1
|
Dou B, Chen Y, Feng Q, Cheng H, Wang P. Electrochemical Self-Sacrificial Label Conversion Coupled with DNA Framework Nanomachine Mediated Serotonin Sensing with Highly Minimized Background Noise. Anal Chem 2025; 97:157-165. [PMID: 39745057 DOI: 10.1021/acs.analchem.4c03452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Conventional solid/liquid electrochemical interfaces typically encounter challenges with impeded mass transport for poor electrochemical quantification due to the intricate pathways of reactants from the bulk solution. To address this issue, this work reports an innovative approach integrating a target-activated DNA framework nanomachine with electrochemically driven metal-organic framework (MOF) conversion for self-sacrificial biosensing. The presence of the target biomarker serotonin initiates the DNA framework nanomachine by an entropy-driven circuit to form a cross-linked nanostructure and subsequently release the Fe-MOF probe. Acting as a natural metal precursor and a nanoconfined source of reactant, the Fe-MOF probe is converted into electroactive Prussian Blue during electrochemical processes. Taking advantage of the confinement effect, our proposed biosensor exhibits the excellent capability to detect serotonin in a linear range from 1 pM to 5 μM with a remarkable detection limit of 0.4 pM and exceptional specificity against other interferents. The proof-of-concept demonstration of serotonin detection in clinical serum samples from patients with carcinoid tumors highlights the utility of a complex sample analysis. The design could be applied for other biomarker detection with a high potential to inspire innovative sensing approaches, holding promise for applications in biomedical research and disease diagnosis.
Collapse
Affiliation(s)
- Baoting Dou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yan Chen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Qiumei Feng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
2
|
Fink R, Imai S, Gockel N, Lauer G, Renken K, Wietek J, Lamothe-Molina PJ, Fuhrmann F, Mittag M, Ziebarth T, Canziani A, Kubitschke M, Kistmacher V, Kretschmer A, Sebastian E, Schmitz D, Terai T, Gründemann J, Hassan S, Patriarchi T, Reiner A, Fuhrmann M, Campbell RE, Masseck OA. PinkyCaMP a mScarlet-based calcium sensor with exceptional brightness, photostability, and multiplexing capabilities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.16.628673. [PMID: 39763884 PMCID: PMC11702558 DOI: 10.1101/2024.12.16.628673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Genetically encoded calcium (Ca2+) indicators (GECIs) are widely used for imaging neuronal activity, yet current limitations of existing red fluorescent GECIs have constrained their applicability. The inherently dim fluorescence and low signal-to-noise ratio of red-shifted GECIs have posed significant challenges. More critically, several red-fluorescent GECIs exhibit photoswitching when exposed to blue light, thereby limiting their applicability in all-optical experimental approaches. Here, we present the development of PinkyCaMP, the first mScarlet-based Ca2+ sensor that outperforms current red fluorescent sensors in brightness, photostability, signal-to-noise ratio, and compatibility with optogenetics and neurotransmitter imaging. PinkyCaMP is well-tolerated by neurons, showing no toxicity or aggregation, both in vitro and in vivo. All imaging approaches, including single-photon excitation methods such as fiber photometry, widefield imaging, miniscope imaging, as well as two-photon imaging in awake mice, are fully compatible with PinkyCaMP.
Collapse
Affiliation(s)
- Ryan Fink
- Synthetic Biology, University of Bremen, Bremen, Germany
| | - Shosei Imai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Nala Gockel
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - German Lauer
- Cellular Neurobiology, Department of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Kim Renken
- Synthetic Biology, University of Bremen, Bremen, Germany
| | - Jonas Wietek
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Neuroscience Research Center, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, 10117 Berlin, Germany
| | | | - Falko Fuhrmann
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Manuel Mittag
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Tim Ziebarth
- Cellular Neurobiology, Department of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Annika Canziani
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | | | | | - Anny Kretschmer
- Network Dysfunction, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Eva Sebastian
- Neural Circuit Computation, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Neuroscience Research Center, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell and Neurobiology, 10117 Berlin, Germany
- Network Dysfunction, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Einstein Center for Neuroscience, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, NeuroCure Cluster of Excellence, Berlin, Germany
- Humboldt-Universität zu Berlin, Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Takuya Terai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Jan Gründemann
- Neural Circuit Computation, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Sami Hassan
- System Neurobiology,University of Bremen, Bremen, Germany
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zürich, University and ETH Zürich, Switzerland
| | - Andreas Reiner
- Cellular Neurobiology, Department of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Martin Fuhrmann
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Robert E Campbell
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- CERVO Brain Research Center and Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Québec, Canada
| | | |
Collapse
|
3
|
Sun C, Liu X, Zhuo H, He X, Ge Z, Zhang Y, Li Z, Xiong Q. A post-modified lanthanide metal-organic frameworks as ratiometric luminescent sensor for the visual detection of 5-hydroxytryptamine. JOURNAL OF HAZARDOUS MATERIALS 2024; 484:136793. [PMID: 39642738 DOI: 10.1016/j.jhazmat.2024.136793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
5-Hydroxytryptamine (5-HT), a key neurotransmitter, is an important biomarker for carcinoid syndrome. We herein construct a ratiometric luminescent sensor by covalently coupling fluorescein 5-isothiocyanate (FITC) with lanthanide metal-organic frameworks (Ln-MOFs). In the presence of 5-HT, the emission of FITC increases while the emission of Eu3 + decreases, accompanied by a distinct color change of emission from orange to green. This sensor not only has the advantages of high sensitivity (LOD = 0.04 μM), fast response (30 s), excellent selectivity, and large ΔE*ab value (73), but can also be used for the detection of 5-HT in human serum and allow for instant visual detection with the assistant of smartphone. This ratiometric luminescent sensor offers an alternative avenue for early diagnosis of carcinoid syndrome.
Collapse
Affiliation(s)
- Congmin Sun
- School of Chemical Engineering and Technology, Hebei University of Technology, XiPing Dao 5340, Beichen District, Tianjin 300401, PR China
| | - Xiao Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, XiPing Dao 5340, Beichen District, Tianjin 300401, PR China; School of Material Science and Engineering, Hebei University of Technology, XiPing Dao 5340, Beichen District, Tianjin 300401, PR China.
| | - Huimin Zhuo
- School of Chemical Engineering and Technology, Hebei University of Technology, XiPing Dao 5340, Beichen District, Tianjin 300401, PR China
| | - Xu He
- School of Chemical Engineering and Technology, Hebei University of Technology, XiPing Dao 5340, Beichen District, Tianjin 300401, PR China
| | - Zerong Ge
- School of Chemical Engineering and Technology, Hebei University of Technology, XiPing Dao 5340, Beichen District, Tianjin 300401, PR China
| | - Ying Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, XiPing Dao 5340, Beichen District, Tianjin 300401, PR China
| | - Zhiqiang Li
- School of Chemical Engineering and Technology, Hebei University of Technology, XiPing Dao 5340, Beichen District, Tianjin 300401, PR China.
| | - Qingqing Xiong
- Department of Hepatobiliary Cancer, Tianjin Medical University Cancer Institute & Hospital, Huanhuxi Road, Hexi District, Tianjin 300060, PR China.
| |
Collapse
|
4
|
Kumar R, Pathak NK, Sarkar JK, Tripathy U, Datta PK. Vibrational spectra of serotonin by terahertz time domain spectroscopy and DFT simulations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 329:125541. [PMID: 39642626 DOI: 10.1016/j.saa.2024.125541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/11/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Serotonin is an important biogenic monoamine neurotransmitter that has major influences on mental health disorders; its structural and conformational changes have important roles in the biological functions of the human body. The decreased serotonin levels in the human body are majorly attributed to the causes of anxiety, depressive disorders, mood disorders, etc. Therefore, the quantification of serotonin in our bodies is of utmost importance in unearthing the origin of such physiological disorders. In this study, Terahertz-Time Domain Spectroscopy (THz-TDS) is employed to characterize the unique THz fingerprint of serotonin in the frequency range 0-3 THz. The characteristic THz absorption peaks of serotonin are observed at 0.54, 0.84, and 1.10 THz. In addition, Density Functional Theory (DFT) calculations are performed to investigate the vibrational properties of serotonin. For the vibrational assignment of modes, we have used Potential Energy Distribution (PED) analysis. Furthermore, studies have been conducted on the variation of serotonin concentration in a polyethylene (PE) host medium. The effect of the serotonin concentration in the PE host is studied using the complex refractive index (CRI) model. The sensitivity of detection of serotonin concentration is 0.015 for an increment of 2% concentration in PE medium. This work maps the spectral features of serotonin in the THz range, suggesting that THz-TDS can be used to understand and treat the physiological disorders related to serotonergic systems.
Collapse
Affiliation(s)
- Rajat Kumar
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Nitesh Kumar Pathak
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Jayanta Kumar Sarkar
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Prasanta Kumar Datta
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
5
|
Giorgioni G, Bonifazi A, Botticelli L, Cifani C, Matteucci F, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Giannella M, Piergentili A, Piergentili A, Quaglia W, Del Bello F. Advances in drug design and therapeutic potential of selective or multitarget 5-HT1A receptor ligands. Med Res Rev 2024; 44:2640-2706. [PMID: 38808959 DOI: 10.1002/med.22049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024]
Abstract
5-HT1A receptor (5-HT1A-R) is a serotoninergic G-protein coupled receptor subtype which contributes to several physiological processes in both central nervous system and periphery. Despite being the first 5-HT-R identified, cloned and studied, it still represents a very attractive target in drug discovery and continues to be the focus of a myriad of drug discovery campaigns due to its involvement in numerous neuropsychiatric disorders. The structure-activity relationship studies (SAR) performed over the last years have been devoted to three main goals: (i) design and synthesis of 5-HT1A-R selective/preferential ligands; (ii) identification of 5-HT1A-R biased agonists, differentiating pre- versus post-synaptic agonism and signaling cellular mechanisms; (iii) development of multitarget compounds endowed with well-defined poly-pharmacological profiles targeting 5-HT1A-R along with other serotonin receptors, serotonin transporter (SERT), D2-like receptors and/or enzymes, such as acetylcholinesterase and phosphodiesterase, as a promising strategy for the management of complex psychiatric and neurodegenerative disorders. In this review, medicinal chemistry aspects of ligands acting as selective/preferential or multitarget 5-HT1A-R agonists and antagonists belonging to different chemotypes and developed in the last 7 years (2017-2023) have been discussed. The development of chemical and pharmacological 5-HT1A-R tools for molecular imaging have also been described. Finally, the pharmacological interest of 5-HT1A-R and the therapeutic potential of ligands targeting this receptor have been considered.
Collapse
Affiliation(s)
- Gianfabio Giorgioni
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Luca Botticelli
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Federica Matteucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | | | | | - Mario Giannella
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Alessia Piergentili
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Wilma Quaglia
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Fabio Del Bello
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
6
|
Muir J, Anguiano M, Kim CK. Neuromodulator and neuropeptide sensors and probes for precise circuit interrogation in vivo. Science 2024; 385:eadn6671. [PMID: 39325905 PMCID: PMC11488521 DOI: 10.1126/science.adn6671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/01/2024] [Indexed: 09/28/2024]
Abstract
To determine how neuronal circuits encode and drive behavior, it is often necessary to measure and manipulate different aspects of neurochemical signaling in awake animals. Optogenetics and calcium sensors have paved the way for these types of studies, allowing for the perturbation and readout of spiking activity within genetically defined cell types. However, these methods lack the ability to further disentangle the roles of individual neuromodulator and neuropeptides on circuits and behavior. We review recent advances in chemical biology tools that enable precise spatiotemporal monitoring and control over individual neuroeffectors and their receptors in vivo. We also highlight discoveries enabled by such tools, revealing how these molecules signal across different timescales to drive learning, orchestrate behavioral changes, and modulate circuit activity.
Collapse
Affiliation(s)
- J. Muir
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - M. Anguiano
- Neuroscience Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - C. K. Kim
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
7
|
Zhang S, Song G, Yang Z, Kang K, Liu X. A label-free fluorescence aptamer sensor for point-of-care serotonin detection. Talanta 2024; 277:126363. [PMID: 38850806 DOI: 10.1016/j.talanta.2024.126363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Serotonin, a pivotal neurotransmitter regulating various physiological functions, plays a crucial role in disease diagnosis, necessitating precise monitoring of its levels in biological fluids for accurate assessment. Aptamers, known for their high specificity and affinity, have emerged as innovative molecular probes for serotonin analysis. However, existing serotonin aptamer sensing platforms exhibit limitations in terms of portability and rapid detection capabilities. In this study, we introduce a novel, portable, label-free serotonin aptamer sensor utilizing a dye replacement strategy, achieving a short sample-to-result turnaround time and convenient signal readout through a smartphone. The performance of this aptamer sensor was thoroughly assessed across diverse physiological media, demonstrating robust stability in buffer, urine, and serum. Importantly, the detection limit was in the nanomolar range, emphasizing its suitability for the rapid, sensitive, and user-friendly detection of serotonin. This research pioneers an approach for the development of a point-of-care testing (POCT) system for serotonin with practical implications, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Shuyuan Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Gege Song
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Zhan Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Kai Kang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China; School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
8
|
Bremshey S, Groß J, Renken K, Masseck OA. The role of serotonin in depression-A historical roundup and future directions. J Neurochem 2024; 168:1751-1779. [PMID: 38477031 DOI: 10.1111/jnc.16097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Depression is one of the most common psychiatric disorders worldwide, affecting approximately 280 million people, with probably much higher unrecorded cases. Depression is associated with symptoms such as anhedonia, feelings of hopelessness, sleep disturbances, and even suicidal thoughts. Tragically, more than 700 000 people commit suicide each year. Although depression has been studied for many decades, the exact mechanisms that lead to depression are still unknown, and available treatments only help a fraction of patients. In the late 1960s, the serotonin hypothesis was published, suggesting that serotonin is the key player in depressive disorders. However, this hypothesis is being increasingly doubted as there is evidence for the influence of other neurotransmitters, such as noradrenaline, glutamate, and dopamine, as well as larger systemic causes such as altered activity in the limbic network or inflammatory processes. In this narrative review, we aim to contribute to the ongoing debate on the involvement of serotonin in depression. We will review the evolution of antidepressant treatments, systemic research on depression over the years, and future research applications that will help to bridge the gap between systemic research and neurotransmitter dynamics using biosensors. These new tools in combination with systemic applications, will in the future provide a deeper understanding of the serotonergic dynamics in depression.
Collapse
Affiliation(s)
- Svenja Bremshey
- Synthetic Biology, University of Bremen, Bremen, Germany
- Neuropharmacology, University of Bremen, Bremen, Germany
| | - Juliana Groß
- Synthetic Biology, University of Bremen, Bremen, Germany
| | - Kim Renken
- Synthetic Biology, University of Bremen, Bremen, Germany
| | | |
Collapse
|
9
|
Chemerkouh MJHN, Zhou X, Yang Y, Wang S. Deep Learning Enhanced Label-Free Action Potential Detection Using Plasmonic-Based Electrochemical Impedance Microscopy. Anal Chem 2024; 96:11299-11308. [PMID: 38953225 PMCID: PMC11283340 DOI: 10.1021/acs.analchem.4c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Measuring neuronal electrical activity, such as action potential propagation in cells, requires the sensitive detection of the weak electrical signal with high spatial and temporal resolution. None of the existing tools can fulfill this need. Recently, plasmonic-based electrochemical impedance microscopy (P-EIM) was demonstrated for the label-free mapping of the ignition and propagation of action potentials in neuron cells with subcellular resolution. However, limited by the signal-to-noise ratio in the high-speed P-EIM video, action potential mapping was achieved by averaging 90 cycles of signals. Such extensive averaging is not desired and may not always be feasible due to factors such as neuronal desensitization. In this study, we utilized advanced signal processing techniques to detect action potentials in P-EIM extracted signals with fewer averaged cycles. Matched filtering successfully detected action potential signals with as few as averaging five cycles of signals. Long short-term memory (LSTM) recurrent neural network achieved the best performance and was able to detect single-cycle stimulated action potential successfully [satisfactory area under the receiver operating characteristic curve (AUC) equal to 0.855]. Therefore, we show that deep learning-based signal processing can dramatically improve the usability of P-EIM mapping of neuronal electrical signals.
Collapse
Affiliation(s)
- Mohammad Javad Haji Najafi Chemerkouh
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Xinyu Zhou
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Yunze Yang
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ 85287, USA
| | - Shaopeng Wang
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
10
|
Pathak NK, Sahoo P, Tripathy U. Nonlinear study of indolamines: A hidden property that might have possible implications in neurodegeneration. Talanta 2024; 272:125808. [PMID: 38373364 DOI: 10.1016/j.talanta.2024.125808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Indolamines (e.g., serotonin and melatonin) are tryptophan-derived class of neurotransmitters and neuromodulators that play crucial roles in mood regulation, sleep-wake cycles, and gastrointestinal functions. These biogenic amines exert their effects by binding to specific receptors in the central nervous system, influencing neuronal activity and signalling cascades. Indolamines are vital in maintaining homeostasis, and imbalances in their levels have been implicated in various neurological and psychiatric disorders. Hence, in the present study, we have investigated the nonlinear properties of indolamines under a continuous wave (CW) and pulsed laser excitation using the closed-aperture (CA) Z-scan technique. The CA Z-scan is a cost-effective and sensitive analytical tool for investigating nonlinear properties. It is observed that indolamines show negative refractive and positive absorptive nonlinearity under in vitro physiological conditions. The origin of nonlinearity is ascribed to the thermo-optical effect governed by the saturated atomic absorption and molecular orientation mechanisms under CW and pulsed laser excitation, respectively. The strength of nonlinearity is found to vary linearly with the concentration of indolamines. Overall, serotonin possesses stronger nonlinearity than melatonin. The maximum nonlinearity (refractive index (n2) & absorption coefficient (β)) for melatonin under CW and pulsed laser excitations are (-1.266 × 10-12 m2W-1 and -1.883 × 10-17 m2W-1) & (8.046 × 10-8 mW-1 and 1.516 × 10-13 mW-1), respectively. Meanwhile, the maximum n2 and β under pulsed laser excitation for serotonin are obtained as -3.195 × 10-17 m2W-1 and 6.149 × 10-12 mW-1, respectively. The outcome of the results may be utilized in understanding processes mediated by indolamines and designing therapeutic interventions.
Collapse
Affiliation(s)
- Nitesh Kumar Pathak
- Department of Physics, Indian Institute of Technology (Indian School of Mines) Dhanbad, 826004, Jharkhand, India
| | - Priyadarshi Sahoo
- Department of Physics, Indian Institute of Technology (Indian School of Mines) Dhanbad, 826004, Jharkhand, India
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines) Dhanbad, 826004, Jharkhand, India.
| |
Collapse
|
11
|
Hagir Omer MA, Zhang D, Zhou W, Yang X, Qi H. Turn-on fluorescent aptasensing for the determination of serotonin via target-induced knot displacement at corona. Chem Commun (Camb) 2024; 60:4926-4929. [PMID: 38629227 DOI: 10.1039/d4cc00934g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A turn-on fluorescence aptasensing approach for the highly sensitive and selective determination of 5-HT was proposed via target-induced knot displacement. 5-HT can be determined in a range from 0.5 nM to 100 nM with a limit of detection as low as 0.1 nM and a low dissociation constant of 2.3 nM.
Collapse
Affiliation(s)
- M A Hagir Omer
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Danyang Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Wenshuai Zhou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| |
Collapse
|
12
|
Xu S, Xiao X, Manshaii F, Chen J. Injectable Fluorescent Neural Interfaces for Cell-Specific Stimulating and Imaging. NANO LETTERS 2024. [PMID: 38606614 DOI: 10.1021/acs.nanolett.4c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Building on current explorations in chronic optical neural interfaces, it is essential to address the risk of photothermal damage in traditional optogenetics. By focusing on calcium fluorescence for imaging rather than stimulation, injectable fluorescent neural interfaces significantly minimize photothermal damage and improve the accuracy of neuronal imaging. Key advancements including the use of injectable microelectronics for targeted electrical stimulation and their integration with cell-specific genetically encoded calcium indicators have been discussed. These injectable electronics that allow for post-treatment retrieval offer a minimally invasive solution, enhancing both usability and reliability. Furthermore, the integration of genetically encoded fluorescent calcium indicators with injectable bioelectronics enables precise neuronal recording and imaging of individual neurons. This shift not only minimizes risks such as photothermal conversion but also boosts safety, specificity, and effectiveness of neural imaging. Embracing these advancements represents a significant leap forward in biomedical engineering and neuroscience, paving the way for advanced brain-machine interfaces.
Collapse
Affiliation(s)
- Shumao Xu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Farid Manshaii
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
13
|
Deng F, Wan J, Li G, Dong H, Xia X, Wang Y, Li X, Zhuang C, Zheng Y, Liu L, Yan Y, Feng J, Zhao Y, Xie H, Li Y. Improved green and red GRAB sensors for monitoring spatiotemporal serotonin release in vivo. Nat Methods 2024; 21:692-702. [PMID: 38443508 PMCID: PMC11377854 DOI: 10.1038/s41592-024-02188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/19/2024] [Indexed: 03/07/2024]
Abstract
The serotonergic system plays important roles in both physiological and pathological processes, and is a therapeutic target for many psychiatric disorders. Although several genetically encoded GFP-based serotonin (5-HT) sensors were recently developed, their sensitivities and spectral profiles are relatively limited. To overcome these limitations, we optimized green fluorescent G-protein-coupled receptor (GPCR)-activation-based 5-HT (GRAB5-HT) sensors and developed a red fluorescent GRAB5-HT sensor. These sensors exhibit excellent cell surface trafficking and high specificity, sensitivity and spatiotemporal resolution, making them suitable for monitoring 5-HT dynamics in vivo. Besides recording subcortical 5-HT release in freely moving mice, we observed both uniform and gradient 5-HT release in the mouse dorsal cortex with mesoscopic imaging. Finally, we performed dual-color imaging and observed seizure-induced waves of 5-HT release throughout the cortex following calcium and endocannabinoid waves. In summary, these 5-HT sensors can offer valuable insights regarding the serotonergic system in both health and disease.
Collapse
Affiliation(s)
- Fei Deng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Hui Dong
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Xiju Xia
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yipan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Xuelin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Chaowei Zhuang
- Department of Automation, Tsinghua University, Beijing, China
| | - Yu Zheng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Laixin Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yuqi Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Yulin Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Hao Xie
- Department of Automation, Tsinghua University, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
14
|
Otanuly M, Kubitschke M, Masseck OA. A Bright Future? A Perspective on Class C GPCR Based Genetically Encoded Biosensors. ACS Chem Neurosci 2024; 15:889-897. [PMID: 38380648 PMCID: PMC10921406 DOI: 10.1021/acschemneuro.3c00854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024] Open
Abstract
One of the major challenges in molecular neuroscience today is to accurately monitor neurotransmitters, neuromodulators, peptides, and various other biomolecules in the brain with high temporal and spatial resolution. Only a comprehensive understanding of neuromodulator dynamics, their release probability, and spatial distribution will unravel their ultimate role in cognition and behavior. This Perspective offers an overview of potential design strategies for class C GPCR-based biosensors. It briefly highlights current applications of GPCR-based biosensors, with a primary focus on class C GPCRs and their unique structural characteristics compared with other GPCR subfamilies. The discussion offers insights into plausible future design approaches for biosensor development targeting members of this specific GPCR subfamily. It is important to note that, at this stage, we are contemplating possibilities rather than presenting a concrete guide, as the pipeline is still under development.
Collapse
Affiliation(s)
- Margulan Otanuly
- Synthetische Biologie, Universität Bremen, Bremen 28359, Germany
| | | | | |
Collapse
|
15
|
Rohner VL, Lamothe-Molina PJ, Patriarchi T. Engineering, applications, and future perspectives of GPCR-based genetically encoded fluorescent indicators for neuromodulators. J Neurochem 2024; 168:163-184. [PMID: 38288673 DOI: 10.1111/jnc.16045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 02/23/2024]
Abstract
This review explores the evolving landscape of G-protein-coupled receptor (GPCR)-based genetically encoded fluorescent indicators (GEFIs), with a focus on their development, structural components, engineering strategies, and applications. We highlight the unique features of this indicator class, emphasizing the importance of both the sensing domain (GPCR structure and activation mechanism) and the reporting domain (circularly permuted fluorescent protein (cpFP) structure and fluorescence modulation). Further, we discuss indicator engineering approaches, including the selection of suitable cpFPs and expression systems. Additionally, we showcase the diversity and flexibility of their application by presenting a summary of studies where such indicators were used. Along with all the advantages, we also focus on the current limitations as well as common misconceptions that arise when using these indicators. Finally, we discuss future directions in indicator engineering, including strategies for screening with increased throughput, optimization of the ligand-binding properties, structural insights, and spectral diversity.
Collapse
Affiliation(s)
- Valentin Lu Rohner
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | | | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Ocana-Santero G, Packer AM, Sharp T, Butt SJB. In Vivo Two-Photon Microscopy Reveals Sensory-Evoked Serotonin (5-HT) Release in Adult Mammalian Neocortex. ACS Chem Neurosci 2024; 15:456-461. [PMID: 38251903 PMCID: PMC10853926 DOI: 10.1021/acschemneuro.3c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
The recent development of genetically encoded fluorescent neurotransmitter biosensors has opened the door to recording serotonin (5-hydroxytryptamine, 5-HT) signaling dynamics with high temporal and spatial resolution in vivo. While this represents a significant step forward for serotonin research, the utility of available 5-HT biosensors remains to be fully established under diverse in vivo conditions. Here, we used two-photon microscopy in awake mice to examine the effectiveness of specific 5-HT biosensors for monitoring 5-HT dynamics in somatosensory cortex. Initial experiments found that whisker stimulation evoked a striking change in 5-HT biosensor signal. However, similar changes were observed in controls expressing green fluorescent protein, suggesting a potential hemodynamic artifact. Subsequent use of a second control fluorophore with emission peaks separated from the 5-HT biosensor revealed a reproducible, stimulus-locked increase in 5-HT signal. Our data highlight the promise of 5-HT biosensors for in vivo application, provided measurements are carried out with appropriate optical controls.
Collapse
Affiliation(s)
- Gabriel Ocana-Santero
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
- Department
of Physiology, Anatomy & Genetics, University
of Oxford, Oxford OX1 3PT, U.K.
| | - Adam M. Packer
- Department
of Physiology, Anatomy & Genetics, University
of Oxford, Oxford OX1 3PT, U.K.
| | - Trevor Sharp
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Simon J. B. Butt
- Department
of Physiology, Anatomy & Genetics, University
of Oxford, Oxford OX1 3PT, U.K.
| |
Collapse
|
17
|
Kubitschke M, Masseck OA. Illuminating the brain-genetically encoded single wavelength fluorescent biosensors to unravel neurotransmitter dynamics. Biol Chem 2024; 405:55-65. [PMID: 37246368 DOI: 10.1515/hsz-2023-0175] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Understanding how neuronal networks generate complex behavior is one of the major goals of Neuroscience. Neurotransmitter and Neuromodulators are crucial for information flow between neurons and understanding their dynamics is the key to unravel their role in behavior. To understand how the brain transmits information and how brain states arise, it is essential to visualize the dynamics of neurotransmitters, neuromodulators and neurochemicals. In the last five years, an increasing number of single-wavelength biosensors either based on periplasmic binding proteins (PBPs) or on G-protein-coupled receptors (GPCR) have been published that are able to detect neurotransmitter release in vitro and in vivo with high spatial and temporal resolution. Here we review and discuss recent progress in the development of these sensors, their limitations and future directions.
Collapse
|
18
|
Cheng H, Lou Q, Lai N, Chen L, Zhang S, Fei F, Gao C, Wu S, Han F, Liu J, Guo Y, Chen Z, Xu C, Wang Y. Projection-defined median raphe Pet + subpopulations are diversely implicated in seizure. Neurobiol Dis 2023; 189:106358. [PMID: 37977434 DOI: 10.1016/j.nbd.2023.106358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
The raphe nuclei, the primary resource of forebrain 5-HT, play an important but heterogeneous role in regulating subcortical excitabilities. Fundamental circuit organizations of different median raphe (MR) subsystems are far from completely understood. In the present study, using cell-specific viral tracing, Ca2+ fiber photometry and epilepsy model, we map out the forebrain efferent and afferent of different MR Pet+ subpopulations and their divergent roles in epilepsy. We found that PetMR neurons send both collateral and parallel innervations to different downstream regions through different subpopulations. Notably, CA3-projecting PetMR subpopulations are largely distinct from habenula (Hb)-projecting PetMR subpopulations in anatomical distribution and topological organization, while majority of the CA3-projecting PetMR subpopulations are overlapped with the medial septum (MS)-projecting PetMR subpopulations. Further, using Ca2+ fiber photometry, we monitor activities of PetMR neurons in hippocampal-kindling seizure, a classical epilepsy model with pathological mechanisms caused by excitation-inhibition imbalance. We found that soma activities of PetMR neurons are heterogeneous during different periods of generalized seizures. These divergent activities are contributed by different projection-defined PetMR subpopulations, manifesting as increased activities in CA3 but decreased activity in Hb resulting from their upstream differences. Together, our findings provide a novel framework of MR subsystems showing that projection-defined MR Pet+ subpopulations are topologically heterogenous with divergent circuit connections and are diversely implicated in seizures. This may help in the understanding of heterogeneous nature of MR 5-HTergic subsystems and the paradox roles of 5-HTergic systems in epilepsy.
Collapse
Affiliation(s)
- Heming Cheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiuwen Lou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Nanxi Lai
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liying Chen
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Shuo Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310003, China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chenshu Gao
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shuangshuang Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jinggen Liu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi Guo
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310061, China.
| |
Collapse
|
19
|
Kagiampaki Z, Rohner V, Kiss C, Curreli S, Dieter A, Wilhelm M, Harada M, Duss SN, Dernic J, Bhat MA, Zhou X, Ravotto L, Ziebarth T, Wasielewski LM, Sönmez L, Benke D, Weber B, Bohacek J, Reiner A, Wiegert JS, Fellin T, Patriarchi T. Sensitive multicolor indicators for monitoring norepinephrine in vivo. Nat Methods 2023; 20:1426-1436. [PMID: 37474807 PMCID: PMC7615053 DOI: 10.1038/s41592-023-01959-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/16/2023] [Indexed: 07/22/2023]
Abstract
Genetically encoded indicators engineered from G-protein-coupled receptors are important tools that enable high-resolution in vivo neuromodulator imaging. Here, we introduce a family of sensitive multicolor norepinephrine (NE) indicators, which includes nLightG (green) and nLightR (red). These tools report endogenous NE release in vitro, ex vivo and in vivo with improved sensitivity, ligand selectivity and kinetics, as well as a distinct pharmacological profile compared with previous state-of-the-art GRABNE indicators. Using in vivo multisite fiber photometry recordings of nLightG, we could simultaneously monitor optogenetically evoked NE release in the mouse locus coeruleus and hippocampus. Two-photon imaging of nLightG revealed locomotion and reward-related NE transients in the dorsal CA1 area of the hippocampus. Thus, the sensitive NE indicators introduced here represent an important addition to the current repertoire of indicators and provide the means for a thorough investigation of the NE system.
Collapse
Affiliation(s)
| | - Valentin Rohner
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Cedric Kiss
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Sebastiano Curreli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Alexander Dieter
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurophysiology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Maria Wilhelm
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Masaya Harada
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Sian N Duss
- Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Jan Dernic
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Musadiq A Bhat
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Xuehan Zhou
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Luca Ravotto
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Tim Ziebarth
- Cellular Neurobiology, Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Laura Moreno Wasielewski
- Cellular Neurobiology, Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Latife Sönmez
- Cellular Neurobiology, Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Johannes Bohacek
- Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Andreas Reiner
- Cellular Neurobiology, Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - J Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurophysiology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
20
|
Zheng Y, Li Y. Past, present, and future of tools for dopamine detection. Neuroscience 2023:S0306-4522(23)00295-6. [PMID: 37419404 DOI: 10.1016/j.neuroscience.2023.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Dopamine (DA) is a critical neuromodulator involved in various brain functions. To understand how DA regulates neural circuits and behaviors in the physiological and pathological conditions, it is essential to have tools that enable the direct detection of DA dynamics in vivo. Recently, genetically encoded DA sensors based on G protein-coupled receptors revolutionized this field, as it allows us to track in vivo DA dynamic with unprecedented spatial-temporal resolution, high molecular specificity, and sub-second kinetics. In this review, we first summarize traditional DA detection methods. Then we focus on the development of genetically encoded DA sensors and feature its significance to understanding dopaminergic neuromodulation across diverse behaviors and species. Finally, we present our perspectives about the future direction of the next-generation DA sensors and extend their potential applications. Overall, this review offers a comprehensive perspective on the past, present, and future of DA detection tools, with important implications for the study of DA functions in health and disease.
Collapse
Affiliation(s)
- Yu Zheng
- Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China
| | - Yulong Li
- Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, 100871 Beijing, China; PKU-IDG/McGovern Institute for Brain Research, 100871 Beijing, China; National Biomedical Imaging Center, Peking University, 100871 Beijing, China.
| |
Collapse
|
21
|
Turrini L, Roschi L, de Vito G, Pavone FS, Vanzi F. Imaging Approaches to Investigate Pathophysiological Mechanisms of Brain Disease in Zebrafish. Int J Mol Sci 2023; 24:9833. [PMID: 37372981 DOI: 10.3390/ijms24129833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Zebrafish has become an essential model organism in modern biomedical research. Owing to its distinctive features and high grade of genomic homology with humans, it is increasingly employed to model diverse neurological disorders, both through genetic and pharmacological intervention. The use of this vertebrate model has recently enhanced research efforts, both in the optical technology and in the bioengineering fields, aiming at developing novel tools for high spatiotemporal resolution imaging. Indeed, the ever-increasing use of imaging methods, often combined with fluorescent reporters or tags, enable a unique chance for translational neuroscience research at different levels, ranging from behavior (whole-organism) to functional aspects (whole-brain) and down to structural features (cellular and subcellular). In this work, we present a review of the imaging approaches employed to investigate pathophysiological mechanisms underlying functional, structural, and behavioral alterations of human neurological diseases modeled in zebrafish.
Collapse
Affiliation(s)
- Lapo Turrini
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Roschi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Giuseppe de Vito
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy
- Interdepartmental Centre for the Study of Complex Dynamics, University of Florence, Via Giovanni Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Giovanni Sansone 1, 50019 Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Francesco Vanzi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
22
|
He J, Spanolios E, Froehlich CE, Wouters CL, Haynes CL. Recent Advances in the Development and Characterization of Electrochemical and Electrical Biosensors for Small Molecule Neurotransmitters. ACS Sens 2023; 8:1391-1403. [PMID: 36940263 DOI: 10.1021/acssensors.3c00082] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Neurotransmitters act as chemical messengers, determining human physiological and psychological function, and abnormal levels of neurotransmitters are related to conditions such as Parkinson's and Alzheimer's disease. Biologically and clinically relevant concentrations of neurotransmitters are usually very low (nM), so electrochemical and electronic sensors for neurotransmitter detection play an important role in achieving sensitive and selective detection. Additionally, these sensors have the distinct advantage to potentially be wireless, miniaturized, and multichannel, providing remarkable opportunities for implantable, long-term sensing capabilities unachievable by spectroscopic or chromatographic detection methods. In this article, we will focus on advances in the development and characterization of electrochemical and electronic sensors for neurotransmitters during the last five years, identifying how the field is progressing as well as critical knowledge gaps for sensor researchers.
Collapse
|