2
|
Ni S, Harris B, Gong P. Distributed and dynamical communication: a mechanism for flexible cortico-cortical interactions and its functional roles in visual attention. Commun Biol 2024; 7:550. [PMID: 38719883 PMCID: PMC11078951 DOI: 10.1038/s42003-024-06228-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Perceptual and cognitive processing relies on flexible communication among cortical areas; however, the underlying neural mechanism remains unclear. Here we report a mechanism based on the realistic spatiotemporal dynamics of propagating wave patterns in neural population activity. Using a biophysically plausible, multiarea spiking neural circuit model, we demonstrate that these wave patterns, characterized by their rich and complex dynamics, can account for a wide variety of empirically observed neural processes. The coordinated interactions of these wave patterns give rise to distributed and dynamic communication (DDC) that enables flexible and rapid routing of neural activity across cortical areas. We elucidate how DDC unifies the previously proposed oscillation synchronization-based and subspace-based views of interareal communication, offering experimentally testable predictions that we validate through the analysis of Allen Institute Neuropixels data. Furthermore, we demonstrate that DDC can be effectively modulated during attention tasks through the interplay of neuromodulators and cortical feedback loops. This modulation process explains many neural effects of attention, underscoring the fundamental functional role of DDC in cognition.
Collapse
Affiliation(s)
- Shencong Ni
- School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Brendan Harris
- School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Pulin Gong
- School of Physics, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Terada Y, Toyoizumi T. Chaotic neural dynamics facilitate probabilistic computations through sampling. Proc Natl Acad Sci U S A 2024; 121:e2312992121. [PMID: 38648479 PMCID: PMC11067032 DOI: 10.1073/pnas.2312992121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/13/2024] [Indexed: 04/25/2024] Open
Abstract
Cortical neurons exhibit highly variable responses over trials and time. Theoretical works posit that this variability arises potentially from chaotic network dynamics of recurrently connected neurons. Here, we demonstrate that chaotic neural dynamics, formed through synaptic learning, allow networks to perform sensory cue integration in a sampling-based implementation. We show that the emergent chaotic dynamics provide neural substrates for generating samples not only of a static variable but also of a dynamical trajectory, where generic recurrent networks acquire these abilities with a biologically plausible learning rule through trial and error. Furthermore, the networks generalize their experience in the stimulus-evoked samples to the inference without partial or all sensory information, which suggests a computational role of spontaneous activity as a representation of the priors as well as a tractable biological computation for marginal distributions. These findings suggest that chaotic neural dynamics may serve for the brain function as a Bayesian generative model.
Collapse
Affiliation(s)
- Yu Terada
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, Saitama351-0198, Japan
- Department of Neurobiology, University of California, San Diego, La Jolla, CA92093
- The Institute for Physics of Intelligence, The University of Tokyo, Tokyo113-0033, Japan
| | - Taro Toyoizumi
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, Saitama351-0198, Japan
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo113-8656, Japan
| |
Collapse
|
4
|
Chen D, Axmacher N, Wang L. Grid codes underlie multiple cognitive maps in the human brain. Prog Neurobiol 2024; 233:102569. [PMID: 38232782 DOI: 10.1016/j.pneurobio.2024.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Grid cells fire at multiple positions that organize the vertices of equilateral triangles tiling a 2D space and are well studied in rodents. The last decade witnessed rapid progress in two other research lines on grid codes-empirical studies on distributed human grid-like representations in physical and multiple non-physical spaces, and cognitive computational models addressing the function of grid cells based on principles of efficient and predictive coding. Here, we review the progress in these fields and integrate these lines into a systematic organization. We also discuss the coordinate mechanisms of grid codes in the human entorhinal cortex and medial prefrontal cortex and their role in neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Dong Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, 100101, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, 100101, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
5
|
Fateev I, Polezhaev A. Chimera states in a chain of superdiffusively coupled neurons. CHAOS (WOODBURY, N.Y.) 2023; 33:103110. [PMID: 37831792 DOI: 10.1063/5.0168422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Two- and three-component systems of superdiffusion equations describing the dynamics of action potential propagation in a chain of non-locally interacting neurons with Hindmarsh-Rose nonlinear functions have been considered. Non-local couplings based on the fractional Laplace operator describing superdiffusion kinetics are found to support chimeras. In turn, the system with local couplings, based on the classical Laplace operator, shows synchronous behavior. For several parameters responsible for the activation properties of neurons, it is shown that the structure and evolution of chimera states depend significantly on the fractional Laplacian exponent, reflecting non-local properties of the couplings. For two-component systems, an anisotropic transition to full incoherence in the parameter space responsible for non-locality of the first and second variables is established. Introducing a third slow variable induces a gradual transition to incoherence via additional chimera states formation. We also discuss the possible causes of chimera states formation in such a system of non-locally interacting neurons and relate them with the properties of the fractional Laplace operator in a system with global coupling.
Collapse
Affiliation(s)
- I Fateev
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Prospekt, Moscow 119991, Russian Federation
| | - A Polezhaev
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Prospekt, Moscow 119991, Russian Federation
| |
Collapse
|
6
|
Pines A, Keller AS, Larsen B, Bertolero M, Ashourvan A, Bassett DS, Cieslak M, Covitz S, Fan Y, Feczko E, Houghton A, Rueter AR, Saggar M, Shafiei G, Tapera TM, Vogel J, Weinstein SM, Shinohara RT, Williams LM, Fair DA, Satterthwaite TD. Development of top-down cortical propagations in youth. Neuron 2023; 111:1316-1330.e5. [PMID: 36803653 PMCID: PMC10121821 DOI: 10.1016/j.neuron.2023.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/08/2022] [Accepted: 01/18/2023] [Indexed: 02/19/2023]
Abstract
Hierarchical processing requires activity propagating between higher- and lower-order cortical areas. However, functional neuroimaging studies have chiefly quantified fluctuations within regions over time rather than propagations occurring over space. Here, we leverage advances in neuroimaging and computer vision to track cortical activity propagations in a large sample of youth (n = 388). We delineate cortical propagations that systematically ascend and descend a cortical hierarchy in all individuals in our developmental cohort, as well as in an independent dataset of densely sampled adults. Further, we demonstrate that top-down, descending hierarchical propagations become more prevalent with greater demands for cognitive control as well as with development in youth. These findings emphasize that hierarchical processing is reflected in the directionality of propagating cortical activity and suggest top-down propagations as a potential mechanism of neurocognitive maturation in youth.
Collapse
Affiliation(s)
- Adam Pines
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA; The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Arielle S Keller
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Bart Larsen
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Maxwell Bertolero
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Arian Ashourvan
- Department of Psychology, The University of Kansas, Lawrence, KS 66045, USA
| | - Dani S Bassett
- Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physics & Astronomy, The University of Pennsylvania, Philadelphia, PA 19104, USA; Santa Fe Institute, Santa Fe, NM 87051, USA
| | - Matthew Cieslak
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney Covitz
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Yong Fan
- Department of Radiology, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric Feczko
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55414, USA
| | - Audrey Houghton
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55414, USA
| | - Amanda R Rueter
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55414, USA
| | - Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA
| | - Golia Shafiei
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Tinashe M Tapera
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob Vogel
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah M Weinstein
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55414, USA
| | - Theodore D Satterthwaite
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Masset P, Zavatone-Veth JA, Connor JP, Murthy VN, Pehlevan C. Natural gradient enables fast sampling in spiking neural networks. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 2022; 35:22018-22034. [PMID: 37476623 PMCID: PMC10358281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
For animals to navigate an uncertain world, their brains need to estimate uncertainty at the timescales of sensations and actions. Sampling-based algorithms afford a theoretically-grounded framework for probabilistic inference in neural circuits, but it remains unknown how one can implement fast sampling algorithms in biologically-plausible spiking networks. Here, we propose to leverage the population geometry, controlled by the neural code and the neural dynamics, to implement fast samplers in spiking neural networks. We first show that two classes of spiking samplers-efficient balanced spiking networks that simulate Langevin sampling, and networks with probabilistic spike rules that implement Metropolis-Hastings sampling-can be unified within a common framework. We then show that careful choice of population geometry, corresponding to the natural space of parameters, enables rapid inference of parameters drawn from strongly-correlated high-dimensional distributions in both networks. Our results suggest design principles for algorithms for sampling-based probabilistic inference in spiking neural networks, yielding potential inspiration for neuromorphic computing and testable predictions for neurobiology.
Collapse
Affiliation(s)
- Paul Masset
- Center for Brain Science, Harvard University Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University Cambridge, MA 02138
| | - Jacob A Zavatone-Veth
- Center for Brain Science, Harvard University Cambridge, MA 02138
- Department of Physics, Harvard University Cambridge, MA 02138
| | - J Patrick Connor
- John A. Paulson School of Engineering and Applied Sciences, Harvard University Cambridge, MA 02138
| | - Venkatesh N Murthy
- Center for Brain Science, Harvard University Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University Cambridge, MA 02138
| | - Cengiz Pehlevan
- Center for Brain Science, Harvard University Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University Cambridge, MA 02138
| |
Collapse
|