1
|
Byun WS, Lee J, Baek JH. Beyond the bulk: overview and novel insights into the dynamics of muscle satellite cells during muscle regeneration. Inflamm Regen 2024; 44:39. [PMID: 39327631 PMCID: PMC11426090 DOI: 10.1186/s41232-024-00354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Skeletal muscle possesses remarkable regenerative capabilities, fully recovering within a month following severe acute damage. Central to this process are muscle satellite cells (MuSCs), a resident population of somatic stem cells capable of self-renewal and differentiation. Despite the highly predictable course of muscle regeneration, evaluating this process has been challenging due to the heterogeneous nature of myogenic precursors and the limited insight provided by traditional markers with overlapping expression patterns. Notably, recent advancements in single-cell technologies, such as single-cell (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), have revolutionized muscle research. These approaches allow for comprehensive profiling of individual cells, unveiling dynamic heterogeneity among myogenic precursors and their contributions to regeneration. Through single-cell transcriptome analyses, researchers gain valuable insights into cellular diversity and functional dynamics of MuSCs post-injury. This review aims to consolidate classical and new insights into the heterogeneity of myogenic precursors, including the latest discoveries from novel single-cell technologies.
Collapse
Affiliation(s)
- Woo Seok Byun
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Jinu Lee
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Jea-Hyun Baek
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea.
| |
Collapse
|
2
|
Poss KD, Tanaka EM. Hallmarks of regeneration. Cell Stem Cell 2024; 31:1244-1261. [PMID: 39163854 PMCID: PMC11410156 DOI: 10.1016/j.stem.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/12/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024]
Abstract
Regeneration is a heroic biological process that restores tissue architecture and function in the face of day-to-day cell loss or the aftershock of injury. Capacities and mechanisms for regeneration can vary widely among species, organs, and injury contexts. Here, we describe "hallmarks" of regeneration found in diverse settings of the animal kingdom, including activation of a cell source, initiation of regenerative programs in the source, interplay with supporting cell types, and control of tissue size and function. We discuss these hallmarks with an eye toward major challenges and applications of regenerative biology.
Collapse
Affiliation(s)
- Kenneth D Poss
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Elly M Tanaka
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
3
|
Madl CM, Wang YX, Holbrook CA, Su S, Shi X, Byfield FJ, Wicki G, Flaig IA, Blau HM. Hydrogel biomaterials that stiffen and soften on demand reveal that skeletal muscle stem cells harbor a mechanical memory. Proc Natl Acad Sci U S A 2024; 121:e2406787121. [PMID: 39163337 PMCID: PMC11363279 DOI: 10.1073/pnas.2406787121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/21/2024] [Indexed: 08/22/2024] Open
Abstract
Muscle stem cells (MuSCs) are specialized cells that reside in adult skeletal muscle poised to repair muscle tissue. The ability of MuSCs to regenerate damaged tissues declines markedly with aging and in diseases such as Duchenne muscular dystrophy, but the underlying causes of MuSC dysfunction remain poorly understood. Both aging and disease result in dramatic increases in the stiffness of the muscle tissue microenvironment from fibrosis. MuSCs are known to lose their regenerative potential if cultured on stiff plastic substrates. We sought to determine whether MuSCs harbor a memory of their past microenvironment and if it can be overcome. We tested MuSCs in situ using dynamic hydrogel biomaterials that soften or stiffen on demand in response to light and found that freshly isolated MuSCs develop a persistent memory of substrate stiffness characterized by loss of proliferative progenitors within the first three days of culture on stiff substrates. MuSCs cultured on soft hydrogels had altered cytoskeletal organization and activity of Rho and Rac guanosine triphosphate hydrolase (GTPase) and Yes-associated protein mechanotransduction pathways compared to those on stiff hydrogels. Pharmacologic inhibition identified RhoA activation as responsible for the mechanical memory phenotype, and single-cell RNA sequencing revealed a molecular signature of the mechanical memory. These studies highlight that microenvironmental stiffness regulates MuSC fate and leads to MuSC dysfunction that is not readily reversed by changing stiffness. Our results suggest that stiffness can be circumvented by targeting downstream signaling pathways to overcome stem cell dysfunction in aged and disease states with aberrant fibrotic tissue mechanics.
Collapse
Affiliation(s)
- Christopher M. Madl
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Yu Xin Wang
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
| | - Colin A. Holbrook
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
| | - Shiqi Su
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
| | - Xuechen Shi
- Department of Physiology, Perelman School of Medicine and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Fitzroy J. Byfield
- Department of Physiology, Perelman School of Medicine and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Gwendoline Wicki
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, LausanneCH-1015, Switzerland
| | - Iris A. Flaig
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, LausanneCH-1015, Switzerland
| | - Helen M. Blau
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
| |
Collapse
|
4
|
He Y, Lin T, Liang R, Xiang Q, Tang T, Ge N, Yue J. Interleukin 25 promotes muscle regeneration in sarcopenia by regulating macrophage-mediated Sonic Hedgehog signaling. Int Immunopharmacol 2024; 139:112662. [PMID: 39038385 DOI: 10.1016/j.intimp.2024.112662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE Sarcopenia manifests as a chronic, low-level inflammation along with multiple inflammatory cells infiltration. Interleukin (IL)-25 can regulate the function of macrophages. However, the specific role and mechanisms through which IL-25 functions in sarcopenia are still not fully understood and require further investigation. METHODS Aged mice were utilized as sarcopenia models and examined the expression of inflammatory factors. To investigate the effects of IL-25 on sarcopenia, the model mice received IL-25 treatment and underwent in vivo adoptive transfer of IL-25-induced macrophages. Meanwhile, RAW264.7 cells, bone marrow-derived macrophages, satellite cells and C2C12 cells were used in vitro. Shh insufficiency was induced through intramuscular administration of SHH-shRNA adenoviruses. Then, various assays including scratch wound, cell counting kit-8 and Transwell assays, as well as histological staining and molecular biological methods, were conducted. RESULTS Aged mice exhibited an accelerated decline in muscle strength and mass, along with an increased muscle lipid droplets and macrophage infiltration, and decreased IL-25 levels compared to the young group. IL-25 therapy and the transfer of IL-25-preconditioned macrophages could improve these conditions by promoting M2 macrophage polarization in vivo as well as in vitro. M2 macrophage conditioned medium enhanced satellite cell proliferation and migration, as well as the vitality, migration, and differentiation of C2C12 cells in vitro. Furthermore, IL-25 enhanced Shh expression in macrophages in vitro, and activated the Shh signaling pathway in muscle tissue of aged mice, which could be suppressed by either the inhibitor cyclopamine or Shh knockdown. Mechanistic studies showed that Shh insufficiency suppressed the activation of Akt/mTOR signaling pathway in muscle tissue of aged mice. CONCLUSION IL-25 promotes the secretion of Shh by M2 macrophages and activates the Shh/Akt/mTOR signaling pathway, which improves symptoms and function in sarcopenia mice. This suggests that IL-25 has potential as a therapeutic agent for treating sarcopenia.
Collapse
Affiliation(s)
- Yan He
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Geriatrics, The Second People's Hospital of Yibin, Yibin, Sichuan, China
| | - Taiping Lin
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Liang
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiao Xiang
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianjiao Tang
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ning Ge
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Jirong Yue
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Blackburn DM, Sahinyan K, Hernández-Corchado A, Lazure F, Richard V, Raco L, Perron G, Zahedi RP, Borchers CH, Lepper C, Kawabe H, Jahani-Asl A, Najafabadi HS, Soleimani VD. The E3 ubiquitin ligase Nedd4L preserves skeletal muscle stem cell quiescence by inhibiting their activation. iScience 2024; 27:110241. [PMID: 39015146 PMCID: PMC11250905 DOI: 10.1016/j.isci.2024.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/14/2023] [Accepted: 06/07/2024] [Indexed: 07/18/2024] Open
Abstract
Adult stem cells play a critical role in tissue repair and maintenance. In tissues with slow turnover, including skeletal muscle, these cells are maintained in a mitotically quiescent state yet remain poised to re-enter the cell cycle to replenish themselves and regenerate the tissue. Using a panomics approach we show that the PAX7/NEDD4L axis acts against muscle stem cell activation in homeostatic skeletal muscle. Our findings suggest that PAX7 transcriptionally activates the E3 ubiquitin ligase Nedd4L and that the conditional genetic deletion of Nedd4L impairs muscle stem cell quiescence, with an upregulation of cell cycle and myogenic differentiation genes. Loss of Nedd4L in muscle stem cells results in the expression of doublecortin (DCX), which is exclusively expressed during their in vivo activation. Together, these data establish that the ubiquitin proteasome system, mediated by Nedd4L, is a key contributor to the muscle stem cell quiescent state in adult mice.
Collapse
Affiliation(s)
- Darren M. Blackburn
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte- Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Korin Sahinyan
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte- Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Aldo Hernández-Corchado
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
| | - Felicia Lazure
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte- Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Vincent Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC H3T 1E2, Canada
| | - Laura Raco
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte- Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Gabrielle Perron
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
| | - René P. Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC H3T 1E2, Canada
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, MB R3E 3P4, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Christoph H. Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC H4A 3J1, Canada
- Department of Pathology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Christoph Lepper
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine 37075 Göttingen, Germany
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine and University of Ottawa Brain and Mind Research Institute, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Hamed S. Najafabadi
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
| | - Vahab D. Soleimani
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte- Sainte-Catherine, Montréal, QC H3T 1E2, Canada
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
6
|
Duan H, Chen S, Mai X, Fu L, Huang L, Xiao L, Liao M, Chen H, Liu G, Xie L. Low-intensity pulsed ultrasound (LIPUS) promotes skeletal muscle regeneration by regulating PGC-1α/AMPK/GLUT4 pathways in satellite cells/myoblasts. Cell Signal 2024; 117:111097. [PMID: 38355078 DOI: 10.1016/j.cellsig.2024.111097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Low-Intensity Pulsed Ultrasound (LIPUS) holds therapeutic potential in promoting skeletal muscle regeneration, a biological process mediated by satellite cells and myoblasts. Despite their central roles in regeneration, the detailed mechanistic of LIPUS influence on satellite cells and myoblasts are not fully underexplored. In the current investigation, we administrated LIPUS treatment to injured skeletal muscles and C2C12 myoblasts over five consecutive days. Muscle samples were collected on days 6 and 30 post-injury for an in-depth histological and molecular assessment, both in vivo and in vitro with immunofluorescence analysis. During the acute injury phase, LIPUS treatment significantly augmented the satellite cell population, concurrently enhancing the number and size of newly formed myofibers whilst reducing fibrosis levels. At 30 days post-injury, the LIPUS-treated group demonstrated a more robust satellite cell pool and a higher myofiber count, suggesting that early LIPUS intervention facilitates satellite cell proliferation and differentiation, thereby promoting long-term recovery. Additionally, LIPUS markedly accelerated C2C12 myoblast differentiation, with observed increases in AMPK phosphorylation in myoblasts, leading to elevated expression of Glut4 and PGC-1α, and subsequent glucose uptake and mitochondrial biogenesis. These findings imply that LIPUS-induced modulation of myoblasts may culminate in enhanced cellular energy availability, laying a theoretical groundwork for employing LIPUS in ameliorating skeletal muscle regeneration post-injury. NEW & NOTEWORTHY: Utilizing the cardiotoxin (CTX) muscle injury model, we investigated the influence of LIPUS on satellite cell homeostasis and skeletal muscle regeneration. Our findings indicate that LIPUS promotes satellite cell proliferation and differentiation, thereby facilitating skeletal muscle repair. Additionally, in vitro investigations lend credence to the hypothesis that the regulatory effect of LIPUS on satellite cells may be attributed to its capability to enhance cellular energy metabolism.
Collapse
Affiliation(s)
- Huimin Duan
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shujie Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Anesthesiology, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528244, Guangdong, China
| | - Xudong Mai
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Liping Fu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Liujing Huang
- Medical Affairs Department, Guangzhou Betrue Technology Co., Ltd, Guangzhou 510700, China
| | - Lanling Xiao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Miaomiao Liao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hong Chen
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Gang Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China.
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Anesthesiology, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528244, Guangdong, China; Department of Internal Medicine, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China; Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; College of Life and Health Sciences, Guangdong Industry Polytechnic, Guangzhou, Guangdong 510300, China.
| |
Collapse
|
7
|
Rota Graziosi E, François S, Nasser F, Gauthier M, Oger M, Favier AL, Drouet M, Jullien N, Riccobono D. Comparison of Three Antagonists of Hedgehog Pathway to Promote Skeletal Muscle Regeneration after High Dose Irradiation. Radiat Res 2024; 201:429-439. [PMID: 38253061 DOI: 10.1667/rade-23-00140.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/01/2023] [Indexed: 01/24/2024]
Abstract
The current geopolitical context has brought the radiological nuclear risk to the forefront of concerns. High-dose localized radiation exposure leads to the development of a musculocutaneous radiation syndrome affecting the skin and subcutaneous muscles. Despite the implementation of a gold standard treatment based on an invasive surgical procedure coupled with autologous cell therapy, a muscular defect frequently persists. Targeting the modulation of the Hedgehog (Hh) signaling pathway appears to be a promising therapeutic approach. Activation of this pathway enhances cell survival and promotes proliferation after irradiation, while inhibition by Cyclopamine facilitates differentiation. In this study, we compared the effects of three antagonists of Hh, Cyclopamine (CA), Vismodegib (VDG) and Sonidegib (SDG) on differentiation. A stable cell line of murine myoblasts, C2C12, was exposed to X-ray radiation (5 Gy) and treated with CA, VDG or SDG. Analysis of proliferation, survival (apoptosis), morphology, myogenesis genes expression and proteins production were performed. According to the results, VDG does not have a significant impact on C2C12 cells. SDG increases the expression/production of differentiation markers to a similar extent as CA, while morphologically, SDG proves to be more effective than CA. To conclude, SDG can be used in the same way as CA but already has a marketing authorization with an indication against basal cell cancers, facilitating their use in vivo. This proof of concept demonstrates that SDG represents a promising alternative to CA to promotes differentiation of murine myoblasts. Future studies on isolated and cultured satellite cells and in vivo will test this proof of concept.
Collapse
Affiliation(s)
- Emmanuelle Rota Graziosi
- IRBA, French Armed Forces Biomedical Research Institute, Radiobiology unit, Brétigny-sur-Orge, France
| | - Sabine François
- IRBA, French Armed Forces Biomedical Research Institute, Radiobiology unit, Brétigny-sur-Orge, France
- INSERM, UMR1296, Radiations: Defense, Health, Environment, Lyon and Brétigny-sur-Orge, France
| | - Farah Nasser
- IRBA, French Armed Forces Biomedical Research Institute, Radiobiology unit, Brétigny-sur-Orge, France
| | - Michel Gauthier
- IRBA, French Armed Forces Biomedical Research Institute, Radiobiology unit, Brétigny-sur-Orge, France
| | - Myriam Oger
- IRBA, French Armed Forces Biomedical Research Institute, Imagery Unit, Department of Platforms and Technology Research, Brétigny-sur-Orge, France
| | - Anne-Laure Favier
- IRBA, French Armed Forces Biomedical Research Institute, Imagery Unit, Department of Platforms and Technology Research, Brétigny-sur-Orge, France
| | - Michel Drouet
- INSERM, UMR1296, Radiations: Defense, Health, Environment, Lyon and Brétigny-sur-Orge, France
- IRBA, French Armed Forces Biomedical Research Institute, Radiations Bioeffects Department, Brétigny-sur-Orge, France
| | - Nicolas Jullien
- IRBA, French Armed Forces Biomedical Research Institute, Radiobiology unit, Brétigny-sur-Orge, France
| | - Diane Riccobono
- INSERM, UMR1296, Radiations: Defense, Health, Environment, Lyon and Brétigny-sur-Orge, France
- IRBA, French Armed Forces Biomedical Research Institute, Radiations Bioeffects Department, Brétigny-sur-Orge, France
| |
Collapse
|
8
|
Jiogo H, Crist C. Navigating translational control of gene expression in satellite cells. Curr Top Dev Biol 2024; 158:253-277. [PMID: 38670709 DOI: 10.1016/bs.ctdb.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Satellite cells, named for their satellite position around the sarcolemma of the myofibre, are responsible for skeletal muscle regeneration. Satellite cells normally reside in a quiescent state, but rapidly activate the myogenic program and the cell cycle in response to injury. Translational control of gene expression has emerged as an important regulator of satellite cell activity. Quiescent satellite cells maintain low levels of protein synthesis and selectively translate specific mRNAs to conserve limited energy. Activated satellite cells rapidly restore global protein synthesis to meet the demands of proliferating myogenic progenitors that participate in muscle repair. We propose a model by which translational control enables rapid protein level changes in response to injury-induced environmental shifts, serving as both a brake mechanism during quiescence and an accelerator for injury response. In this Chapter, we navigate the processing, translation and metabolism of newly transcribed mRNAs. We review the modifications of mRNA that occur during mRNA processing in the nucleus of satellite cells, and illustrate how these modifications impact the translation and stability of mRNAs. In the cytoplasm, we review how pathways work in concert to regulate protein synthesis globally, while trans acting microRNAs and RNA binding proteins modify specific mRNA translation within a context of tightly regulated protein synthesis. While navigating translational control of gene expression in satellite cells, this chapter reveals that despite significant progress, the field remains nascent in the broader scope of translational control in cell biology. We propose that future investigations will benefit from incorporating emerging global analyses to study translational control of gene expression in rare satellite cells, and we pose unanswered questions that warrant future exploration.
Collapse
Affiliation(s)
- Holly Jiogo
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Colin Crist
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.
| |
Collapse
|
9
|
Blanc RS, Shah N, Salama NAS, Meng FW, Mousaei A, Yang BA, Aguilar CA, Chakkalakal JV, Onukwufor JO, Murphy PJ, Calvi L, Dirksen R. Epigenetic erosion of H4K20me1 induced by inflammation drives aged stem cell ferroptosis. RESEARCH SQUARE 2024:rs.3.rs-3937628. [PMID: 38410478 PMCID: PMC10896381 DOI: 10.21203/rs.3.rs-3937628/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Aging is associated with a decline in stem cell functionality and number across the organism. In this study, we aimed to further unravel Muscle Stem Cells (MuSCs) aging by assessing how systemic factors influence MuSC fate decisions through long-term epigenetic landscape remodelling. As aging is intricately linked to a pro-inflammatory shift, we studied the epigenetic effects of inflammatory signals in MuSCs and measured decreased H4K20me1 levels. This loss disrupts MuSC quiescence, largely through epigenetic silencing of Notch target genes. In the setting of inflammatory signals or aging, the lack of Kmt5a and the subsequent absence of de novoH4K20me1 culminate in cell death by ferroptosis. Aged MuSCs manifest abnormal iron metabolism and reduced Gpx4 levels, resulting in the accumulation of intracellular iron, increased reactive oxygen species, genomic instability, and lipid peroxidation. We showed that ferroptosis is the predominant mode of cell death in aged MuSCs, with remarkably high levels of lipid peroxidation; a phenomenon we also observed in aged hematopoietic stem cells. Implementing preventative strategies to inhibit systemic inflammation prevented aged MuSC ferroptosis, preserving their numbers and regenerative capabilities. This intervention significantly enhanced aged muscle regeneration and strength recovery and extended both lifespan and healthspan in mice. This study delineates a previously underappreciated fate trajectory for stem cell aging, and offers meaningful insights into the treatment of age-related disorders.
Collapse
|
10
|
Careccia G, Mangiavini L, Cirillo F. Regulation of Satellite Cells Functions during Skeletal Muscle Regeneration: A Critical Step in Physiological and Pathological Conditions. Int J Mol Sci 2023; 25:512. [PMID: 38203683 PMCID: PMC10778731 DOI: 10.3390/ijms25010512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Skeletal muscle regeneration is a complex process involving the generation of new myofibers after trauma, competitive physical activity, or disease. In this context, adult skeletal muscle stem cells, also known as satellite cells (SCs), play a crucial role in regulating muscle tissue homeostasis and activating regeneration. Alterations in their number or function have been associated with various pathological conditions. The main factors involved in the dysregulation of SCs' activity are inflammation, oxidative stress, and fibrosis. This review critically summarizes the current knowledge on the role of SCs in skeletal muscle regeneration. It examines the changes in the activity of SCs in three of the most common and severe muscle disorders: sarcopenia, muscular dystrophy, and cancer cachexia. Understanding the molecular mechanisms involved in their dysregulations is essential for improving current treatments, such as exercise, and developing personalized approaches to reactivate SCs.
Collapse
Affiliation(s)
- Giorgia Careccia
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Laura Mangiavini
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Federica Cirillo
- IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
- Institute for Molecular and Translational Cardiology (IMTC), 20097 San Donato Milanese, Italy
| |
Collapse
|
11
|
Hung M, Lo HF, Jones GEL, Krauss RS. The muscle stem cell niche at a glance. J Cell Sci 2023; 136:jcs261200. [PMID: 38149870 PMCID: PMC10785660 DOI: 10.1242/jcs.261200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Skeletal muscle stem cells (MuSCs, also called satellite cells) are the source of the robust regenerative capability of this tissue. The hallmark property of MuSCs at homeostasis is quiescence, a reversible state of cell cycle arrest required for long-term preservation of the stem cell population. MuSCs reside between an individual myofiber and an enwrapping basal lamina, defining the immediate MuSC niche. Additional cell types outside the basal lamina, in the interstitial space, also contribute to niche function. Quiescence is actively maintained by multiple niche-derived signals, including adhesion molecules presented from the myofiber surface and basal lamina, as well as soluble signaling factors produced by myofibers and interstitial cell types. In this Cell Science at a Glance article and accompanying poster, we present the most recent information on how niche signals promote MuSC quiescence and provide perspectives for further research.
Collapse
Affiliation(s)
- Margaret Hung
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hsiao-Fan Lo
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Grace E. L. Jones
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert S. Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
12
|
Endo T. Postnatal skeletal muscle myogenesis governed by signal transduction networks: MAPKs and PI3K-Akt control multiple steps. Biochem Biophys Res Commun 2023; 682:223-243. [PMID: 37826946 DOI: 10.1016/j.bbrc.2023.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Skeletal muscle myogenesis represents one of the most intensively and extensively examined systems of cell differentiation, tissue formation, and regeneration. Muscle regeneration provides an in vivo model system of postnatal myogenesis. It comprises multiple steps including muscle stem cell (or satellite cell) quiescence, activation, migration, myogenic determination, myoblast proliferation, myocyte differentiation, myofiber maturation, and hypertrophy. A variety of extracellular signaling and subsequent intracellular signal transduction pathways or networks govern the individual steps of postnatal myogenesis. Among them, MAPK pathways (the ERK, JNK, p38 MAPK, and ERK5 pathways) and PI3K-Akt signaling regulate multiple steps of myogenesis. Ca2+, cytokine, and Wnt signaling also participate in several myogenesis steps. These signaling pathways often control cell cycle regulatory proteins or the muscle-specific MyoD family and the MEF2 family of transcription factors. This article comprehensively reviews molecular mechanisms of the individual steps of postnatal skeletal muscle myogenesis by focusing on signal transduction pathways or networks. Nevertheless, no or only a partial signaling molecules or pathways have been identified in some responses during myogenesis. The elucidation of these unidentified signaling molecules and pathways leads to an extensive understanding of the molecular mechanisms of myogenesis.
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
13
|
Martinez-Heredia V, Blackwell D, Sebastian S, Pearson T, Mok GF, Mincarelli L, Utting C, Folkes L, Poeschl E, Macaulay I, Mayer U, Münsterberg A. Absence of the primary cilia formation gene Talpid3 impairs muscle stem cell function. Commun Biol 2023; 6:1121. [PMID: 37925530 PMCID: PMC10625638 DOI: 10.1038/s42003-023-05503-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023] Open
Abstract
Skeletal muscle stem cells (MuSC) are crucial for tissue homoeostasis and repair after injury. Following activation, they proliferate to generate differentiating myoblasts. A proportion of cells self-renew, re-enter the MuSC niche under the basal lamina outside the myofiber and become quiescent. Quiescent MuSC have a primary cilium, which is disassembled upon cell cycle entry. Ex vivo experiments suggest cilia are important for MuSC self-renewal, however, their requirement for muscle regeneration in vivo remains poorly understood. Talpid3 (TA3) is essential for primary cilia formation and Hedgehog (Hh) signalling. Here we use tamoxifen-inducible conditional deletion of TA3 in MuSC (iSC-KO) and show that regeneration is impaired in response to cytotoxic injury. Depletion of MuSC after regeneration suggests impaired self-renewal, also consistent with an exacerbated phenotype in TA3iSC-KO mice after repeat injury. Single cell transcriptomics of MuSC progeny isolated from myofibers identifies components of several signalling pathways, which are deregulated in absence of TA3, including Hh and Wnt. Pharmacological activation of Wnt restores muscle regeneration, while purmorphamine, an activator of the Smoothened (Smo) co-receptor in the Hh pathway, has no effect. Together, our data show that TA3 and primary cilia are important for MuSC self-renewal and pharmacological treatment can efficiently restore muscle regeneration.
Collapse
Affiliation(s)
- Victor Martinez-Heredia
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Barcelona Institute for Science & Technology, Center for Genome Regulation CRG, Dr Aiguader 88, 08003, Barcelona, Spain
| | - Danielle Blackwell
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Alberta Children's Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Sujith Sebastian
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Clinical Biotechnology Center, NHSBS, Bath, UK
| | - Timothy Pearson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Gi Fay Mok
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Laura Mincarelli
- The Earlham Institute, Norwich Research Park, Norwich, UK
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Saffron Walden, CB10 1RQ, UK
| | | | - Leighton Folkes
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Ernst Poeschl
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Iain Macaulay
- The Earlham Institute, Norwich Research Park, Norwich, UK
| | - Ulrike Mayer
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
14
|
Peng J, Han L, Liu B, Song J, Wang Y, Wang K, Guo Q, Liu X, Li Y, Zhang J, Wu W, Li S, Fu X, Zhuang CL, Zhang W, Suo S, Hu P, Zhao Y. Gli1 marks a sentinel muscle stem cell population for muscle regeneration. Nat Commun 2023; 14:6993. [PMID: 37914731 PMCID: PMC10620419 DOI: 10.1038/s41467-023-42837-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023] Open
Abstract
Adult skeletal muscle regeneration is mainly driven by muscle stem cells (MuSCs), which are highly heterogeneous. Although recent studies have started to characterize the heterogeneity of MuSCs, whether a subset of cells with distinct exists within MuSCs remains unanswered. Here, we find that a population of MuSCs, marked by Gli1 expression, is required for muscle regeneration. The Gli1+ MuSC population displays advantages in proliferation and differentiation both in vitro and in vivo. Depletion of this population leads to delayed muscle regeneration, while transplanted Gli1+ MuSCs support muscle regeneration more effectively than Gli1- MuSCs. Further analysis reveals that even in the uninjured muscle, Gli1+ MuSCs have elevated mTOR signaling activity, increased cell size and mitochondrial numbers compared to Gli1- MuSCs, indicating Gli1+ MuSCs are displaying the features of primed MuSCs. Moreover, Gli1+ MuSCs greatly contribute to the formation of GAlert cells after muscle injury. Collectively, our findings demonstrate that Gli1+ MuSCs represents a distinct MuSC population which is more active in the homeostatic muscle and enters the cell cycle shortly after injury. This population functions as the tissue-resident sentinel that rapidly responds to injury and initiates muscle regeneration.
Collapse
Affiliation(s)
- Jiayin Peng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, PR China
| | - Lili Han
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, PR China
| | - Biao Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, PR China
| | - Jiawen Song
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, PR China
| | - Yuang Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, PR China
| | - Kunpeng Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, PR China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, PR China
| | - Qian Guo
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, PR China
| | - XinYan Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, PR China
| | - Yu Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, PR China
| | - Jujin Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, PR China
| | - Wenqing Wu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, PR China
| | - Sheng Li
- Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, PR China
| | - Xin Fu
- Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, PR China
| | - Cheng-le Zhuang
- The 10th People's Hospital affiliated to Tongji University, Shanghai, 200072, PR China
| | - Weikang Zhang
- Guangzhou Laboratory-Guangzhou Medical University, Guangzhou, 510005, PR China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Shengbao Suo
- Guangzhou Laboratory-Guangzhou Medical University, Guangzhou, 510005, PR China
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, 510005, PR China
| | - Ping Hu
- Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, PR China.
- The 10th People's Hospital affiliated to Tongji University, Shanghai, 200072, PR China.
- Guangzhou Laboratory-Guangzhou Medical University, Guangzhou, 510005, PR China.
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510005, PR China.
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, PR China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, PR China.
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, PR China.
| |
Collapse
|
15
|
Bouche A, Borner B, Richard C, Grand Y, Hannouche D, Laumonier T. In vitro-generated human muscle reserve cells are heterogeneous for Pax7 with distinct molecular states and metabolic profiles. Stem Cell Res Ther 2023; 14:243. [PMID: 37679820 PMCID: PMC10486062 DOI: 10.1186/s13287-023-03483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND The capacity of skeletal muscles to regenerate relies on Pax7+ muscle stem cells (MuSC). While in vitro-amplified MuSC are activated and lose part of their regenerative capacity, in vitro-generated human muscle reserve cells (MuRC) are very similar to quiescent MuSC with properties required for their use in cell-based therapies. METHODS In the present study, we investigated the heterogeneity of human MuRC and characterized their molecular signature and metabolic profile. RESULTS We observed that Notch signaling is active and essential for the generation of quiescent human Pax7+ MuRC in vitro. We also revealed, by immunofluorescence and flow cytometry, two distinct subpopulations of MuRC distinguished by their relative Pax7 expression. After 48 h in differentiation medium (DM), the Pax7High subpopulation represented 35% of the total MuRC pool and this percentage increased to 61% after 96 h in DM. Transcriptomic analysis revealed that Pax7High MuRC were less primed for myogenic differentiation as compared to Pax7Low MuRC and displayed a metabolic shift from glycolysis toward fatty acid oxidation. The bioenergetic profile of human MuRC displayed a 1.5-fold decrease in glycolysis, basal respiration and ATP-linked respiration as compared to myoblasts. We also observed that AMPKα1 expression was significantly upregulated in human MuRC that correlated with an increased phosphorylation of acetyl-CoA carboxylase (ACC). Finally, we showed that fatty acid uptake was increased in MuRC as compared to myoblasts, whereas no changes were observed for glucose uptake. CONCLUSIONS Overall, these data reveal that the quiescent MuRC pool is heterogeneous for Pax7 with a Pax7High subpopulation being in a deeper quiescent state, less committed to differentiation and displaying a reduced metabolic activity. Altogether, our data suggest that human Pax7High MuRC may constitute an appropriate stem cell source for potential therapeutic applications in skeletal muscle diseases.
Collapse
Affiliation(s)
- Axelle Bouche
- Cell Therapy and Musculoskeletal Disorders Laboratory, Department of Orthopedic Surgery, Geneva University Hospitals and Faculty of Medicine, University Medical Center, 1 rue Michel Servet, 1211, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Geneva, Switzerland
| | - Benoit Borner
- Cell Therapy and Musculoskeletal Disorders Laboratory, Department of Orthopedic Surgery, Geneva University Hospitals and Faculty of Medicine, University Medical Center, 1 rue Michel Servet, 1211, Geneva, Switzerland
| | - Chloé Richard
- Cell Therapy and Musculoskeletal Disorders Laboratory, Department of Orthopedic Surgery, Geneva University Hospitals and Faculty of Medicine, University Medical Center, 1 rue Michel Servet, 1211, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Geneva, Switzerland
| | - Ysaline Grand
- Cell Therapy and Musculoskeletal Disorders Laboratory, Department of Orthopedic Surgery, Geneva University Hospitals and Faculty of Medicine, University Medical Center, 1 rue Michel Servet, 1211, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Geneva, Switzerland
| | - Didier Hannouche
- Cell Therapy and Musculoskeletal Disorders Laboratory, Department of Orthopedic Surgery, Geneva University Hospitals and Faculty of Medicine, University Medical Center, 1 rue Michel Servet, 1211, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Geneva, Switzerland
| | - Thomas Laumonier
- Cell Therapy and Musculoskeletal Disorders Laboratory, Department of Orthopedic Surgery, Geneva University Hospitals and Faculty of Medicine, University Medical Center, 1 rue Michel Servet, 1211, Geneva, Switzerland.
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Geneva, Switzerland.
| |
Collapse
|
16
|
Norris AM, Appu AB, Johnson CD, Zhou LY, McKellar DW, Renault MA, Hammers D, Cosgrove BD, Kopinke D. Hedgehog signaling via its ligand DHH acts as cell fate determinant during skeletal muscle regeneration. Nat Commun 2023; 14:3766. [PMID: 37355632 PMCID: PMC10290686 DOI: 10.1038/s41467-023-39506-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
Successful muscle regeneration relies on the interplay of multiple cell populations. However, the signals required for this coordinated intercellular crosstalk remain largely unknown. Here, we describe how the Hedgehog (Hh) signaling pathway controls the fate of fibro/adipogenic progenitors (FAPs), the cellular origin of intramuscular fat (IMAT) and fibrotic scar tissue. Using conditional mutagenesis and pharmacological Hh modulators in vivo and in vitro, we identify DHH as the key ligand that acts as a potent adipogenic brake by preventing the adipogenic differentiation of FAPs. Hh signaling also impacts muscle regeneration, albeit indirectly through induction of myogenic factors in FAPs. Our results also indicate that ectopic and sustained Hh activation forces FAPs to adopt a fibrogenic fate resulting in widespread fibrosis. In this work, we reveal crucial post-developmental functions of Hh signaling in balancing tissue regeneration and fatty fibrosis. Moreover, they provide the exciting possibility that mis-regulation of the Hh pathway with age and disease could be a major driver of pathological IMAT formation.
Collapse
Affiliation(s)
- Alessandra M Norris
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA
| | - Ambili Bai Appu
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA
| | - Connor D Johnson
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA
| | - Lylybell Y Zhou
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA
| | - David W McKellar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Marie-Ange Renault
- Biology of Cardiovascular Diseases, INSERM, University of Bordeaux, Pessac, France
| | - David Hammers
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA
| | - Benjamin D Cosgrove
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
17
|
Feng X, Wang AH, Juan AH, Ko KD, Jiang K, Riparini G, Ciuffoli V, Kaba A, Lopez C, Naz F, Jarnik M, Aliberti E, Hu S, Segalés J, Khateb M, Acevedo-Luna N, Randazzo D, Cheung TH, Muñoz-Cánoves P, Dell'Orso S, Sartorelli V. Polycomb Ezh1 maintains murine muscle stem cell quiescence through non-canonical regulation of Notch signaling. Dev Cell 2023; 58:1052-1070.e10. [PMID: 37105173 PMCID: PMC10330238 DOI: 10.1016/j.devcel.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/08/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
Organismal homeostasis and regeneration are predicated on committed stem cells that can reside for long periods in a mitotically dormant but reversible cell-cycle arrest state defined as quiescence. Premature escape from quiescence is detrimental, as it results in stem cell depletion, with consequent defective tissue homeostasis and regeneration. Here, we report that Polycomb Ezh1 confers quiescence to murine muscle stem cells (MuSCs) through a non-canonical function. In the absence of Ezh1, MuSCs spontaneously exit quiescence. Following repeated injuries, the MuSC pool is progressively depleted, resulting in failure to sustain proper muscle regeneration. Rather than regulating repressive histone H3K27 methylation, Ezh1 maintains gene expression of the Notch signaling pathway in MuSCs. Selective genetic reconstitution of the Notch signaling corrects stem cell number and re-establishes quiescence of Ezh1-/- MuSCs.
Collapse
Affiliation(s)
- Xuesong Feng
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - A Hongjun Wang
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Aster H Juan
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Kyung Dae Ko
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Kan Jiang
- Biodata Mining & Discovery Section, NIAMS, NIH, Bethesda, MD, USA
| | - Giulia Riparini
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Veronica Ciuffoli
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Aissah Kaba
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Christopher Lopez
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Faiza Naz
- Genomic Technology Section, NIAMS, NIH, Bethesda, MD, USA
| | - Michal Jarnik
- Cell Biology and Neurobiology Branch, NICHD, NIH, Bethesda, MD, USA
| | - Elizabeth Aliberti
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Shenyuan Hu
- Division of Life Sciences, State Key Laboratory of Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jessica Segalés
- Department of Medicine and Life Sciences (MELIS), Pompeu Fabra University (UPF), Barcelona, Spain
| | - Mamduh Khateb
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Natalia Acevedo-Luna
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | | | - Tom H Cheung
- Division of Life Sciences, State Key Laboratory of Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences (MELIS), Pompeu Fabra University (UPF), Barcelona, Spain; Altos Labs Inc, San Diego, CA, USA
| | | | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA.
| |
Collapse
|
18
|
Atmakuru PS, Dhawan J. The cilium-centrosome axis in coupling cell cycle exit and cell fate. J Cell Sci 2023; 136:308872. [PMID: 37144419 DOI: 10.1242/jcs.260454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
The centrosome is an evolutionarily conserved, ancient organelle whose role in cell division was first described over a century ago. The structure and function of the centrosome as a microtubule-organizing center, and of its extracellular extension - the primary cilium - as a sensory antenna, have since been extensively studied, but the role of the cilium-centrosome axis in cell fate is still emerging. In this Opinion piece, we view cellular quiescence and tissue homeostasis from the vantage point of the cilium-centrosome axis. We focus on a less explored role in the choice between distinct forms of mitotic arrest - reversible quiescence and terminal differentiation, which play distinct roles in tissue homeostasis. We outline evidence implicating the centrosome-basal body switch in stem cell function, including how the cilium-centrosome complex regulates reversible versus irreversible arrest in adult skeletal muscle progenitors. We then highlight exciting new findings in other quiescent cell types that suggest signal-dependent coupling of nuclear and cytoplasmic events to the centrosome-basal body switch. Finally, we propose a framework for involvement of this axis in mitotically inactive cells and identify future avenues for understanding how the cilium-centrosome axis impacts central decisions in tissue homeostasis.
Collapse
Affiliation(s)
- Priti S Atmakuru
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Jyotsna Dhawan
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
19
|
Sincennes MC, Brun CE. [GLI3 processing in the primary cilia of muscle stem cells controls their quiescence state]. Med Sci (Paris) 2023; 39:325-327. [PMID: 37094263 DOI: 10.1051/medsci/2023040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Affiliation(s)
- Marie-Claude Sincennes
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), unité de recherche mixte INRS-UQAC en santé durable, Laval, Canada
| | - Caroline E Brun
- Institut NeuroMyoGène - Physiopathologie et génétique du neurone et du muscle (INMG-PGNM), CNRS UMR5261, Inserm U1315, université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
20
|
Krauss RS, Kann AP. Muscle stem cells get a new look: Dynamic cellular projections as sensors of the stem cell niche. Bioessays 2023; 45:e2200249. [PMID: 36916774 PMCID: PMC10170654 DOI: 10.1002/bies.202200249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/15/2023]
Abstract
Cellular mechanisms whereby quiescent stem cells sense tissue injury and transition to an activated state are largely unknown. Quiescent skeletal muscle stem cells (MuSCs, also called satellite cells) have elaborate, heterogeneous projections that rapidly retract in response to muscle injury. They may therefore act as direct sensors of their niche environment. Retraction is driven by a Rac-to-Rho GTPase activity switch that promotes downstream MuSC activation events. These and other observations lead to several hypotheses: (1) projections are morphologically dynamic at quiescence, providing a surveillance function for muscle damage; (2) quiescent projection dynamics are regulated by the relative balance of Rac and Rho activities promoted by niche-derived cues; (3) projections, particularly their associated filopodia, sense tissue damage via changes to the biomechanical properties of the niche and/or detection of signaling cues released by damaged myofibers; and (4) the dynamic nature of projections result in a population of MuSCs with heterogeneous functional properties. These concepts may extend to other types of quiescent stem cells, as well as prove useful in translational research settings.
Collapse
Affiliation(s)
- Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Allison P Kann
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
21
|
Hekmatnejad B, Rudnicki MA. Transplantation to study satellite cell heterogeneity in skeletal muscle. Front Cell Dev Biol 2022; 10:902225. [PMID: 36092722 PMCID: PMC9448869 DOI: 10.3389/fcell.2022.902225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022] Open
Abstract
Skeletal muscle has a remarkable capacity to regenerate throughout life, which is mediated by its resident muscle stem cells, also called satellite cells. Satellite cells, located periphery to the muscle fibers and underneath the basal lamina, are an indispensable cellular source for muscle regeneration. Satellite cell transplantation into regenerating muscle contributes robustly to muscle repair, thereby indicating that satellite cells indeed function as adult muscle stem cells. Moreover, satellite cells are a heterogenous population in adult tissue, with subpopulations that can be distinguished based on gene expression, cell-cycle progression, ability to self-renew, and bi-potential ability. Transplantation assays provide a powerful tool to better understand satellite cell function in vivo enabling the separation of functionally distinct satellite cell subpopulations. In this review, we focus on transplantation strategies to explore satellite cells’ functional heterogeneity, approaches targeting the recipient tissue to improve transplantation efficiency, and common strategies to monitor the behaviour of the transplanted cells. Lastly, we discuss some recent approaches to overcome challenges to enhance the transplantation potential of muscle stem cells.
Collapse
Affiliation(s)
- Bahareh Hekmatnejad
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael A. Rudnicki
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Michael A. Rudnicki,
| |
Collapse
|