1
|
VanInsberghe M, van Oudenaarden A. Sequencing technologies to measure translation in single cells. Nat Rev Mol Cell Biol 2025:10.1038/s41580-024-00822-z. [PMID: 39833532 DOI: 10.1038/s41580-024-00822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
Translation is one of the most energy-intensive processes in a cell and, accordingly, is tightly regulated. Genome-wide methods to measure translation and the translatome and to study the complex regulation of protein synthesis have enabled unprecedented characterization of this crucial step of gene expression. However, technological limitations have hampered our understanding of translation control in multicellular tissues, rare cell types and dynamic cellular processes. Recent optimizations, adaptations and new techniques have enabled these measurements to be made at single-cell resolution. In this Progress, we discuss single-cell sequencing technologies to measure translation, including ribosome profiling, ribosome affinity purification and spatial translatome methods.
Collapse
Affiliation(s)
- Michael VanInsberghe
- Oncode Institute, Utrecht, the Netherlands.
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, the Netherlands.
- University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Alexander van Oudenaarden
- Oncode Institute, Utrecht, the Netherlands
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, the Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
2
|
Lu L, Wang T, Liu A, Ye H. A Single-Cell Atlas of Crab Ovary Provides New Insights Into Oogenesis in Crustaceans. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409688. [PMID: 39555715 PMCID: PMC11727118 DOI: 10.1002/advs.202409688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/23/2024] [Indexed: 11/19/2024]
Abstract
Oogenesis is crucial for sexual reproduction and provides the material basis for population continuation. Nonetheless, the identity of the cells involved, the nature of transformation, and underlying regulators of oogenesis in crustaceans remain elusive. Here, an atlas of the ovary is plotted via single-nuclei RNA sequencing (snRNA-seq) in the mud crab Scylla paramamosain, resulting in five cell types, including germ cells, somatic cells, and three follicle cell types identified, which in turn provides abundant candidate markers for them. Moreover, profiles of ligand-receptor in different cells of the crab ovary indicate the roles of cell communication in oogenesis. Dozens of transcription factors in the trajectory from oogonia to oocytes as well as the key molecules/pathways in somatic cells and follicle cells relevant to oogenesis are screened, which is evolutionarily conserved and its underlying regulatory mechanism is subject to some modification across various phyla. The spatiotemporal expression patterns of seven markers are further verified and the RNAi confirms the essential roles of piwi and VgR in oogenesis. These data help to elucidate the mechanism underlying gametogenesis and the evolution of reproductive strategy in invertebrates.
Collapse
Affiliation(s)
- Li Lu
- State Key Laboratory of Mariculture BreedingFisheries College of Jimei UniversityXiamenFujian361021China
| | - Tao Wang
- State Key Laboratory of Mariculture BreedingFisheries College of Jimei UniversityXiamenFujian361021China
| | - An Liu
- State Key Laboratory of Mariculture BreedingFisheries College of Jimei UniversityXiamenFujian361021China
| | - Haihui Ye
- State Key Laboratory of Mariculture BreedingFisheries College of Jimei UniversityXiamenFujian361021China
| |
Collapse
|
3
|
Wang J, Ye F, Chai H, Jiang Y, Wang T, Ran X, Xia Q, Xu Z, Fu Y, Zhang G, Wu H, Guo G, Guo H, Ruan Y, Wang Y, Xing D, Xu X, Zhang Z. Advances and applications in single-cell and spatial genomics. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2770-x. [PMID: 39792333 DOI: 10.1007/s11427-024-2770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 01/12/2025]
Abstract
The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics. We have reviewed the breakthroughs in single-cell multi-omics technologies, spatial genomics methods, and the computational strategies employed toward the analyses of single-cell atlas data. Furthermore, we have highlighted the advances made in constructing cellular atlases and their clinical applications, particularly in the context of disease. Finally, we have discussed the emerging trends, challenges, and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Jingjing Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Haoxi Chai
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China
| | - Yujia Jiang
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Teng Wang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xia Ran
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China
| | - Qimin Xia
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ziye Xu
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuting Fu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guodong Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hanyu Wu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Hongshan Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Yijun Ruan
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China.
| | - Yongcheng Wang
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China.
| | - Xun Xu
- BGI Research, Shenzhen, 518083, China.
- BGI Research, Hangzhou, 310030, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Zhang Q, Zhang J, Chang G, Zhao K, Yao Y, Liu L, Du Z, Wang Y, Guo X, Zhao Z, Zeng W, Gao S. Decoding molecular features of bovine oocyte fate during antral follicle growth via single-cell multi-omics analysis†. Biol Reprod 2024; 111:815-833. [PMID: 39058647 DOI: 10.1093/biolre/ioae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/30/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024] Open
Abstract
Antral follicle size is a useful predictive marker of the competency of enclosed oocytes for yielding an embryo following in vitro maturation and fertilization. However, the molecular mechanisms underpinning oocyte developmental potential during bovine antral follicle growth are still unclear. Here, we used a modified single-cell multi-omics approach to analyze the transcriptome, DNA methylome, and chromatin accessibility in parallel for oocytes and cumulus cells collected from bovine antral follicles of different sizes. Transcriptome profiling identified three types of oocytes (small, medium, and large) that underwent different developmental trajectories, with large oocytes exhibiting the largest average follicle size and characteristics resembling metaphase-II oocytes. Differential expression analysis and real-time polymerase chain reaction assay showed that most replication-dependent histone genes were highly expressed in large oocytes. The joint analysis of multi-omics data revealed that the transcription of 20 differentially expressed genes in large oocytes was associated with both DNA methylation and chromatin accessibility. In addition, oocyte-cumulus interaction analysis showed that inflammation, DNA damage, and p53 signaling pathways were active in small oocytes, which had the smallest average follicle sizes. We further confirmed that p53 pathway inhibition in the in vitro maturation experiments using oocytes obtained from small antral follicles could improve the quality of oocytes and increased the blastocyte rate after in vitro fertilization and culture. Our work provides new insights into the intricate orchestration of bovine oocyte fate determination during antral folliculogenesis, which is instrumental for optimizing in vitro maturation techniques to optimize oocyte quality.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jingyao Zhang
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Gang Chang
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Kun Zhao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yujun Yao
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Li Liu
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zihuan Du
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanping Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xingrong Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zongsheng Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Weibin Zeng
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Shuai Gao
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Hou S, Guo X, Du J, Ding X, Ning X, Wang H, Chen H, Liu B, Lan Y. New insights into the endothelial origin of hematopoietic system inspired by "TIF" approaches. BLOOD SCIENCE 2024; 6:e00199. [PMID: 39027902 PMCID: PMC11254119 DOI: 10.1097/bs9.0000000000000199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/07/2024] [Indexed: 07/20/2024] Open
Abstract
Hematopoietic stem progenitor cells (HSPCs) are derived from a specialized subset of endothelial cells named hemogenic endothelial cells (HECs) via a process of endothelial-to-hematopoietic transition during embryogenesis. Recently, with the usage of multiple single-cell technologies and advanced genetic lineage tracing techniques, namely, "TIF" approaches that combining transcriptome, immunophenotype and function/fate analyses, massive new insights have been achieved regarding the cellular and molecular evolution underlying the emergence of HSPCs from embryonic vascular beds. In this review, we focus on the most recent advances in the enrichment markers, functional characteristics, developmental paths, molecular controls, and the embryonic site-relevance of the key intermediate cell populations bridging embryonic vascular and hematopoietic systems, namely HECs and pre-hematopoietic stem cells, the immediate progenies of some HECs, in mouse and human embryos. Specifically, using expression analyses at both transcriptional and protein levels and especially efficient functional assays, we propose that the onset of Kit expression is at the HEC stage, which has previously been controversial.
Collapse
Affiliation(s)
- Siyuan Hou
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xia Guo
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Junjie Du
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, China
| | - Xiaochen Ding
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaowei Ning
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haizhen Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Haifeng Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Bing Liu
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yu Lan
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Chen YR, Yin WW, Jin YR, Lv PP, Jin M, Feng C. Current status and hotspots of in vitro oocyte maturation: a bibliometric study of the past two decades. J Assist Reprod Genet 2024:10.1007/s10815-024-03272-w. [PMID: 39317914 DOI: 10.1007/s10815-024-03272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
PURPOSE In vitro maturation (IVM) of oocytes is a promising technique among assisted reproductive technologies. Although IVM has been used for many years, its efficiency is still relatively low compared to that of traditional in vitro fertilization (IVF) procedures. Therefore, we aimed to explore the hotspots and frontiers of IVM research over the past two decades and provide direction for IVM advancement. METHODS The articles and reviews related to IVM in the Web of Science Core Collection (WoSCC) were retrieved on June 03, 2024. Three bibliometric tools, VOSviewer 1.6.18 (2010), CiteSpace 6.1. R6 (2006), and Bibliometrix R package 4.1.0 (2017), were used to generate network maps and explore knowledge frontiers and trends. To uncover the latest research advancements and frontiers in the IVM field, we conducted an analysis of the entire IVM field, including all species. Given our focus on human IVM developments, we identified the leading countries, institutions, authors, and journals driving progress in human IVM. RESULTS A total of 5150 publications about IVM and 1534 publications in the specific context of human IVM were retrieved from the WoSCC. The number of publications on both overall IVM and human IVM fields has increased steadily. In human IVM, the United States (USA) and McGill University were the most prolific country and institution, respectively. Human Reproduction was both the most published in and the most cited journal in human IVM. Seang Lin, Tan was the most productive author, and Ri-Cheng, Chian's papers were the most cited in human IVM. Furthermore, five hotspot topics were summarized, namely, culture system, supplementation, cooperation in the ovarian follicle, gene expression, and oocyte cryopreservation. CONCLUSIONS Further studies could concentrate on the following topics: (1) the mechanisms involved in oocyte maturation in vivo and in vitro, especially in energy metabolism and intercellular communications; (2) the establishment of IVM culture systems, including standardization of the biphasic IVM culture system and supplementation; (3) the genetic differences between oocytes matured in vivo and in vitro; and (4) the mechanism of cryopreservation-inflicted damage and solutions to this challenge. For human IVM, it is necessary to precisely assess the developmental stages of oocytes and adjust the IVM process accordingly to develop tailored culture media. Concurrently, clinical trials are essential for evaluating the effectiveness and safety of IVM.
Collapse
Affiliation(s)
- Yi-Ru Chen
- Department of Reproductive Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Wei-Wei Yin
- Department of Reproductive Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yi-Ru Jin
- Department of Reproductive Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Ping-Ping Lv
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Jin
- Department of Reproductive Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Chun Feng
- Department of Reproductive Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
7
|
de Moura GA, Lourenço ML, Rocha YM, Rodrigues JPV, Pinheiro CV, de Queiroz AS, Miranda EDP, Torquato Filho SE, Nicolete R. Assessment of differentially expressed genes from in vitro matured human oocytes: A bioinformatics approach. JBRA Assist Reprod 2024; 28:457-463. [PMID: 38801311 PMCID: PMC11349261 DOI: 10.5935/1518-0557.20240030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVE One of the techniques that has gained much attention is the in vitro maturation of oocytes for patients who use assisted reproduction techniques. However, its results are still inferior to controlled ovarian stimulation methodologies. Understanding the maturation mechanisms based on analyses can help improve this methodology's results. The work aims to identify the central genes differentially expressed in oocytes after in vitro maturation in the germinal vesicle and metaphase II stages. METHODS This work is a computational analysis. The entire search will be conducted using the Gene Expression Omnibus (GEO) database. To carry out and obtain the data present in the work, an advanced research search was carried out in the GEO database within the period from January 1, 2013, to January 1, 2023. A total of 27 genomic data were available in the GEO database, of which only two were used. RESULTS Two datasets were identified on the Gene Expression Omnibus database platform: registration data GSE158802 and GSE95477. From the analysis, we identified five downregulated and thirty-six upregulated genes; the central genes that correlated with the main gene proteins found were CLTA and PANK1. CONCLUSIONS There was a differential regulation of gene expression. The most central ones are related to energy capture.
Collapse
Affiliation(s)
- Gabriel Acácio de Moura
- Postgraduate Program in Pharmaceutical Sciences (PPGCF), Federal
University of Ceará (UFC), Fortaleza - Ceará, Brazil
- Oswaldo Cruz Foundation - Fiocruz Ceará, Eusébio -
Ceará, Brazil
| | | | - Yasmim Mendes Rocha
- Postgraduate Program in Pharmaceutical Sciences (PPGCF), Federal
University of Ceará (UFC), Fortaleza - Ceará, Brazil
- Oswaldo Cruz Foundation - Fiocruz Ceará, Eusébio -
Ceará, Brazil
| | - João Pedro Viana Rodrigues
- Postgraduate Program in Pharmaceutical Sciences (PPGCF), Federal
University of Ceará (UFC), Fortaleza - Ceará, Brazil
- Oswaldo Cruz Foundation - Fiocruz Ceará, Eusébio -
Ceará, Brazil
| | - Cristian Vicson Pinheiro
- Postgraduate Program in Pharmaceutical Sciences (PPGCF), Federal
University of Ceará (UFC), Fortaleza - Ceará, Brazil
- Oswaldo Cruz Foundation - Fiocruz Ceará, Eusébio -
Ceará, Brazil
| | - Alice Soares de Queiroz
- Postgraduate degree in natural resources biotechnology, Federal
University of Ceará (UFC), Fortaleza - Ceará, Brazil
| | | | | | - Roberto Nicolete
- Postgraduate Program in Pharmaceutical Sciences (PPGCF), Federal
University of Ceará (UFC), Fortaleza - Ceará, Brazil
- Oswaldo Cruz Foundation - Fiocruz Ceará, Eusébio -
Ceará, Brazil
| |
Collapse
|
8
|
Paulsen B, Piechota S, Barrachina F, Giovannini A, Kats S, Potts KS, Rockwell G, Marchante M, Estevez SL, Noblett AD, Figueroa AB, Aschenberger C, Kelk DA, Forti M, Marcinyshyn S, Wiemer K, Sanchez M, Belchin P, Lee JA, Buyuk E, Slifkin RE, Smela MP, Fortuna PRJ, Chatterjee P, McCulloh DH, Copperman AB, Ordonez-Perez D, Klein JU, Kramme CC. Rescue in vitro maturation using ovarian support cells of human oocytes from conventional stimulation cycles yields oocytes with improved nuclear maturation and transcriptomic resemblance to in vivo matured oocytes. J Assist Reprod Genet 2024; 41:2021-2036. [PMID: 38814543 PMCID: PMC11339229 DOI: 10.1007/s10815-024-03143-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
PURPOSE Determine if the gene expression profiles of ovarian support cells (OSCs) and cumulus-free oocytes are bidirectionally influenced by co-culture during in vitro maturation (IVM). METHODS Fertility patients aged 25 to 45 years old undergoing conventional ovarian stimulation donated denuded immature oocytes for research. Oocytes were randomly allocated to either OSC-IVM culture (intervention) or Media-IVM culture (control) for 24-28 h. The OSC-IVM culture condition was composed of 100,000 OSCs in suspension culture with human chorionic gonadotropin (hCG), recombinant follicle stimulating hormone (rFSH), androstenedione, and doxycycline supplementation. The Media-IVM control lacked OSCs and contained the same supplementation. A limited set of in vivo matured MII oocytes were donated for comparative evaluation. Endpoints consisted of MII formation rate, morphological and spindle quality assessment, and gene expression analysis compared to in vitro and in vivo controls. RESULTS OSC-IVM resulted in a statistically significant improvement in MII formation rate compared to the Media-IVM control, with no apparent effect on morphology or spindle assembly. OSC-IVM MII oocytes displayed a closer transcriptomic maturity signature to IVF-MII controls than Media-IVM control MII oocytes. The gene expression profile of OSCs was modulated in the presence of oocytes, displaying culture- and time-dependent differential gene expression during IVM. CONCLUSION The OSC-IVM platform is a novel tool for rescue maturation of human oocytes, yielding oocytes with improved nuclear maturation and a closer transcriptomic resemblance to in vivo matured oocytes, indicating a potential enhancement in oocyte cytoplasmic maturation. These improvements on oocyte quality after OSC-IVM are possibly occurring through bidirectional crosstalk of cumulus-free oocytes and ovarian support cells.
Collapse
Affiliation(s)
- Bruna Paulsen
- Gameto Inc., 430 E. 29th St Fl 14, New York, NY, 10016, USA
| | | | | | | | - Simone Kats
- Gameto Inc., 430 E. 29th St Fl 14, New York, NY, 10016, USA
| | | | | | | | - Samantha L Estevez
- Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | | | | | | | | | - Marta Sanchez
- Ruber Juan Bravo University Hospital, Eugin Group, Madrid, Spain
| | - Pedro Belchin
- Ruber Juan Bravo University Hospital, Eugin Group, Madrid, Spain
| | - Joseph A Lee
- Reproductive Medicine Associates of New York, New York, NY, USA
| | - Erkan Buyuk
- Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Reproductive Medicine Associates of New York, New York, NY, USA
| | - Rick E Slifkin
- Reproductive Medicine Associates of New York, New York, NY, USA
| | - Merrick Pierson Smela
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Patrick R J Fortuna
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Pranam Chatterjee
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Computer Science, Duke University, Durham, NC, USA
| | | | - Alan B Copperman
- Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Reproductive Medicine Associates of New York, New York, NY, USA
| | | | | | | |
Collapse
|
9
|
Wang L, Liu Y, Song Y, Mei Q, Mou H, Wu J, Tang X, Ai J, Li K, Xiao H, Han X, Lv L, Li H, Zhang L, Xiang W. Enhancing Oocyte Quality in Aging Mice: Insights from Mesenchymal Stem Cell Therapy and FOXO3a Signaling Pathway Activation. Reprod Sci 2024; 31:2392-2408. [PMID: 38532230 DOI: 10.1007/s43032-024-01509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024]
Abstract
Ovarian aging reduced the quality of oocytes, resulting in age-related female infertility. It is reported that mesenchymal stem cells (MSCs) therapy can improve age-related ovarian function decline and the success rate of in vitro maturation (IVM) in assisted reproductive therapy. In order to investigate the effectiveness and mechanisms of MSCs to enhance oocyte quality of cumulus oocyte complexes (COCs) in advanced age, this study focus on the respective functional improvement of oocytes and granulosa cells (GCs) from aging mice and further to explore and verify the possible mechanisms. Here, we studied a popular but significant protein of follicular development, Forkhead box O-3a (FOXO3a), which is a transcription factor that mediates a variety of cellular processes, but the functions of which in regulating oocyte quality in MSCs therapy still remain inconclusive. In this study, the RNA-seq data of metaphase II (MII) oocytes and GCs isolated from COCs confirmed that, GCs of immature follicles show the most potential to be the targeted cells of bone marrow mesenchymal stem cells (BMSCs) by FOXO3a signaling pathway. Furthermore, we demonstrated the effectiveness of BMSCs co-culture with aging COCs to enhance oocyte quality and found its mechanism to function via ameliorating the biological function of GCs by alleviating FOXO3a levels. These results provide significant fundamental research on MSCs therapy on ovarian aging, as well as offering guidance for raising the success rate of assisted reproductive technology such IVM in clinical and non-clinical settings.
Collapse
Affiliation(s)
- Lingjuan Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Liu
- Department of Obstetrics and Gynecology Reproductive Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yinhua Song
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiaojuan Mei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbei Mou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiachen Wu
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyu Tang
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihui Ai
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kezhen Li
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Houxiu Xiao
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaotao Han
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China
| | - Liqun Lv
- Wuhan Kangjian Maternal and Infant Hospital, Wuhan, China
| | - Huaibiao Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Ding Y, Chen S, Jin J, Sun Y, Chu C, Kee K, Xin M, Li L. POI-associated EIF4ENIF1 mutations exhibit impaired translation regulation abilities. Gene 2024; 917:148456. [PMID: 38604507 DOI: 10.1016/j.gene.2024.148456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Various genetic variants have been found to be associated with the clinical onset of premature ovarian insufficiency (POI). However, when measured in vitro, the functional influence of the variants can be difficult to determine. By whole-exome sequencing (WES) of 93 patients with sporadic POI, we found a missense variant c.623G > A;p.R208H in the EIF4ENIF1 gene. In silico prediction of the variant using different algorithms suggested it might be a damaging variant. We compared the property of EIF4ENIF1 R208H and Q842P, a POI-related mutant that we reported previously, with wildtype (WT) protein using 293FT cells in vitro. Surprisingly, a change in subcellular distribution and granule forming ability (Q842P) and nuclear import capacity (R208H) was not observed, despite domain prediction evidences. Since EIF4ENIF1 was reported to inhibit translation, we employed T&T-seq, a translation-transcription dual-omics sequencing method, to profile gene expression upon overexpression of EIF4ENIF1 WT and mutants. EIF4ENIF1 WT overexpression group exhibited significantly (P < 0.0001) lower translation efficiency (TE) than empty vector or GFP overexpression control group. Surprisingly, EIF4ENIF1 Q842P overexpression failed to repress global translation, showing an overall TE significantly higher than WT group. Overexpression R208H significantly (P < 0.0001) lowered the overall TE, whereas exhibiting a reduced translation inhibitory effect on high-TE genes (TE > 2 in GFP control group). Several fertility-associated genes, such as AMH in Q842P group and SERPINE1 and THBS1 in R208H group, was translationally up-regulated in mutant groups versus WT control, suggesting a potential mechanism of mutated EIF4ENIF1 causing POI via impaired translation repression. It is further proposed that T&T-seq can be a sensitive evaluation tool for the measurement of functional alteration by variants in many other translational regulator genes, not only EIF4ENIF1, helping to eliminate misinterpretation of clinical significance of genetic variants.
Collapse
Affiliation(s)
- Yuxi Ding
- The State Key Laboratory for Complex, Severe, and Rare Diseases, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shuya Chen
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital. Beijing 100006, China
| | - Jing Jin
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Yujun Sun
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital. Beijing 100006, China
| | - Chunfang Chu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital. Beijing 100026, China
| | - Kehkooi Kee
- The State Key Laboratory for Complex, Severe, and Rare Diseases, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Mingwei Xin
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China.
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital. Beijing 100006, China.
| |
Collapse
|
11
|
Sanada T, Kotani T. High-sensitivity whole-mount in situ Hybridization of Mouse Oocytes and Embryos Visualizes the Super-resolution Structures and Distributions of mRNA Molecules. Biol Proced Online 2024; 26:23. [PMID: 38987687 PMCID: PMC11234658 DOI: 10.1186/s12575-024-00250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Mammalian oocytes accumulate more than ten thousand mRNAs, of which three to four thousand mRNAs are translationally repressed. The timings and sites of translational activation of these dormant mRNAs are crucial for promoting oocyte maturation and embryonic development. How these mRNAs are accumulated and distributed in oocytes is therefore a fundamental issue to be explored. A method that enables visualization of mRNA molecules with high resolution in a simple manner would be valuable for understanding how oocytes accumulate and regulate the dormant mRNAs. We have developed a highly sensitive whole-mount in situ hybridization method using in vitro-synthesized RNA probes and the tyramide signal amplification (TSA) system optimized for mouse oocytes and embryos. By using this method, Pou5f1/Oct4, Emi2, and cyclin B1 mRNAs were detected in immature oocytes and 2-cell stage embryos. Confocal microscopy showed that these mRNAs formed granular structures in the oocyte cytoplasm. The structures of Pou5f1/Oct4 and cyclin B1 mRNAs persisted in 2-cell stage embryos. Pou5f1/Oct4 RNA granules exhibited a solid-like property in immature oocytes and became liquid-like droplets in 2-cell stage embryos. Double-staining of cyclin B1 mRNA with Emi2 or Pou5f1/Oct4 mRNA revealed that these mRNAs were distributed as different RNA granules without overlapping each other and that the size of cyclin B1 RNA granules tended to be larger than that of Emi2 RNA granules. The structures and distribution patterns of these mRNAs were further analyzed by N-SIM super-resolution microscopy. This analysis revealed that the large-sized RNA granules consist of many small-sized granules, suggesting the accumulation and regulation of dormant mRNAs as basal-sized RNA granules. The method established in this study can easily visualize the structure and distribution of mRNAs accumulated in mammalian oocytes and embryos with high sensitivity and super-resolution. This method is useful for investigating the cellular and molecular mechanisms of translational control of mRNAs by which maturation and early developmental processes are promoted.
Collapse
Affiliation(s)
- Takahiro Sanada
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Tomoya Kotani
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan.
- Department of Biological Sciences, Faculty of Science, Hokkaido University, North 10 West 8, Sapporo, 060-0810, Hokkaido, Japan.
| |
Collapse
|
12
|
Tang Q, Ratnayake R, Seabra G, Jiang Z, Fang R, Cui L, Ding Y, Kahveci T, Bian J, Li C, Luesch H, Li Y. Morphological profiling for drug discovery in the era of deep learning. Brief Bioinform 2024; 25:bbae284. [PMID: 38886164 PMCID: PMC11182685 DOI: 10.1093/bib/bbae284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Morphological profiling is a valuable tool in phenotypic drug discovery. The advent of high-throughput automated imaging has enabled the capturing of a wide range of morphological features of cells or organisms in response to perturbations at the single-cell resolution. Concurrently, significant advances in machine learning and deep learning, especially in computer vision, have led to substantial improvements in analyzing large-scale high-content images at high throughput. These efforts have facilitated understanding of compound mechanism of action, drug repurposing, characterization of cell morphodynamics under perturbation, and ultimately contributing to the development of novel therapeutics. In this review, we provide a comprehensive overview of the recent advances in the field of morphological profiling. We summarize the image profiling analysis workflow, survey a broad spectrum of analysis strategies encompassing feature engineering- and deep learning-based approaches, and introduce publicly available benchmark datasets. We place a particular emphasis on the application of deep learning in this pipeline, covering cell segmentation, image representation learning, and multimodal learning. Additionally, we illuminate the application of morphological profiling in phenotypic drug discovery and highlight potential challenges and opportunities in this field.
Collapse
Affiliation(s)
- Qiaosi Tang
- Calico Life Sciences, South San Francisco, CA 94080, United States
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 32610, United States
| | - Gustavo Seabra
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 32610, United States
| | - Zhe Jiang
- Department of Computer & Information Science & Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Ruogu Fang
- Department of Computer & Information Science & Engineering, University of Florida, Gainesville, FL 32611, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Lina Cui
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 32610, United States
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 32610, United States
| | - Tamer Kahveci
- Department of Computer & Information Science & Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Chenglong Li
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 32610, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 32610, United States
| | - Yanjun Li
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 32610, United States
- Department of Computer & Information Science & Engineering, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
13
|
Zhang YR, Yin Y, Guo SM, Wang YF, Zhao GN, Ji DM, Zhou LQ. The landscape of transcriptional profiles in human oocytes with different chromatin configurations. J Ovarian Res 2024; 17:99. [PMID: 38730385 PMCID: PMC11088011 DOI: 10.1186/s13048-024-01431-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
With increasingly used assisted reproductive technology (ART), the acquisition of high-quality oocytes and early embryos has become the focus of much attention. Studies in mice have found that the transition of chromatin conformation from non-surrounded nucleolus (NSN) to surrounded nucleolus (SN) is essential for oocyte maturation and early embryo development, and similar chromatin transition also exists in human oocytes. In this study, we collected human NSN and SN oocytes and investigated their transcriptome. The analysis of differentially expressed genes showed that epigenetic functions, cyclin-dependent kinases and transposable elements may play important roles in chromatin transition during human oocyte maturation. Our findings provide new insights into the molecular mechanism of NSN-to-SN transition of human oocyte and obtained new clues for improvement of oocyte in vitro maturation technique.
Collapse
Affiliation(s)
- Yi-Ran Zhang
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Anhui, China
| | - Ying Yin
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shi-Meng Guo
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Fan Wang
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guang-Nian Zhao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dong-Mei Ji
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Anhui, China.
| | - Li-Quan Zhou
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Anhui, China.
| |
Collapse
|
14
|
An J, Wang J, Kong S, Song S, Chen W, Yuan P, He Q, Chen Y, Li Y, Yang Y, Wang W, Li R, Yan L, Yan Z, Qiao J. GametesOmics: A Comprehensive Multi-omics Database for Exploring the Gametogenesis in Humans and Mice. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzad004. [PMID: 38862425 DOI: 10.1093/gpbjnl/qzad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 06/13/2024]
Abstract
Gametogenesis plays an important role in the reproduction and evolution of species. The transcriptomic and epigenetic alterations in this process can influence the reproductive capacity, fertilization, and embryonic development. The rapidly increasing single-cell studies have provided valuable multi-omics resources. However, data from different layers and sequencing platforms have not been uniformed and integrated, which greatly limits their use for exploring the molecular mechanisms that underlie oogenesis and spermatogenesis. Here, we develop GametesOmics, a comprehensive database that integrates the data of gene expression, DNA methylation, and chromatin accessibility during oogenesis and spermatogenesis in humans and mice. GametesOmics provides a user-friendly website and various tools, including Search and Advanced Search for querying the expression and epigenetic modification(s) of each gene; Tools with Differentially expressed gene (DEG) analysis for identifying DEGs, Correlation analysis for demonstrating the genetic and epigenetic changes, Visualization for displaying single-cell clusters and screening marker genes as well as master transcription factors (TFs), and MethylView for studying the genomic distribution of epigenetic modifications. GametesOmics also provides Genome Browser and Ortholog for tracking and comparing gene expression, DNA methylation, and chromatin accessibility between humans and mice. GametesOmics offers a comprehensive resource for biologists and clinicians to decipher the cell fate transition in germ cell development, and can be accessed at http://gametesomics.cn/.
Collapse
Affiliation(s)
- Jianting An
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jing Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Siming Kong
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shi Song
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Wei Chen
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Peng Yuan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Qilong He
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yidong Chen
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Ye Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yi Yang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Wei Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Rong Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Liying Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Zhiqiang Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100191, China
| |
Collapse
|
15
|
Nikalayevich E, Letort G, de Labbey G, Todisco E, Shihabi A, Turlier H, Voituriez R, Yahiatene M, Pollet-Villard X, Innocenti M, Schuh M, Terret ME, Verlhac MH. Aberrant cortex contractions impact mammalian oocyte quality. Dev Cell 2024; 59:841-852.e7. [PMID: 38387459 DOI: 10.1016/j.devcel.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/18/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
The cortex controls cell shape. In mouse oocytes, the cortex thickens in an Arp2/3-complex-dependent manner, ensuring chromosome positioning and segregation. Surprisingly, we identify that mouse oocytes lacking the Arp2/3 complex undergo cortical actin remodeling upon division, followed by cortical contractions that are unprecedented in mammalian oocytes. Using genetics, imaging, and machine learning, we show that these contractions stir the cytoplasm, resulting in impaired organelle organization and activity. Oocyte capacity to avoid polyspermy is impacted, leading to a reduced female fertility. We could diminish contractions and rescue cytoplasmic anomalies. Similar contractions were observed in human oocytes collected as byproducts during IVF (in vitro fertilization) procedures. These contractions correlate with increased cytoplasmic motion, but not with defects in spindle assembly or aneuploidy in mice or humans. Our study highlights a multiscale effect connecting cortical F-actin, contractions, and cytoplasmic organization and affecting oocyte quality, with implications for female fertility.
Collapse
Affiliation(s)
- Elvira Nikalayevich
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Gaëlle Letort
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, 25 rue du Dr. Roux, 75015 Paris, France
| | - Ghislain de Labbey
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Elena Todisco
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Anastasia Shihabi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Hervé Turlier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Raphaël Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Laboratoire Jean Perrin, CNRS, Sorbonne Université, Paris, France
| | - Mohamed Yahiatene
- Centre Assistance Médicale à la Procréation Nataliance, Groupe Mlab, Pôle Santé Oréliance, Saran, France
| | - Xavier Pollet-Villard
- Centre Assistance Médicale à la Procréation Nataliance, Groupe Mlab, Pôle Santé Oréliance, Saran, France
| | - Metello Innocenti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Melina Schuh
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Marie-Emilie Terret
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France.
| | - Marie-Hélène Verlhac
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France.
| |
Collapse
|
16
|
Latorraca LB, Galvão A, Rabaglino MB, D'Augero JM, Kelsey G, Fair T. Single-cell profiling reveals transcriptome dynamics during bovine oocyte growth. BMC Genomics 2024; 25:335. [PMID: 38580918 PMCID: PMC10998374 DOI: 10.1186/s12864-024-10234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/18/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Mammalian follicle development is characterized by extensive changes in morphology, endocrine responsiveness, and function, providing the optimum environment for oocyte growth, development, and resumption of meiosis. In cattle, the first signs of transcription activation in the oocyte are observed in the secondary follicle, later than during mouse and human oogenesis. While many studies have generated extensive datasets characterizing gene expression in bovine oocytes, they are mostly limited to the analysis of fully grown and matured oocytes. The aim of the present study was to apply single-cell RNA sequencing to interrogate the transcriptome of the growing bovine oocyte from the secondary follicle stage through to the mid-antral follicle stage. RESULTS Single-cell RNA-seq libraries were generated from oocytes of known diameters (< 60 to > 120 μm), and datasets were binned into non-overlapping size groups for downstream analysis. Combining the results of weighted gene co-expression network and Trendy analyses, and differently expressed genes (DEGs) between size groups, we identified a decrease in oxidative phosphorylation and an increase in maternal -genes and transcription regulators across the bovine oocyte growth phase. In addition, around 5,000 genes did not change in expression, revealing a cohort of stable genes. An interesting switch in gene expression profile was noted in oocytes greater than 100 μm in diameter, when the expression of genes related to cytoplasmic activities was replaced by genes related to nuclear activities (e.g., chromosome segregation). The highest number of DEGs were detected in the comparison of oocytes 100-109 versus 110-119 μm in diameter, revealing a profound change in the molecular profile of oocytes at the end of their growth phase. CONCLUSIONS The current study provides a unique dataset of the key genes and pathways characteristic of each stage of oocyte development, contributing an important resource for a greater understanding of bovine oogenesis.
Collapse
Affiliation(s)
| | - António Galvão
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Maria Belen Rabaglino
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, The Netherlands
| | | | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge, UK
| | - Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
17
|
Ren L, Huang D, Liu H, Ning L, Cai P, Yu X, Zhang Y, Luo N, Lin H, Su J, Zhang Y. Applications of single‑cell omics and spatial transcriptomics technologies in gastric cancer (Review). Oncol Lett 2024; 27:152. [PMID: 38406595 PMCID: PMC10885005 DOI: 10.3892/ol.2024.14285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024] Open
Abstract
Gastric cancer (GC) is a prominent contributor to global cancer-related mortalities, and a deeper understanding of its molecular characteristics and tumor heterogeneity is required. Single-cell omics and spatial transcriptomics (ST) technologies have revolutionized cancer research by enabling the exploration of cellular heterogeneity and molecular landscapes at the single-cell level. In the present review, an overview of the advancements in single-cell omics and ST technologies and their applications in GC research is provided. Firstly, multiple single-cell omics and ST methods are discussed, highlighting their ability to offer unique insights into gene expression, genetic alterations, epigenomic modifications, protein expression patterns and cellular location in tissues. Furthermore, a summary is provided of key findings from previous research on single-cell omics and ST methods used in GC, which have provided valuable insights into genetic alterations, tumor diagnosis and prognosis, tumor microenvironment analysis, and treatment response. In summary, the application of single-cell omics and ST technologies has revealed the levels of cellular heterogeneity and the molecular characteristics of GC, and holds promise for improving diagnostics, personalized treatments and patient outcomes in GC.
Collapse
Affiliation(s)
- Liping Ren
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, Sichuan 611844, P.R. China
| | - Danni Huang
- Department of Radiology, Central South University Xiangya School of Medicine Affiliated Haikou People's Hospital, Haikou, Hainan 570208, P.R. China
| | - Hongjiang Liu
- School of Computer Science and Technology, Aba Teachers College, Aba, Sichuan 624099, P.R. China
| | - Lin Ning
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, Sichuan 611844, P.R. China
| | - Peiling Cai
- School of Basic Medical Sciences, Chengdu University, Chengdu, Sichuan 610106, P.R. China
| | - Xiaolong Yu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Material Science and Engineering Institute of Hainan University, Sanya, Hainan 572025, P.R. China
| | - Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Nanchao Luo
- School of Computer Science and Technology, Aba Teachers College, Aba, Sichuan 624099, P.R. China
| | - Hao Lin
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
| | - Jinsong Su
- Research Institute of Integrated Traditional Chinese Medicine and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Yinghui Zhang
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, Sichuan 611844, P.R. China
| |
Collapse
|
18
|
Yuan S, Zhou G, Xu G. Translation machinery: the basis of translational control. J Genet Genomics 2024; 51:367-378. [PMID: 37536497 DOI: 10.1016/j.jgg.2023.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Messenger RNA (mRNA) translation consists of initiation, elongation, termination, and ribosome recycling, carried out by the translation machinery, primarily including tRNAs, ribosomes, and translation factors (TrFs). Translational regulators transduce signals of growth and development, as well as biotic and abiotic stresses, to the translation machinery, where global or selective translational control occurs to modulate mRNA translation efficiency (TrE). As the basis of translational control, the translation machinery directly determines the quality and quantity of newly synthesized peptides and, ultimately, the cellular adaption. Thus, regulating the availability of diverse machinery components is reviewed as the central strategy of translational control. We provide classical signaling pathways (e.g., integrated stress responses) and cellular behaviors (e.g., liquid-liquid phase separation) to exemplify this strategy within different physiological contexts, particularly during host-microbe interactions. With new technologies developed, further understanding this strategy will speed up translational medicine and translational agriculture.
Collapse
Affiliation(s)
- Shu Yuan
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guilong Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
19
|
Han B, Tian D, Li X, Liu S, Tian F, Liu D, Wang S, Zhao K. Multiomics Analyses Provide New Insight into Genetic Variation of Reproductive Adaptability in Tibetan Sheep. Mol Biol Evol 2024; 41:msae058. [PMID: 38552245 PMCID: PMC10980521 DOI: 10.1093/molbev/msae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/13/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
Domestication and artificial selection during production-oriented breeding have greatly shaped the level of genomic variability in sheep. However, the genetic variation associated with increased reproduction remains elusive. Here, two groups of samples from consecutively monotocous and polytocous sheep were collected for genome-wide association, transcriptomic, proteomic, and metabolomic analyses to explore the genetic variation in fecundity in Tibetan sheep. Genome-wide association study revealed strong associations between BMPR1B (p.Q249R) and litter size, as well as between PAPPA and lambing interval; these findings were validated in 1,130 individuals. Furthermore, we constructed the first single-cell atlas of Tibetan sheep ovary tissues and identified a specific mural granulosa cell subtype with PAPPA-specific expression and differential expression of BMPR1B between the two groups. Bulk RNA-seq indicated that BMPR1B and PAPPA expressions were similar between the two groups of sheep. 3D protein structure prediction and coimmunoprecipitation analysis indicated that mutation and mutually exclusive exons of BMPR1B are the main mechanisms for prolific Tibetan sheep. We propose that PAPPA is a key gene for stimulating ovarian follicular growth and development, and steroidogenesis. Our work reveals the genetic variation in reproductive performance in Tibetan sheep, providing insights and valuable genetic resources for the discovery of genes and regulatory mechanisms that improve reproductive success.
Collapse
Affiliation(s)
- Buying Han
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Dehong Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Xue Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Sijia Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Dehui Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Song Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
20
|
Santoni M, Meneau F, Sekhsoukh N, Castella S, Le T, Miot M, Daldello EM. Unraveling the interplay between PKA inhibition and Cdk1 activation during oocyte meiotic maturation. Cell Rep 2024; 43:113782. [PMID: 38358892 DOI: 10.1016/j.celrep.2024.113782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/19/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
Oocytes are arrested in prophase I. In vertebrates, meiotic resumption is triggered by hormonal stimulation that results in cAMP-dependent protein kinase (PKA) downregulation leading to Cdk1 activation. Yet the pathways connecting PKA to Cdk1 remain unclear. Here, we identify molecular events triggered by PKA downregulation occurring upstream of Cdk1 activation. We describe a two-step regulation controlling cyclin B1 and Mos accumulation, which depends on both translation and stabilization. Cyclin B1 accumulation is triggered by PKA inhibition upstream of Cdk1 activation, while its translation requires Cdk1 activity. Conversely, Mos translation initiates in response to the hormone, but the protein accumulates only downstream of Cdk1. Furthermore, two successive translation waves take place, the first controlled by PKA inhibition and the second by Cdk1 activation. Notably, Arpp19, an essential PKA effector, does not regulate the early PKA-dependent events. This study elucidates how PKA downregulation orchestrates multiple pathways that converge toward Cdk1 activation and induce the oocyte G2/M transition.
Collapse
Affiliation(s)
- Martina Santoni
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Ferdinand Meneau
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Nabil Sekhsoukh
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Sandrine Castella
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Tran Le
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Marika Miot
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Enrico Maria Daldello
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France.
| |
Collapse
|
21
|
Zhou C, Zeng H, Xiao X, Wang L, Jia L, Shi Y, Zhang M, Fang C, Zeng Y, Wu T, Huang J, Liang X. Global crotonylome identifies EP300-regulated ANXA2 crotonylation in cumulus cells as a regulator of oocyte maturation. Int J Biol Macromol 2024; 259:129149. [PMID: 38176486 DOI: 10.1016/j.ijbiomac.2023.129149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Lysine crotonylation (Kcr), a newly discovered post-translational modification, played a crucial role in physiology and disease progression. However, the roles of crotonylation in oocyte meiotic resumption remain elusive. As abnormal cumulus cell development will cause oocyte maturation arrest and female infertility, we report that cumulus cells surrounding human meiotic arrested oocytes showed significantly lower crotonylation, which was associated with decreased EP300 expression and blocked cumulus cell expansion. In cultured human cumulus cells, exogenous crotonylation or EP300 activator promoted cell proliferation and reduced cell apoptosis, whereas EP300 knockdown induced the opposite effect. Transcriptome profiling analysis in human cumulus cells indicated that functions of crotonylation were associated with activation of epidermal growth factor receptor (EGFR) pathway. Importantly, we characterized the Kcr proteomics landscape in cumulus cells by LC-MS/MS analysis, and identified that annexin A2 (ANXA2) was crotonylated in cumulus cells in an EP300-dependent manner. Crotonylation of ANXA2 enhanced the ANXA2-EGFR binding, and then activated the EGFR pathway to affect cumulus cell proliferation and apoptosis. Using mouse oocytes IVM model and EP300 knockout mice, we further confirmed that crotonylation alteration in cumulus cells affected the oocyte maturation. Together, our results indicated that EP300-mediated crotonylation is important for cumulus cells functions and oocyte maturation.
Collapse
Affiliation(s)
- Chuanchuan Zhou
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Haitao Zeng
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China
| | - Xingxing Xiao
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; Department of Gynecology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, 528308, China
| | - Li Wang
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; Tongren People's Hospital, Guizhou, 554300, China
| | - Lei Jia
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China
| | - Yanan Shi
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China
| | - Minfang Zhang
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China
| | - Cong Fang
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China
| | - Yanyan Zeng
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Taibao Wu
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Jiana Huang
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Xiaoyan Liang
- Reproductive Medicine Center, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou 510080, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
22
|
Sananmuang T, Puthier D, Nguyen C, Chokeshaiusaha K. Differential transcript usage across mammalian oocytes at the germinal vesicle and metaphase II stages. Theriogenology 2024; 215:1-9. [PMID: 37995439 DOI: 10.1016/j.theriogenology.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Ongoing progress in mRNA-Sequencing technologies has significantly contributed to the refinement of assisted reproductive technologies. However, the prior investigations have predominantly concentrated on alterations in overall gene expression levels, thereby leaving a considerable gap in our understanding of the influence of transcript isoform expression on fundamental cellular mechanisms of oocytes. Given the efficacy of differential transcript usage (DTU) analysis to address such knowledge, we conducted comprehensive DTU analysis utilizing mRNA-Seq datasets of germinal vesicle (GV) and metaphase II (MII) oocytes across six mammalian species from the SRA database, including cow, donkey, horse, human, mouse, and pig. To further illuminate the roles of these genes, we also conducted a rigorous Gene Ontology (GO) term enrichment analysis. While the DTU analysis of each species exhibited several genes with alterations in their transcript isoform usage, referred to as DTU genes, this study focused on only ten cross-species DTU genes sharing among a minimum of five distinct species (FDR≤0.05). These cross-species DTU genes were as follows: ABCF1, CDC6, CFAP36, CNOT10, DNM3, IWS1, NBN, NDEL1, RAD50 and ZCCHC17. GO term enrichment analysis unveiled the alignment of these cross-species DTU gene functions with RNA and cell-cycle control mechanisms across diverse mammalian species, thereby suggesting their vital roles during oocyte maturation. Further exploration of the transcript isoforms of these genes hence bore the potential to uncover novel transcript isoform markers for future reproductive technologies in both human and animal contexts.
Collapse
Affiliation(s)
- Thanida Sananmuang
- Rajamangala University of Technology Tawan-OK, Faculty of Veterinary Medicine, Chonburi, Thailand
| | - Denis Puthier
- Aix-Marseille Université, INSERM UMR 1090, TAGC, Marseille, France
| | - Catherine Nguyen
- Aix-Marseille Université, INSERM UMR 1090, TAGC, Marseille, France
| | - Kaj Chokeshaiusaha
- Rajamangala University of Technology Tawan-OK, Faculty of Veterinary Medicine, Chonburi, Thailand.
| |
Collapse
|
23
|
Zhang D, Gao Y, Zhu L, Wang Y, Li P. Advances and opportunities in methods to study protein translation - A review. Int J Biol Macromol 2024; 259:129150. [PMID: 38171441 DOI: 10.1016/j.ijbiomac.2023.129150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
It is generally believed that the regulation of gene expression involves protein translation occurring before RNA transcription. Therefore, it is crucial to investigate protein translation and its regulation. Recent advancements in biological sciences, particularly in the field of omics, have revolutionized protein translation research. These studies not only help characterize changes in protein translation during specific biological or pathological processes but also have significant implications in disease prevention and treatment. In this review, we summarize the latest methods in ribosome-based translation omics. We specifically focus on the application of fluorescence imaging technology and omics technology in studying overall protein translation. Additionally, we analyze the advantages, disadvantages, and application of these experimental methods, aiming to provide valuable insights and references to researchers studying translation.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
24
|
Song Y, Zhang N, Zhang Y, Wang J, Lv Q, Zhang J. Single-Cell Transcriptome Analysis Reveals Development-Specific Networks at Distinct Synchronized Antral Follicle Sizes in Sheep Oocytes. Int J Mol Sci 2024; 25:910. [PMID: 38255985 PMCID: PMC10815039 DOI: 10.3390/ijms25020910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The development of the ovarian antral follicle is a complex, highly regulated process. Oocytes orchestrate and coordinate the development of mammalian ovarian follicles, and the rate of follicular development is governed by a developmental program intrinsic to the oocyte. Characterizing oocyte signatures during this dynamic process is critical for understanding oocyte maturation and follicular development. Although the transcriptional signature of sheep oocytes matured in vitro and preovulatory oocytes have been previously described, the transcriptional changes of oocytes in antral follicles have not. Here, we used single-cell transcriptomics (SmartSeq2) to characterize sheep oocytes from small, medium, and large antral follicles. We characterized the transcriptomic landscape of sheep oocytes during antral follicle development, identifying unique features in the transcriptional atlas, stage-specific molecular signatures, oocyte-secreted factors, and transcription factor networks. Notably, we identified the specific expression of 222 genes in the LO, 8 and 6 genes that were stage-specific in the MO and SO, respectively. We also elucidated signaling pathways in each antral follicle size that may reflect oocyte quality and in vitro maturation competency. Additionally, we discovered key biological processes that drive the transition from small to large antral follicles, revealing hub genes involved in follicle recruitment and selection. Thus, our work provides a comprehensive characterization of the single-oocyte transcriptome, filling a gap in the mapping of the molecular landscape of sheep oogenesis. We also provide key insights into the transcriptional regulation of the critical sizes of antral follicular development, which is essential for understanding how the oocyte orchestrates follicular development.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiaxin Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.S.)
| |
Collapse
|
25
|
Ermisch AF, Wood JR. Regulation of Oocyte mRNA Metabolism: A Key Determinant of Oocyte Developmental Competence. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:23-46. [PMID: 39030353 DOI: 10.1007/978-3-031-55163-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The regulation of mRNA transcription and translation is uncoupled during oogenesis. The reason for this uncoupling is two-fold. Chromatin is only accessible to the transcriptional machinery during the growth phase as it condenses prior to resumption of meiosis to ensure faithful segregation of chromosomes during meiotic maturation. Thus, transcription rates are high during this time period in order to produce all of the transcripts needed for meiosis, fertilization, and embryo cleavage until the newly formed embryonic genome becomes transcriptionally active. To ensure appropriate timing of key developmental milestones including chromatin condensation, resumption of meiosis, segregation of chromosomes, and polar body extrusion, the translation of protein from transcripts synthesized during oocyte growth must be temporally regulated. This is achieved by the regulation of mRNA interaction with RNA binding proteins and shortening and lengthening of the poly(A) tail. This chapter details the essential factors that regulate the dynamic changes in mRNA synthesis, storage, translation, and degradation during oocyte growth and maturation.
Collapse
Affiliation(s)
- Alison F Ermisch
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jennifer R Wood
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
26
|
Ducreux B, Ferreux L, Patrat C, Fauque P. Overview of Gene Expression Dynamics during Human Oogenesis/Folliculogenesis. Int J Mol Sci 2023; 25:33. [PMID: 38203203 PMCID: PMC10778858 DOI: 10.3390/ijms25010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
The oocyte transcriptome follows a tightly controlled dynamic that leads the oocyte to grow and mature. This succession of distinct transcriptional states determines embryonic development prior to embryonic genome activation. However, these oocyte maternal mRNA regulatory events have yet to be decoded in humans. We reanalyzed human single-oocyte RNA-seq datasets previously published in the literature to decrypt the transcriptomic reshuffles ensuring that the oocyte is fully competent. We applied trajectory analysis (pseudotime) and a meta-analysis and uncovered the fundamental transcriptomic requirements of the oocyte at any moment of oogenesis until reaching the metaphase II stage (MII). We identified a bunch of genes showing significant variation in expression from primordial-to-antral follicle oocyte development and characterized their temporal regulation and their biological relevance. We also revealed the selective regulation of specific transcripts during the germinal vesicle-to-MII transition. Transcripts associated with energy production and mitochondrial functions were extensively downregulated, while those associated with cytoplasmic translation, histone modification, meiotic processes, and RNA processes were conserved. From the genes identified in this study, some appeared as sensitive to environmental factors such as maternal age, polycystic ovary syndrome, cryoconservation, and in vitro maturation. In the future, the atlas of transcriptomic changes described in this study will enable more precise identification of the transcripts responsible for follicular growth and oocyte maturation failures.
Collapse
Affiliation(s)
- Bastien Ducreux
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, 2 Rue Angélique Ducoudray, F-21000 Dijon, France;
| | - Lucile Ferreux
- Faculty of Medicine, Inserm 1016, Université de Paris Cité, F-75014 Paris, France; (L.F.); (C.P.)
- Department of Reproductive Biology-CECOS, Aphp.Centre-Université Paris Cité, Cochin, F-75014 Paris, France
| | - Catherine Patrat
- Faculty of Medicine, Inserm 1016, Université de Paris Cité, F-75014 Paris, France; (L.F.); (C.P.)
- Department of Reproductive Biology-CECOS, Aphp.Centre-Université Paris Cité, Cochin, F-75014 Paris, France
| | - Patricia Fauque
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, 2 Rue Angélique Ducoudray, F-21000 Dijon, France;
- Laboratoire de Biologie de la Reproduction-CECOS, CHU Dijon Bourgogne, 14 Rue Gaffarel, F-21000 Dijon, France
| |
Collapse
|
27
|
He J, Yan A, Chen B, Huang J, Kee K. 3D genome remodeling and homologous pairing during meiotic prophase of mouse oogenesis and spermatogenesis. Dev Cell 2023; 58:3009-3027.e6. [PMID: 37963468 DOI: 10.1016/j.devcel.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/29/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023]
Abstract
During meiosis, the chromatin and transcriptome undergo prominent switches. Although recent studies have explored the genome reorganization during spermatogenesis, the chromatin remodeling in oogenesis and characteristics of homologous pairing remain largely elusive. We comprehensively compared chromatin structures and transcriptomes at successive substages of meiotic prophase in both female and male mice using low-input high-through chromosome conformation capture (Hi-C) and RNA sequencing (RNA-seq). Compartments and topologically associating domains (TADs) gradually disappeared and slowly recovered in both sexes. We found that homologs adopted different sex-conserved pairing strategies prior to and after the leptotene-to-zygotene transition, changing from long interspersed nuclear element (LINE)-enriched compartments B to short interspersed nuclear element (SINE)-enriched compartments A. We complemented marker genes and predicted the sex-specific meiotic sterile genes for each substage. This study provides valuable insights into the similarities and distinctions between sexes in chromosome architecture, homologous pairing, and transcriptome during meiotic prophase of both oogenesis and spermatogenesis.
Collapse
Affiliation(s)
- Jing He
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - An Yan
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Bo Chen
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Jiahui Huang
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Kehkooi Kee
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
28
|
Iyyappan R, Aleshkina D, Ming H, Dvoran M, Kakavand K, Jansova D, del Llano E, Gahurova L, Bruce AW, Masek T, Pospisek M, Horvat F, Kubelka M, Jiang Z, Susor A. The translational oscillation in oocyte and early embryo development. Nucleic Acids Res 2023; 51:12076-12091. [PMID: 37950888 PMCID: PMC10711566 DOI: 10.1093/nar/gkad996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 11/13/2023] Open
Abstract
Translation is critical for development as transcription in the oocyte and early embryo is silenced. To illustrate the translational changes during meiosis and consecutive two mitoses of the oocyte and early embryo, we performed a genome-wide translatome analysis. Acquired data showed significant and uniform activation of key translational initiation and elongation axes specific to M-phases. Although global protein synthesis decreases in M-phases, translation initiation and elongation activity increases in a uniformly fluctuating manner, leading to qualitative changes in translation regulation via the mTOR1/4F/eEF2 axis. Overall, we have uncovered a highly dynamic and oscillatory pattern of translational reprogramming that contributes to the translational regulation of specific mRNAs with different modes of polysomal occupancy/translation that are important for oocyte and embryo developmental competence. Our results provide new insights into the regulation of gene expression during oocyte meiosis as well as the first two embryonic mitoses and show how temporal translation can be optimized. This study is the first step towards a comprehensive analysis of the molecular mechanisms that not only control translation during early development, but also regulate translation-related networks employed in the oocyte-to-embryo transition and embryonic genome activation.
Collapse
Affiliation(s)
- Rajan Iyyappan
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Daria Aleshkina
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Hao Ming
- Department of Animal Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Michal Dvoran
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Kianoush Kakavand
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Denisa Jansova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Edgar del Llano
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Lenka Gahurova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Alexander W Bruce
- Laboratory of Early Mammalian Developmental Biology, Department of Molecular Biology & Genetics, Faculty of Science, University of South Bohemia in České Budějovice, Branisovšká 31a, České Budějovice, Czech Republic
| | - Tomas Masek
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Martin Pospisek
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Filip Horvat
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Michal Kubelka
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Zongliang Jiang
- Department of Animal Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| |
Collapse
|
29
|
Ding Y, He Z, Sha Y, Kee K, Li L. Eif4enif1 haploinsufficiency disrupts oocyte mitochondrial dynamics and leads to subfertility. Development 2023; 150:dev202151. [PMID: 38088064 DOI: 10.1242/dev.202151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023]
Abstract
Infertility affects couples worldwide. Premature ovarian insufficiency (POI) refers to loss of ovarian function before 40 years of age and is a contributing factor to infertility. Several case studies have reported dominant-inherited POI symptoms in families with heterozygous EIF4ENIF1 (4E-T) mutations. However, the effects of EIF4ENIF1 haploinsufficiency have rarely been studied in animal models to reveal the underlying molecular changes related to infertility. Here, we demonstrate that Eif4enif1 haploinsufficiency causes mouse subfertility, impairs oocyte maturation and partially arrests early embryonic development. Using dual-omic sequencing, we observed that Eif4enif1 haploinsufficiency significantly altered both transcriptome and translatome in mouse oocytes, by which we further revealed oocyte mitochondrial hyperfusion and mitochondria-associated ribonucleoprotein domain distribution alteration in Eif4enif1-deficient oocytes. This study provides new insights into the molecular mechanisms underlying clinical fertility failure and new avenues to pursue new therapeutic targets to address infertility.
Collapse
Affiliation(s)
- Yuxi Ding
- The State Key Laboratory for Complex, Severe, and Rare Diseases; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zequn He
- School of Life Sciences, Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanwei Sha
- Department of Andrology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Kehkooi Kee
- The State Key Laboratory for Complex, Severe, and Rare Diseases; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| |
Collapse
|
30
|
Jiang YR, Zhu L, Cao LR, Wu Q, Chen JB, Wang Y, Wu J, Zhang TY, Wang ZL, Guan ZY, Xu QQ, Fan QX, Shi SW, Wang HF, Pan JZ, Fu XD, Wang Y, Fang Q. Simultaneous deep transcriptome and proteome profiling in a single mouse oocyte. Cell Rep 2023; 42:113455. [PMID: 37976159 DOI: 10.1016/j.celrep.2023.113455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 09/23/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Although single-cell multi-omics technologies are undergoing rapid development, simultaneous transcriptome and proteome analysis of a single-cell individual still faces great challenges. Here, we developed a single-cell simultaneous transcriptome and proteome (scSTAP) analysis platform based on microfluidics, high-throughput sequencing, and mass spectrometry technology to achieve deep and joint quantitative analysis of transcriptome and proteome at the single-cell level, providing an important resource for understanding the relationship between transcription and translation in cells. This platform was applied to analyze single mouse oocytes at different meiotic maturation stages, reaching an average quantification depth of 19,948 genes and 2,663 protein groups in single mouse oocytes. In particular, we analyzed the correlation of individual RNA and protein pairs, as well as the meiosis regulatory network with unprecedented depth, and identified 30 transcript-protein pairs as specific oocyte maturational signatures, which could be productive for exploring transcriptional and translational regulatory features during oocyte meiosis.
Collapse
Affiliation(s)
- Yi-Rong Jiang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Le Zhu
- School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 311113, China
| | - Lan-Rui Cao
- School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 311113, China
| | - Qiong Wu
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jian-Bo Chen
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yu Wang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Jie Wu
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | | | | | - Zhi-Ying Guan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qin-Qin Xu
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qian-Xi Fan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Shao-Wen Shi
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Hui-Feng Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Jian-Zhang Pan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Xu-Dong Fu
- School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 311113, China; Center of Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310011, China.
| | - Yongcheng Wang
- School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 311113, China; Department of Laboratory Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310011, China.
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China; Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou 310007, China.
| |
Collapse
|
31
|
Wan Y, Yang S, Li T, Cai Y, Wu X, Zhang M, Muhammad T, Huang T, Lv Y, Chan WY, Lu G, Li J, Sha QQ, Chen ZJ, Liu H. LSM14B is essential for oocyte meiotic maturation by regulating maternal mRNA storage and clearance. Nucleic Acids Res 2023; 51:11652-11667. [PMID: 37889087 PMCID: PMC10681746 DOI: 10.1093/nar/gkad919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Fully grown oocytes remain transcriptionally quiescent, yet many maternal mRNAs are synthesized and retained in growing oocytes. We now know that maternal mRNAs are stored in a structure called the mitochondria-associated ribonucleoprotein domain (MARDO). However, the components and functions of MARDO remain elusive. Here, we found that LSM14B knockout prevents the proper storage and timely clearance of mRNAs (including Cyclin B1, Btg4 and other mRNAs that are translationally activated during meiotic maturation), specifically by disrupting MARDO assembly during oocyte growth and meiotic maturation. With decreased levels of storage and clearance, the LSM14B knockout oocytes failed to enter meiosis II, ultimately resulting in female infertility. Our results demonstrate the function of LSM14B in MARDO assembly, and couple the MARDO with mRNA clearance and oocyte meiotic maturation.
Collapse
Affiliation(s)
- Yanling Wan
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
| | - Shuang Yang
- Department of Physiology School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tongtong Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
| | - Yuling Cai
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
| | - Xinyue Wu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
| | - Mingyu Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
| | - Tahir Muhammad
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
- Department of Cell Biology and Anatomy, NY Medical College, 15 Dana Road, Valhalla, NY 10595, USA
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yue Lv
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong 999077, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
| | - Wai-Yee Chan
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong 999077, China
| | - Gang Lu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jingxin Li
- Department of Physiology School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qian-Qian Sha
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong 999077, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong 250012, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong 999077, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong 250012, China
| |
Collapse
|
32
|
Ponomarenko EA, Krasnov GS, Kiseleva OI, Kryukova PA, Arzumanian VA, Dolgalev GV, Ilgisonis EV, Lisitsa AV, Poverennaya EV. Workability of mRNA Sequencing for Predicting Protein Abundance. Genes (Basel) 2023; 14:2065. [PMID: 38003008 PMCID: PMC10671741 DOI: 10.3390/genes14112065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Transcriptomics methods (RNA-Seq, PCR) today are more routine and reproducible than proteomics methods, i.e., both mass spectrometry and immunochemical analysis. For this reason, most scientific studies are limited to assessing the level of mRNA content. At the same time, protein content (and its post-translational status) largely determines the cell's state and behavior. Such a forced extrapolation of conclusions from the transcriptome to the proteome often seems unjustified. The ratios of "transcript-protein" pairs can vary by several orders of magnitude for different genes. As a rule, the correlation coefficient between transcriptome-proteome levels for different tissues does not exceed 0.3-0.5. Several characteristics determine the ratio between the content of mRNA and protein: among them, the rate of movement of the ribosome along the mRNA and the number of free ribosomes in the cell, the availability of tRNA, the secondary structure, and the localization of the transcript. The technical features of the experimental methods also significantly influence the levels of the transcript and protein of the corresponding gene on the outcome of the comparison. Given the above biological features and the performance of experimental and bioinformatic approaches, one may develop various models to predict proteomic profiles based on transcriptomic data. This review is devoted to the ability of RNA sequencing methods for protein abundance prediction.
Collapse
Affiliation(s)
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia;
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bourdais A, Dehapiot B, Halet G. MRCK activates mouse oocyte myosin II for spindle rotation and male pronucleus centration. J Cell Biol 2023; 222:e202211029. [PMID: 37651121 PMCID: PMC10470461 DOI: 10.1083/jcb.202211029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/24/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
Asymmetric meiotic divisions in oocytes rely on spindle positioning in close vicinity to the cortex. In metaphase II mouse oocytes, eccentric spindle positioning triggers cortical polarization, including the build-up of an actin cap surrounded by a ring of activated myosin II. While the role of the actin cap in promoting polar body formation is established, ring myosin II activation mechanisms and functions have remained elusive. Here, we show that ring myosin II activation requires myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK), downstream of polarized Cdc42. MRCK inhibition resulted in spindle rotation defects during anaphase II, precluding polar body extrusion. Remarkably, disengagement of segregated chromatids from the anaphase spindle could rescue rotation. We further show that the MRCK/myosin II pathway is activated in the fertilization cone and is required for male pronucleus migration toward the center of the zygote. These findings provide novel insights into the mechanism of myosin II activation in oocytes and its role in orchestrating asymmetric division and pronucleus centration.
Collapse
Affiliation(s)
- Anne Bourdais
- University of Rennes, CNRS - UMR 6290, Institute of Genetics and Development of Rennes, Rennes, France
| | - Benoit Dehapiot
- University of Rennes, CNRS - UMR 6290, Institute of Genetics and Development of Rennes, Rennes, France
| | - Guillaume Halet
- University of Rennes, CNRS - UMR 6290, Institute of Genetics and Development of Rennes, Rennes, France
| |
Collapse
|
34
|
Ju LF, Xu HJ, Yang YG, Yang Y. Omics Views of Mechanisms for Cell Fate Determination in Early Mammalian Development. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:950-961. [PMID: 37075831 PMCID: PMC10928378 DOI: 10.1016/j.gpb.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/21/2023]
Abstract
During mammalian preimplantation development, a totipotent zygote undergoes several cell cleavages and two rounds of cell fate determination, ultimately forming a mature blastocyst. Along with compaction, the establishment of apicobasal cell polarity breaks the symmetry of an embryo and guides subsequent cell fate choice. Although the lineage segregation of the inner cell mass (ICM) and trophectoderm (TE) is the first symbol of cell differentiation, several molecules have been shown to bias the early cell fate through their inter-cellular variations at much earlier stages, including the 2- and 4-cell stages. The underlying mechanisms of early cell fate determination have long been an important research topic. In this review, we summarize the molecular events that occur during early embryogenesis, as well as the current understanding of their regulatory roles in cell fate decisions. Moreover, as powerful tools for early embryogenesis research, single-cell omics techniques have been applied to both mouse and human preimplantation embryos and have contributed to the discovery of cell fate regulators. Here, we summarize their applications in the research of preimplantation embryos, and provide new insights and perspectives on cell fate regulation.
Collapse
Affiliation(s)
- Lin-Fang Ju
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Heng-Ji Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Yun-Gui Yang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ying Yang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
35
|
Gonzalez XV, Almutlaq A, Gupta SS. Systematic review of mRNA expression in human oocytes: understanding the molecular mechanisms underlying oocyte competence. J Assist Reprod Genet 2023; 40:2283-2295. [PMID: 37558907 PMCID: PMC10504133 DOI: 10.1007/s10815-023-02906-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
The biggest cell in the human body, the oocyte, encloses almost the complete machinery to start life. Despite all the research performed to date, defining oocyte quality is still a major goal of reproductive science. It is the consensus that mature oocytes are transcriptionally silent although, during their growth, the cell goes through stages of active transcription and translation, which will endow the oocyte with the competence to undergo nuclear maturation, and the oocyte and embryo to initiate timely translation before the embryonic genome is fully activated (cytoplasmic maturation). A systematic search was conducted across three electronic databases and the literature was critically appraised using the KMET score system. The aim was to identify quantitative differences in transcriptome of human oocytes that may link to patient demographics that could affect oocyte competence. Data was analysed following the principles of thematic analysis. Differences in the transcriptome were identified with respect to age or pathological conditions and affected chromosome mis segregation, perturbations of the nuclear envelope, premature maturation, and alterations in metabolic pathways-amongst others-in human oocytes.
Collapse
Affiliation(s)
- Xavier Viñals Gonzalez
- Institute for Women's Health, Preimplantation Genetics Group, University College London, 84-86 Chenies Mews, Bloomsbury, London, WC1E 6HU, UK.
| | - Arwa Almutlaq
- Institute for Women's Health, Preimplantation Genetics Group, University College London, 84-86 Chenies Mews, Bloomsbury, London, WC1E 6HU, UK
| | - Sioban Sen Gupta
- Institute for Women's Health, Preimplantation Genetics Group, University College London, 84-86 Chenies Mews, Bloomsbury, London, WC1E 6HU, UK
| |
Collapse
|
36
|
Huang J, Chen P, Jia L, Li T, Yang X, Liang Q, Zeng Y, Liu J, Wu T, Hu W, Kee K, Zeng H, Liang X, Zhou C. Multi-Omics Analysis Reveals Translational Landscapes and Regulations in Mouse and Human Oocyte Aging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301538. [PMID: 37401155 PMCID: PMC10502832 DOI: 10.1002/advs.202301538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/28/2023] [Indexed: 07/05/2023]
Abstract
Abnormal resumption of meiosis and decreased oocyte quality are hallmarks of maternal aging. Transcriptional silencing makes translational control an urgent task during meiosis resumption in maternal aging. However, insights into aging-related translational characteristics and underlying mechanisms are limited. Here, using multi-omics analysis of oocytes, it is found that translatomics during aging is related to changes in the proteome and reveals decreased translational efficiency with aging phenotypes in mouse oocytes. Translational efficiency decrease is associated with the N6-methyladenosine (m6A) modification of transcripts. It is further clarified that m6A reader YTHDF3 is significantly decreased in aged oocytes, inhibiting oocyte meiotic maturation. YTHDF3 intervention perturbs the translatome of oocytes and suppress the translational efficiency of aging-associated maternal factors, such as Hells, to affect the oocyte maturation. Moreover, the translational landscape is profiled in human oocyte aging, and the similar translational changes of epigenetic modifications regulators between human and mice oocyte aging are observed. In particular, due to the translational silence of YTHDF3 in human oocytes, translation activity is not associated with m6A modification, but alternative splicing factor SRSF6. Together, the findings profile the specific translational landscapes during oocyte aging in mice and humans, and uncover non-conservative regulators on translation control in meiosis resumption and maternal aging.
Collapse
Affiliation(s)
- Jiana Huang
- Reproductive Medicine CenterThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Guangdong Engineering Technology Research Center of Fertility PreservationGuangzhou510610China
- Biomedical Innovation CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Peigen Chen
- Reproductive Medicine CenterThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Guangdong Engineering Technology Research Center of Fertility PreservationGuangzhou510610China
- Biomedical Innovation CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Lei Jia
- Reproductive Medicine CenterThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Guangdong Engineering Technology Research Center of Fertility PreservationGuangzhou510610China
- Biomedical Innovation CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Tingting Li
- Reproductive Medicine CenterThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Guangdong Engineering Technology Research Center of Fertility PreservationGuangzhou510610China
- Biomedical Innovation CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Xing Yang
- Reproductive Medicine CenterThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Guangdong Engineering Technology Research Center of Fertility PreservationGuangzhou510610China
- Biomedical Innovation CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Qiqi Liang
- Reproductive Medicine CenterThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Guangdong Engineering Technology Research Center of Fertility PreservationGuangzhou510610China
- Biomedical Innovation CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Yanyan Zeng
- Reproductive Medicine CenterThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Guangdong Engineering Technology Research Center of Fertility PreservationGuangzhou510610China
- Biomedical Innovation CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Jiawen Liu
- Reproductive Medicine CenterThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Guangdong Engineering Technology Research Center of Fertility PreservationGuangzhou510610China
- Biomedical Innovation CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Taibao Wu
- Reproductive Medicine CenterThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Guangdong Engineering Technology Research Center of Fertility PreservationGuangzhou510610China
- Biomedical Innovation CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Wenqi Hu
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of MedicineTsinghua UniversityBeijing100084China
| | - Kehkooi Kee
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of MedicineTsinghua UniversityBeijing100084China
| | - Haitao Zeng
- Reproductive Medicine CenterThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Guangdong Engineering Technology Research Center of Fertility PreservationGuangzhou510610China
- Biomedical Innovation CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Xiaoyan Liang
- Reproductive Medicine CenterThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Guangdong Engineering Technology Research Center of Fertility PreservationGuangzhou510610China
- Biomedical Innovation CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Chuanchuan Zhou
- Reproductive Medicine CenterThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510655China
- Guangdong Engineering Technology Research Center of Fertility PreservationGuangzhou510610China
- Biomedical Innovation CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| |
Collapse
|
37
|
Vandereyken K, Sifrim A, Thienpont B, Voet T. Methods and applications for single-cell and spatial multi-omics. Nat Rev Genet 2023; 24:494-515. [PMID: 36864178 PMCID: PMC9979144 DOI: 10.1038/s41576-023-00580-2] [Citation(s) in RCA: 344] [Impact Index Per Article: 172.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 03/04/2023]
Abstract
The joint analysis of the genome, epigenome, transcriptome, proteome and/or metabolome from single cells is transforming our understanding of cell biology in health and disease. In less than a decade, the field has seen tremendous technological revolutions that enable crucial new insights into the interplay between intracellular and intercellular molecular mechanisms that govern development, physiology and pathogenesis. In this Review, we highlight advances in the fast-developing field of single-cell and spatial multi-omics technologies (also known as multimodal omics approaches), and the computational strategies needed to integrate information across these molecular layers. We demonstrate their impact on fundamental cell biology and translational research, discuss current challenges and provide an outlook to the future.
Collapse
Affiliation(s)
- Katy Vandereyken
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Alejandro Sifrim
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Bernard Thienpont
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Thierry Voet
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium.
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
38
|
Zhang H, Ji S, Zhang K, Chen Y, Ming J, Kong F, Wang L, Wang S, Zou Z, Xiong Z, Xu K, Lin Z, Huang B, Liu L, Fan Q, Jin S, Deng H, Xie W. Stable maternal proteins underlie distinct transcriptome, translatome, and proteome reprogramming during mouse oocyte-to-embryo transition. Genome Biol 2023; 24:166. [PMID: 37443062 PMCID: PMC10347836 DOI: 10.1186/s13059-023-02997-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND The oocyte-to-embryo transition (OET) converts terminally differentiated gametes into a totipotent embryo and is critically controlled by maternal mRNAs and proteins, while the genome is silent until zygotic genome activation. How the transcriptome, translatome, and proteome are coordinated during this critical developmental window remains poorly understood. RESULTS Utilizing a highly sensitive and quantitative mass spectrometry approach, we obtain high-quality proteome data spanning seven mouse stages, from full-grown oocyte (FGO) to blastocyst, using 100 oocytes/embryos at each stage. Integrative analyses reveal distinct proteome reprogramming compared to that of the transcriptome or translatome. FGO to 8-cell proteomes are dominated by FGO-stockpiled proteins, while the transcriptome and translatome are more dynamic. FGO-originated proteins frequently persist to blastocyst while corresponding transcripts are already downregulated or decayed. Improved concordance between protein and translation or transcription is observed for genes starting translation upon meiotic resumption, as well as those transcribed and translated only in embryos. Concordance between protein and transcription/translation is also observed for proteins with short half-lives. We built a kinetic model that predicts protein dynamics by incorporating both initial protein abundance in FGOs and translation kinetics across developmental stages. CONCLUSIONS Through integrative analyses of datasets generated by ultrasensitive methods, our study reveals that the proteome shows distinct dynamics compared to the translatome and transcriptome during mouse OET. We propose that the remarkably stable oocyte-originated proteome may help save resources to accommodate the demanding needs of growing embryos. This study will advance our understanding of mammalian OET and the fundamental principles governing gene expression.
Collapse
Affiliation(s)
- Hongmei Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Shuyan Ji
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Ke Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yuling Chen
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jia Ming
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Feng Kong
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lijuan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Shun Wang
- School of Mathematics and Statistics, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan, China
| | - Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zhuqing Xiong
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Kai Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zili Lin
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Bo Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, 310002, China
| | - Ling Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qiang Fan
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Suoqin Jin
- School of Mathematics and Statistics, Wuhan University, Wuhan, China
| | - Haiteng Deng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
39
|
Jiang Y, He Y, Pan X, Wang P, Yuan X, Ma B. Advances in Oocyte Maturation In Vivo and In Vitro in Mammals. Int J Mol Sci 2023; 24:9059. [PMID: 37240406 PMCID: PMC10219173 DOI: 10.3390/ijms24109059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The quality and maturation of an oocyte not only play decisive roles in fertilization and embryo success, but also have long-term impacts on the later growth and development of the fetus. Female fertility declines with age, reflecting a decline in oocyte quantity. However, the meiosis of oocytes involves a complex and orderly regulatory process whose mechanisms have not yet been fully elucidated. This review therefore mainly focuses on the regulation mechanism of oocyte maturation, including folliculogenesis, oogenesis, and the interactions between granulosa cells and oocytes, plus in vitro technology and nuclear/cytoplasm maturation in oocytes. Additionally, we have reviewed advances made in the single-cell mRNA sequencing technology related to oocyte maturation in order to improve our understanding of the mechanism of oocyte maturation and to provide a theoretical basis for subsequent research into oocyte maturation.
Collapse
Affiliation(s)
- Yao Jiang
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yingting He
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangchun Pan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Penghao Wang
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| |
Collapse
|
40
|
Remodeling of maternal mRNA through poly(A) tail orchestrates human oocyte-to-embryo transition. Nat Struct Mol Biol 2023; 30:200-215. [PMID: 36646905 PMCID: PMC9935398 DOI: 10.1038/s41594-022-00908-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/06/2022] [Indexed: 01/18/2023]
Abstract
Poly(A)-tail-mediated post-transcriptional regulation of maternal mRNAs is vital in the oocyte-to-embryo transition (OET). Nothing is known about poly(A) tail dynamics during the human OET. Here, we show that poly(A) tail length and internal non-A residues are highly dynamic during the human OET, using poly(A)-inclusive RNA isoform sequencing (PAIso-seq). Unexpectedly, maternal mRNAs undergo global remodeling: after deadenylation or partial degradation into 3'-UTRs, they are re-polyadenylated to produce polyadenylated degradation intermediates, coinciding with massive incorporation of non-A residues, particularly internal long consecutive U residues, into the newly synthesized poly(A) tails. Moreover, TUT4 and TUT7 contribute to the incorporation of these U residues, BTG4-mediated deadenylation produces substrates for maternal mRNA re-polyadenylation, and TENT4A and TENT4B incorporate internal G residues. The maternal mRNA remodeling is further confirmed using PAIso-seq2. Importantly, maternal mRNA remodeling is essential for the first cleavage of human embryos. Together, these findings broaden our understanding of the post-transcriptional regulation of maternal mRNAs during the human OET.
Collapse
|
41
|
Takahashi N, Franciosi F, Daldello EM, Luong XG, Althoff P, Wang X, Conti M. CPEB1-dependent disruption of the mRNA translation program in oocytes during maternal aging. Nat Commun 2023; 14:416. [PMID: 36697412 PMCID: PMC9877008 DOI: 10.1038/s41467-023-35994-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
The molecular causes of deteriorating oocyte quality during aging are poorly defined. Since oocyte developmental competence relies on post-transcriptional regulations, we tested whether defective mRNA translation contributes to this decline in quality. Disruption in ribosome loading on maternal transcripts is present in old oocytes. Using a candidate approach, we detect altered translation of 3'-UTR-reporters and altered poly(A) length of the endogenous mRNAs. mRNA polyadenylation depends on the cytoplasmic polyadenylation binding protein 1 (CPEB1). Cpeb1 mRNA translation and protein levels are decreased in old oocytes. This decrease causes de-repression of Ccnb1 translation in quiescent oocytes, premature CDK1 activation, and accelerated reentry into meiosis. De-repression of Ccnb1 is corrected by Cpeb1 mRNA injection in old oocytes. Oocyte-specific Cpeb1 haploinsufficiency in young oocytes recapitulates all the translation phenotypes of old oocytes. These findings demonstrate that a dysfunction in the oocyte translation program is associated with the decline in oocyte quality during aging.
Collapse
Affiliation(s)
- Nozomi Takahashi
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Federica Franciosi
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,Reproductive and Developmental Biology Lab, Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, 20133, Milan, Italy
| | - Enrico Maria Daldello
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | - Xuan G Luong
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Peter Althoff
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Xiaotian Wang
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA. .,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA. .,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
42
|
Wang N, He J, Feng X, Liao S, Zhao Y, Tang F, Kee K. Single-cell profiling of lncRNAs in human germ cells and molecular analysis reveals transcriptional regulation of LNC1845 on LHX8. eLife 2023; 12:78421. [PMID: 36602025 PMCID: PMC9859043 DOI: 10.7554/elife.78421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Non-coding RNAs exert diverse functions in many cell types. In addition to transcription factors from coding genes, non-coding RNAs may also play essential roles in shaping and directing the fate of germ cells. The presence of many long non-coding RNAs (lncRNAs) which are specifically expressed in the germ cells during human gonadal development were reported and one divergent lncRNA, LNC1845, was functionally characterized. Comprehensive bioinformatic analysis of these lncRNAs indicates that divergent lncRNAs occupied the majority of female and male germ cells. Integrating lncRNA expression into the bioinformatic analysis also enhances the cell-type classification of female germ cells. Functional dissection using in vitro differentiation of human pluripotent stem cells to germ cells revealed the regulatory role of LNC1845 on a transcription factor essential for ovarian follicle development, LHX8, by modulating the levels of histone modifications, H3K4me3 and H3K27Ac. Hence, bioinformatical analysis and experimental verification provide a comprehensive analysis of lncRNAs in developing germ cells and elucidate how an lncRNA function as a cis regulator during human germ cell development.
Collapse
Affiliation(s)
- Nan Wang
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
| | - Jing He
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
| | - Xiaoyu Feng
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
| | - Shengyou Liao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of SciencesBeijingChina
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of SciencesBeijingChina
| | - Fuchou Tang
- Biodynamic Optical Imaging Center & Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking UniversityBeijingChina
| | - Kehkooi Kee
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina,Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua UniversityBeijingChina
| |
Collapse
|
43
|
Gassler J, Kobayashi W, Gáspár I, Ruangroengkulrith S, Mohanan A, Gómez Hernández L, Kravchenko P, Kümmecke M, Lalic A, Rifel N, Ashburn RJ, Zaczek M, Vallot A, Cuenca Rico L, Ladstätter S, Tachibana K. Zygotic genome activation by the totipotency pioneer factor Nr5a2. Science 2022; 378:1305-1315. [PMID: 36423263 DOI: 10.1126/science.abn7478] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Life begins with a switch in genetic control from the maternal to the embryonic genome during zygotic genome activation (ZGA). Despite its importance, the essential regulators of ZGA remain largely unknown in mammals. On the basis of de novo motif searches, we identified the orphan nuclear receptor Nr5a2 as a key activator of major ZGA in mouse two-cell embryos. Nr5a2 is required for progression beyond the two-cell stage. It binds to its motif within SINE B1/Alu retrotransposable elements found in cis-regulatory regions of ZGA genes. Chemical inhibition suggests that 72% of ZGA genes are regulated by Nr5a2 and potentially other orphan nuclear receptors. Nr5a2 promotes chromatin accessibility during ZGA and binds nucleosomal DNA in vitro. We conclude that Nr5a2 is an essential pioneer factor that regulates ZGA.
Collapse
Affiliation(s)
- Johanna Gassler
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany.,Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Wataru Kobayashi
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | - Imre Gáspár
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | | | - Adarsh Mohanan
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | - Laura Gómez Hernández
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | - Pavel Kravchenko
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | - Maximilian Kümmecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Aleksandar Lalic
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | - Nikita Rifel
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | - Robert John Ashburn
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | - Maciej Zaczek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Antoine Vallot
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Laura Cuenca Rico
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Sabrina Ladstätter
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Kikuë Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany.,Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
44
|
Yan A, Xiong J, Zhu J, Li X, Xu S, Feng X, Ke X, Wang Z, Chen Y, Wang HW, Zhang MQ, Kee K. DAZL regulates proliferation of human primordial germ cells by direct binding to precursor miRNAs and enhances DICER processing activity. Nucleic Acids Res 2022; 50:11255-11272. [DOI: 10.1093/nar/gkac856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 09/14/2022] [Accepted: 09/23/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Understanding the molecular and cellular mechanisms of human primordial germ cells (hPGCs) is essential in studying infertility and germ cell tumorigenesis. Many RNA-binding proteins (RBPs) and non-coding RNAs are specifically expressed and functional during hPGC developments. However, the roles and regulatory mechanisms of these RBPs and non-coding RNAs, such as microRNAs (miRNAs), in hPGCs remain elusive. In this study, we reported a new regulatory function of DAZL, a germ cell-specific RBP, in miRNA biogenesis and cell proliferation. First, DAZL co-localized with miRNA let-7a in human PGCs and up-regulated the levels of >100 mature miRNAs, including eight out of nine let-7 family, miR21, miR22, miR125, miR10 and miR199. Purified DAZL directly bound to the loops of precursor miRNAs with sequence specificity of GUU. The binding of DAZL to the precursor miRNA increased the maturation of miRNA by enhancing the cleavage activity of DICER. Furthermore, cell proliferation assay and cell cycle analysis confirmed that DAZL inhibited the proliferation of in vitro PGCs by promoting the maturation of these miRNAs. Evidently, the mature miRNAs up-regulated by DAZL silenced cell proliferation regulators including TRIM71. Moreover, DAZL inhibited germline tumor cell proliferation and teratoma formation. These results demonstrate that DAZL regulates hPGC proliferation by enhancing miRNA processing.
Collapse
Affiliation(s)
- An Yan
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University , Beijing 100084 , China
| | - Jie Xiong
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University , Beijing 100084 , China
- Tsinghua University-–Peking University Joint Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Jiadong Zhu
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University , Beijing 100084 , China
| | - Xiangyu Li
- School of Software Engineering, Beijing Jiaotong University , Beijing 100044 , China
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University , Beijing 100084 , China
| | - Shuting Xu
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University , Beijing 100084 , China
- Tsinghua University-–Peking University Joint Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Xiaoyu Feng
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University , Beijing 100084 , China
| | - Xin Ke
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua–Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Zhenyi Wang
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University , Beijing 100084 , China
| | - Yang Chen
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University , Beijing 100084 , China
- School of Medicine, Tsinghua University , Beijing 100084 , China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua–Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University , Beijing 100084 , China
- School of Medicine, Tsinghua University , Beijing 100084 , China
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, 800 West Campbell Road, RL11, Richardson , TX 75080-3021, USA
| | - Kehkooi Kee
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University , Beijing 100084 , China
- Tsinghua University-–Peking University Joint Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| |
Collapse
|