1
|
Ghosh P, Saikia AK. BF 3·OEt 2-catalyzed/mediated alkyne cyclization: a comprehensive review of heterocycle synthesis with mechanistic insights. Org Biomol Chem 2024; 22:8991-9020. [PMID: 39431437 DOI: 10.1039/d4ob01426j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The quest for efficient and versatile methods for heterocycle synthesis continues to drive innovation in organic chemistry. In this context, the cyclization of alkynes catalyzed or mediated by boron trifluoride diethyl etherate (BF3·OEt2) has emerged as a powerful and widely applicable strategy. This review provides a comprehensive and authoritative overview of BF3·OEt2-catalyzed/mediated alkyne cyclization reactions, covering the scope, mechanisms, and applications of these processes. We discuss the synthesis of a diverse range of heterocyclic compounds, including dihydropyrans, quinolines, dehydropiperidines, oxindoles and others, and highlight the unique advantages of BF3·OEt2 as a catalyst/mediator. Recent advances, challenges, and future directions in this rapidly evolving field are also addressed. This review aims to serve as a valuable resource for synthetic chemists, inspiring further research and applications in this exciting area.
Collapse
Affiliation(s)
- Priya Ghosh
- Department of Chemistry, Ganesh Lal Choudhury College, Borpeta-781315, Assam, India.
| | - Anil K Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
2
|
Xu J, Zhou Y, Liu B. Dicarbofunctionalization of Vinylarenes with Pyridine and Aldehydes via Photocatalytic Hydrogen Atom Transfer. J Org Chem 2024; 89:15877-15883. [PMID: 39397537 DOI: 10.1021/acs.joc.4c02016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
We describe a metal-free and mild three-component reaction utilizing vinylarenes, alkyl aldehydes, and 4-cyanopyridine. In this reaction, the scope of vinylarenes and alkyl aldehydes includes over 40 examples, generating a variety of β-pyridinyl ketones. Moreover, potential applications of this method have been demonstrated by the functionalization of pharmaceutical molecules. An acyl radical is proposed to be produced via a polarity-matched hydrogen atom transfer between alkyl aldehydes and a triplet-state diradical from benzophenone.
Collapse
Affiliation(s)
- Junhua Xu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Yiting Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| |
Collapse
|
3
|
Zhou Y, Xu S, Zhang X, Zhou L, Zheng H, Zhu G. Recent advances of 5- endo-trig radical cyclization: promoting strategies and applications. Chem Commun (Camb) 2024; 60:10098-10111. [PMID: 39177094 DOI: 10.1039/d4cc03302g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
5-endo-trig radical cyclization has long been recognized as one of the most straightforward ways for the construction of densely functionalized five-membered rings. Nevertheless, according to Baldwin's rules, the 5-endo-trig radical cyclization is kinetically disfavored due to stereoelectronic effects and thus usually proceeds via a slow rate, which renders its application a challenging task. In recent years, with the emergence of efficient radical generation methods and effective cyclization strategies, 5-endo-trig radical cyclization has been successfully accelerated to a synthetically useful rate and has been utilized in the access of diverse five-membered carbo- and heterocyclic compounds. This review comprehensively summarizes the methodologies involving the 5-endo-trig radical cyclization process, with particular emphasis on the elucidation of the promoting strategies, which include the polar effect, geometrical constraints, spin delocalization effect, and persistent radical effect. Each of these strategies is discussed in detail, with illustrative examples from recent literature studies to highlight their practical applications and effectiveness. It is anticipated that the in-depth understanding of the 5-endo-trig radical cyclization provided by this review would inspire further innovation of this privileged reaction mode and expand its applications. Moreover, the potent ring-closure-promoting strategies revealed herein would also contribute to achieving other challenges of cyclizations with particular significance for organic synthesis.
Collapse
Affiliation(s)
- Yulu Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang 321004, China.
| | - Sangxuan Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang 321004, China.
| | - Xuemei Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang 321004, China.
| | - Lanxi Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang 321004, China.
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang 321004, China.
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang 321004, China.
- College of Pharmacy, Jinhua University of Vocational Technology, 888 Haitang West Road, Jinhua, Zhejiang 321017, China
| |
Collapse
|
4
|
Beduru S, Huple DB, Kutateladze AG. Complexity-Building Exhaustive Dearomatization of Benzenoid Aromatics within an ESIPT-Initiated Three-Step Photochemical Cascade. Angew Chem Int Ed Engl 2024:e202415176. [PMID: 39265085 DOI: 10.1002/anie.202415176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/14/2024]
Abstract
Dearomative cycloadditions offer rapid access to complex 3D molecular architectures, commonly via a sp2-to-sp3 rehybridization of two atoms of an aromatic ring. Here we report that the 6e π-system of a benzenoid aromatic pendant could be exhaustively depleted within a single photochemical cascade. An implementation of this approach involves the initial dearomative [4+2] cycloaddition of the Excited State Intramolecular Proton Transfer (ESIPT)-generated azaxylylene, followed by two consecutive [2+2] cycloadditions of auxiliary π moieties strategically positioned in the photoprecursor. Such photochemical cascade fully dearomatizes the benzenoid aromatic ring, saturating all six sp2 atoms to yield a complex sp3-rich scaffold with high control of its 3D molecular shape, rendering it a robust platform for rapid systematic mapping of underexplored chemical space. Significant growth of molecular complexity-starting with a modular synthesis of photoprecursors from readily available building blocks-is quantified by Böttcher score calculations.
Collapse
Affiliation(s)
- Srinivas Beduru
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80208
| | - Deepak B Huple
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80208
| | - Andrei G Kutateladze
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80208
| |
Collapse
|
5
|
Marie N, Ma JA, Tognetti V, Cahard D. Photocatalyzed Cascade Hydrogen Atom Transfers for Assembly of Multi-Substituted α-SCF 3 and α-SCF 2H Cyclopentanones. Angew Chem Int Ed Engl 2024; 63:e202407689. [PMID: 38845586 DOI: 10.1002/anie.202407689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 07/23/2024]
Abstract
A photocatalyzed formal (3+2) cycloaddition has been developed to construct original polysubstituted α-SCF3 cyclopentanones in a regio- and diastereoselective manner. This building block approach leverages trifluoromethylthio alkynes and branched/linear aldehydes, as readily available reaction partners, in consecutive hydrogen atom transfers and C-C bond formations. Difluoromethylthio alkynes are also compatible substrates. Furthermore, the potential for telescoped reaction starting from alcohols instead of aldehydes was demonstrated, as well as process automatization and scale-up under continuous microflow conditions. This prompted density functional theory (DFT) calculations to support a radical-mediated cascade process.
Collapse
Affiliation(s)
- Nicolas Marie
- CNRS, UMR 6014 COBRA, Univ Rouen Normandie, INSA Rouen Normandie, Normandie Univ, INC3M FR 3038, F-76000, Rouen, France
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Vincent Tognetti
- CNRS, UMR 6014 COBRA, Univ Rouen Normandie, INSA Rouen Normandie, Normandie Univ, INC3M FR 3038, F-76000, Rouen, France
| | - Dominique Cahard
- CNRS, UMR 6014 COBRA, Univ Rouen Normandie, INSA Rouen Normandie, Normandie Univ, INC3M FR 3038, F-76000, Rouen, France
| |
Collapse
|
6
|
Li SD, Xiong BQ, Tang KW, Zhong LJ, Liu Y. Synthesis of Acylation Polycyclic Derivatives via Regioselective Acylation/Cyclization of 1,7-Dienes with Acyl Oxime Esters. J Org Chem 2024; 89:11233-11243. [PMID: 39052929 DOI: 10.1021/acs.joc.4c00904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A visible-light-induced radical cascade regioselective acylation/cyclization of 1,7-dienes with acyl oxime esters for the preparation of acylation polycyclic compounds via NCR-mediated C-C σ-bond cleavage is established. The transformation involves the cleavage of the C-C σ-bond in acyl oxime esters and selective addition of the electron neutral C═C bonds in 1,7-dienes for the synthesis of acyl polycyclic quinolinone derivatives, not the traditional seven-membered ring products. The strategy offers several advantages, including broad substrate tolerance, no need for bases, hyperstoichiometric radical initiators, and other auxiliaries.
Collapse
Affiliation(s)
- Shun-Dan Li
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
7
|
Luo CM, Yang MQ, Yang DQ, Wu ZQ, Zhou Y, Tian WC, Zhang J, Li Q, Deng C, Wei WT. [3 + 2] Annulation of Vinyl Azides with Aldehydes for the Synthesis of 3-Oxazolines via the [CO + CCN] Strategy. Org Lett 2024; 26:6859-6865. [PMID: 39092611 DOI: 10.1021/acs.orglett.4c02394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Despite the widespread utilizable value of 3-oxazolines, mild and efficient access to such a class of unique structures still remains, to date, a challenge. Herein, we present a [3 + 2] annulation strategy, guided by the retrosynthetic principle of [CO + CCN], that utilizes vinyl azides as the CCN module and aldehydes as the CO module. This approach enables the efficient construction of the 3-oxazoline framework with remarkable features, including operational simplicity, environmental friendliness, and high efficiency. Notably, it solely requires the addition of inexpensive and readily available N-hydroxyphthalimide (NHPI) and air oxygen to obtain the desired product. It also provides a new way to generate the hydroxyl radical, which is produced by the homolysis of peroxycarboxylic acid. In addition, control experiments, X-ray crystallographic analysis, high-resolution mass spectrometry (HRMS), and density functional theory (DFT) calculations afford evidence for the key intermediates (hydroxyl radical, carboxyl radical, imine radical, hydroxyl substituted amide derivatives), further confirming the path for realization of 3-oxazolines.
Collapse
Affiliation(s)
- Chun-Mei Luo
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Ming-Qi Yang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Dong-Qing Yang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Zhong-Qi Wu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Yu Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Wen-Chan Tian
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Jianfeng Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Qiang Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Chao Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| |
Collapse
|
8
|
Hong Y, Qiu J, Wu Z, Xu S, Zheng H, Zhu G. Tetrafluoroisopropylation of alkenes and alkynes enabled by photocatalytic consecutive difluoromethylation with CF 2HSO 2Na. Nat Commun 2024; 15:5685. [PMID: 38971849 PMCID: PMC11227567 DOI: 10.1038/s41467-024-50081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024] Open
Abstract
Direct assembly of complex fluorinated motifs from simple fluorine sources is an attractive frontier of synthetic chemistry. Reported herein is an unconventional protocol for achieving tetrafluoroisopropylation by using commercially available CF2HSO2Na as a convenient source of the tetrafluoroisopropyl [(CF2H)2CH] group, which finds widespread applications in life science and material science. Visible-light-induced hydrotetrafluoroisopropylation of alkenes and carbotetrafluoroisopropylation of alkynes have been thus developed. Various structurally diverse α-tetrafluoroisopropyl carbonyls and cyclopentanones are selectively constructed under mild conditions. A photocatalytic triple difluoromethylation cascade, driven by consecutive reductive radical/polar crossover processes, leads to the direct assembly of a tetrafluoroisopropyl moiety from CF2HSO2Na. This C1-to-C3 fluoroalkylation protocol provides a practical strategy for the rapid construction of polyfluorinated compounds that are otherwise difficult to access, thus significantly enhancing the boundary of fluoroalkylation chemistry.
Collapse
Affiliation(s)
- Yuwei Hong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Jiayan Qiu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Zhenzhen Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Sangxuan Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China.
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China.
| |
Collapse
|
9
|
Li J, Zhou Y, Luo J, Chen H, Qi H, Zheng H, Zhu G. Controllable Synthesis of Cyclopenta[ b]indolines via Photocatalytic Fluoroalkylative Radical Cyclization Cascade of Ynamides. Org Lett 2024. [PMID: 38809572 DOI: 10.1021/acs.orglett.4c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A de novo method for direct construction of cyclopenta[b]indolines via a photocatalytic fluoroalkylative radical cyclization cascade of ynamides has been established, which proceeds via a sequence of radical addition, 1,5-HAT, 5-endo-trig cyclization, intramolecular arylation, and oxidative deprotonation. This protocol allows for the controllable assembly of a tricyclic architecture with three contiguous stereocenters, showcasing its high efficiency, compatibility, and regio- and diastereoselectivity for accessing pharmacologically significant fluoroalkylated cyclopenta[b]indolines. It represents one of the very few examples of tetrafunctionalization of alkynes.
Collapse
Affiliation(s)
- Ji Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yulu Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jinmin Luo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Huiqin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hangkai Qi
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
10
|
Hong BC, Indurmuddam RR. Tetrabutylammonium decatungstate (TBADT), a compelling and trailblazing catalyst for visible-light-induced organic photocatalysis. Org Biomol Chem 2024; 22:3799-3842. [PMID: 38651982 DOI: 10.1039/d4ob00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Tetrabutylammonium decatungstate (TBADT) has recently emerged as an intriguing photocatalyst under visible-light or near-visible-light irradiation in a wide range of organic reactions that were previously not conceivable. Given its ability to absorb visible light and excellent effectiveness in activating unactivated chemical bonds, it is a promising addition to traditional photocatalysts. This review covers some of the contemporary developments in visible-light or near-visible-light photocatalysis reactions enabled by the TBADT catalyst to 2023, with the contents organized by reaction type.
Collapse
Affiliation(s)
- Bor-Cherng Hong
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan.
| | | |
Collapse
|
11
|
Wang L, Zhang J, Li C, Dang W, Guo W, Xie J, Zhou F, Zhang Q. Access to 2,4-Disubstituted Pyrrole-Based Polymer with Long-Wavelength and Stimuli-Responsive Properties via Copper-Catalyzed [3+2] Polycycloaddition. Macromol Rapid Commun 2024; 45:e2300652. [PMID: 38407457 DOI: 10.1002/marc.202300652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Pyrrole-based polymers (PBPs), a type of fascinating functional polymers, play a crucial role in materials science. However, efficient synthetic strategies of PBPs with diverse structures are mainly focused on conjugated polypyrroles and still remain challenging. Herein, an atom and step economy protocol is described to access various 2,4-disubstituted PBPs by in situ formation of pyrrole core structure via copper-catalyzed [3+2] polycycloaddition of dialkynones and diisocyanoacetates. A series of PBPs is prepared with high molecular weight (Mw up to 18 200 Da) and moderate to good yield (up to 87%), which possesses a fluorescent emission located in the green to yellow light region. Blending the PBPs with polyvinyl alcohol, the stretchable composite films exhibit a significant strengthening of the mechanical properties (tensile stress up to 59 MPa, elongation at break >400%) and an unprecedented stress-responsive luminescence enhancement that over fourfold fluorescent emission intensity is maintained upon stretching up to 100%. On the basis of computational studies, the unique photophysical and mechanical properties are attributed to the substitution of carbonyl chromophores on the pyrrole unit.
Collapse
Affiliation(s)
- Lingna Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jianbo Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Chunmei Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wanbin Dang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wei Guo
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Junjian Xie
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Fengtao Zhou
- School of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
12
|
Fan P, Chen Z, Wang C. Nickel/Photo-Cocatalyzed Three-Component Alkyl-Acylation of Aryl-Activated Alkenes. Org Lett 2023. [PMID: 38048426 DOI: 10.1021/acs.orglett.3c03669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Herein, we disclose a nickel/photo-cocatalyzed three-component alkyl-acylation of aryl-substituted alkenes with aldehydes and electron-withdrawing-group-activated alkyl bromides, providing straightforward access to various ketones under mild and ligand-free conditions. The photocatalyst TBADT plays a dual role in activating the acyl C-H bond of aldehydes via hydrogen atom transfer and reducing the C-Br bond of alkyl bromides via single-electron transfer. While the terminal C-C bond is forged through polarity-matched radical-type addition, nickel is likely involved in the acylation step.
Collapse
Affiliation(s)
- Pei Fan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- School of Chemical and Materials Engineering, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, Anhui 232038, P. R. China
| | - Zhe Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
13
|
Kowalska E, Dyguda M, Artelska A, Albrecht A. Visible Light Promoted [3+2]-Cycloaddition for the Synthesis of Cyclopenta[ b]chromenocarbonitrile Derivatives. J Org Chem 2023; 88:16589-16597. [PMID: 38037694 PMCID: PMC10696553 DOI: 10.1021/acs.joc.3c02172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023]
Abstract
In the manuscript, a novel method for the preparation of cyclopenta[b]chromenocarbonitrile derivatives via [3+2] cycloaddition reaction of substituted 3-cyanochromones and N-cyclopropyloamines initiated by visible light catalysis has been described. The reaction was performed in the presence of Eosin Y as a photocatalyst. The key parameters responsible for the success of the described strategy are visible light, a small amount of photoredox catalyst, an anhydrous solvent, and an inert atmosphere.
Collapse
Affiliation(s)
- Ewelina Kowalska
- Institute
of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź 90-924, Poland
| | - Mateusz Dyguda
- Institute
of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź 90-924, Poland
| | - Angelika Artelska
- Institute
of Applied Radiation Chemistry, Lodz University
of Technology, Żeromskiego 116, Łódź 90-924, Poland
| | - Anna Albrecht
- Institute
of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź 90-924, Poland
| |
Collapse
|
14
|
Dokai Y, Amemiya T, Yamada T, Saito K. Decarboxylative Intramolecular [3 + 2] Cycloaddition of Cyclic Enol Carbonates: Construction of a Bicyclo[3.3.0]octanone Skeleton. Org Lett 2023; 25:7562-7566. [PMID: 37800539 DOI: 10.1021/acs.orglett.3c02956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Stereoselective synthesis of bicyclic cyclopentanones was achieved by sequential Tf2O-catalyzed decarboxylation and intramolecular [3 + 2] cycloaddition reactions of cyclic enol carbonates bearing an alkene unit. Four stereogenic centers in the obtained cyclopentanone were stereoselectively constructed. This method could be applied to the synthesis of various fused bicyclic products in moderate-to-good yields.
Collapse
Affiliation(s)
- Yoichi Dokai
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Tsukasa Amemiya
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Tohru Yamada
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kodai Saito
- Course of Science Education, Faculty of Education, Hokkaido University of Education, Asahikawa Campus, Hokumon-cho 9, Asahikawa 070-8621, Japan
| |
Collapse
|
15
|
Zhang Y, Li Y, Ni SF, Li JP, Xia D, Han X, Lin J, Wang J, Das S, Zhang WD. Visible-light-induced [3+2] cycloadditions of donor/donor diazo intermediates with alkenes to achieve (spiro)-pyrazolines and pyrazoles. Chem Sci 2023; 14:10411-10419. [PMID: 37799991 PMCID: PMC10548519 DOI: 10.1039/d3sc04188c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
To date, [3 + 2] cycloadditions of diazo esters with alkynes or alkenes have been a robust tool to generate pyrazoles and pyrazolines. However, methods capable of generating donor/donor diazo species from readily available N-tosylhydrazones to furnish [3 + 2] cycloadditions, remain elusive. Herein, we describe the first visible-light-induced [3 + 2] cycloadditions of donor/donor diazo precursors with alkenes to afford pyrazoles and novel (spiro)pyrazolines bearing a quaternary center. This protocol shows a tolerable substrate scope covering versatile carbonyl compounds and alkenes. Late-stage functionalization of bioactive molecules, one-pot approach, and gram-scale synthesis have also been introduced successfully to prove the practicability. At last, mechanistic experiments and DFT studies suggested the formation of non-covalent interactions enabling the activation of N-tosylhydrazones and the formation of the donor/donor diazo intermediates.
Collapse
Affiliation(s)
- Yu Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
| | - Yanchuan Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University Hangzhou 310053 China
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 China
| | - Jin-Peng Li
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 China
| | - Dingding Xia
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
| | - Xinyu Han
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| | - Jingchuan Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| | - Jinxin Wang
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp Antwerp Belgium
- Department of Chemistry, University of Bayreuth Bayreuth Germany
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University Hangzhou 310053 China
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100193 China
| |
Collapse
|
16
|
Ouyang JY, Shen FF, Zhao HQ, Chen JJ, Wen ZD, Jiang HM, Qin JH, Sun Q, Li JH, Ouyang XH. Aryldiazonium Salt-Triggered [2 + 2 + 1] Heteroannulation of Indoles by an Arylhydrazone Radical-Relayed 1,5-Hydrogen Atom Transfer. Org Lett 2023; 25:6549-6554. [PMID: 37615297 DOI: 10.1021/acs.orglett.3c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
An unprecedented three-component [2 + 2 + 1] annulation cascade of indoles with aryldiazonium salts and polyhalomethanes or acetone is presented by dual hydrogen atom transfer (HAT) and C-H functionalization. By employing readily accessible aryldiazonium salts as the radical initiators and electrophiles and polyhalomethanes and acetone as the C1 units, this method unprecedentedly constructs a pyrazole ring on an indole ring skeleton through the formation of two C-N bonds and a C-C bond in a single reaction.
Collapse
Affiliation(s)
- Jun-Yao Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Fang-Fang Shen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Han-Qing Zhao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jia-Jie Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhu-Dong Wen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Hui-Min Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
17
|
Wang R, Wang C. Asymmetric imino-acylation of alkenes enabled by HAT-photo/nickel cocatalysis. Chem Sci 2023; 14:6449-6456. [PMID: 37325152 PMCID: PMC10266448 DOI: 10.1039/d3sc01945d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
By merging nickel-mediated facially selective aza-Heck cyclization and radical acyl C-H activation promoted by tetrabutylammonium decatungstate (TBADT) as a hydrogen atom transfer (HAT) photocatalyst, we accomplish an asymmetric imino-acylation of oxime ester-tethered alkenes with readily available aldehydes as the acyl source, enabling the synthesis of highly enantioenriched pyrrolines bearing an acyl-substituted stereogenic center under mild conditions. Preliminary mechanistic studies support a Ni(i)/Ni(ii)/Ni(iii) catalytic sequence involving the intramolecular migratory insertion of a tethered olefinic unit into the Ni(iii)-N bond as the enantiodiscriminating step.
Collapse
Affiliation(s)
- Rui Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| |
Collapse
|
18
|
Hu C, Mena J, Alabugin IV. Design principles of the use of alkynes in radical cascades. Nat Rev Chem 2023:10.1038/s41570-023-00479-w. [PMID: 37117812 DOI: 10.1038/s41570-023-00479-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/30/2023]
Abstract
One of the simplest organic functional groups, the alkyne, offers a broad canvas for the design of cascade transformations in which up to three new bonds can be added to each of the two sterically unencumbered, energy-rich carbon atoms. However, kinetic protection provided by strong π-orbital overlap makes the design of new alkyne transformations a stereoelectronic puzzle, especially on multifunctional substrates. This Review describes the electronic properties contributing to the unique utility of alkynes in radical cascades. We describe how to control the selectivity of alkyne activation by various methods, from dynamic covalent chemistry with kinetic self-sorting to disappearing directing groups. Additionally, we demonstrate how the selection of reactive intermediates directly influences the propagation and termination of the cascade. Diverging from a common departure point, a carefully planned reaction route can allow access to a variety of products.
Collapse
|
19
|
Su J, Guo W, Liu Y, Kong L, Zheng H, Zhu G. Cu-catalyzed cascade difluoroalkylation/5- endo cyclization/β-fluorine cleavage of ynones. Chem Commun (Camb) 2023; 59:1821-1824. [PMID: 36722869 DOI: 10.1039/d2cc06068j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A copper-catalyzed, redox-neutral cascade difluoroalkylation/5-endo annulation/β-fluorine cleavage of ynones is developed, providing a direct and stereoselective method to access synthetically important α-monofluoroalkenyl cyclopentanones. Mechanistic studies suggest an unprecedented CuII-assisted β-fluorine fragmentation, which may be valuable for the challenging but important C-F bond activation. Moreover, the in situ generated difluorocarbene was found to serve as an effective reductant for the regeneration of copper(I) catalyst, thus avoiding the addition of external reductants.
Collapse
Affiliation(s)
- Jingwen Su
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Wenbin Guo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Yi Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Lichun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| |
Collapse
|
20
|
Shao J, Fu Y, Wang SR. Stereoconvergent Direct Ring Expansion of Cyclopropyl Ketones to Cyclopentanones. Org Lett 2023; 25:555-559. [PMID: 36652349 DOI: 10.1021/acs.orglett.3c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recyclization of the ring-opening species of alkyl cyclopropyl ketones to cyclopentanones, which proceeds through an unfavored 5-endo-trig cyclization predicted by Baldwin's rules, is elusive. Herein, as assisted by a strong aryl donor and the Thorpe-Ingold strain on a quaternary cyclopropyl center, stereoconvergent direct ring expansion of cyclopropyl ketones to cyclopentanones promoted by TfOH or BF3·Et2O is described, providing a modular construction of polysubstituted cyclopentanones from aldehydes, alkyl methyl ketones, and α-keto esters within three steps.
Collapse
|
21
|
Mao Y, Fan P, Wang C. Photocatalyzed Formal All-Carbon [3+2] Cycloaddition of Aromatic Aldehydes with Arylethynyl Silanes. Org Lett 2022; 24:9413-9418. [PMID: 36534612 DOI: 10.1021/acs.orglett.2c03807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herein, we report a photoinduced TBADT-catalyzed formal all-carbon [3+2] cycloaddition of aromatic aldehydes and arylethynyl silanes, which combines acyl C-H and ortho C-H activation of aromatic aldehydes, offering a new method for constructing the indanone scaffold under mild conditions. By choosing an appropriate silane as the precursor, one can selectively retain or remove the α-silyl group of the indanone products during the reaction. Preliminary mechanistic studies point to a reaction mechanism involving a 1,5-H shift as a key step.
Collapse
Affiliation(s)
- Yujia Mao
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| | - Pei Fan
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China.,School of Chemical and Materials Engineering, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, Anhui 232038, P. R. China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
22
|
Xu Q, Jia J, Wu Y, Hu B, Xin J, Liu Y, Gao W, Li D. Ag 2O-Induced Regioselective Huisgen Cycloaddition for the Synthesis of Fully Substituted Pyrazoles as Potential Anticancer Agents. J Org Chem 2022; 87:14496-14506. [PMID: 36278313 DOI: 10.1021/acs.joc.2c01910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Efficient regioselective synthesis of novel fully substituted pyrazoles has been achieved through Huisgen cycloaddition reaction of δ-acetoxy allenoates with hydrazonoyl chlorides by the addition of Ag2O. The present approach offers the advantages of simpleness, high efficiency, mild conditions, wide substrate scope, and good-to-excellent regioselectivities. The strategy could be performed on a large-scale pattern to allow access to structurally versatile pyrazoles, of which a key intermediate of lonazolac (303), a nonsteroidal anti-inflammatory drug, could be synthesized efficiently. Moreover, several pyrazoles show obvious growth-inhibitory activity of Huh-7 cells, expected as potential anticancer agents.
Collapse
Affiliation(s)
- Qianqian Xu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Jifan Jia
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuqing Wu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Bo Hu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Jiaqi Xin
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yi Liu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Dan Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
23
|
Zheng H, Su J, Zhou Y, Zhu G. Recent Advances on 5- endo-Trig Radical Cyclization of All-Carbon Systems. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202209029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Qiu J, Le S, Su J, Liu Y, Zhou Y, Zheng H, Bai Y, Zhu G. A diastereoselective synthesis of cyclopentanones via photocatalytic reductive alkyltrifluoromethylation of ynones. Org Chem Front 2022. [DOI: 10.1039/d2qo01101h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photocatalytic reductive alkyltrifluoromethylation of ynones with the Langlois reagent is developed, providing a regio- and diastereoselective access to trifluoromethylated cyclopentanones under mild conditions.
Collapse
Affiliation(s)
- Jiayan Qiu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Siya Le
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Jingwen Su
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Yi Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Yulu Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Yihui Bai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| |
Collapse
|