1
|
Pennington ZT, LaBanca AR, Sompolpong P, Abdel-Raheim SD, Ko B, Christenson Wick Z, Feng Y, Dong Z, Francisco TR, Bacon ME, Chen L, Fulton SL, Maze I, Shuman T, Cai DJ. Dissociable contributions of the amygdala and ventral hippocampus to stress-induced changes in defensive behavior. Cell Rep 2024; 43:114871. [PMID: 39427320 DOI: 10.1016/j.celrep.2024.114871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/01/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
Stress can have profound consequences on mental health. While much is known about the neural circuits supporting associative memories of stressful events, our understanding of the circuits underlying the non-associative impacts of stress, such as heightened stress sensitivity and anxiety-related behavior, is limited. Here, we demonstrate that the ventral hippocampus (vHC) and basolateral amygdala (BLA) support distinct non-associative behavioral changes following stress. Inhibiting stress-induced protein synthesis in the BLA blocked subsequent increases in stress sensitivity but not anxiety-related behaviors. Conversely, inhibiting stress-induced protein synthesis in the vHC blocked subsequent increases in anxiety-related behavior but not stress sensitivity. Inhibiting neuronal activity in the BLA and vHC during the assessment of stress sensitivity or anxiety-related behavior recapitulated these structures' dissociable contributions to defensive behavior. Lastly, blocking the associative memory of a stressor had no impact on stress-induced changes in anxiety-related behavior. These findings highlight that multiple memory systems support the long-lasting effects of stress.
Collapse
Affiliation(s)
- Zachary T Pennington
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Alexa R LaBanca
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patlapa Sompolpong
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shereen D Abdel-Raheim
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bumjin Ko
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zoe Christenson Wick
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yu Feng
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhe Dong
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Taylor R Francisco
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Madeline E Bacon
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lingxuan Chen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sasha L Fulton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ian Maze
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tristan Shuman
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Denise J Cai
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
2
|
Pennington ZT, LaBanca AR, Abdel-Raheim SD, Bacon ME, Mahmoud AN, Sompolpong P, Baggetta AM, Zaki Y, Ko B, Dong Z, Smith AC, Kenny PJ, Cai DJ. An anterior hypothalamic circuit gates stress vulnerability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620614. [PMID: 39554090 PMCID: PMC11565748 DOI: 10.1101/2024.10.28.620614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Prior adversity increases susceptibility to subsequent stressful events, but the causal underlying changes in brain circuitry are poorly understood. We harnessed unbiased whole-brain activity mapping to identify circuits that are functionally remodeled by prior adversity. This revealed that the anterior hypothalamic nucleus (AHN) displays heightened stress reactivity in previously stressed mice. This was accompanied by increased functional connectivity between the AHN and a threat-related limbic network. Using in vivo Miniscope imaging, we found that neuronal activity in the AHN encodes stressor valence. Moreover, stimulating AHN neurons enhanced, and inhibiting their activity mitigated, reactivity to stressful events. Lastly, silencing amygdala inputs to the AHN abolished the ability of prior adversity to increase stress sensitivity. These findings define a key role of the AHN in gating stress vulnerability by scaling valence signals from the amygdala.
Collapse
Affiliation(s)
| | - Alexa R LaBanca
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai
| | | | - Madeline E Bacon
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai
| | - Afra N Mahmoud
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai
| | - Patlapa Sompolpong
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai
| | - Austin M Baggetta
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai
| | - Yosif Zaki
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai
| | - BumJin Ko
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai
| | - Zhe Dong
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai
| | - Alexander Cw Smith
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai
- Department of Pharmacology, Icahn School of Medicine at Mount Sinai
| | - Denise J Cai
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
3
|
Kim HR, Dey S, Sekerkova G, Martina M. μ-Opioid Receptor Modulation of the Glutamatergic/GABAergic Midbrain Inputs to the Mouse Dorsal Hippocampus. J Neurosci 2024; 44:e0653242024. [PMID: 39251354 PMCID: PMC11502231 DOI: 10.1523/jneurosci.0653-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
We used virus-mediated anterograde and retrograde tracing, optogenetic modulation, immunostaining, in situ hybridization, and patch-clamp recordings in acute brain slices to study the release mechanism and μ-opioid modulation of the dual glutamatergic/GABAergic inputs from the ventral tegmental area and supramammillary nucleus to the granule cells of the dorsal hippocampus of male and female mice. In keeping with previous reports showing that the two transmitters are released by separate active zones within the same terminals, we found that the short-term plasticity and pharmacological modulation of the glutamatergic and GABAergic currents are indistinguishable. We further found that glutamate and GABA release at these synapses are both virtually completely mediated by N- and P/Q-type calcium channels. We then investigated μ-opioid modulation of these synapses and found that activation of μ-opioid receptors (MORs) strongly inhibits the glutamate and GABA release, mostly through inhibition of presynaptic N-type channels. However, the modulation by MORs of these dual synapses is complex, as it likely includes also a disinhibition due to downmodulation of local GABAergic interneurons which make direct axo-axonic contacts with the dual glutamatergic/GABAergic terminals. We discuss how this opioid modulation may enhance LTP at the perforant path inputs, potentially contributing to reinforce memories of drug-associated contexts.
Collapse
Affiliation(s)
- Haram R Kim
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| | - Soumil Dey
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| | - Gabriella Sekerkova
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| | - Marco Martina
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
4
|
Rahimi S, Joyce L, Fenzl T, Drexel M. Crosstalk between the subiculum and sleep-wake regulation: A review. J Sleep Res 2024; 33:e14134. [PMID: 38196146 DOI: 10.1111/jsr.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024]
Abstract
The circuitry underlying the initiation, maintenance, and coordination of wakefulness, rapid eye movement sleep, and non-rapid eye movement sleep is not thoroughly understood. Sleep is thought to arise due to decreased activity in the ascending reticular arousal system, which originates in the brainstem and awakens the thalamus and cortex during wakefulness. Despite the conventional association of sleep-wake states with hippocampal rhythms, the mutual influence of the hippocampal formation in regulating vigilance states has been largely neglected. Here, we focus on the subiculum, the main output region of the hippocampal formation. The subiculum, particulary the ventral part, sends extensive monosynaptic projections to crucial regions implicated in sleep-wake regulation, including the thalamus, lateral hypothalamus, tuberomammillary nucleus, basal forebrain, ventrolateral preoptic nucleus, ventrolateral tegmental area, and suprachiasmatic nucleus. Additionally, second-order projections from the subiculum are received by the laterodorsal tegmental nucleus, locus coeruleus, and median raphe nucleus, suggesting the potential involvement of the subiculum in the regulation of the sleep-wake cycle. We also discuss alterations in the subiculum observed in individuals with sleep disorders and in sleep-deprived mice, underscoring the significance of investigating neuronal communication between the subiculum and pathways promoting both sleep and wakefulness.
Collapse
Affiliation(s)
- Sadegh Rahimi
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Leesa Joyce
- Clinic of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, München, Germany
| | - Thomas Fenzl
- Clinic of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, München, Germany
| | - Meinrad Drexel
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Guo SS, Gong Y, Zhang TT, Su XY, Wu YJ, Yan YX, Cao Y, Song XL, Xie JC, Wu D, Jiang Q, Li Y, Zhao X, Zhu MX, Xu TL, Liu MG. A thalamic nucleus reuniens-lateral septum-lateral hypothalamus circuit for comorbid anxiety-like behaviors in chronic itch. SCIENCE ADVANCES 2024; 10:eadn6272. [PMID: 39150998 PMCID: PMC11328909 DOI: 10.1126/sciadv.adn6272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/10/2024] [Indexed: 08/18/2024]
Abstract
Chronic itch often clinically coexists with anxiety symptoms, creating a vicious cycle of itch-anxiety comorbidities that are difficult to treat. However, the neuronal circuit mechanisms underlying the comorbidity of anxiety in chronic itch remain elusive. Here, we report anxiety-like behaviors in mouse models of chronic itch and identify γ-aminobutyric acid-releasing (GABAergic) neurons in the lateral septum (LS) as the key player in chronic itch-induced anxiety. In addition, chronic itch is accompanied with enhanced activity and synaptic plasticity of excitatory projections from the thalamic nucleus reuniens (Re) onto LS GABAergic neurons. Selective chemogenetic inhibition of the Re → LS circuit notably alleviated chronic itch-induced anxiety, with no impact on anxiety induced by restraint stress. Last, GABAergic neurons in lateral hypothalamus (LH) receive monosynaptic inhibition from LS GABAergic neurons to mediate chronic itch-induced anxiety. These findings underscore the potential significance of the Re → LS → LH pathway in regulating anxiety-like comorbid symptoms associated with chronic itch.
Collapse
Affiliation(s)
- Su-Shan Guo
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Gong
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ting-Ting Zhang
- Department of Anesthesiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Xin-Yu Su
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan-Jiao Wu
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi-Xiao Yan
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yue Cao
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xing-Lei Song
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian-Cheng Xie
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Dehua Wu
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Qin Jiang
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Li
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuan Zhao
- Department of Anesthesiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Tian-Le Xu
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| | - Ming-Gang Liu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Mental Health and Drug Discovery, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| |
Collapse
|
6
|
Zhang XF, Li YD, Li Y, Li Y, Xu D, Bi LL, Xu HB. Ventral subiculum promotes wakefulness through several pathways in male mice. Neuropsychopharmacology 2024; 49:1468-1480. [PMID: 38734818 PMCID: PMC11251017 DOI: 10.1038/s41386-024-01875-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
The ventral subiculum (vSUB), the major output structure of the hippocampal formation, regulates motivation, stress integration, and anxiety-like behaviors that rely on heightened arousal. However, the roles and underlying neural circuits of the vSUB in wakefulness are poorly known. Using in vivo fiber photometry and multichannel electrophysiological recordings in mice, we found that the vSUB glutamatergic neurons exhibited high activities during wakefulness. Moreover, activation of vSUB glutamatergic neurons caused an increase in wakefulness and anxiety-like behaviors and induced a rapid transition from sleep to wakefulness. In addition, optogenetic stimulation of vSUB glutamatergic terminals and retrograde-targeted chemogenetic activation of vSUB glutamatergic neurons revealed that vSUB promoted arousal by innervating the lateral hypothalamus (LH), nucleus accumbens (NAc) shell, and prefrontal cortex (PFC). Nevertheless, local microinjection of dopamine D1 or D2/D3 receptor antagonist blocked the wake-promoting effect induced by chemogenetic activation of vSUB pathways. Finally, chemogenetic inhibition of vSUB glutamatergic neurons decreased arousal. Altogether, our findings reveal a prominent contribution of vSUB glutamatergic neurons to the control of wakefulness through several pathways.
Collapse
Affiliation(s)
- Xue-Fen Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Yi-Dan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Yue Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Ying Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Dan Xu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Lin-Lin Bi
- Department of Pathology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China.
- Center for Pathology and Molecular Diagnostics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
| | - Hai-Bo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
7
|
Baset A, Huang F. Shedding light on subiculum's role in human brain disorders. Brain Res Bull 2024; 214:110993. [PMID: 38825254 DOI: 10.1016/j.brainresbull.2024.110993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Subiculum is a pivotal output component of the hippocampal formation, a structure often overlooked in neuroscientific research. Here, this review aims to explore the role of the subiculum in various brain disorders, shedding light on its significance within the functional-neuroanatomical perspective on neurological diseases. The subiculum's involvement in multiple brain disorders was thoroughly examined. In Alzheimer's disease, subiculum alterations precede cognitive decline, while in epilepsy, the subiculum plays a critical role in seizure initiation. Stress involves the subiculum's impact on the hypothalamic-pituitary-adrenocortical axis. Moreover, the subiculum exhibits structural and functional changes in anxiety, schizophrenia, and Parkinson's disease, contributing to cognitive deficits. Bipolar disorder is linked to subiculum structural abnormalities, while autism spectrum disorder reveals an alteration of inward deformation in the subiculum. Lastly, frontotemporal dementia shows volumetric differences in the subiculum, emphasizing its contribution to the disorder's complexity. Taken together, this review consolidates existing knowledge on the subiculum's role in brain disorders, and may facilitate future research, diagnostic strategies, and therapeutic interventions for various neurological conditions.
Collapse
Affiliation(s)
- Abdul Baset
- Department of Neuroscience, City University of Hong Kong, Hong Kong Special Administrative Region of China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Special Administrative Region of China
| | - Fengwen Huang
- Department of Neuroscience, City University of Hong Kong, Hong Kong Special Administrative Region of China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Special Administrative Region of China.
| |
Collapse
|
8
|
Meng L, Zheng X, Xie K, Li Y, Liu D, Xu Y, Zhang J, Wu F, Guo G. Hyperexcitation of the glutamatergic neurons in lateral hypothalamus induced by chronic pain contributes to depression-like behavior and learning and memory impairment in male mice. Neurobiol Stress 2024; 31:100654. [PMID: 38948390 PMCID: PMC11214532 DOI: 10.1016/j.ynstr.2024.100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Chronic pain can induce mood disorders and cognitive dysfunctions, such as anxiety, depression, and learning and memory impairment in humans. However, the specific neural network involved in anxiety- and depression-like behaviors and learning and memory impairment caused by chronic pain remains poorly understood. In this study, behavioral test results showed that chronic pain induced anxiety- and depression-like behaviors, and learning and memory impairment in male mice. c-Fos immunofluorescence and fiber photometry recording showed that glutamatergic neurons in the LH of mice with chronic pain were selectively activated. Next, the glutamatergic neurons of LH in normal mice were activated using optogenetic and chemogenetic methods, which recapitulates some of the depressive-like behaviors, as well as memory impairment, but not anxiety-like behavior. Finally, inhibition of glutamatergic neurons in the LH of mice with chronic pain, effectively relieved anxiety- and depression-like behaviors and learning and memory impairment. Taken together, our findings suggest that hyperexcitation of glutamatergic neurons in the LH is involved in depression-like behavior and learning and memory impairment induced by chronic pain.
Collapse
Affiliation(s)
| | | | - Keman Xie
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Yifei Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Danlei Liu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Yuanyuan Xu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Jifeng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Fengming Wu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Guoqing Guo
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| |
Collapse
|
9
|
Pennington ZT, LaBanca AR, Sompolpong P, Abdel-Raheim SD, Ko B, Christenson Wick Z, Feng Y, Dong Z, Francisco TR, Bacon ME, Chen L, Fulton SL, Maze I, Shuman T, Cai DJ. Dissociable contributions of the amygdala and ventral hippocampus to stress-induced changes in defensive behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.27.530077. [PMID: 36945605 PMCID: PMC10028838 DOI: 10.1101/2023.02.27.530077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
BACKGROUND Severe stress can produce multiple persistent changes in defensive behavior relevant to psychiatric illness. While much is known about the circuits supporting stress-induced associative fear, how stress-induced circuit plasticity supports non-associative changes in defensive behavior remains unclear. METHODS Mice were exposed to an acute severe stressor, and subsequently, both associative and non-associative defensive behavioral responses were assessed. A mixture of local protein synthesis inhibition, pan-neuronal chemogenetic inhibition, and projection-specific chemogenetic inhibition were utilized to isolate the roles of the basolateral amygdala (BLA) and ventral hippocampus (vHC) to the induction and expression of associative and non-associative defensive behavioral changes. RESULTS Stress-induced protein synthesis in the BLA was necessary for enhancements in stress sensitivity but not enhancements in anxiety-related behaviors, whereas protein synthesis in the vHC was necessary for enhancements in anxiety-related behavior but not enhancements in stress sensitivity. Like protein synthesis, neuronal activity of the BLA and vHC were found to differentially support the expression of these same defensive behaviors. Additionally, projection-specific inhibition of BLA-vHC connections failed to alter these behaviors, indicating that these defensive behaviors are regulated by distinct BLA and vHC circuits. Lastly, contributions of the BLA and vHC to stress sensitivity and anxiety-related behavior were independent of their contributions to associative fear. CONCLUSIONS Stress-induced plasticity in the BLA and vHC were found to support dissociable non-associative behavioral changes, with BLA supporting enhancements in stress sensitivity and vHC supporting increased anxiety-related behavior. These findings demonstrate that independent BLA and vHC circuits are critical for stress-induced defensive behaviors, and that differential targeting of BLA and vHC circuits may be needed in disease treatment.
Collapse
|
10
|
Guo Y, Kang Y, Bai W, Liu Q, Zhang R, Wang Y, Wang C. Perinatal exposure to bisphenol A impairs cognitive function via the gamma-aminobutyric acid signaling pathway in male rat offspring. ENVIRONMENTAL TOXICOLOGY 2024; 39:1235-1244. [PMID: 37926988 DOI: 10.1002/tox.24007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
Bisphenol A (BPA) is a common synthetic endocrine disruptor that can be utilized in the fabrication of materials such as polycarbonates and epoxy resins. Numerous studies have linked BPA to learning and memory problems, although the precise mechanism remains unknown. Gamma-aminobutyric acid (GABA) is the most abundant inhibitory neurotransmitter in the vertebrate central nervous system, and it is intimately related to learning and memory. This study aims to evaluate whether altered cognitive behavior involves the GABA signaling pathway in male offspring of rats exposed to BPA during the prenatal and early postnatal periods. Pregnant rats were orally given BPA (0, 0.04, 0.4, and 4 mg/kg body weight (BW)/day) from the first day of pregnancy to the 21st day of breastfeeding. Three-week-old male rat offspring were selected for an open-field experiment and a new object recognition experiment to evaluate the effect of BPA exposure on cognitive behavior. Furthermore, the role of GABA signaling markers in the cognition affected by BPA was investigated at the molecular level using western blotting and real-time polymerase chain reaction (RT-PCR). The research demonstrated that BPA exposure impacted the behavior and memory of male rat offspring and elevated the expression of glutamic acid decarboxylase 67 (GAD67), GABA type A receptors subunit (GABAARα1), and GABA vesicle transporter (VGAT) in the hippocampus while decreasing the expression levels of GABA transaminase (GABA-T) and GABA transporter 1 (GAT-1). These findings indicate that the alteration in the expression of GABA signaling molecules may be one of the molecular mechanisms by which perinatal exposure to BPA leads to decreased learning and memory in male rat offspring.
Collapse
Affiliation(s)
- Yi Guo
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yuxin Kang
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wenjie Bai
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Qiling Liu
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Rongqiang Zhang
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yuxin Wang
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Chong Wang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
11
|
Liu Y, Lin W, Liu J, Zhu H. Structural and temporal dynamics analysis of neural circuit from 2002 to 2022: A bibliometric analysis. Heliyon 2024; 10:e24649. [PMID: 38298625 PMCID: PMC10828061 DOI: 10.1016/j.heliyon.2024.e24649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Background In the pursuit of causal insights into neural circuit functionality, various interventions, including electrical, genetic, and pharmacological approaches, have been applied over recent decades. This study employs a comprehensive bibliometric perspective to explore the field of neural circuits. Methods Reviews and articles on neural circuits were obtained from the Web of Science Core Collection (WOSCC) database on Apr. 12, 2023. In this article, co-authorship analysis, co-occurrence analysis, citation analysis, bibliographic analysis, and co-citation analysis were used to clarify the authors, journals, institutions, countries, topics, and internal associations between them. Results More than 2000 organizations from 52 different countries published 3975 articles in the field of "neural circuit" were used to analysis. Luo liqun emerged as the most prolific author, and Deisseroth Karl garners the highest co-citations (3643). The Journal of Neuroscience leaded in publications, while Nature toped in citations. Chinese Academy of Science recorded the highest article count institutionally, with Stanford University ranking first with 14,350 citations. Since 2020, neurodynamic, anxiety-related mechanisms, and GABAergic neurons have gained prominence, shaping the trajectory of neural circuitry research. Conclusions Our investigation has discerned a paradigmatic reorientation towards neurodynamic processes, anxiety-related mechanisms, and GABAergic neurons within the domain of neural circuit research. This identification intimates a prospective trajectory for the field. In the future, it is imperative for research endeavors to accord priority to the translational application of these discernments, with the aim of materializing tangible clinical solutions.
Collapse
Affiliation(s)
- Yuan Liu
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Wei Lin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
- Department of Pediatrics, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Jie Liu
- Department of Orthopedics, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Haixia Zhu
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China
| |
Collapse
|
12
|
Li X, Zhu Y, Sun H, Shen Z, Sun J, Xiao S, He X, Liu B, Wang Y, Hu Y, Liu B, Liang Y, Jiang Y, Du J, Xu C, Fang J, Shao X. Electroacupuncture Inhibits Pain Memory and Related Anxiety-Like Behaviors by Blockading the GABA B Receptor Function in the Midcingulate Cortex. Mol Neurobiol 2023; 60:6613-6626. [PMID: 37468738 PMCID: PMC10533721 DOI: 10.1007/s12035-023-03467-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/24/2023] [Indexed: 07/21/2023]
Abstract
Pain memory is commonly considered an underlying cause of chronic pain and is also responsible for a range of anxiety. Electroacupuncture (EA) has been shown to ameliorate pain memories and exert anti-anxiety effects. Previous research has indicated that GABAergic neurons and/or GABA receptors (GABARs) in the midcingulate cortex (MCC) have potential associations with chronic pain and anxiety. However, there is no known empirical research that has specifically studied the effects of EA on the GABAergic system in the MCC. Here, we used cross-injection of carrageenan to establish the pain memory rats model. Immunofluorescence were used to detect the excitability of GABAergic neurons within MCC. Von Frey filament, elevated zero maze, and open field tests were used to measure mechanical allodynia and anxiety-like behaviors, combined with chemogenetic and pharmacologic technologies. Finally, this study provides evidence that pain memories contribute to generalized negative emotions and that downregulating the activity of GABAergic neurons within MCC could block pain memories and reverse anxiety emotion. Specifically, GABABR is involved in pain memory and related anxiety-like behaviors. Activation of GABAergic neurons in the MCC did not reverse the effects of EA on pain memories and related anxiety-like behaviors, whereas these effects could be reversed by a GABABR agonist. These findings highlight the functional significance of GABABR in the EA-mediated attenuation of pain memories and related anxiety-like behaviors in rats.
Collapse
Affiliation(s)
- Xiaoyu Li
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Yichen Zhu
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Haiju Sun
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Zui Shen
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Jing Sun
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Siqi Xiao
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Xiaofen He
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Boyu Liu
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Yifang Wang
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Yuxin Hu
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Boyi Liu
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Yi Liang
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Yongliang Jiang
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Junying Du
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Chi Xu
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Jianqiao Fang
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| | - Xiaomei Shao
- The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, No.548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
13
|
García MT, Tran DN, Peterson RE, Stegmann SK, Hanson SM, Reid CM, Xie Y, Vu S, Harwell CC. A developmentally defined population of neurons in the lateral septum controls responses to aversive stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.24.559205. [PMID: 37873286 PMCID: PMC10592641 DOI: 10.1101/2023.09.24.559205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
When interacting with their environment, animals must balance exploratory and defensive behavior to evaluate and respond to potential threats. The lateral septum (LS) is a structure in the ventral forebrain that calibrates the magnitude of behavioral responses to stress-related external stimuli, including the regulation of threat avoidance. The complex connectivity between the LS and other parts of the brain, together with its largely unexplored neuronal diversity, makes it difficult to understand how defined LS circuits control specific behaviors. Here, we describe a mouse model in which a population of neurons with a common developmental origin (Nkx2.1-lineage neurons) are absent from the LS. Using a combination of circuit tracing and behavioral analyses, we found that these neurons receive inputs from the perifornical area of the anterior hypothalamus (PeFAH) and are specifically activated in stressful contexts. Mice lacking Nkx2.1-lineage LS neurons display increased exploratory behavior even under stressful conditions. Our study extends the current knowledge about how defined neuronal populations within the LS can evaluate contextual information to select appropriate behavioral responses. This is a necessary step towards understanding the crucial role that the LS plays in neuropsychiatric conditions where defensive behavior is dysregulated, such as anxiety and aggression disorders.
Collapse
Affiliation(s)
- Miguel Turrero García
- Department of Neurology, University of California, San Francisco; San Francisco, CA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; San Francisco, CA
| | - Diana N. Tran
- Department of Neurobiology, Harvard Medical School; Boston, MA
| | | | | | - Sarah M. Hanson
- Department of Neurology, University of California, San Francisco; San Francisco, CA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; San Francisco, CA
| | - Christopher M. Reid
- Department of Neurology, University of California, San Francisco; San Francisco, CA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; San Francisco, CA
- Ph.D. Program in Neuroscience, Harvard University; Boston, MA
| | - Yajun Xie
- Department of Neurology, University of California, San Francisco; San Francisco, CA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; San Francisco, CA
| | - Steve Vu
- Department of Neurobiology, Harvard Medical School; Boston, MA
| | - Corey C. Harwell
- Department of Neurology, University of California, San Francisco; San Francisco, CA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; San Francisco, CA
- Chan Zuckerberg Biohub San Francisco; San Francisco, CA
- Lead contact
| |
Collapse
|
14
|
Qin C, Wang Y, Zhang Y, Zhu Y, Wang Y, Cao F. Transcriptome-wide analysis reveals the molecular mechanisms of cannabinoid type II receptor agonists in cardiac injury induced by chronic psychological stress. Front Genet 2023; 13:1095428. [PMID: 36704356 PMCID: PMC9871316 DOI: 10.3389/fgene.2022.1095428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Growing evidence has supported that chronic psychological stress would cause heart damage, However the mechanisms involved are not clear and effective interventions are insufficient. Cannabinoid type 2 receptor (CB2R) can be a potential treatment for cardiac injury. This study is aimed to investigate the protective mechanism of CB2R agonist against chronic psychological stress-induced cardiac injury. Methods: A mouse chronic psychological stress model was constructed based on a chronic unpredictable stress pattern. Mice were performed a three-week psychological stress procedure, and cardiac tissues of them were collected for whole-transcriptome sequencing. Overlap analysis was performed on differentially expressed mRNAs (DE-mRNAs) and ER stress-related genes (ERSRGs), and bioinformatic methods were used to predict the ceRNA networks and conduct pathway analysis. The expressions of the DE-ERSRGs were validated by RT-qPCR. Results: In the comparison of DE mRNA in Case group, Control group and Treatment group, three groups of ceRNA networks and ceRNA (circ) networks were constructed. The DE-mRNAs were mainly enriched in chromatid-relevant terms and Hematopoietic cell lineage pathway. Additionally, 13 DE-ERSRGs were obtained by the overlap analysis, which were utilized to establish a ceRNA network with 15 nodes and 14 edges and a ceRNA (circ) network with 23 nodes and 28 edges. Furthermore, four DE-ERSRGs (Cdkn1a, Atf3, Fkbp5, Gabarapl1) in the networks were key, which were mainly enriched in response to extracellular stimulus, response to nutrient levels, cellular response to external stimulus, and FoxO signaling pathway. Finally, the RT-qPCR results showed almost consistent expression patterns of 13 DE-ERSRGs between the transcriptome and tissue samples. Conclusion: The findings of this study provide novel insights into the molecular mechanisms of chronic psychological stress-induced cardiac diseases and reveal novel targets for the cardioprotective effects of CB2R agonists.
Collapse
Affiliation(s)
- Cheng Qin
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases and Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yujia Wang
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases and Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Zhang
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases and Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Zhu
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yabin Wang
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases and Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Feng Cao
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases and Second Medical Center of Chinese PLA General Hospital, Beijing, China,Beijing Key Laboratory of Research on Aging and Related Diseases, Beijing, China,*Correspondence: Feng Cao,
| |
Collapse
|