the major strategy for treating triple-negative breast cancer (TNBC); however, frequently acquired chemoresistance greatly limits the treatment outcomes. Protein arginine methyltransferase 5 (PRMT5), which modulates arginine methylation, is important in chemoresistance acquisition across various cancers. The function of PRMT5 in the development of chemoresistance in TNBC is still not well understood. This work focused on defining PRMT5's function in contributing to the chemoresistance in TNBC and demonstrating the possible mechanisms involved. Two TNBC cell lines resistant to nanoparticle albumin-bound paclitaxel (Nab-PTX), designated MDA-MB-231/R and MDA-MB-468/R, were developed. The expression of PRMT5 was markedly elevated in the cytoplasm of Nab-PTX-resistant cells accompanied with enhanced autophagy. The depletion of PRMT5 rendered these cells sensitive to Nab-PTX-evoked cytotoxicity. The autophagic flux was upregulated in Nab-PTX-resistant cells, which was markedly repressed by PRMT5 depletion. The dimethylation of ULK1 was markedly elevated in Nab-PTX-resistant cells, which was decreased by silencing PRMT5. Re-expression of PRMT5 in PRMT5-depleted cells restored the dimethylation and activation of ULK1 as well as the autophagic flux, while the catalytically-dead PRMT5 (R368A) mutant showed no significant effects. The depletion of PRMT5 rendered the subcutaneous tumors formed by Nab-PTX-resistant TNBC cells sensitive to Nab-PTX. The findings of this work illustrate that PRMT5 confers chemoresistance of TNBC by enhancing autophagy through dimethylation and the activation of ULK1, revealing a novel mechanism for understanding the acquisition of chemoresistance in TNBC. Targeting PRMT5 could be a viable approach for overcoming chemoresistance in the treatment of TNBC.
Collapse
Affiliation(s)
- Jing Kong
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Yan Dong
- Department of Breast and Thyroid Surgery, Qinghai Provincial Peoples's Hospital, Xining 810000, China
| | - Mengxuan Li
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Jing Fan
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Ting Wang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
7
|
Jiao Z, Huang Y, Gong K, Liu Y, Sun J, Yu S, Zhao G. Medicinal chemistry insights into PRMT5 inhibitors. Bioorg Chem 2024; 153:107859. [PMID: 39378783 DOI: 10.1016/j.bioorg.2024.107859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/08/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Protein arginine methyltransferase 5 (PRMT5) is a type II PRMT enzyme that plays an important role in protein formation. PRMT5 is widely distributed in the nucleus and is involved in regulating a variety of biological processes, including gene transcription, signaling, and cell proliferation. PRMT5 regulates the function and stability of histones through methylation, affecting important cellular activities such as cell cycle regulation, DNA repair, and RNA processing. Studies have shown that PRMT5 is overexpressed in a variety of tumors and is closely related to the occurrence and development of tumors. In recent years, several PRMT5 inhibitors have entered clinical trials for the treatment of various cancers. In view of their importance, this paper reviews the first generation of PRMT5 inhibitors obtained by high-throughput screening, virtual screening, lead compound optimization and substitution modification, as well as novel PRMT5 inhibitors obtained by PROTAC technology and by synthetic lethal principle. Finally, by comparing the differences between the first generation and the second generation, the challenges and future development directions of PRMT5 inhibitors are discussed.
Collapse
Affiliation(s)
- Zhihao Jiao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
| | - Yongmi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
| | - Kexin Gong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
| | - Yiru Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
| | - Jinxiao Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
| | - Shangzhe Yu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
| | - Guisen Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China.
| |
Collapse
|
8
|
Thapa R, Gupta S, Gupta G, Bhat AA, Smriti, Singla M, Ali H, Singh SK, Dua K, Kashyap MK. Epithelial-mesenchymal transition to mitigate age-related progression in lung cancer. Ageing Res Rev 2024; 102:102576. [PMID: 39515620 DOI: 10.1016/j.arr.2024.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Epithelial-Mesenchymal Transition (EMT) is a fundamental biological process involved in embryonic development, wound healing, and cancer progression. In lung cancer, EMT is a key regulator of invasion and metastasis, significantly contributing to the fatal progression of the disease. Age-related factors such as cellular senescence, chronic inflammation, and epigenetic alterations exacerbate EMT, accelerating lung cancer development in the elderly. This review describes the complex mechanism among EMT and age-related pathways, highlighting key regulators such as TGF-β, WNT/β-catenin, NOTCH, and Hedgehog signalling. We also discuss the mechanisms by which oxidative stress, mediated through pathways involving NRF2 and ROS, telomere attrition, regulated by telomerase activity and shelterin complex, and immune system dysregulation, driven by alterations in cytokine profiles and immune cell senescence, upregulate or downregulate EMT induction. Additionally, we highlighted pathways of transcription such as SNAIL, TWIST, ZEB, SIRT1, TP53, NF-κB, and miRNAs regulating these processes. Understanding these mechanisms, we highlight potential therapeutic interventions targeting these critical molecules and pathways.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Indore, Madhya Pradesh, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Smriti
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Manoj Kumar Kashyap
- Molecular Oncology Laboratory, Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India.
| |
Collapse
|
9
|
Lu X, Zhang C, Zhu L, Wang S, Zeng L, Zhong W, Wu X, Yuan Q, Tang H, Cui S, Tan Y, Li Y, Wei W. TBL2 Promotes Tumorigenesis via PRMT5/WDR77-Mediated AKT Activation in Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400160. [PMID: 39499734 DOI: 10.1002/advs.202400160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 10/20/2024] [Indexed: 11/07/2024]
Abstract
Breast cancer (BC) is a common malignancy that affects women worldwide. Although transducing beta-like 2 (TBL2), a member of the WD40 repeat protein family, has been implicated in various intracellular signaling pathways, its precise function in BC remains unclear. The expression of TBL2 is analyzed using real-time PCR, western blotting, and immunohistochemistry in BC patient specimens. Kaplan-Meier survival analysis is employed to assess its prognostic significance. Proteomic analysis, immunoprecipitation tests, and protein immunoblotting are employed to examine the impact of TBL2 on AKT phosphorylation activation. The findings reveal selective overexpression of TBL2 in BC, correlating significantly with various clinicopathological characteristics and poor survival outcomes in patients with BC. Through in vivo and in vitro experiments, it is observed that TBL2 suppression inhibits BC cell proliferation, while TBL2 overexpression has the opposite effect. Mechanistically, TBL2 is identified as a scaffolding protein that promotes PRMT5 and WDR77 interaction. This interaction enhances the methyltransferase activity of PRMT5, leading to increased AKT phosphorylation activation and promotion of breast cancer cell proliferation. In conclusion, this study uncovers a novel function of TBL2 in the activation of AKT by PRMT5 and suggests TBL2 as a potential therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Xiuqing Lu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510000, China
- District 2, Breast Center, Zhongshan City People's Hospital, Zhongshan, 528400, China
| | - Chao Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510000, China
| | - Lewei Zhu
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, 528000, China
| | - Sifen Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510000, China
| | - Lijun Zeng
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wenjing Zhong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510000, China
| | - Xuxia Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510000, China
| | - Qi Yuan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510000, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510000, China
| | - Shien Cui
- District 2, Breast Center, Zhongshan City People's Hospital, Zhongshan, 528400, China
| | - Yeru Tan
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuehua Li
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Weidong Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510000, China
| |
Collapse
|
10
|
Guo Y, Li Y, Zhou Z, Hou L, Liu W, Ren W, Mi D, Sun J, Dai X, Wu Y, Cheng Z, Wu T, Luo Q, Tian C, Li F, Yu Z, Chen Y, Chen C. Targeting PRMT5 through PROTAC for the treatment of triple-negative breast cancer. J Exp Clin Cancer Res 2024; 43:314. [PMID: 39614393 DOI: 10.1186/s13046-024-03237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is currently the most aggressive subtype of breast cancer, characterized by high heterogeneity and strong invasiveness, and currently lacks effective therapies. PRMT5, a type II protein arginine methyltransferase, is upregulated in numerous cancers, including TNBC, and plays a critical role, marked it as an attractive therapeutic target. PROTAC (Proteolysis Targeting Chimeras) is an innovative drug development technology that utilizes the ubiquitin-proteasome system (UPS) to degrade target proteins, which is characterized by higher activity, enhanced safety, lower resistance, and reduced toxicity, offering significant value for clinical translation. METHODS This study utilizes the PROTAC technology to develop potential degraders targeting PRMT5 in vitro and in vivo. RESULTS Through the design, synthesis and screening of a series of targeted compounds, we identified YZ-836P as an effective compound that exerted cytotoxic effects and reduced the protein levels of PRMT5 and its key downstream target protein KLF5 in TNBC after 48 h. Its efficacy was significantly superior to the PRMT5 PROTAC degraders that had been reported. YZ-836P induced G1 phase cell cycle arrest and significantly induced apoptosis in TNBC cells. Additionally, we demonstrated that YZ-836P promoted the ubiquitination and degradation of PRMT5 in a cereblon (CRBN)-dependent manner. Notably, YZ-836P exhibited pronounced efficacy in inhibiting the growth of TNBC patient-derived organoids and xenografts in nude mice. CONCLUSIONS These findings position YZ-836P as a promising candidate for advancing treatment modalities for TNBC. TRIAL REGISTRATION Ethics Committee of Yunnan Cancer Hospital, KYCS2023-078. Registered 7 June 2023.
Collapse
Affiliation(s)
- Yaxun Guo
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Yuzhan Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhongmei Zhou
- The School of Continuing Education, Kunming Medical University, Kunming, 650500, China
| | - Lei Hou
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Wenjing Liu
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, China
| | - Wenlong Ren
- School of Life Science, University of Science & Technology of China, Hefei, 230027, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dazhao Mi
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jian Sun
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, China
| | - Xueqin Dai
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China
| | - Yingying Wu
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Zhuo Cheng
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Tingyue Wu
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Qianmei Luo
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Cong Tian
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Fubing Li
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China.
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, 250033, China.
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, 250033, China.
- Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, 250033, China.
| | - Yihua Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
- Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, China.
| | - Ceshi Chen
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, China.
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
11
|
Zhang X, Fu Z, Wang H, Sheng L. Metabolic pathways, genomic alterations, and post-translational modifications in pulmonary hypertension and cancer as therapeutic targets and biomarkers. Front Pharmacol 2024; 15:1490892. [PMID: 39635438 PMCID: PMC11614602 DOI: 10.3389/fphar.2024.1490892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Background Pulmonary hypertension (PH) can lead to right ventricular hypertrophy, significantly increasing mortality rates. This study aims to clarify PH-specific metabolites and their impact on genomic and post-translational modifications (PTMs) in cancer, evaluating DHA and EPA's therapeutic potential to mitigate oxidative stress and inflammation. Methods Data from 289,365 individuals were analyzed using Mendelian randomization to examine 1,400 metabolites' causal roles in PH. Anti-inflammatory and antioxidative effects of DHA and EPA were tested in RAW 264.7 macrophages and cancer cell lines (A549, HCT116, HepG2, LNCaP). Genomic features like CNVs, DNA methylation, tumor mutation burden (TMB), and PTMs were analyzed. DHA and EPA's effects on ROS production and cancer cell proliferation were assessed. Results We identified 57 metabolites associated with PH risk and examined key tumor-related pathways through promoter methylation analysis. DHA and EPA significantly reduced ROS levels and inflammatory markers in macrophages, inhibited the proliferation of various cancer cell lines, and decreased nuclear translocation of SUMOylated proteins during oxidative stress and inflammatory responses. These findings suggest a potential anticancer role through the modulation of stress-related nuclear signaling, as well as a regulatory function on cellular PTMs. Conclusion This study elucidates metabolic and PTM changes in PH and cancer, indicating DHA and EPA's role in reducing oxidative stress and inflammation. These findings support targeting these pathways for early biomarkers and therapies, potentially improving disease management and patient outcomes.
Collapse
Affiliation(s)
- Xiujin Zhang
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | | | | | - Li Sheng
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Bojko J, Kollareddy M, Szemes M, Bellamy J, Poon E, Moukachar A, Legge D, Vincent EE, Jones N, Malik S, Greenhough A, Paterson A, Park JH, Gallacher K, Chesler L, Malik K. Spliceosomal vulnerability of MYCN-amplified neuroblastoma is contingent on PRMT5-mediated regulation of epitranscriptomic and metabolomic pathways. Cancer Lett 2024; 604:217263. [PMID: 39313128 DOI: 10.1016/j.canlet.2024.217263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Approximately 50 % of poor prognosis neuroblastomas arise due to MYCN over-expression. We previously demonstrated that MYCN and PRMT5 proteins interact and PRMT5 knockdown led to apoptosis of MYCN-amplified (MNA) neuroblastoma. Here we evaluate the highly selective first-in-class PRMT5 inhibitor GSK3203591 and its in vivo analogue GSK3326593 as targeted therapeutics for MNA neuroblastoma. Cell-line analyses show MYCN-dependent growth inhibition and apoptosis, with approximately 200-fold greater sensitivity of MNA neuroblastoma lines. RNA sequencing of three MNA neuroblastoma lines treated with GSK3203591 reveal deregulated MYCN transcriptional programmes and altered mRNA splicing, converging on key regulatory pathways such as DNA damage response, epitranscriptomics and cellular metabolism. Stable isotope labelling experiments in the same cell lines demonstrate that glutamine metabolism is impeded following GSK3203591 treatment, linking with disruption of the MLX/Mondo nutrient sensors via intron retention of MLX mRNA. Interestingly, glutaminase (GLS) protein decreases after GSK3203591 treatment despite unchanged transcript levels. We demonstrate that the RNA methyltransferase METTL3 and cognate reader YTHDF3 proteins are lowered following their mRNAs undergoing GSK3203591-induced splicing alterations, indicating epitranscriptomic regulation of GLS; accordingly, we observe decreases of GLS mRNA m6A methylation following GSK3203591 treatment, and decreased GLS protein following YTHDF3 knockdown. In vivo efficacy of GSK3326593 is confirmed by increased survival of Th-MYCN mice, with drug treatment triggering splicing events and protein decreases consistent with in vitro data. Together our study demonstrates the PRMT5-dependent spliceosomal vulnerability of MNA neuroblastoma and identifies the epitranscriptome and glutamine metabolism as critical determinants of this sensitivity.
Collapse
Affiliation(s)
- Jodie Bojko
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Madhu Kollareddy
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Marianna Szemes
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Jacob Bellamy
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Evon Poon
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Ahmad Moukachar
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Danny Legge
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emma E Vincent
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Sally Malik
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Alexander Greenhough
- College of Health, Science and Society, University of the West of England, Bristol, BS16 1QY, UK
| | - Alex Paterson
- Insilico Consulting ltd, Wapping Wharf, Bristol, England, UK
| | - Ji Hyun Park
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Kelli Gallacher
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Karim Malik
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| |
Collapse
|
13
|
Zhang B, Guan Y, Zeng D, Wang R. Arginine methylation and respiratory disease. Transl Res 2024; 272:140-150. [PMID: 38453053 DOI: 10.1016/j.trsl.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Arginine methylation, a vital post-translational modification, plays a pivotal role in numerous cellular functions such as signal transduction, DNA damage response and repair, regulation of gene transcription, mRNA splicing, and protein interactions. Central to this modification is the role of protein arginine methyltransferases (PRMTs), which have been increasingly recognized for their involvement in the pathogenesis of various respiratory diseases. This review begins with an exploration of the biochemical underpinnings of arginine methylation, shedding light on the intricate molecular regulatory mechanisms governed by PRMTs. It then delves into the impact of arginine methylation and the dysregulation of arginine methyltransferases in diverse pulmonary disorders. Concluding with a focus on the therapeutic potential and recent advancements in PRMT inhibitors, this article aims to offer novel perspectives and therapeutic avenues for the management and treatment of respiratory diseases.
Collapse
Affiliation(s)
- Binbin Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Youhong Guan
- Department of Infectious Diseases, Hefei Second People's Hospital, Hefei 230001, Anhui Province, PR China
| | - Daxiong Zeng
- Department of Pulmonary and Critical Care Medicine, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou 215006, Jiangsu Province, PR China.
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China.
| |
Collapse
|
14
|
Niu D, Ma Y, Ren P, Chang S, Li C, Jiang Y, Han C, Lan K. Methylation of KSHV vCyclin by PRMT5 contributes to cell cycle progression and cell proliferation. PLoS Pathog 2024; 20:e1012535. [PMID: 39255317 PMCID: PMC11421797 DOI: 10.1371/journal.ppat.1012535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/24/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus that encodes numerous cellular homologs, including cyclin D, G protein-coupled protein, interleukin-6, and macrophage inflammatory proteins 1 and 2. KSHV vCyclin encoded by ORF72, is the homolog of cellular cyclinD2. KSHV vCyclin can regulate virus replication and cell proliferation by constitutively activating cellular cyclin-dependent kinase 6 (CDK6). However, the regulatory mechanism of KSHV vCyclin has not been fully elucidated. In the present study, we identified a host protein named protein arginine methyltransferase 5 (PRMT5) that interacts with KSHV vCyclin. We further demonstrated that PRMT5 is upregulated by latency-associated nuclear antigen (LANA) through transcriptional activation. Remarkably, knockdown or pharmaceutical inhibition (using EPZ015666) of PRMT5 inhibited the cell cycle progression and cell proliferation of KSHV latently infected tumor cells. Mechanistically, PRMT5 methylates vCyclin symmetrically at arginine 128 and stabilizes vCyclin in a methyltransferase activity-dependent manner. We also show that the methylation of vCyclin by PRMT5 positively regulates the phosphorylate retinoblastoma protein (pRB) pathway. Taken together, our findings reveal an important regulatory effect of PRMT5 on vCyclin that facilitates cell cycle progression and proliferation, which provides a potential therapeutic target for KSHV-associated malignancies.
Collapse
Affiliation(s)
- Danping Niu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuanming Ma
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Pengyu Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Sijia Chang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chenhui Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yong Jiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chunyan Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Wang H, Cui W, Yue S, Zhu X, Li X, He L, Zhang M, Yang Y, Wei M, Wu H, Wang S. Malic enzymes in cancer: Regulatory mechanisms, functions, and therapeutic implications. Redox Biol 2024; 75:103273. [PMID: 39142180 PMCID: PMC11367648 DOI: 10.1016/j.redox.2024.103273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Malic enzymes (MEs) are metabolic enzymes that catalyze the oxidation of malate to pyruvate and NAD(P)H. While researchers have well established the physiological metabolic roles of MEs in organisms, recent research has revealed a link between MEs and carcinogenesis. This review collates evidence of the molecular mechanisms by which MEs promote cancer occurrence, including transcriptional regulation, post-transcriptional regulation, post-translational protein modifications, and protein-protein interactions. Additionally, we highlight the roles of MEs in reprogramming energy metabolism, suppressing senescence, and modulating the tumor immune microenvironment. We also discuss the involvement of these enzymes in mediating tumor resistance and how the development of novel small-molecule inhibitors targeting MEs might be a good therapeutic approach. Insights through this review are expected to provide a comprehensive understanding of the intricate relationship between MEs and cancer, while facilitating future research on the potential therapeutic applications of targeting MEs in cancer management.
Collapse
Affiliation(s)
- Huan Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, PR China.
| | - Wanlin Cui
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China.
| | - Song Yue
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning Province, PR China.
| | - Xianglong Zhu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China
| | - Xiaoyan Li
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, PR China
| | - Lian He
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, PR China
| | - Mingrong Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China
| | - Yan Yang
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, No.4, Chongshan Road, Huanggu District, Shenyang, Liaoning Province, PR China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang City, Liaoning Province, PR China.
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China.
| | - Shuo Wang
- Department of Gynecology Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, PR China.
| |
Collapse
|
16
|
Rozen EJ, Frantz W, Wigglesworth K, Vessella T, Zhou HS, Shohet JM. Blockade of Discoidin Domain Receptor Signaling with Sitravatinib Reveals DDR2 as a Mediator of Neuroblastoma Pathogenesis and Metastasis. Mol Cancer Ther 2024; 23:1124-1138. [PMID: 38670553 DOI: 10.1158/1535-7163.mct-23-0741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/06/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Oncogene-driven expression and activation of receptor tyrosine kinases promotes tumorigenesis and contributes to drug resistance. Increased expression of the kinases discoidin domain receptor 2 (DDR2), RET Proto-Oncogene (RET), Platelet Derived Growth Factor Receptor Alpha (PDGFRA), KIT Proto-Oncogene (KIT), MET Proto-Oncogene (MET), and anaplastic lymphoma kinase (ALK) independently correlate with decreased overall survival and event free survival of pediatric neuroblastoma. The multikinase inhibitor sitravatinib targets DDR2, RET, PDGFRA, KIT, and MET with low nanomolar activity and we therefore tested its efficacy against orthotopic and syngeneic tumor models. Sitravatinib markedly reduced cell proliferation and migration in vitro independently of N-Myc proto-oncogene (MYCN), ALK, or c-Myc proto-oncogene status and inhibited proliferation and metastasis of human orthotopic xenografts. Oral administration of sitravatinib to homozygous Th-MYCN transgenic mice (Th-MYCN+/+) after tumor initiation completely arrested further tumor development with no mice dying of disease while maintained on sitravatinib treatment (control cohort 57 days median time to sacrifice). Among these top kinases, DDR2 expression has the strongest correlation with poor survival and high stage at diagnosis and the highest sensitivity to the drug. We confirmed on-target inhibition of collagen-mediated activation of DDR2. Genetic knockdown of DDR2 partially phenocopies sitravatinib treatment, limiting tumor development and metastasis across tumor models. Analysis of single-cell sequencing data demonstrated that DDR2 is restricted to mesenchymal-type tumor subpopulations and is enriched in Schwann cell precursor subpopulations found in high-risk disease. These data define an unsuspected role for sitravatinib as a therapeutic agent in neuroblastoma and reveal a novel function for DDR2 as a driver of tumor growth and metastasis.
Collapse
Affiliation(s)
- Esteban J Rozen
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - William Frantz
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Kim Wigglesworth
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Theadora Vessella
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Hong S Zhou
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Jason M Shohet
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
17
|
Luo H, Luo W, Ding N, Zhu H, Lai J, Tang Q, He Y. Glycerophosphoinositol modulates FGA and NOTCH3 in exercise-induced muscle adaptation and colon cancer progression. Front Pharmacol 2024; 15:1430400. [PMID: 39130639 PMCID: PMC11310102 DOI: 10.3389/fphar.2024.1430400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/24/2024] [Indexed: 08/13/2024] Open
Abstract
Objectives Fibroleukin (FGA) and NOTCH3 are vital in both exercise-induced muscle adaptation and colon adenocarcinoma (COAD) progression. This study aims to elucidate the roles of FGA and NOTCH3 in phenotypic variations of striated muscle induced by exercise and in COAD development. Additionally, it seeks to evaluate the prognostic significance of these proteins. Methods Gene Set Variation Analysis (GSVA) and protein-protein interaction (PPI) network analysis were employed to identify differentially expressed genes (DEGs). Molecular docking studies were conducted to assess the binding affinities of 39 compounds to the NOTCH3 protein. In vitro assays, including mobileular viability, gene expression, and apoptosis assays, were performed to evaluate the effects of glycerophosphoinositol on FGA and NOTCH3 expression. Additionally, copy number variation (CNV), methylation status, and survival analyses were conducted across multiple cancers types. Results The NOTCH signaling pathway was consistently upregulated in exercise-induced muscle samples. High NOTCH3 expression was associated with poor prognosis in COAD, extracellular matrix organization, immune infiltration, and activation of the PI3K-Akt pathway. Molecular docking identified gamma-Glu-Trp, gamma-Glutamyltyrosine, and 17-Deoxycortisol as strong binders to NOTCH3. Glycerophosphoinositol treatment modulated FGA and NOTCH3 expression, influencing cell proliferation and apoptosis. CNV and methylation analyses revealed specific changes in FGA and NOTCH3 across 20 cancers types. Survival analyses showed strong associations between FGA/NOTCH3 expression and survival metrics, with negative correlations for FGA and positive correlations for NOTCH3. Conclusion FGA and NOTCH3 play significant roles in exercise-induced muscle adaptation and colon cancer progression. The expression profiles and interactions of these proteins provide promising prognostic markers and therapeutic targets. These findings offer valuable insights into the post-translational modifications (PTMs) in human cancer, highlighting novel pharmacological and therapeutic opportunities.
Collapse
Affiliation(s)
- Hongbiao Luo
- Department of Anorectal Surgery, Chenzhou NO. 1 People’s Hospital, Chenzhou, Hunan, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wei Luo
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ning Ding
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Huimin Zhu
- Department of Critical Care Medicine, Chenzhou NO. 1 People’s Hospital, Chenzhou, Hunan, China
| | - Jiahui Lai
- The Third Hospital, Hebei Medical University, Shijiazhuang, China
| | - Qingzhu Tang
- Department of Anorectal Surgery, Chenzhou NO. 1 People’s Hospital, Chenzhou, Hunan, China
| | - Yongheng He
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
18
|
Abumustafa W, Castven D, Becker D, Salih SS, Manzoor S, Zamer BA, Talaat I, Hamad M, Marquardt JU, Muhammad JS. Inhibition of PRMT5-mediated regulation of DKK1 sensitizes colorectal cancer cells to chemotherapy. Cell Signal 2024; 119:111166. [PMID: 38588876 DOI: 10.1016/j.cellsig.2024.111166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
The Dickkopf family proteins (DKKs) are strong Wnt signaling antagonists that play a significant role in colorectal cancer (CRC) development and progression. Recent work has shown that DKKs, mainly DKK1, are associated with the induction of chemoresistance in CRC and that DKK1 expression in cancer cells correlates with that of protein arginine N-methyltransferase 5 (PRMT5). This points to the presence of a regulatory loop between DKK1 and PRMT5. Herein, we addressed the question of whether PRMT5 contributes to DKK1 expression in CRC and hence CRC chemoresistance. Both in silico and in vitro approaches were used to explore the relationship between PRMT5 and different DKK members. Our data demonstrated that DKK1 expression is significantly upregulated in CRC clinical samples, KRAS-mutated CRC in particular and that the levels of DKK1 positively correlate with PRMT5 activation. Chromatin immunoprecipitation (ChIP) data indicated a possible epigenetic role of PRMT5 in regulating DKK1, possibly through the symmetric dimethylation of H3R8. Knockdown of DKK1 or treatment with the PRMT5 inhibitor CMP5 in combination with doxorubicin yielded a synergistic anti-tumor effect in KRAS mutant, but not KRAS wild-type, CRC cells. These findings suggest that PRMT5 regulates DKK1 expression in CRC and that inhibition of PRMT5 modulates DKK1 expression in such a way that reduces CRC cell growth.
Collapse
Affiliation(s)
- Wafaa Abumustafa
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Darko Castven
- First Medical Department, University Medical Centre Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Diana Becker
- University Medical Centre of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Shahenaz Shaban Salih
- Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Shaista Manzoor
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Iman Talaat
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Jens Uwe Marquardt
- First Medical Department, University Medical Centre Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
19
|
Chen C, Ding Y, Huang Q, Zhang C, Zhao Z, Zhou H, Li D, Zhou G. Relationship between arginine methylation and vascular calcification. Cell Signal 2024; 119:111189. [PMID: 38670475 DOI: 10.1016/j.cellsig.2024.111189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
In patients on maintenance hemodialysis (MHD), vascular calcification (VC) is an independent predictor of cardiovascular disease (CVD), which is the primary cause of death in chronic kidney disease (CKD). The main component of VC in CKD is the vascular smooth muscle cells (VSMCs). VC is an ordered, dynamic activity. Under the stresses of oxidative stress and calcium-‑phosphorus imbalance, VSMCs undergo osteogenic phenotypic transdifferentiation, which promotes the formation of VC. In addition to traditional epigenetics like RNA and DNA control, post-translational modifications have been discovered to be involved in the regulation of VC in recent years. It has been reported that the process of osteoblast differentiation is impacted by catalytic histone or non-histone arginine methylation. Its function in the osteogenic process is comparable to that of VC. Thus, we propose that arginine methylation regulates VC via many signaling pathways, including as NF-B, WNT, AKT/PI3K, TGF-/BMP/SMAD, and IL-6/STAT3. It might also regulate the VC-related calcification regulatory factors, oxidative stress, and endoplasmic reticulum stress. Consequently, we propose that arginine methylation regulates the calcification of the arteries and outline the regulatory mechanisms involved.
Collapse
Affiliation(s)
- Chen Chen
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Yuanyuan Ding
- Department of Pain Management, Shengjing Hospital, China Medical University, China
| | - Qun Huang
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Chen Zhang
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Zixia Zhao
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Detian Li
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Guangyu Zhou
- Department of Nephrology, Shengjing Hospital, China Medical University, China.
| |
Collapse
|
20
|
Lu E, Zhao B, Yuan C, Liang Y, Wang X, Yang G. Novel cancer-fighting role of ticagrelor inhibits GTSE1-induced EMT by regulating PI3K/Akt/NF-κB signaling pathway in malignant glioma. Heliyon 2024; 10:e30833. [PMID: 38774096 PMCID: PMC11107102 DOI: 10.1016/j.heliyon.2024.e30833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/21/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024] Open
Abstract
Background Glioma is the most common malignant brain tumor of the central nervous system. Despite of the improvement of therapeutic strategy, the prognosis of malignant glioma patients underwent by STUPP strategy is still unexpected. Previous studies have suggested that ticagrelor exerted chemotherapeutic effects by inhibition of epithelial-mesenchymal transition (EMT) in various diseases including tumors. However, whether ticagrelor can exhibit the antitumor efficiency in glioma by affecting the EMT process is still unclear. In this study, we investigated the cancer-fighting role of ticagrelor and demonstrated its chemotherapeutic mechanism in glioma. Materials and methods The MTT assay was performed to detect the cytotoxicity of ticagrelor in glioma cells. We evaluated the expression of Ki67 in glioma cells by immunofluorescence assay after ticagrelor treatment. We conducted wound healing assay and transwell assay to determine the effects of ticagrelor on the migration and invasion of glioma cells. RNA-seq analysis was conducted to examine potential target genes and alternative signaling pathways for ticagrelor treatment. The expression levels of key EMT -related proteins were examined by Western blot experiment. Results Ticagrelor inhibited the proliferation, migration and invasion of glioma cells with a favorable toxicity profile in vitro. Ticagrelor downregulated the expression of GTSE1 in glioma cells. RNA-seq analysis explored that GTSE1 acted as the potential target gene for ticagrelor treatment. Upregulation of GTSE1 antagonized the inhibitory effect of ticagrelor on the invasion of glioma and EMT progression by regulation of PI3K/Akt/NF-κB signaling pathway. And ticagrelor also exhibited the similar chemotherapeutic effect of glioma in vivo. Conclusions Ticagrelor as a potential chemotherapeutic option induced the inhibition of the GTSE1-induced EMT progression by regulation of PI3K/AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Enzhou Lu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| | - Boxian Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| | - Chao Yuan
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| | - Xiaoxiong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| |
Collapse
|
21
|
Nakamura T, Sugeno N, Hasegawa T, Ikeda K, Yoshida S, Ishiyama S, Sato K, Takeda A, Aoki M. Alpha-synuclein promotes PRMT5-mediated H4R3me2s histone methylation by interacting with the BAF complex. FEBS J 2024; 291:1892-1908. [PMID: 38105619 DOI: 10.1111/febs.17037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/07/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
α-Synuclein (αS) is a key molecule in the pathomechanism of Parkinson's disease. Most studies on αS to date have focused on its function in the neuronal cytosol, but its action in the nucleus has also been postulated. Indeed, several lines of evidence indicate that overexpressed αS leads to epigenomic alterations. To clarify the functional role of αS in the nucleus and its pathological significance, HEK293 cells constitutively expressing αS were used to screen for nuclear proteins that interact with αS by nanoscale liquid chromatography/tandem mass spectrometry. Interactome analysis of the 229 identified nuclear proteins revealed that αS interacts with the BRG1-associated factor (BAF) complex, a family of multi-subunit chromatin remodelers important for neurodevelopment, and protein arginine methyltransferase 5 (PRMT5). Subsequent transcriptomic analysis also suggested a functional link between αS and the BAF complex. Based on these results, we analyzed the effect of αS overexpression on the BAF complex in neuronally differentiated SH-SY5Y cells and found that induction of αS disturbed the BAF maturation process, leading to a global increase in symmetric demethylation of histone H4 on arginine 3 (H4R3me2s) via enhanced BAF-PRMT5 interaction. Chromatin immunoprecipitation sequencing confirmed accumulated H4R3me2s methylation near the transcription start site of the neuronal cell adhesion molecule (NRCAM) gene, which has roles during neuronal differentiation. Transcriptional analyses confirmed the negative regulation of NRCAM by αS and PRMT5, which was reconfirmed by multiple datasets in the Gene Expression Omnibus (GEO) database. Taken together, these findings suggest that the enhanced binding of αS to the BAF complex and PRMT5 may cooperatively affect the neuronal differentiation process.
Collapse
Affiliation(s)
- Takaaki Nakamura
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, National Hospital Organization Miyagi National Hospital, Watari, Japan
| | - Naoto Sugeno
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kensho Ikeda
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shun Yoshida
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, National Hospital Organization Yonezawa Hospital, Japan
| | - Shun Ishiyama
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuki Sato
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Takeda
- Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, Japan
| | - Masashi Aoki
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
22
|
Bhandari K, Ding WQ. Protein Arginine Methyltransferases in Pancreatic Ductal Adenocarcinoma: New Molecular Targets for Therapy. Int J Mol Sci 2024; 25:3958. [PMID: 38612768 PMCID: PMC11011826 DOI: 10.3390/ijms25073958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignant disease with a low 5-year overall survival rate. It is the third-leading cause of cancer-related deaths in the United States. The lack of robust therapeutics, absence of effective biomarkers for early detection, and aggressive nature of the tumor contribute to the high mortality rate of PDAC. Notably, the outcomes of recent immunotherapy and targeted therapy against PDAC remain unsatisfactory, indicating the need for novel therapeutic strategies. One of the newly described molecular features of PDAC is the altered expression of protein arginine methyltransferases (PRMTs). PRMTs are a group of enzymes known to methylate arginine residues in both histone and non-histone proteins, thereby mediating cellular homeostasis in biological systems. Some of the PRMT enzymes are known to be overexpressed in PDAC that promotes tumor progression and chemo-resistance via regulating gene transcription, cellular metabolic processes, RNA metabolism, and epithelial mesenchymal transition (EMT). Small-molecule inhibitors of PRMTs are currently under clinical trials and can potentially become a new generation of anti-cancer drugs. This review aims to provide an overview of the current understanding of PRMTs in PDAC, focusing on their pathological roles and their potential as new therapeutic targets.
Collapse
Affiliation(s)
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, BMSB401A, 940 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA;
| |
Collapse
|
23
|
Zhou H, Chang J, Zhang J, Zheng H, Miao X, Mo H, Sun J, Jia Q, Qi G. PRMT5 activates KLF5 by methylation to facilitate lung cancer. J Cell Mol Med 2024; 28:e17856. [PMID: 37461162 PMCID: PMC10902573 DOI: 10.1111/jcmm.17856] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 03/01/2024] Open
Abstract
The highly expressed oncogenic factor Krüppel-like factor 5 (KLF5) promotes various cancerous processes, such as cell growth, survival, anti-apoptosis, migration and metastasis, particularly in lung cancer. Nevertheless, the modifications to KLF5 after translation are poorly understood. Protein arginine methyltransferase 5 (PRMT5) is considered as an oncogene known to be involved in different types of carcinomas, including lung cancer. Here, we show that the expression levels of PRMT5 and KLF5 are highly expressed lung cancer. Moreover, PRMT5 interacts with KLF5 and facilitates the dimethylation of KLF5 at Arginine 41 in a manner that depends on methyltransferase activity. Downregulation or pharmaceutical suppression of PRMT5 reduces the expression of KLF5 and its downstream targets both in vitro and in vivo. Mechanistically, the dimethylation of KLF5 by PRMT5 promotes the maintenance and proliferation of lung cancer cells at least partially by stabilising KLF5 via regulation of the Akt/GSK3β signalling axis. In summary, PRMT5 methylates KLF5 to prevent its degradation, thereby promoting the maintenance and proliferation of lung cancer cells. These results suggest that targeting PRMT5/KLF5 axis may offer a potential therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Hai Zhou
- Department of Respiratory and Critical Care MedicineShidong Hospital of Yangpu DistrictShanghaiChina
| | - Jing Chang
- Department of Respiratory and Critical Care MedicineShidong Hospital of Yangpu DistrictShanghaiChina
| | - Jingjian Zhang
- Department of Respiratory and Critical Care MedicineShidong Hospital of Yangpu DistrictShanghaiChina
| | - Hongzhen Zheng
- Department of Respiratory and Critical Care MedicineShidong Hospital of Yangpu DistrictShanghaiChina
| | - Xiang Miao
- Department of Respiratory and Critical Care MedicineShidong Hospital of Yangpu DistrictShanghaiChina
| | - Huimin Mo
- Department of Respiratory and Critical Care MedicineShidong Hospital of Yangpu DistrictShanghaiChina
| | - Jie Sun
- Department of Respiratory and Critical Care MedicineShidong Hospital of Yangpu DistrictShanghaiChina
| | - Qin Jia
- Department of Respiratory and Critical Care MedicineShidong Hospital of Yangpu DistrictShanghaiChina
| | - Guangsheng Qi
- Department of Pulmonary and Critical Care MedicineSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| |
Collapse
|
24
|
Gabre JL, Merseburger P, Claeys A, Siaw J, Bekaert SL, Speleman F, Hallberg B, Palmer RH, Van den Eynden J. Preclinical exploration of the DNA damage response pathway using the interactive neuroblastoma cell line explorer CLEAN. NAR Cancer 2024; 6:zcad062. [PMID: 38213997 PMCID: PMC10782898 DOI: 10.1093/narcan/zcad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/10/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024] Open
Abstract
Neuroblastoma (NB) is the most common cancer in infancy with an urgent need for more efficient targeted therapies. The development of novel (combinatorial) treatment strategies relies on extensive explorations of signaling perturbations in neuroblastoma cell lines, using RNA-Seq or other high throughput technologies (e.g. phosphoproteomics). This typically requires dedicated bioinformatics support, which is not always available. Additionally, while data from published studies are highly valuable and raw data (e.g. fastq files) are nowadays released in public repositories, data processing is time-consuming and again difficult without bioinformatics support. To facilitate NB research, more user-friendly and immediately accessible platforms are needed to explore newly generated as well as existing high throughput data. To make this possible, we developed an interactive data centralization and visualization web application, called CLEAN (the Cell Line Explorer web Application of Neuroblastoma data; https://ccgg.ugent.be/shiny/clean/). By focusing on the regulation of the DNA damage response, a therapeutic target of major interest in neuroblastoma, we demonstrate how CLEAN can be used to gain novel mechanistic insights and identify putative drug targets in neuroblastoma.
Collapse
Affiliation(s)
- Jonatan L Gabre
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Merseburger
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Arne Claeys
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Joachim Siaw
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sarah-Lee Bekaert
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Frank Speleman
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
25
|
Gao Y, Feng C, Ma J, Yan Q. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol 2024; 221:116048. [PMID: 38346542 DOI: 10.1016/j.bcp.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.
Collapse
Affiliation(s)
- Yihang Gao
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Chongchong Feng
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
26
|
Wang Z, Qiu H, Li Y, Zhao M, Liu R. GlPRMT5 inhibits GlPP2C1 via symmetric dimethylation and regulates the biosynthesis of secondary metabolites in Ganoderma lucidum. Commun Biol 2024; 7:241. [PMID: 38418849 PMCID: PMC10902306 DOI: 10.1038/s42003-024-05942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
PRMT5, a type II arginine methyltransferase, is involved in transcriptional regulation, RNA processing and other biological processes and signal transduction. Secondary metabolites are vital pharmacological compounds in Ganoderma lucidum, and their content is an important indicator for evaluating the quality of G. lucidum. Here, we found that GlPRMT5 negatively regulates the biosynthesis of secondary metabolites. In further in-depth research, GlPP2C1 (a type 2C protein phosphatase) was identified out as an interacting protein of GlPRMT5 by immunoprecipitation-mass spectrometry (IP-MS). Further mass spectrometry detection revealed that GlPRMT5 symmetrically dimethylates the arginine 99 (R99) and arginine 493 (R493) residues of GlPP2C1 to weaken its activity. The symmetrical dimethylation modification of the R99 residue is the key to affecting GlPP2C1 activity. Symmetrical demethylation-modified GlPP2C1 does not affect the interaction with GlPRMT5. In addition, silencing GlPP2C1 clearly reduced GA content, indicating that GlPP2C1 positively regulates the biosynthesis of secondary metabolites in G. lucidum. In summary, this study reveals the molecular mechanism by which GlPRMT5 regulates secondary metabolites, and these studies provide further insights into the target proteins of GlPRMT5 and symmetric dimethylation sites. Furthermore, these studies provide a basis for the mutual regulation between different epigenetic modifications.
Collapse
Affiliation(s)
- Zi Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Hao Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Yefan Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China.
| |
Collapse
|
27
|
Long ME, Koirala S, Sloan S, Brown-Burke F, Weigel C, Villagomez L, Corps K, Sharma A, Hout I, Harper M, Helmig-Mason J, Tallada S, Chen Z, Scherle P, Vaddi K, Chen-Kiang S, Di Liberto M, Meydan C, Foox J, Butler D, Mason C, Alinari L, Blaser BW, Baiocchi R. Resistance to PRMT5-targeted therapy in mantle cell lymphoma. Blood Adv 2024; 8:150-163. [PMID: 37782774 PMCID: PMC10787272 DOI: 10.1182/bloodadvances.2023010554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 10/04/2023] Open
Abstract
ABSTRACT Mantle cell lymphoma (MCL) is an incurable B-cell non-Hodgkin lymphoma, and patients who relapse on targeted therapies have poor prognosis. Protein arginine methyltransferase 5 (PRMT5), an enzyme essential for B-cell transformation, drives multiple oncogenic pathways and is overexpressed in MCL. Despite the antitumor activity of PRMT5 inhibition (PRT-382/PRT-808), drug resistance was observed in a patient-derived xenograft (PDX) MCL model. Decreased survival of mice engrafted with these PRMT5 inhibitor-resistant cells vs treatment-naive cells was observed (P = .005). MCL cell lines showed variable sensitivity to PRMT5 inhibition. Using PRT-382, cell lines were classified as sensitive (n = 4; 50% inhibitory concentration [IC50], 20-140 nM) or primary resistant (n = 4; 340-1650 nM). Prolonged culture of sensitive MCL lines with drug escalation produced PRMT5 inhibitor-resistant cell lines (n = 4; 200-500 nM). This resistant phenotype persisted after prolonged culture in the absence of drug and was observed with PRT-808. In the resistant PDX and cell line models, symmetric dimethylarginine reduction was achieved at the original PRMT5 inhibitor IC50, suggesting activation of alternative resistance pathways. Bulk RNA sequencing of resistant cell lines and PDX relative to sensitive or short-term-treated cells, respectively, highlighted shared upregulation of multiple pathways including mechanistic target of rapamycin kinase [mTOR] signaling (P < 10-5 and z score > 0.3 or < 0.3). Single-cell RNA sequencing analysis demonstrated a strong shift in global gene expression, with upregulation of mTOR signaling in resistant PDX MCL samples. Targeted blockade of mTORC1 with temsirolimus overcame the PRMT5 inhibitor-resistant phenotype, displayed therapeutic synergy in resistant MCL cell lines, and improved survival of a resistant PDX.
Collapse
Affiliation(s)
- Mackenzie Elizabeth Long
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Shirsha Koirala
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Shelby Sloan
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Fiona Brown-Burke
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Christoph Weigel
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Lynda Villagomez
- Division of Hematology and Oncology, Department of Pediatrics, The Ohio State University and Nationwide Children’s Hospital, Columbus, OH
| | - Kara Corps
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Archisha Sharma
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Ian Hout
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Margaret Harper
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - JoBeth Helmig-Mason
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Sheetal Tallada
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Zhengming Chen
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY
| | | | | | - Selina Chen-Kiang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Maurizio Di Liberto
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Cem Meydan
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Jonathan Foox
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Daniel Butler
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Christopher Mason
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Bradley W. Blaser
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Robert Baiocchi
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
28
|
Huang L, Ravi M, Zhang XO, Verdejo-Torres O, Shendy NAM, Nezhady MAM, Gopalan S, Wang G, Durbin AD, Fazzio TG, Wu Q. PRMT5 orchestrates EGFR and AKT networks to activate NFκB and promote EMT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574104. [PMID: 38260418 PMCID: PMC10802358 DOI: 10.1101/2024.01.03.574104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Neuroblastoma remains a formidable challenge in pediatric oncology, representing 15% of cancer-related mortalities in children. Despite advancements in combinatorial and targeted treatments improving survival rates, nearly 50% of patients with high-risk neuroblastoma will ultimately succumb to their disease. Dysregulation of the epithelial-mesenchymal transition (EMT) is a key mechanism of tumor cell dissemination, resulting in metastasis and poor outcomes in many cancers. Our prior work identified PRMT5 as a key regulator of EMT via methylation of AKT at arginine 15, enhancing the expression of EMT-driving transcription factors and facilitating metastasis. Here, we identify that PRMT5 directly regulates the transcription of the epidermal growth factor receptor (EGFR). PRMT5, through independent modulation of the EGFR and AKT pathways, orchestrates the activation of NFκB, resulting in the upregulation of the pro-EMT transcription factors ZEB1, SNAIL, and TWIST1. Notably, EGFR and AKT form a compensatory feedback loop, reinforcing the expression of these EMT transcription factors. Small molecule inhibition of PRMT5 methyltransferase activity disrupts EGFR/AKT signaling, suppresses EMT transcription factor expression and ablates tumor growth in vivo . Our findings underscore the pivotal role of PRMT5 in the control of the EMT program in high-risk neuroblastoma.
Collapse
|
29
|
Kumar D, Jain S, Coulter DW, Joshi SS, Chaturvedi NK. PRMT5 as a Potential Therapeutic Target in MYC-Amplified Medulloblastoma. Cancers (Basel) 2023; 15:5855. [PMID: 38136401 PMCID: PMC10741595 DOI: 10.3390/cancers15245855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
MYC amplification or overexpression is most common in Group 3 medulloblastomas and is positively associated with poor clinical outcomes. Recently, protein arginine methyltransferase 5 (PRMT5) overexpression has been shown to be associated with tumorigenic MYC functions in cancers, particularly in brain cancers such as glioblastoma and medulloblastoma. PRMT5 regulates oncogenes, including MYC, that are often deregulated in medulloblastomas. However, the role of PRMT5-mediated post-translational modification in the stabilization of these oncoproteins remains poorly understood. The potential impact of PRMT5 inhibition on MYC makes it an attractive target in various cancers. PRMT5 inhibitors are a promising class of anti-cancer drugs demonstrating preclinical and preliminary clinical efficacies. Here, we review the publicly available preclinical and clinical studies on PRMT5 targeting using small molecule inhibitors and discuss the prospects of using them in medulloblastoma therapy.
Collapse
Affiliation(s)
- Devendra Kumar
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
| | - Stuti Jain
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
| | - Don W. Coulter
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 69198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 69198, USA
| | - Shantaram S. Joshi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 69198, USA;
| | - Nagendra K. Chaturvedi
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 69198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 69198, USA
| |
Collapse
|
30
|
Song J, Mo X, Liu X, Hu B, Zhang Z, Yu Z. Arginine Methylation Regulates Self-Assembly of Peptides. Macromol Rapid Commun 2023; 44:e2300308. [PMID: 37462116 DOI: 10.1002/marc.202300308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
Bio-inspired design of peptides represents one facile strategy for development of supramolecular monomers for self-assembly into well-defined nanostructures. Inspired by methylation of arginine during post-translational modification for manipulating protein functions, herein, the controllable self-assembly of peptides via rational incorporation of methylated arginine residues into bola-amphiphilic peptides is reported. A series of bola-amphiphilic peptides are designed and synthesized either containing natural arginine or methylated arginine and investigate the influence of arginine methylation on peptide assembly. This study finds that incorporation of symmetrically di-methylated arginine into oppositely charged hexapeptide hex-SDMAE leads to distinct assembling performance compare to natural peptide hex-RE. The findings demonstrate that the methylation of rationally designed peptide sequences allows for regulation of self-assembly of peptides, thus implying the great potential of arginine methylation in establishing controllable peptide assembling systems and creating in situ formulation of biomedical materials in the future.
Collapse
Affiliation(s)
- Jinyan Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xiaowei Mo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xin Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Binbin Hu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
31
|
Dakroub R, Huard S, Hajj-Younes Y, Suresh S, Badran B, Fayyad-Kazan H, Dubois T. Therapeutic Advantage of Targeting PRMT5 in Combination with Chemotherapies or EGFR/HER2 Inhibitors in Triple-Negative Breast Cancers. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:785-799. [PMID: 37954171 PMCID: PMC10637385 DOI: 10.2147/bctt.s430513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/04/2023] [Indexed: 11/14/2023]
Abstract
Purpose Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subgroup characterized by a high risk of resistance to chemotherapies and high relapse potential. TNBC shows inter-and intra-tumoral heterogeneity; more than half expresses high EGFR levels and about 30% are classified as HER2-low breast cancers. High PRMT5 mRNA levels are associated with poor prognosis in TNBC and inhibiting PRMT5 impairs the viability of subsets of TNBC cell lines and delays tumor growth in TNBC mice models. TNBC patients may therefore benefit from a treatment targeting PRMT5. The aim of this study was to assess the therapeutic benefit of combining a PRMT5 inhibitor with different chemotherapies used in the clinics to treat TNBC patients, or with FDA-approved inhibitors targeting the HER family members. Methods The drug combinations were performed using proliferation and colony formation assays on TNBC cell lines that were sensitive or resistant to EPZ015938, a PRMT5 inhibitor that has been evaluated in clinical trials. The chemotherapies analyzed were cisplatin, doxorubicin, camptothecin, and paclitaxel. The targeted therapies tested were erlotinib (EGFR inhibitor), neratinib (EGFR/HER2/HER4 inhibitor) and tucatinib (HER2 inhibitor). Results We found that PRMT5 inhibition synergized mostly with cisplatin, and to a lesser extent with doxorubicin or camptothecin, but not with paclitaxel, to impair TNBC cell proliferation. PRMT5 inhibition also synergized with erlotinib and neratinib in TNBC cell lines, especially in those overexpressing EGFR. Additionally, a synergistic interaction was observed with neratinib and tucatinib in a HER2-low TNBC cell line as well as in a HER2-positive breast cancer cell line. We noticed that synergy can be obtained in TNBC cell lines that were resistant to PRMT5 inhibition alone. Conclusion Altogether, our data highlight the therapeutic potential of targeting PRMT5 using combinatorial strategies for the treatment of subsets of TNBC patients.
Collapse
Affiliation(s)
- Rayan Dakroub
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, Paris, 75005, France
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, 1003, Lebanon
| | - Solène Huard
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, Paris, 75005, France
| | - Yara Hajj-Younes
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, Paris, 75005, France
| | - Samyuktha Suresh
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, Paris, 75005, France
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, 1003, Lebanon
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, 1003, Lebanon
| | - Thierry Dubois
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, Paris, 75005, France
| |
Collapse
|
32
|
Ning J, Chen L, Xiao G, Zeng Y, Shi W, Tanzhu G, Zhou R. The protein arginine methyltransferase family (PRMTs) regulates metastases in various tumors: From experimental study to clinical application. Biomed Pharmacother 2023; 167:115456. [PMID: 37696085 DOI: 10.1016/j.biopha.2023.115456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023] Open
Abstract
Tumor metastasis is the leading cause of mortality among advanced cancer patients. Understanding its mechanisms and treatment strategies is vital for clinical application. Arginine methylation, a post-translational modification catalyzed by protein arginine methyltransferases (PRMTs), is implicated in diverse physiological processes and disease progressions. Previous research has demonstrated PRMTs' involvement in tumor occurrence, progression, and metastasis. This review offers a comprehensive summary of the relationship between PRMTs, prognosis, and metastasis in various cancers. Our focus centers on elucidating the molecular mechanisms through which PRMTs regulate tumor metastasis. We also discuss relevant clinical trials and effective PRMT inhibitors, including chemical compounds, long non-coding RNA (lncRNA), micro-RNA (miRNA), and nanomaterials, for treating tumor metastasis. While a few studies present conflicting results, the overall trajectory suggests that inhibiting arginine methylation exhibits promise in curtailing tumor metastasis across various cancers. Nonetheless, the underlying mechanisms and molecular interactions are diverse. The development of inhibitors targeting arginine methylation, along with the progression of clinical trials, holds substantial potential in the field of tumor metastasis, meriting sustained attention.
Collapse
Affiliation(s)
- Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yu Zeng
- Changsha Stomatological Hospital, Hunan University of Traditional Chinese Medicine, Changsha 410008, China
| | - Wen Shi
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China.
| |
Collapse
|
33
|
Zheng Y, Ji H, Yi W, Chen Z, Hu X, Zhou J, Wang Y, Zheng X. PRMT5 facilitates angiogenesis and EMT via HIF-1α/VEGFR/Akt signaling axis in lung cancer. Aging (Albany NY) 2023; 15:6163-6178. [PMID: 37400960 PMCID: PMC10373979 DOI: 10.18632/aging.204826] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/24/2023] [Indexed: 07/05/2023]
Abstract
Abnormal angiogenesis is a critical factor in tumor growth and metastasis, and protein arginine methyltransferase 5 (PRMT5), a prominent type II enzyme, is implicated in various human cancers. However, the precise role of PRMT5 in regulating angiogenesis to promote lung cancer cell metastasis and the underlying molecular mechanisms are not fully understood. Here, we show that PRMT5 is overexpressed in lung cancer cells and tissues, and its expression is triggered by hypoxia. Moreover, inhibiting or silencing PRMT5 disrupts the phosphorylation of the VEGFR/Akt/eNOS angiogenic signaling pathway, NOS activity, and NO production. Additionally, inhibiting PRMT5 activity reduces HIF-1α expression and stability, resulting in the down-regulation of the VEGF/VEGFR signaling pathway. Our findings indicate that PRMT5 promotes lung cancer epithelial-mesenchymal transition (EMT), which might be possibly through controlling the HIF-1α/VEGFR/Akt/eNOS signaling axis. Our study provides compelling evidence of the close association between PRMT5 and angiogenesis/EMT and highlights the potential of targeting PRMT5 activity as a promising therapeutic approach for treating lung cancer with abnormal angiogenesis.
Collapse
Affiliation(s)
- Yonghua Zheng
- Department of Pulmonary Medicine, Shanghai Jinshan Tinglin Hospital, Shanghai, P.R. China
| | - Huaxia Ji
- Department of Pulmonary Medicine, Shanghai Jinshan Tinglin Hospital, Shanghai, P.R. China
| | - Wulin Yi
- Department of Pulmonary Medicine, Shanghai Jinshan Tinglin Hospital, Shanghai, P.R. China
| | - Zhanjun Chen
- Department of Pulmonary Medicine, Shanghai Jinshan Tinglin Hospital, Shanghai, P.R. China
| | - Xiaobiao Hu
- Department of Pulmonary Medicine, Shanghai Jinshan Tinglin Hospital, Shanghai, P.R. China
| | - Jie Zhou
- Dapartment of Pulmonary and Critical Care Medicine, Minhang Hospital, Fudan University, P.R. China
| | - Yang Wang
- Department of Emergency, The 8th People's Hospital of Shanghai, Shanghai, P.R. China
| | - Xiao Zheng
- Department of Pulmonary Medicine, Shanghai Jinshan Tinglin Hospital, Shanghai, P.R. China
| |
Collapse
|
34
|
Zheng J, Li B, Wu Y, Wu X, Wang Y. Targeting Arginine Methyltransferase PRMT5 for Cancer Therapy: Updated Progress and Novel Strategies. J Med Chem 2023. [PMID: 37366223 DOI: 10.1021/acs.jmedchem.3c00250] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
As a predominant type II protein arginine methyltransferase, PRMT5 plays critical roles in various normal cellular processes by catalyzing the mono- and symmetrical dimethylation of a wide range of histone and nonhistone substrates. Clinical studies have revealed that high expression of PRMT5 is observed in different solid tumors and hematological malignancies and is closely associated with cancer initiation and progression. Accordingly, PRMT5 is becoming a promising anticancer target and has received great attention in both the pharmaceutical industry and the academic community. In this Perspective, we comprehensively summarize recent advances in the development of first-generation PRMT5 enzymatic inhibitors and highlight novel strategies targeting PRMT5 in the past 5 years. We also discuss the challenges and opportunities of PRMT5 inhibition, with the aim of shedding light on future PRMT5 drug discovery.
Collapse
Affiliation(s)
- Jiahong Zheng
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Bang Li
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yingqi Wu
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaoshuang Wu
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuanxiang Wang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
35
|
Shi Y, Niu Y, Yuan Y, Li K, Zhong C, Qiu Z, Li K, Lin Z, Yang Z, Zuo D, Qiu J, He W, Wang C, Liao Y, Wang G, Yuan Y, Li B. PRMT3-mediated arginine methylation of IGF2BP1 promotes oxaliplatin resistance in liver cancer. Nat Commun 2023; 14:1932. [PMID: 37024475 PMCID: PMC10079833 DOI: 10.1038/s41467-023-37542-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
Although oxaliplatin-based chemotherapy has been effective in the treatment of hepatocellular carcinoma (HCC), primary or acquired resistance to oxaliplatin remains a major challenge in the clinic. Through functional screening using CRISPR/Cas9 activation library, transcriptomic profiling of clinical samples, and functional validation in vitro and in vivo, we identify PRMT3 as a key driver of oxaliplatin resistance. Mechanistically, PRMT3-mediated oxaliplatin-resistance is in part dependent on the methylation of IGF2BP1 at R452, which is critical for the function of IGF2BP1 in stabilizing the mRNA of HEG1, an effector of PRMT3-IGF2BP1 axis. Also, PRMT3 overexpression may serve as a biomarker for oxaliplatin resistance in HCC patients. Collectively, our study defines the PRTM3-IGF2BP1-HEG1 axis as important regulators and therapeutic targets in oxaliplatin-resistance and suggests the potential to use PRMT3 expression level in pretreatment biopsy as a biomarker for oxaliplatin-resistance in HCC patients.
Collapse
Affiliation(s)
- Yunxing Shi
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yi Niu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yichuan Yuan
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Kai Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chengrui Zhong
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhiyu Qiu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Keren Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhu Lin
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhiwen Yang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Dinglan Zuo
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jiliang Qiu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wei He
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chenwei Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yadi Liao
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Yunfei Yuan
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Binkui Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
36
|
Abe Y, Sano T, Tanaka N. The Role of PRMT5 in Immuno-Oncology. Genes (Basel) 2023; 14:678. [PMID: 36980950 PMCID: PMC10048035 DOI: 10.3390/genes14030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has caused a paradigm shift in cancer therapeutic strategy. However, this therapy only benefits a subset of patients. The difference in responses to ICIs is believed to be dependent on cancer type and its tumor microenvironment (TME). The TME is favorable for cancer progression and metastasis and can also help cancer cells to evade immune attacks. To improve the response to ICIs, it is crucial to understand the mechanism of how the TME is maintained. Protein arginine methyltransferase 5 (PRMT5) di-methylates arginine residues in its substrates and has essential roles in the epigenetic regulation of gene expression, signal transduction, and the fidelity of mRNA splicing. Through these functions, PRMT5 can support cancer cell immune evasion. PRMT5 is necessary for regulatory T cell (Treg) functions and promotes cancer stemness and the epithelial-mesenchymal transition. Specific factors in the TME can help recruit Tregs, tumor-associated macrophages, and myeloid-derived suppressor cells into tumors. In addition, PRMT5 suppresses antigen presentation and the production of interferon and chemokines, which are necessary to recruit T cells into tumors. Overall, PRMT5 supports an immunosuppressive TME. Therefore, PRMT5 inhibition would help recover the immune cycle and enable the immune system-mediated elimination of cancer cells.
Collapse
Affiliation(s)
| | | | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo 113-8602, Japan
| |
Collapse
|
37
|
Jiang K, Yin X, Zhang Q, Yin J, Tang Q, Xu M, Wu L, Shen Y, Zhou Z, Yu H, Yan S. STC2 activates PRMT5 to induce radioresistance through DNA damage repair and ferroptosis pathways in esophageal squamous cell carcinoma. Redox Biol 2023; 60:102626. [PMID: 36764215 PMCID: PMC9929488 DOI: 10.1016/j.redox.2023.102626] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Radioresistance is the major reason for the failure of radiotherapy in esophageal squamous cell carcinoma (ESCC). Previous evidence indicated that stanniocalcin 2 (STC2) participates in various biological processes of malignant tumors. However, researches on its effect on radioresistance in cancers are limited. In this study, STC2 was screened out by RNA-sequencing and bioinformatics analyses as a potential prognosis predictor of ESCC radiosensitivity and then was determined to facilitate radioresistance. We found that STC2 expression is increased in ESCC tissues compared to adjacent normal tissues, and a higher level of STC2 is associated with poor prognosis. Also, STC2 mRNA and protein expression levels were higher in radioresistant cells than in their parental cells. Further investigation revealed that STC2 could interact with protein methyltransferase 5 (PRMT5) and activate PRMT5, thus leading to the increased expression of symmetric dimethylation of histone H4 on Arg 3 (H4R3me2s). Mechanistically, STC2 can promote DDR through the homologous recombination and non-homologous end joining pathways by activating PRMT5. Meanwhile, STC2 can participate in SLC7A11-mediated ferroptosis in a PRMT5-dependent manner. Finally, these results were validated through in vivo experiments. These findings uncovered that STC2 might be an attractive therapeutic target to overcome ESCC radioresistance.
Collapse
Affiliation(s)
- Kan Jiang
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University Cancer Center, Zhejiang, 310003, Hangzhou, China
| | - Xin Yin
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University Cancer Center, Zhejiang, 310003, Hangzhou, China
| | - Qingyi Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Yin
- Department of Colorectal Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Qiuying Tang
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University Cancer Center, Zhejiang, 310003, Hangzhou, China
| | - Mengyou Xu
- Peking University Cancer Hospital & Institute, Beijing, China
| | - Lingyun Wu
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University Cancer Center, Zhejiang, 310003, Hangzhou, China
| | - Yifan Shen
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziyang Zhou
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University Cancer Center, Zhejiang, 310003, Hangzhou, China
| | - Hao Yu
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University Cancer Center, Zhejiang, 310003, Hangzhou, China
| | - Senxiang Yan
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University Cancer Center, Zhejiang, 310003, Hangzhou, China.
| |
Collapse
|
38
|
Zheng Y, Lu J, Hu X, Hu X, Gao X, Zhou J. PRMT5/FGFR3/AKT Signaling Axis Facilitates Lung Cancer Cell Metastasis. Technol Cancer Res Treat 2023; 22:15330338231161139. [PMID: 36927233 PMCID: PMC10026111 DOI: 10.1177/15330338231161139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Objectives: This study aims to investigate the function of the protein arginine methyltransferase 5 (PRMT5) and fibroblast growth factor receptor 3 (FGFR3)/Akt signaling axis in the epithelial-mesenchymal transition (EMT) of human lung cancer. Methods: The mRNA and protein expression levels of PRMT5, FGFR3, p-Akt, and EMT markers are determined by quantitative real-time PCR and Western blotting, respectively; the expression and localization of PRMT5, p-Akt, and proliferating cell nuclear antigen are detected by immunofluorescence; the human lung cancer cell proliferation is measured by MTS assay. Results: PRMT5 and FGFR3 are highly expressed in human lung cancer tissues and are closely related to lymphatic metastasis. Moreover, down-regulation of PRMT5 by lentivirus-mediated shRNAs or inhibition of PRMT5 by specific inhibitors attenuates FGFR3 expression, Akt phosphorylation, and lung cancer cell proliferation. Further studies show that silencing PRMT5 impairs EMT-related markers, including vimentin, collagen I, and β-catenin. Conversely, ectopic expression of PRMT5 increases FGFR3 expression, Akt phosphorylation, and EMT-related markers, suggesting that PRMT5 regulates metastasis probably through the FGFR3/Akt signaling axis. Conclusion: PRMT5/FGFR3/Akt signaling axis controls human lung cancer progression and metastasis and also implies that PRMT5 may serve as a prognostic biomarker and therapeutic candidate for treating lung cancer.
Collapse
Affiliation(s)
- Yonghua Zheng
- Department of Pulmonary Medicine, Shanghai Jinshan Tinglin Hospital, Shanghai, P.R. China
| | - Jingjing Lu
- Department of Pulmonary and Critical Care Medicine, 66324Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Xiaoyan Hu
- Department of Pulmonary Medicine, Shanghai Jinshan Tinglin Hospital, Shanghai, P.R. China
| | - Xiaobiao Hu
- Department of Pulmonary Medicine, Shanghai Jinshan Tinglin Hospital, Shanghai, P.R. China
| | - Xiwen Gao
- Department of Pulmonary and Critical Care Medicine, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Jie Zhou
- Department of Pulmonary and Critical Care Medicine, Minhang Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
39
|
Wen C, Tian Z, Li L, Chen T, Chen H, Dai J, Liang Z, Ma S, Liu X. SRSF3 and HNRNPH1 Regulate Radiation-Induced Alternative Splicing of Protein Arginine Methyltransferase 5 in Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms232314832. [PMID: 36499164 PMCID: PMC9738276 DOI: 10.3390/ijms232314832] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) is an epigenetic regulator which has been proven to be a potential target for cancer therapy. We observed that PRMT5 underwent alternative splicing (AS) and generated a spliced isoform PRMT5-ISO5 in hepatocellular carcinoma (HCC) patients after radiotherapy. However, the regulatory mechanism and the clinical implications of IR-induced PRMT5 AS are unclear. This work revealed that serine and arginine rich splicing factor 3 (SRSF3) silencing increased PRMT5-ISO5 level, whereas heterogeneous nuclear ribonucleoprotein H 1 (HNRNPH1) silencing reduced it. Then, we found that SRSF3 and HNRNPH1 competitively combined with PRMT5 pre-mRNA located at the region around the 3'- splicing site on intron 2 and the alternative 3'- splicing site on exon 4. IR-induced SRSF3 downregulation led to an elevated level of PRMT5-ISO5, and exogenous expression of PRMT5-ISO5 enhanced cell radiosensitivity. Finally, we confirmed in vivo that IR induced the increased level of PRMT5-ISO5 which in turn enhanced tumor killing and regression, and liver-specific Prmt5 depletion reduced hepatic steatosis and delayed tumor progression of spontaneous HCC. In conclusion, our data uncover the competitive antagonistic interaction of SRSF3 and HNRNPH1 in regulating PRMT5 splicing induced by IR, providing potentially effective radiotherapy by modulating PRMT5 splicing against HCC.
Collapse
Affiliation(s)
- Chaowei Wen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhujun Tian
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Lan Li
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Tongke Chen
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou 325035, China
| | - Huajian Chen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Jichen Dai
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhenzhen Liang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Shumei Ma
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou 325014, China
| | - Xiaodong Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou 325014, China
- Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou 325035, China
- Correspondence:
| |
Collapse
|
40
|
Liu S, Liu Z, Piao C, Zhang Z, Kong C, Yin L, Liu X. Flavokawain A is a natural inhibitor of PRMT5 in bladder cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:293. [PMID: 36199122 PMCID: PMC9533510 DOI: 10.1186/s13046-022-02500-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Protein arginine methyltransferases (PRMTs) regulate protein biological activity by modulating arginine methylation in cancer and are increasingly recognized as potential drug targets. Inhibitors targeting PRMTs are currently in the early phases of clinical trials and more candidate drugs are needed. Flavokawain A (FKA), extracted from kava plant, has been recognized as a potential chemotherapy drug in bladder cancer (BC), but its action mechanism remains unclear. METHODS We first determined the role of a type II PRMT, PRMT5, in BC tissue samples and performed cytological experiments. We then utilized bioinformatics tools, including computational simulation, virtual screening, molecular docking, and energy analysis, to identify the potential use of PRMT5 inhibitors for BC treatment. In vitro and in vivo co-IP and mutation assays were performed to elucidate the molecular mechanism of PRMT5 inhibitor. Pharmacology experiments like bio-layer interferometry, CETSA, and pull-down assays were further used to provide direct evidence of the complex binding process. RESULTS Among PRMTs, PRMT5 was identified as a therapeutic target for BC. PRMT5 expression in BC was correlated with poor prognosis and manipulating its expression could affect cancer cell growth. Through screening and extensive experimental validation, we recognized that a natural product, FKA, was a small new inhibitor molecule for PRMT5. We noticed that the product could inhibit the action of BC, in vitro and in vivo, by inhibiting PRMT5. We further demonstrated that FKA blocks the symmetric arginine dimethylation of histone H2A and H4 by binding to Y304 and F580 of PRMT5. CONCLUSIONS In summary, our research strongly suggests that PRMT5 is a potential epigenetic therapeutic target in bladder cancer, and that FKA can be used as a targeted inhibitor of PRMT5 for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Shuangjie Liu
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Zhuonan Liu
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Chiyuan Piao
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Zhe Zhang
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Chuize Kong
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Lei Yin
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Xi Liu
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| |
Collapse
|