1
|
Cheng Y, Zhao E, Yang X, Luo C, Zi G, Wang R, Xu Y, Peng B. Entrapment of lipid nanoparticles in peripheral endosomes but not lysosomes impairs intracellular trafficking and endosomal escape. Int J Pharm 2024; 669:125024. [PMID: 39631713 DOI: 10.1016/j.ijpharm.2024.125024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/14/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
The uptake and intracellular trafficking of lipid nanoparticles (LNPs) along the endolysosomal pathway leading to releasing compartments is critical for delivery efficiency. How the players of the processes interact with each other to affect LNP delivery remains unclear. Here, we employed a recently developed, highly sensitive LNP labeling platform in combination with defined-state of endolysosomal activity of cells to address this outstanding question with spatiotemporal analysis. We found the endolysosomal activity (endolyosomal pH, endolysosomal protease activation), which was regulated by nutrients, determines the active endocytosis activity of cells. Elevated internalization of DNA and LNP alike by cells correlated with increased endolysosomal activity. Similar to naked DNA, elevated internalization of LNP resulted in entrapment of LNPs in peripheral endosomes, which significantly impaired the intracellular trafficking of LNP to the perinuclear lysosome region and cytosolic release of LNP cargo. On the other hand, we found the extent of perinuclear lysosomal LNP accumulation positively correlated with the level of transgene expression. Moreover, we found continuous internalization of LNP was necessary not only to saturate the degradation compartments to overcome rapid degradation of LNP but also to maintain a necessary pool of releasing compartments, shuttling between peripheral endosomes and lysosomes via anterograde transport and retrograde transport along microtubules respectively, for meaningful endosomal release. Our results suggest the balance between endocytosis and intracellular trafficking needs to be fine-tuned according to endolysosomal activity of target cell to achieve optimal cytosol release.
Collapse
Affiliation(s)
- Yiqin Cheng
- College of Pharmacy, Dali University, No. 2 Hongsheng Road, Dali 671003, Yunnan, PR China
| | - E Zhao
- College of Pharmacy, Dali University, No. 2 Hongsheng Road, Dali 671003, Yunnan, PR China
| | - Xiaojuan Yang
- College of Pharmacy, Dali University, No. 2 Hongsheng Road, Dali 671003, Yunnan, PR China
| | - Chengzhi Luo
- College of Pharmacy, Dali University, No. 2 Hongsheng Road, Dali 671003, Yunnan, PR China
| | - Guanghui Zi
- College of Pharmacy, Dali University, No. 2 Hongsheng Road, Dali 671003, Yunnan, PR China
| | - Rui Wang
- College of Pharmacy, Dali University, No. 2 Hongsheng Road, Dali 671003, Yunnan, PR China
| | - Yuhong Xu
- College of Pharmacy, Dali University, No. 2 Hongsheng Road, Dali 671003, Yunnan, PR China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Xueren Road, Dali 671003, Yunnan, PR China.
| | - Baowei Peng
- College of Pharmacy, Dali University, No. 2 Hongsheng Road, Dali 671003, Yunnan, PR China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Xueren Road, Dali 671003, Yunnan, PR China; Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China.
| |
Collapse
|
2
|
Olaoye OJ, Aksoy AE, Hyytiäinen SV, Narits AA, Hickey MA. Levodopa Impairs Lysosomal Function in Sensory Neurons In Vitro. BIOLOGY 2024; 13:893. [PMID: 39596848 PMCID: PMC11591693 DOI: 10.3390/biology13110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative disease worldwide. Patients are diagnosed based upon movement disorders, including bradykinesia, tremor and stiffness of movement. However, non-motor signs, including constipation, rapid eye movement sleep behavior disorder, smell deficits and pain are well recognized. Peripheral neuropathy is also increasingly recognized, as the vast majority of patients show reduced intraepidermal nerve fibers, and sensory nerve conduction and sensory function is also impaired. Many case studies in the literature show that high-dose levodopa may induce or exacerbate neuropathy in PD, which is thought to involve levodopa's metabolism to homocysteine. Here, we treated primary cultures of dorsal root ganglia and a sensory neuronal cell line with levodopa to examine effects on cell morphology, mitochondrial content and physiology, and lysosomal function. High-dose levodopa reduced mitochondrial membrane potential. At concentrations observed in the patient, levodopa enhanced immunoreactivity to beta III tubulin. Critically, levodopa reduced lysosomal content and also reduced the proportion of lysosomes that were acidic, thereby impairing their function, whereas homocysteine tended to increase lysosome content. Levodopa is a critically important drug for the treatment of PD. However, our data suggest that at concentrations observed in the patient, it has deleterious effects on sensory neurons that are not related to homocysteine.
Collapse
Affiliation(s)
| | | | | | | | - Miriam A. Hickey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (O.J.O.); (A.E.A.); (S.V.H.); (A.A.N.)
| |
Collapse
|
3
|
Nturubika BD, Guardia CM, Gershlick DC, Logan JM, Martini C, Heatlie JK, Lazniewska J, Moore C, Lam GT, Li KL, Ung BSY, Brooks RD, Hickey SM, Bert AG, Gregory PA, Butler LM, O'Leary JJ, Brooks DA, Johnson IRD. Altered expression of vesicular trafficking machinery in prostate cancer affects lysosomal dynamics and provides insight into the underlying biology and disease progression. Br J Cancer 2024; 131:1263-1278. [PMID: 39217195 PMCID: PMC11473802 DOI: 10.1038/s41416-024-02829-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND This study focuses on the role of lysosomal trafficking in prostate cancer, given the essential role of lysosomes in cellular homoeostasis. METHODS Lysosomal motility was evaluated using confocal laser scanning microscopy of LAMP-1-transfected prostate cells and spot-tracking analysis. Expression of lysosomal trafficking machinery was evaluated in patient cohort databases and through immunohistochemistry on tumour samples. The roles of vesicular trafficking machinery were evaluated through over-expression and siRNA. The effects of R1881 treatment on lysosome vesicular trafficking was evaluated by RNA sequencing, protein quantification and fixed- and live-cell microscopy. RESULTS Altered regulation of lysosomal trafficking genes/proteins was observed in prostate cancer tissue, with significant correlations for co-expression of vesicular trafficking machinery in Gleason patterns. The expression of trafficking machinery was associated with poorer patient outcomes. R1881 treatment induced changes in lysosomal distribution, number, and expression of lysosomal vesicular trafficking machinery in hormone-sensitive prostate cancer cells. Manipulation of genes involved in lysosomal trafficking events induced changes in lysosome positioning and cell phenotype, as well as differential effects on cell migration, in non-malignant and prostate cancer cells. CONCLUSIONS These findings provide novel insights into the altered regulation and functional impact of lysosomal vesicular trafficking in prostate cancer pathogenesis.
Collapse
Affiliation(s)
- Bukuru D Nturubika
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| | - Carlos M Guardia
- Placental Cell Biology Group, National Institute of Environmental Health and Science, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - David C Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Jessica M Logan
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Carmela Martini
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Jessica K Heatlie
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Joanna Lazniewska
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Courtney Moore
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Giang T Lam
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Ka L Li
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Ben S-Y Ung
- Quality Use of Medicines and Pharmacy Research Centre, University of South Australia City East Campus, Frome Rd, Adelaide, SA, 5000, Australia
| | - Robert D Brooks
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Shane M Hickey
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Andrew G Bert
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5000, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5000, Australia
| | - Lisa M Butler
- South Australian ImmunoGENomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, 5000, Australia
- Solid Tumour Program, Precision Cancer Medicine theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin, Dublin 8, Ireland
| | - Douglas A Brooks
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| | - Ian R D Johnson
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| |
Collapse
|
4
|
Zhang J, Peng Y, Fu W, Wang R, Cao J, Li S, Tian X, Li Z, Hua C, Zhai Y, Liu Y, Liu M, Sun J, Li X, Zhao X, Dong J. PLEKHM2 deficiency induces impaired mitochondrial clearance and elevated ROS levels in human iPSC-derived cardiomyocytes. Cell Death Discov 2024; 10:142. [PMID: 38490981 PMCID: PMC10942999 DOI: 10.1038/s41420-024-01907-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024] Open
Abstract
Pleckstrin homology domain-containing family M member 2 (PLEKHM2) is an essential adaptor for lysosomal trafficking and its homozygous truncation have been reported to cause early onset dilated cardiomyopathy (DCM). However, the molecular mechanism of PLEKHM2 deficiency in DCM pathogenesis and progression is poorly understood. Here, we generated an in vitro model of PLEKHM2 knockout (KO) induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to elucidate the potential pathogenic mechanism of PLEKHM2-deficient cardiomyopathy. PLEKHM2-KO hiPSC-CMs developed disease phenotypes with reduced contractility and impaired calcium handling. Subsequent RNA sequencing (RNA-seq) analysis revealed altered expression of genes involved in mitochondrial function, autophagy and apoptosis in PLEKHM2-KO hiPSC-CMs. Further molecular experiments confirmed PLEKHM2 deficiency impaired autophagy and resulted in accumulation of damaged mitochondria, which triggered increased reactive oxygen species (ROS) levels and decreased mitochondrial membrane potential (Δψm). Importantly, the elevated ROS levels caused oxidative stress-induced damage to nearby healthy mitochondria, resulting in extensive Δψm destabilization, and ultimately leading to impaired mitochondrial function and myocardial contractility. Moreover, ROS inhibition attenuated oxidative stress-induced mitochondrial damage, thereby partially rescued PLEKHM2 deficiency-induced disease phenotypes. Remarkably, PLEKHM2-WT overexpression restored autophagic flux and rescued mitochondrial function and myocardial contractility in PLEKHM2-KO hiPSC-CMs. Taken together, these results suggested that impaired mitochondrial clearance and increased ROS levels play important roles in PLEKHM2-deficient cardiomyopathy, and PLEKHM2-WT overexpression can improve mitochondrial function and rescue PLEKHM2-deficient cardiomyopathy.
Collapse
Affiliation(s)
- Jianchao Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Ying Peng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Wanrong Fu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Ruifei Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinhua Cao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Shuang Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaoxu Tian
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Zhonggen Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Chongpei Hua
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Yafei Zhai
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Yangyang Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Mengduan Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Jihong Sun
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China
| | - Xiaowei Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China.
| | - Xiaoyan Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China.
| | - Jianzeng Dong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou, 450052, China.
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Centre for Cardiovascular Diseases, No. 2 Beijing Anzhen Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|