1
|
Kelly K, Scherer M, Braun MM, Lutsik P, Plass C. EpiCHAOS: a metric to quantify epigenomic heterogeneity in single-cell data. Genome Biol 2024; 25:305. [PMID: 39623476 PMCID: PMC11613708 DOI: 10.1186/s13059-024-03446-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
Epigenetic heterogeneity is a fundamental property of biological systems and is recognized as a potential driver of tumor plasticity and therapy resistance. Single-cell epigenomics technologies have been widely employed to study epigenetic variation between-but not within-cellular clusters. We introduce epiCHAOS: a quantitative metric of cell-to-cell heterogeneity, applicable to any single-cell epigenomics data type. After validation in synthetic datasets, we apply epiCHAOS to investigate global and region-specific patterns of epigenetic heterogeneity across diverse biological systems. EpiCHAOS provides an excellent approximation of stemness and plasticity in development and malignancy, making it a valuable addition to single-cell cancer epigenomics analyses.
Collapse
Affiliation(s)
- Katherine Kelly
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Michael Scherer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Martina Maria Braun
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona, Institute of Science and Technology (BIST), Barcelona, 08003, Spain
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Aubin RG, Montelongo J, Hu R, Gunther E, Nicodemus P, Camara PG. Clustering-independent estimation of cell abundances in bulk tissues using single-cell RNA-seq data. CELL REPORTS METHODS 2024; 4:100905. [PMID: 39561717 DOI: 10.1016/j.crmeth.2024.100905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/03/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024]
Abstract
Single-cell RNA sequencing has transformed the study of biological tissues by enabling transcriptomic characterizations of their constituent cell states. Computational methods for gene expression deconvolution use this information to infer the cell composition of related tissues profiled at the bulk level. However, current deconvolution methods are restricted to discrete cell types and have limited power to make inferences about continuous cellular processes such as cell differentiation or immune cell activation. We present ConDecon, a clustering-independent method for inferring the likelihood for each cell in a single-cell dataset to be present in a bulk tissue. ConDecon represents an improvement in phenotypic resolution and functionality with respect to regression-based methods. Using ConDecon, we discover the implication of neurodegenerative microglia inflammatory pathways in the mesenchymal transformation of pediatric ependymoma and characterize their spatial trajectories of activation. The generality of this approach enables the deconvolution of other data modalities, such as bulk ATAC-seq data.
Collapse
Affiliation(s)
- Rachael G Aubin
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Javier Montelongo
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Robert Hu
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Elijah Gunther
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Patrick Nicodemus
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Pablo G Camara
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Aubin RG, Montelongo J, Hu R, Gunther E, Nicodemus P, Camara PG. Clustering-independent estimation of cell abundances in bulk tissues using single-cell RNA-seq data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.06.527318. [PMID: 36798206 PMCID: PMC9934539 DOI: 10.1101/2023.02.06.527318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Single-cell RNA-sequencing has transformed the study of biological tissues by enabling transcriptomic characterizations of their constituent cell states. Computational methods for gene expression deconvolution use this information to infer the cell composition of related tissues profiled at the bulk level. However, current deconvolution methods are restricted to discrete cell types and have limited power to make inferences about continuous cellular processes like cell differentiation or immune cell activation. We present ConDecon, a clustering-independent method for inferring the likelihood for each cell in a single-cell dataset to be present in a bulk tissue. ConDecon represents an improvement in phenotypic resolution and functionality with respect to regression-based methods. Using ConDecon, we discover the implication of neurodegenerative microglia inflammatory pathways in the mesenchymal transformation of pediatric ependymoma and characterize their spatial trajectories of activation. The generality of this approach enables the deconvolution of other data modalities such as bulk ATAC-seq data.
Collapse
Affiliation(s)
- Rachael G Aubin
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104
| | - Javier Montelongo
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104
| | - Robert Hu
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104
| | - Elijah Gunther
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104
| | - Patrick Nicodemus
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104
| | - Pablo G Camara
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104
| |
Collapse
|
4
|
Sussman JH, Oldridge DA, Yu W, Chen CH, Zellmer AM, Rong J, Parvaresh-Rizi A, Thadi A, Xu J, Bandyopadhyay S, Sun Y, Wu D, Emerson Hunter C, Brosius S, Ahn KJ, Baxter AE, Koptyra MP, Vanguri RS, McGrory S, Resnick AC, Storm PB, Amankulor NM, Santi M, Viaene AN, Zhang N, Raedt TD, Cole K, Tan K. A longitudinal single-cell and spatial multiomic atlas of pediatric high-grade glioma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583588. [PMID: 38496580 PMCID: PMC10942465 DOI: 10.1101/2024.03.06.583588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Pediatric high-grade glioma (pHGG) is an incurable central nervous system malignancy that is a leading cause of pediatric cancer death. While pHGG shares many similarities to adult glioma, it is increasingly recognized as a molecularly distinct, yet highly heterogeneous disease. In this study, we longitudinally profiled a molecularly diverse cohort of 16 pHGG patients before and after standard therapy through single-nucleus RNA and ATAC sequencing, whole-genome sequencing, and CODEX spatial proteomics to capture the evolution of the tumor microenvironment during progression following treatment. We found that the canonical neoplastic cell phenotypes of adult glioblastoma are insufficient to capture the range of tumor cell states in a pediatric cohort and observed differential tumor-myeloid interactions between malignant cell states. We identified key transcriptional regulators of pHGG cell states and did not observe the marked proneural to mesenchymal shift characteristic of adult glioblastoma. We showed that essential neuromodulators and the interferon response are upregulated post-therapy along with an increase in non-neoplastic oligodendrocytes. Through in vitro pharmacological perturbation, we demonstrated novel malignant cell-intrinsic targets. This multiomic atlas of longitudinal pHGG captures the key features of therapy response that support distinction from its adult counterpart and suggests therapeutic strategies which are targeted to pediatric gliomas.
Collapse
Affiliation(s)
- Jonathan H. Sussman
- Medical Scientist Training Program, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
- Graduate Group in Genomics and Computational Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Derek A. Oldridge
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Wenbao Yu
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman
School of Medicine, Philadelphia, PA
| | - Chia-Hui Chen
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
| | - Abigail M. Zellmer
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Jiazhen Rong
- Graduate Group in Genomics and Computational Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Statistics and Data Science, University of
Pennsylvania, Philadelphia, PA
| | | | - Anusha Thadi
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
| | - Jason Xu
- Medical Scientist Training Program, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
- Graduate Group in Genomics and Computational Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Shovik Bandyopadhyay
- Medical Scientist Training Program, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
- Cellular and Molecular Biology Graduate Group, Perelman School of
Medicine, University of Pennsylvania, PA
| | - Yusha Sun
- Medical Scientist Training Program, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
- Neuroscience Graduate Group, Perelman School of Medicine,
University of Pennsylvania, PA
| | - David Wu
- Medical Scientist Training Program, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
- Graduate Group in Genomics and Computational Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - C. Emerson Hunter
- Medical Scientist Training Program, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
- Graduate Group in Genomics and Computational Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stephanie Brosius
- Graduate Group in Genomics and Computational Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kyung Jin Ahn
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
| | - Amy E. Baxter
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mateusz P. Koptyra
- Department of Neurosurgery, Children’s Hospital of
Philadelphia, Philadelphia, PA
| | - Rami S. Vanguri
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Stephanie McGrory
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
| | - Adam C. Resnick
- Department of Neurosurgery, Children’s Hospital of
Philadelphia, Philadelphia, PA
| | - Phillip B. Storm
- Department of Neurosurgery, Children’s Hospital of
Philadelphia, Philadelphia, PA
| | - Nduka M. Amankulor
- Department of Neurosurgery, Perelman School of Medicine,
Philadelphia, PA
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Angela N. Viaene
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Nancy Zhang
- Department of Statistics and Data Science, University of
Pennsylvania, Philadelphia, PA
| | - Thomas De Raedt
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
| | - Kristina Cole
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman
School of Medicine, Philadelphia, PA
| | - Kai Tan
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman
School of Medicine, Philadelphia, PA
- Center for Single Cell Biology, Children’s Hospital of
Philadelphia, Philadelphia, PA
| |
Collapse
|
5
|
Rodriguez-Perez LM, Ojeda-Pérez B, López-de-San-Sebastián J, García-Bonilla M, González-García M, Fernández-Muñoz B, Sánchez-Pernaute R, García-Martín ML, Domínguez-Pinos D, Cárdenas-García C, Jiménez AJ, Paez-Gonzalez P. Design of a Stem Cell-Based Therapy for Ependymal Repair in Hydrocephalus Associated With Germinal Matrix Hemorrhages. Stroke 2024; 55:1062-1074. [PMID: 38436063 PMCID: PMC10962438 DOI: 10.1161/strokeaha.123.044677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND In preterm birth germinal matrix hemorrhages (GMHs) and the consequent posthemorrhagic hydrocephalus (PHH), the neuroepithelium/ependyma development is disrupted. This work is aimed to explore the possibilities of ependymal repair in GMH/PHH using a combination of neural stem cells, ependymal progenitors (EpPs), and mesenchymal stem cells. METHODS GMH/PHH was induced in 4-day-old mice using collagenase, blood, or blood serum injections. PHH severity was characterized 2 weeks later using magnetic resonance, immunofluorescence, and protein expression quantification with mass spectrometry. Ependymal restoration and wall regeneration after stem cell treatments were tested in vivo and in an ex vivo experimental approach using ventricular walls from mice developing moderate and severe GMH/PHH. The effect of the GMH environment on EpP differentiation was tested in vitro. Two-tailed Student t or Wilcoxon-Mann-Whitney U test was used to find differences between the treated and nontreated groups. ANOVA and Kruskal-Wallis tests were used to compare >2 groups with post hoc Tukey and Dunn multiple comparison tests, respectively. RESULTS PHH severity was correlated with the extension of GMH and ependymal disruption (means, 88.22% severe versus 19.4% moderate). GMH/PHH hindered the survival rates of the transplanted neural stem cells/EpPs. New multiciliated ependymal cells could be generated from transplanted neural stem cells and more efficiently from EpPs (15% mean increase). Blood and TNFα (tumor necrosis factor alpha) negatively affected ciliogenesis in cells committed to ependyma differentiation (expressing Foxj1 [forkhead box J1] transcription factor). Pretreatment with mesenchymal stem cells improved the survival rates of EpPs and ependymal differentiation while reducing the edematous (means, 18% to 0.5% decrease in severe edema) and inflammatory conditions in the explants. The effectiveness of this therapeutical strategy was corroborated in vivo (means, 29% to 0% in severe edema). CONCLUSIONS In GMH/PHH, the ependyma can be restored and edema decreased from either neural stem cell or EpP transplantation in vitro and in vivo. Mesenchymal stem cell pretreatment improved the success of the ependymal restoration.
Collapse
Affiliation(s)
- Luis M Rodriguez-Perez
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, University of Malaga, Spain. (L.M.R.-P.)
| | - Betsaida Ojeda-Pérez
- Departamento de Biología Celular, Genética y Fisiología, University of Malaga, Spain. (B.O.-P., J.L.-d.-S.-S., M.G.-G.)
- Instituto de Investigación Biomédica de Málaga, Spain (B.O.-P., M.L.G.-M., D.D.-P., A.J.J., P.P.-G.)
| | - Javier López-de-San-Sebastián
- Departamento de Biología Celular, Genética y Fisiología, University of Malaga, Spain. (B.O.-P., J.L.-d.-S.-S., M.G.-G.)
| | - María García-Bonilla
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, MO (M.G.-B.)
| | - Marcos González-García
- Departamento de Biología Celular, Genética y Fisiología, University of Malaga, Spain. (B.O.-P., J.L.-d.-S.-S., M.G.-G.)
| | - Beatriz Fernández-Muñoz
- Unidad de Producción y Reprogramación Celular, Red Andaluza para el diseño y traslación de Terapias Avanzadas, Sevilla, Spain (B.F.-M.)
| | - Rosario Sánchez-Pernaute
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain (R.S.-P.)
- Instituto de Investigación Sanitaria Biobizkai, Barakaldo, Spain (R.S.-P.)
| | - María L García-Martín
- Instituto de Investigación Biomédica de Málaga, Spain (B.O.-P., M.L.G.-M., D.D.-P., A.J.J., P.P.-G.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, Spain (M.L.G.-M.)
| | - Dolores Domínguez-Pinos
- Departamento de Radiología y Medicina Física, Oftalmología y Otorrinolaringología, University of Malaga, Spain. (D.D.-P.)
- Instituto de Investigación Biomédica de Málaga, Spain (B.O.-P., M.L.G.-M., D.D.-P., A.J.J., P.P.-G.)
| | | | - Antonio J Jiménez
- Instituto de Investigación Biomédica de Málaga, Spain (B.O.-P., M.L.G.-M., D.D.-P., A.J.J., P.P.-G.)
| | - Patricia Paez-Gonzalez
- Instituto de Investigación Biomédica de Málaga, Spain (B.O.-P., M.L.G.-M., D.D.-P., A.J.J., P.P.-G.)
| |
Collapse
|
6
|
du Chatinier A, Velilla IQ, Meel MH, Hoving EW, Hulleman E, Metselaar DS. Microglia in pediatric brain tumors: The missing link to successful immunotherapy. Cell Rep Med 2023; 4:101246. [PMID: 37924816 PMCID: PMC10694606 DOI: 10.1016/j.xcrm.2023.101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/10/2023] [Accepted: 09/26/2023] [Indexed: 11/06/2023]
Abstract
Brain tumors are the leading cause of cancer-related mortality in children. Despite the development of immunotherapeutic strategies for adult brain tumors, progress in pediatric neuro-oncology has been hindered by the complex and poorly understood nature of the brain's immune system during early development, a phase that is critical for the onset of many pediatric brain tumors. A defining characteristic of these tumors is the abundance of microglia, the resident immune cells of the central nervous system. In this review, we explore the concept of microglial diversity across brain regions and throughout development and discuss how their maturation stage may contribute to tumor growth in children. We also summarize the current knowledge on the roles of microglia in common pediatric brain tumor entities and provide examples of myeloid-based immunotherapeutic strategies. Our review underscores the importance of microglial plasticity in pediatric brain tumors and its significance for developing effective immunotherapeutic strategies.
Collapse
Affiliation(s)
- Aimée du Chatinier
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands
| | - Irene Querol Velilla
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands
| | - Michaël Hananja Meel
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands
| | - Eelco Wieger Hoving
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands
| | - Esther Hulleman
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands
| | - Dennis Serge Metselaar
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands.
| |
Collapse
|
7
|
Donson AM, Bertrand KC, Riemondy KA, Gao D, Zhuang Y, Sanford B, Norris GA, Chapman RJ, Fu R, Willard N, Griesinger AM, Ribeiro de Sousa G, Amani V, Grimaldo E, Hankinson TC, Booker F, Sill M, Grundy RG, Pajtler KW, Ellison DW, Foreman NK, Ritzmann TA. Significant increase of high-risk chromosome 1q gain and 6q loss at recurrence in posterior fossa group A ependymoma: A multicenter study. Neuro Oncol 2023; 25:1854-1867. [PMID: 37246777 PMCID: PMC10547517 DOI: 10.1093/neuonc/noad096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Ependymoma (EPN) posterior fossa group A (PFA) has the highest rate of recurrence and the worst prognosis of all EPN molecular groups. At relapse, it is typically incurable even with re-resection and re-irradiation. The biology of recurrent PFA remains largely unknown; however, the increasing use of surgery at first recurrence has now provided access to clinical samples to facilitate a better understanding of this. METHODS In this large longitudinal international multicenter study, we examined matched samples of primary and recurrent disease from PFA patients to investigate the biology of recurrence. RESULTS DNA methylome derived copy number variants (CNVs) revealed large-scale chromosome gains and losses at recurrence in PFA. CNV changes were dominated by chromosome 1q gain and/or 6q loss, both previously identified as high-risk factors in PFA, which were present in 23% at presentation but increased to 61% at first recurrence. Multivariate survival analyses of this cohort showed that cases with 1q gain or 6q loss at first recurrence were significantly more likely to recur again. Predisposition to 1q+/6q- CNV changes at recurrence correlated with hypomethylation of heterochromatin-associated DNA at presentation. Cellular and molecular analyses revealed that 1q+/6q- PFA had significantly higher proportions of proliferative neuroepithelial undifferentiated progenitors and decreased differentiated neoplastic subpopulations. CONCLUSIONS This study provides clinically and preclinically actionable insights into the biology of PFA recurrence. The hypomethylation predisposition signature in PFA is a potential risk-classifier for trial stratification. We show that the cellular heterogeneity of PFAs evolves largely because of genetic evolution of neoplastic cells.
Collapse
Affiliation(s)
- Andrew M Donson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado, USA
| | | | - Kent A Riemondy
- RNA Biosciences Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dexiang Gao
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- University of Colorado Cancer Center Biostatistics and Bioinformatics Shared Resource, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yonghua Zhuang
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- University of Colorado Cancer Center Biostatistics and Bioinformatics Shared Resource, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bridget Sanford
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gregory A Norris
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Rebecca J Chapman
- Children’s Brain Tumor Research Centre, University of Nottingham, Nottingham, UK
| | - Rui Fu
- Computational Biology, New York Genome Center, New York, New York, USA
| | - Nicholas Willard
- Department of Pathology, University of Colorado Denver, Aurora, Colorado, USA
| | - Andrea M Griesinger
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Graziella Ribeiro de Sousa
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Vladimir Amani
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Enrique Grimaldo
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Todd C Hankinson
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado, USA
| | - Ffyona Booker
- Children’s Brain Tumor Research Centre, University of Nottingham, Nottingham, UK
| | - Martin Sill
- Hopp-Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Richard G Grundy
- Children’s Brain Tumor Research Centre, University of Nottingham, Nottingham, UK
| | - Kristian W Pajtler
- Hopp-Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Nicholas K Foreman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Timothy A Ritzmann
- Children’s Brain Tumor Research Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
8
|
Yajima Y, Kosaka A, Ohkuri T, Hirohashi Y, Li D, Nagasaki T, Nagato T, Torigoe T, Kobayashi H. SARS-CoV-2 spike protein-derived immunogenic peptides that are promiscuously presented by several HLA-class II molecules and their potential for inducing acquired immunity. Heliyon 2023; 9:e20192. [PMID: 37809871 PMCID: PMC10559948 DOI: 10.1016/j.heliyon.2023.e20192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/26/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic that is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a significant threat to public health. Although vaccines based on the mRNA of the SARS-CoV-2 spike protein have been developed to induce both cellular and humoral immunity against SARS-CoV-2, there have been some concerns raised about their high cost, particularly in developing countries. In the present study, we aim to identify an immunogenic peptide in the SARS-CoV-2 spike protein to activate cellular immunity, particularly CD4+ helper T lymphocytes (Th cells), which are a commander of immune system. SARS-CoV-2 spike protein-derived peptides Spike448-477 and Spike489-513(N501Y)-specific CD4+ Th cell lines were generated by repetitive stimulation of healthy donor-derived CD4+T-cells with each peptide. Their HLA-restrictions were addressed by using blocking antibodies against HLA and HLA-transfected L-cells. The epitopes of Spike448-477-specific CD4+ Th cell lines were defined using a series of 7-14-mer overlapping truncated peptides and alanine-substituted epitope peptides. To address responsiveness of these CD4+ Th cell lines to several SARS-CoV-2 variants, we stimulated the CD4+ Th cell lines with mutated peptides. We addressed whether these identified peptides were useful for monitoring T-cell-based immune responses in vaccinated donors using the IFN-γ ELISpot assay. The Spike448-477 peptide was found to be a promiscuous peptide presented by HLA- DRB1*08:02, DR53, and DPB1*02:02. Although HLA-DPB1*02:02-restricted CD4+ Th cells did not response to some peptides with the L452R and L452Q mutations, the other CD4+ Th cells were not affected by any mutant peptides. We developed two tetramers to detect HLA-DRB1*08:02/Spike449-463- and Spike449-463(L452R/Y453F)-recognizing CD4+ Th cells. Spike489-513(N501Y) peptide was also a promiscuously presented to HLA-DRB1*09:01 and DRB1*15:02. The T-cell responses specific to both peptides Spike448-477 and Spike489-513 were detected in PBMCs after vaccinations. In addition, we observed that the Spike448-477 peptide activated both CD8+ T-cells and CD4+ Th cells in individuals receiving mRNA vaccines. SARS-CoV-2 spike protein-derived peptides, Spike448-477 and Spike489-513, include several epitopes that are presented by multiple HLA-class II alleles to activate CD4+ Th cells, which are considered useful for monitoring the establishment of acquired immunity after vaccination.
Collapse
Affiliation(s)
- Yuki Yajima
- Department of Oral and Maxillofacial Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Dongliang Li
- Tsukuba Laboratory, Medical & Biological Laboratories Co., Ltd., Ina, Japan
| | - Takeshi Nagasaki
- Tsukuba Laboratory, Medical & Biological Laboratories Co., Ltd., Ina, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
9
|
Han YP, Lin HW, Li H. Cancer Stem Cells in Tumours of the Central Nervous System in Children: A Comprehensive Review. Cancers (Basel) 2023; 15:3154. [PMID: 37370764 DOI: 10.3390/cancers15123154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer stem cells (CSCs) are a subgroup of cells found in various kinds of tumours with stem cell characteristics, such as self-renewal, induced differentiation, and tumourigenicity. The existence of CSCs is regarded as a major source of tumour recurrence, metastasis, and resistance to conventional chemotherapy and radiation treatment. Tumours of the central nervous system (CNS) are the most common solid tumours in children, which have many different types including highly malignant embryonal tumours and midline gliomas, and low-grade gliomas with favourable prognoses. Stem cells from the CNS tumours have been largely found and reported by researchers in the last decade and their roles in tumour biology have been deeply studied. However, the cross-talk of CSCs among different CNS tumour types and their clinical impacts have been rarely discussed. This article comprehensively reviews the achievements in research on CSCs in paediatric CNS tumours. Biological functions, diagnostic values, and therapeutic perspectives are reviewed in detail. Further investigations into CSCs are warranted to improve the clinical practice in treating children with CNS tumours.
Collapse
Affiliation(s)
- Yi-Peng Han
- Department of Neurosurgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Hou-Wei Lin
- Department of Paediatric Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Department of Paediatric Surgery, Jiaxing Women and Children Hospital Affiliated to Jiaxing University, Jiaxing 314001, China
| | - Hao Li
- Department of Neurosurgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| |
Collapse
|
10
|
Fu R, Norris GA, Willard N, Griesinger AM, Riemondy KA, Amani V, Grimaldo E, Harris F, Hankinson TC, Mitra S, Ritzmann TA, Grundy RR, Foreman NK, Donson AM. Spatial transcriptomic analysis delineates epithelial and mesenchymal subpopulations and transition stages in childhood ependymoma. Neuro Oncol 2023; 25:786-798. [PMID: 36215273 PMCID: PMC10076949 DOI: 10.1093/neuonc/noac219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The diverse cellular constituents of childhood brain tumor ependymoma, recently revealed by single cell RNA-sequencing, may underly therapeutic resistance. Here we use spatial transcriptomics to further advance our understanding of the tumor microenvironment, mapping cellular subpopulations to the tumor architecture of ependymoma posterior fossa subgroup A (PFA), the commonest and most deadly childhood ependymoma variant. METHODS Spatial transcriptomics data from intact PFA sections was deconvoluted to resolve the histological arrangement of neoplastic and non-neoplastic cell types. Key findings were validated using immunohistochemistry, in vitro functional assays and outcome analysis in clinically-annotated PFA bulk transcriptomic data. RESULTS PFA are comprised of epithelial and mesenchymal histological zones containing a diversity of cellular states, each zone including co-existing and spatially distinct undifferentiated progenitor-like cells; a quiescent mesenchymal zone population, and a second highly mitotic progenitor population that is restricted to hypercellular epithelial zones and that is more abundant in progressive tumors. We show that myeloid cell interaction is the leading cause of mesenchymal transition in PFA, occurring in zones spatially distinct from hypoxia-induced mesenchymal transition, and these distinct EMT-initiating processes were replicated using in vitro models of PFA. CONCLUSIONS These insights demonstrate the utility of spatial transcriptomics to advance our understanding of ependymoma biology, revealing a clearer picture of the cellular constituents of PFA, their interactions and influence on tumor progression.
Collapse
Affiliation(s)
- Rui Fu
- RNA Biosciences Initiative, University of Colorado Denver, Aurora, Colorado, USA
| | - Gregory A Norris
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Nicholas Willard
- Department of Pathology, University of Colorado Denver, Aurora, Colorado, USA
| | - Andrea M Griesinger
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Kent A Riemondy
- RNA Biosciences Initiative, University of Colorado Denver, Aurora, Colorado, USA
| | - Vladimir Amani
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Enrique Grimaldo
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Faith Harris
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Todd C Hankinson
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado, USA
| | - Siddhartha Mitra
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Timothy A Ritzmann
- Children’s Brain Tumor Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Richard R Grundy
- Children’s Brain Tumor Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Nicholas K Foreman
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Andrew M Donson
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
11
|
Hwang EI, Hanson D, Filbin MG, Mack SC. Why haven't we solved intracranial pediatric ependymoma? Current questions and barriers to treatment advances. Neoplasia 2023; 39:100895. [PMID: 36944298 PMCID: PMC10036929 DOI: 10.1016/j.neo.2023.100895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/22/2023]
Abstract
Pediatric intracranial ependymoma has seen a recent exponential expansion of biological findings, rapidly dividing the diagnosis into several subgroups, each with specific molecular and clinical characteristics. While such subdivision may complicate clinical conclusions from historical trials, this knowledge also provides an opportunity for interrogating the major clinical and biological questions preventing near-term translation into effective therapy for children with ependymoma. In this article, we briefly review some of the most critical clinical questions facing both patient management and the construct of future trials in childhood ependymoma, as well as explore some of the current barriers to efficient translation of preclinical discovery to the clinic.
Collapse
|