1
|
Song X, Hou Y, Zhang X, Zhao Y, Wu Y, Liu M, Guo Z. Multiplex Biomimetic SLIPS With Super-Lubricity to Multiphase Matters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407530. [PMID: 39593244 DOI: 10.1002/smll.202407530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/11/2024] [Indexed: 11/28/2024]
Abstract
In recent years, slippery liquid infused porous surfaces (SLIPS) renowned for their exceptional liquid repellency and anti-fouling properties, have garnered considerable attention. However, the instability of both structural integrity and the oil film severely restricts their practical applications. This study is inspired by superwetting biological surfaces, such as fish scales, seashells, and Nepenthes, to design and fabricate a multiplex biomimetic and robust lubricant-infused textured surface (LITMS) using laser-coating composite processing technology. The influence of morphological structure and chemical composition on oil stability, wettability, and lubricating properties are systematically investigated. The LITMS exhibits remarkable repellency toward multiphase materials, including liquids, ice crystals, and solids, demonstrating exceptional omniphobicity, anti-icing, and anti-friction properties. Thus, this preparation strategy and construction methodology for SLIPS provide new insights into interfacial phenomena and promote advancements in applications for engineering material protection and machinery lubrication.
Collapse
Affiliation(s)
- Xiaorui Song
- Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Yuanyuan Hou
- Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Xiuli Zhang
- Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Yuanliang Zhao
- Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Yongling Wu
- Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Mingming Liu
- Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
2
|
Wu G, Xu M, Lei M, Liao M, Luo Y, OuYang Y, Liu J, Cai G. Full-fiber triboelectric nanogenerators with knitted origami structures for high impact resistance intelligent protection fabric. MATERIALS HORIZONS 2024. [PMID: 39584507 DOI: 10.1039/d4mh01310g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Next-generation fabrics with excellent protection and intelligent sensing abilities will be beneficial to protect the elderly from accidents, as the ageing population will be a global challenge in the next decade. However, for widely used techniques such as fabric coating and multi-layer compositing, maintaining a balance between comfortability, stable anti-impact protection, and multi-function such as intelligent monitoring remains elusive. Herein, a full-fiber composite yarn with triboelectric ability was developed, which was then woven into an origami-structured knitted fabric (OSKF). Due to the coaxial torsional structure, the composite yarn exhibited outstanding fracture strength (219.18 MPa). The full-fiber multi-scale structure design endowed the OSKF with significantly improved energy absorption capacity (absorbing > 85% of the applied force) and the desired self-powered sensing performance without affecting the comfortability. The OSKF also had a unique ability to respond to various hazardous situations, such as external mechanical force stimuli, cutting by a sharp object, and accidental falls. This work sheds light on a new path toward the design of next-generation smart protection wearables based on knitted fabric structure design-based full-fiber materials.
Collapse
Affiliation(s)
- Guilin Wu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies of Wuhan Textile University, Wuhan 430200, China.
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Minjie Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies of Wuhan Textile University, Wuhan 430200, China.
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Mengdie Lei
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies of Wuhan Textile University, Wuhan 430200, China.
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Mingmin Liao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies of Wuhan Textile University, Wuhan 430200, China.
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yongyue Luo
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical, Agricultural Sciences (CATAS), Zhanjiang 524001, China
| | - Yiwei OuYang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies of Wuhan Textile University, Wuhan 430200, China.
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jize Liu
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production of Wuhan Textile University, Wuhan 430200, China
| | - Guangming Cai
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies of Wuhan Textile University, Wuhan 430200, China.
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
3
|
Cui P, Chen J, Fu K, Deng J, Sun T, Chen K, Yin P. Bioinspired Bouligand-Structured Cellulose Nanocrystals/Poly(vinyl alcohol) Composite Hydrogel for Enhanced Impact Resistance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53022-53032. [PMID: 39306751 DOI: 10.1021/acsami.4c13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Impact-protective materials are gaining importance because of the widespread occurrence of impact damage. Hydrogels have emerged as promising candidates owing to their lightweight and flexible nature. However, achieving soft impact-resistant hydrogels with exceptional stiffness, strength, and toughness remains a challenge. Inspired by the Bouligand structure found in the smasher dactyl club of stomatopods, we propose a straightforward multiscale hierarchical structural design strategy. This strategy integrates self-assembly and salting-out techniques to enhance the impact resistance of soft hydrogels. Rigid cellulose nanocrystals (CNCs) self-assemble into Bouligand-like structures within soft poly(vinyl alcohol) (PVA) matrix via supramolecular interactions. This rational structural design combines the CNC Bouligand structure with a cross-linked network of soft PVA crystalline domains, resulting in a composite hydrogel with impressive mechanical properties: high tensile fracture strength (30.2 MPa), elastic modulus (62.7 MPa), and fracture energy (75.6 kJ m-2), surpassing those of other tough hydrogels. Moreover, the multiscale hierarchical structure facilitates various energy dissipation mechanisms, including crack twisting, tortuous crack paths, and PVA chain orientation, resulting in notable force attenuation (80.4%) in the composite hydrogel. This biomimetic design strategy opens new avenues for developing soft and lightweight impact-resistant materials.
Collapse
Affiliation(s)
- Pengcheng Cui
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Jiadong Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Kewen Fu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Jie Deng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Taolin Sun
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Kun Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
4
|
Li L, Jia DZ, Sun ZB, Zhou SY, Dai K, Zhong GJ, Li ZM. Bioinspired Nanolayered Structure Tuned by Extensional Stress: A Scalable Way to High-Performance Biodegradable Polyesters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402842. [PMID: 38923165 DOI: 10.1002/smll.202402842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/23/2024] [Indexed: 06/28/2024]
Abstract
The nacre-inspired multi-nanolayer structure offers a unique combination of advanced mechanical properties, such as strength and crack tolerance, making them highly versatile for various applications. Nevertheless, a significant challenge lies in the current fabrication methods, which is difficult to create a scalable manufacturing process with precise control of hierarchical structure. In this work, a novel strategy is presented to regulate nacre-like multi-nanolayer films with the balance mechanical properties of stiffness and toughness. By utilizing a co-continuous phase structure and an extensional stress field, the hierarchical nanolayers is successfully constructed with tunable sizes using a scalable processing technique. This strategic modification allows the robust phase to function as nacre-like platelets, while the soft phase acts as a ductile connection layer, resulting in exceptional comprehensive properties. The nanolayer-structured films demonstrate excellent isotropic properties, including a tensile strength of 113.5 MPa in the machine direction and 106.3 MPa in a transverse direction. More interestingly, these films unprecedentedly exhibit a remarkable puncture resistance at the same time, up to 324.8 N mm-1, surpassing the performance of other biodegradable films. The scalable fabrication strategy holds significant promise in designing advanced bioinspired materials for diverse applications.
Collapse
Affiliation(s)
- Lei Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - De-Zhuang Jia
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhao-Bo Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Sheng-Yang Zhou
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kun Dai
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Gan-Ji Zhong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
5
|
Zhong J, Wen Z, Wu Y, Luo H, Liu G, Hu J, Song H, Wang T, Liang X, Zhou H, Huang W, Zhou H. A Bioinspired Design of Protective Al 2O 3/Polyurethane Hierarchical Composite Film Through Layer-By-Layer Deposition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402940. [PMID: 38767181 PMCID: PMC11267295 DOI: 10.1002/advs.202402940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Structural materials such as ceramics, metals, and carbon fiber-reinforced plastics (CFRP) are frequently threatened by large compressive and impact forces. Energy absorption layers, i.e., polyurethane and silicone foams with excellent damping properties, are applied on the surfaces of different substrates to absorb energy. However, the amount of energy dissipation and penetration resistance are limited in commercial polyurethane foams. Herein, a distinctive nacre-like architecture design strategy is proposed by integrating hard porous ceramic frameworks and flexible polyurethane buffers to improve energy absorption and impact resistance. Experimental investigations reveal the bioinspired designs exhibit optimized hardness, strength, and modulus compared to that of polyurethane. Due to the multiscale energy dissipation mechanisms, the resulting normalized absorbed energy (≈8.557 MJ m-3) is ≈20 times higher than polyurethane foams under 50% quasi-static compression. The bioinspired composites provide superior protection for structural materials (CFRP, glass, and steel), surpassing polyurethane films under impact loadings. It is shown CFRP coated with the designed materials can withstand more than ten impact loadings (in energy of 10 J) without obvious damage, which otherwise delaminates after a single impact. This biomimetic design strategy holds the potential to offer valuable insights for the development of lightweight, energy-absorbent, and impact-resistant materials.
Collapse
Affiliation(s)
- Jiaming Zhong
- State Key Laboratory of Materials Processing and Die and Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Zhixiong Wen
- State Key Laboratory of Materials Processing and Die and Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Yibo Wu
- Luoyang Ship Material Research InstituteLuoyang471023China
| | - Hao Luo
- Luoyang Ship Material Research InstituteLuoyang471023China
| | - Guodong Liu
- Luoyang Ship Material Research InstituteLuoyang471023China
| | - Jianqiao Hu
- LNMInstitute of MechanicsChinese Academy of SciencesBeijing100190China
| | - Hengxu Song
- LNMInstitute of MechanicsChinese Academy of SciencesBeijing100190China
- School of Engineering ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Tao Wang
- National Key Laboratory of Explosion Science and Safety ProtectionBeijing Institute of TechnologyBeijing100081China
| | - Xudong Liang
- School of ScienceHarbin Institute of Technology (Shenzhen)Shenzhen518055China
| | - Helezi Zhou
- State Key Laboratory of Materials Processing and Die and Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Wei Huang
- State Key Laboratory of Materials Processing and Die and Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Huamin Zhou
- State Key Laboratory of Materials Processing and Die and Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
6
|
Kim SH, Ki MR, Han Y, Pack SP. Biomineral-Based Composite Materials in Regenerative Medicine. Int J Mol Sci 2024; 25:6147. [PMID: 38892335 PMCID: PMC11173312 DOI: 10.3390/ijms25116147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Regenerative medicine aims to address substantial defects by amplifying the body's natural regenerative abilities and preserving the health of tissues and organs. To achieve these goals, materials that can provide the spatial and biological support for cell proliferation and differentiation, as well as the micro-environment essential for the intended tissue, are needed. Scaffolds such as polymers and metallic materials provide three-dimensional structures for cells to attach to and grow in defects. These materials have limitations in terms of mechanical properties or biocompatibility. In contrast, biominerals are formed by living organisms through biomineralization, which also includes minerals created by replicating this process. Incorporating biominerals into conventional materials allows for enhanced strength, durability, and biocompatibility. Specifically, biominerals can improve the bond between the implant and tissue by mimicking the micro-environment. This enhances cell differentiation and tissue regeneration. Furthermore, biomineral composites have wound healing and antimicrobial properties, which can aid in wound repair. Additionally, biominerals can be engineered as drug carriers, which can efficiently deliver drugs to their intended targets, minimizing side effects and increasing therapeutic efficacy. This article examines the role of biominerals and their composite materials in regenerative medicine applications and discusses their properties, synthesis methods, and potential uses.
Collapse
Affiliation(s)
- Sung Ho Kim
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea; (S.H.K.); (M.-R.K.)
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea; (S.H.K.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea
| | - Youngji Han
- Biological Clock-Based Anti-Aging Convergence RLRC, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea;
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea; (S.H.K.); (M.-R.K.)
| |
Collapse
|
7
|
Bollineni RK, Sayed Ahmed M, Shahab S, Mirzaeifar R. Nacre-like block lattice metamaterials with targeted phononic band gap and mechanical properties. J Mech Behav Biomed Mater 2024; 154:106511. [PMID: 38518512 DOI: 10.1016/j.jmbbm.2024.106511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/06/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
The extraordinary quasi-static mechanical properties of nacre-like composite metamaterials, such as high specific strength, stiffness, and toughness, are due to the periodic arrangement of two distinct phases in a "brick and mortar" structure. It is also theorized that the hierarchical periodic structure of nacre structures can provide wider band gaps at different frequency scales. However, the function of hierarchy in the dynamic behavior of metamaterials is largely unknown, and most current investigations are focused on a single objective and specialized applications. Nature, on the other hand, appears to develop systems that represent a trade-off between multiple objectives, such as stiffness, fatigue resistance, and wave attenuation. Given the wide range of design options available to these systems, a multidisciplinary strategy combining diverse objectives may be a useful opportunity provided by bioinspired artificial systems. This paper describes a class of hierarchically-architected block lattice metamaterials with simultaneous wave filtering and enhanced mechanical properties, using deep learning based on artificial neural networks (ANN), to overcome the shortcomings of traditional design methods for forward prediction, parameter design, and topology design of block lattice metamaterial. Our approach uses ANN to efficiently describe the complicated interactions between nacre geometry and its attributes, and then use the Bayesian optimization technique to determine the optimal geometry constants that match the given fitness requirements. We numerically demonstrate that complete band gaps, that is attributed to the coupling effects of local resonances and Bragg scattering, exist. The coupling effects are naturally influenced by the topological arrangements of the continuous structures and the mechanical characteristics of the component phases. We also demonstrate how we can tune the frequency of the complete band gap by modifying the geometrical configurations and volume fraction distribution of the metamaterials. This research contributes to the development of mechanically robust block lattice metamaterials and lenses capable of controlling acoustic and elastic waves in hostile settings.
Collapse
Affiliation(s)
| | | | - Shima Shahab
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Reza Mirzaeifar
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
8
|
Zhao ZH, Chen SY, Zhao PC, Luo WL, Luo YL, Zuo JL, Li CH. Mechanically Adaptive Polymers Constructed from Dynamic Coordination Equilibria. Angew Chem Int Ed Engl 2024; 63:e202400758. [PMID: 38450854 DOI: 10.1002/anie.202400758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
Designing materials capable of adapting their mechanical properties in response to external stimuli is the key to preventing failure and extending their service life. However, existing mechanically adaptive polymers are hindered by limitations such as inadequate load-bearing capacity, difficulty in achieving reversible changes, high cost, and a lack of multiple responsiveness. Herein, we address these challenges using dynamic coordination bonds. A new type of mechanically adaptive material with both rate- and temperature-responsiveness was developed. Owing to the stimuli-responsiveness of the coordination equilibria, the prepared polymers, PBMBD-Fe and PBMBD-Co, exhibit mechanically adaptive properties, including temperature-sensitive strength modulation and rate-dependent impact hardening. Benefitting from the dynamic nature of the coordination bonds, the polymers exhibited impressive energy dissipation, damping capacity (loss factors of 1.15 and 2.09 at 1.0 Hz), self-healing, and 3D printing abilities, offering durable and customizable impact resistance and protective performance. The development of impact-resistant materials with comprehensive properties has potential applications in the sustainable and intelligent protection fields.
Collapse
Affiliation(s)
- Zi-Han Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Shi-Yi Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Pei-Chen Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Wen-Lin Luo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yan-Long Luo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
- College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Cheng-Hui Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
9
|
Zeng G, Dong Y, Luo J, Zhou Y, Li C, Li K, Li X, Li J. Desirable Strong and Tough Adhesive Inspired by Dragonfly Wings and Plant Cell Walls. ACS NANO 2024; 18:9451-9469. [PMID: 38452378 DOI: 10.1021/acsnano.3c11160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The production of wood-based panels has a significant demand for mechanically strong and flexible biomass adhesives, serving as alternatives to nonrenewable and toxic formaldehyde-based adhesives. Nonetheless, plywood usually exhibits brittle fracture due to the inherent trade-off between rigidity and toughness, and it is susceptible to damage and deformation defects in production applications. Herein, inspired by the microstructure of dragonfly wings and the cross-linking structure of plant cell walls, a soybean meal (SM) adhesive with great strength and toughness was developed. The strategy was combined with a multiple assembly system based on the tannic acid (TA) stripping/modification of molybdenum disulfide (MoS2@TA) hybrids, phenylboronic acid/quaternary ammonium doubly functionalized chitosan (QCP), and SM. Motivated by the microstructure of dragonfly wings, MoS2@TA was tightly bonded with the SM framework through Schiff base and strong hydrogen bonding to dissipate stress energy through crack deflection, bridging, and immobilization. QCP imitated borate chemistry in plant cell walls to optimize interfacial interactions within the adhesive by borate ester bonds, boron-nitrogen coordination bonds, and electrostatic interactions and dissipate energy through sacrificial bonding. The shear strength and fracture toughness of the SM/QCP/MoS2@TA adhesive were 1.58 MPa and 0.87 J, respectively, which were 409.7% and 866.7% higher than those of the pure SM adhesive. In addition, MoS2@TA and QCP gave the adhesive good mildew resistance, durability, weatherability, and fire resistance. This bioinspired design strategy offers a viable and sustainable approach for creating multifunctional strong and tough biobased materials.
Collapse
Affiliation(s)
- Guodong Zeng
- College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, People's Republic of China
| | - Youming Dong
- College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, People's Republic of China
| | - Jing Luo
- College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, People's Republic of China
| | - Ying Zhou
- College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, People's Republic of China
| | - Cheng Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Kuang Li
- College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, People's Republic of China
| | - Xiaona Li
- College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, People's Republic of China
| | - Jianzhang Li
- College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, People's Republic of China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing 100083, People's Republic of China
| |
Collapse
|
10
|
Zhang X, Zhou J, Wu K, Zhang S, Xie L, Gong X, He L, Ni Y. Simultaneous Enhancement of Thermal Insulation and Impact Resistance in Transparent Bulk Composites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311817. [PMID: 38226720 DOI: 10.1002/adma.202311817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/25/2023] [Indexed: 01/17/2024]
Abstract
Transparent bulk glass is highly demanded in devices and components of daily life to transmit light and protect against external temperature and mechanical hazards. However, the application of glass is impeded by its poor functional performance, especially in terms of thermal isolation and impact resistance. Here, a glass composite integrating the nacre-inspired structure and shear stiffening gel (SSG) material is proposed. Benefiting from the combination of these two elements, this nacre-inspired SSG/glass composite (NSG) exhibits superior thermal insulation and impact resistance while maintaining transparency simultaneously. Specifically, the low thermal conductivity of the SSG combined with the anisotropic heat transfer capability of the nacre-inspired structure enhances the out-of-plane thermal insulation of NSG. The deformations over large volumes in nacre-inspired facesheets promote the deformation region of the SSG core, synergistic effect of tablet sliding mechanism in nacre-inspired structure and strain-rate enhancement in SSG material cause the superior impact resistance of overall panels in a wide range of impact velocities. NSG demonstrates outstanding properties such as transparency, light weight, impact resistance, and thermal insulation, which are major concerns for the application in engineering fields. In conclusion, this bioinspired SSG/glass composite opens new avenues to achieve comprehensive performance improvements for transparent structural materials.
Collapse
Affiliation(s)
- Xiao Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jianyu Zhou
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Kaijin Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shuaishuai Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lili Xie
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xinglong Gong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Linghui He
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yong Ni
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Science, Beijing, 100190, China
| |
Collapse
|
11
|
Chen SM, Zhang ZB, Gao HL, Yu SH. Bottom-Up Film-to-Bulk Assembly Toward Bioinspired Bulk Structural Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313443. [PMID: 38414173 DOI: 10.1002/adma.202313443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/21/2024] [Indexed: 02/29/2024]
Abstract
Biological materials, although composed of meager minerals and biopolymers, often exhibit amazing mechanical properties far beyond their components due to hierarchically ordered structures. Understanding their structure-properties relationships and replicating them into artificial materials would boost the development of bulk structural nanocomposites. Layered microstructure widely exists in biological materials, serving as the fundamental structure in nanosheet-based nacres and nanofiber-based Bouligand tissues, and implying superior mechanical properties. High-efficient and scalable fabrication of bioinspired bulk structural nanocomposites with precise layered microstructure is therefore important yet remains difficult. Here, one straightforward bottom-up film-to-bulk assembly strategy is focused for fabricating bioinspired layered bulk structural nanocomposites. The bottom-up assembly strategy inherently offers a methodology for precise construction of bioinspired layered microstructure in bulk form, availability for fabrication of bioinspired bulk structural nanocomposites with large sizes and complex shapes, possibility for design of multiscale interfaces, feasibility for manipulation of diverse heterogeneities. Not limited to discussing what has been achieved by using the current bottom-up film-to-bulk assembly strategy, it is also envisioned how to promote such an assembly strategy to better benefit the development of bioinspired bulk structural nanocomposites. Compared to other assembly strategies, the highlighted strategy provides great opportunities for creating bioinspired bulk structural nanocomposites on demand.
Collapse
Affiliation(s)
- Si-Ming Chen
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zhen-Bang Zhang
- Department of Chemistry, Department of Materials Science and Engineering, Institute of Innovative Materials, Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huai-Ling Gao
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, Department of Materials Science and Engineering, Institute of Innovative Materials, Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
12
|
Li Y, Ping H, Xie Q, Yang G, Xu J, Zhong M, Wang K. Fluorapatite nanorod arrays with enamel-like bundle structure regulated by iron ions. RSC Adv 2023; 13:28112-28119. [PMID: 37746340 PMCID: PMC10517139 DOI: 10.1039/d3ra03652a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023] Open
Abstract
Pigmented rodent tooth enamel is mainly composed of parallel hydroxyapatite nanorods and a small amount of organic matrix. These hydroxyapatite nanorods tend to be carbonated and contain traces of iron, fluorine, and magnesium. The pigmented rodent tooth enamel which contains trace iron is stronger and more resistant to acid corrosion than unpigmented rodent enamel, which could provide inspiration for the preparation and synthesis of high performance and corrosion resistant artificial materials. However, the regulatory role and mechanical enhancement of iron ions in enamel growth are unclear. Here, we synthesized enamel-like fluorapatite nanorod arrays in vitro using a mineralization technique at room-temperature. To investigate the regulatory effect of iron ions on the fluorapatite nanorod arrays (FAP-Fe), the phosphate solution is slowly transfused dropwise in the calcium ion solution, and different concentrations of iron ions are added to the calcium ion solution in advance. We demonstrated that fluorapatite nanorod arrays (FAP) can be epitaxially grown from amorphous calcium phosphate nanoparticles and iron ions can improve the microstructure of FAP nanorod arrays and obtain the same enamel bundle structure as the natural enamel. Moreover, high concentration of iron ions can inhibit the crystallization of fluorapatite. The FAP-Fe nanorod arrays controlled by 0.02 mM Fe3+ have good mechanical properties. Their hardness is 1.34 ± 0.02 GPa and Young's modulus is 65.3 ± 0.4 GPa, respectively. This work is helpful to understand the role of trace elements in natural enamel in the regulation of enamel formation and to provide a theoretical foundation for the preparation of high strength artificial composites, which can play a greater role in the fields of biological alternative materials, anti-oil coating, oil/water separation, anti-bioadhesion and so on.
Collapse
Affiliation(s)
- Yidi Li
- State Key Laboratory of Precision Blasting, Jianghan University Wuhan 430056 P. R. China
- Hubei Longzhong Laboratory Xiangyang 441000 Hubei P. R. China
| | - Hang Ping
- Hubei Longzhong Laboratory Xiangyang 441000 Hubei P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Quanmin Xie
- State Key Laboratory of Precision Blasting, Jianghan University Wuhan 430056 P. R. China
| | - G Yang
- State Key Laboratory of Precision Blasting, Jianghan University Wuhan 430056 P. R. China
| | - Jianguo Xu
- Ordnance NCO Academy Army Engineering University Wuhan 430070 P. R. China
| | - Mingming Zhong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Kun Wang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology Wuhan 430070 P. R. China
| |
Collapse
|
13
|
Fan Z, Lu L, Sang M, Wu J, Wang X, Xu F, Gong X, Luo T, Leung KC, Xuan S. Wearable Safeguarding Leather Composite with Excellent Sensing, Thermal Management, and Electromagnetic Interference Shielding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302412. [PMID: 37424041 PMCID: PMC10502653 DOI: 10.1002/advs.202302412] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/29/2023] [Indexed: 07/11/2023]
Abstract
This work illustrates a "soft-toughness" coupling design method to integrate the shear stiffening gel (SSG), natural leather, and nonwoven fabrics (NWF) for preparing leather/MXene/SSG/NWF (LMSN) composite with high anti-impact protecting, piezoresistive sensing, electromagnetic interference (EMI) shielding, and human thermal management performance. Owing to the porous fiber structure of the leather, the MXene nanosheets can penetrate leather to construct a stable 3D conductive network; thus both the LM and LMSN composites exhibit superior conductivity, high Joule heating temperature, and an efficient EMI shielding effectiveness. Due to the excellent energy absorption of the SSG, the LMSN composites possess a huge force-buffering (about 65.5%), superior energy dissipation (above 50%), and a high limit penetration velocity of 91 m s-1 , showing extraordinary anti-impact performance. Interestingly, LMSN composites possess an unconventional opposite sensing behavior to piezoresistive sensing (resistance reduction) and impact stimulation (resistance growing), thus they can distinguish the low and high energy stimulus. Ultimately, a soft protective vest with thermal management and impact monitoring performance is further fabricated, and it shows a typical wireless impact-sensing performance. This method is expected to have broad application potential in the next-generation wearable electronic devices for human safeguarding.
Collapse
Affiliation(s)
- Ziyang Fan
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsUniversity of Science and Technology of China (USTC)Hefei230027China
| | - Liang Lu
- The First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230036P. R. China
| | - Min Sang
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsUniversity of Science and Technology of China (USTC)Hefei230027China
| | - Jianpeng Wu
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsUniversity of Science and Technology of China (USTC)Hefei230027China
| | - Xinyi Wang
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsUniversity of Science and Technology of China (USTC)Hefei230027China
| | - Feng Xu
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsUniversity of Science and Technology of China (USTC)Hefei230027China
| | - Xinglong Gong
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsUniversity of Science and Technology of China (USTC)Hefei230027China
| | - Tianzhi Luo
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsUniversity of Science and Technology of China (USTC)Hefei230027China
| | - Ken Cham‐Fai Leung
- State Key Laboratory of Environmental and Biological AnalysisDepartment of ChemistryThe Hong Kong Baptist UniversityKowloonHong Kong SAR999077P. R. China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsUniversity of Science and Technology of China (USTC)Hefei230027China
| |
Collapse
|
14
|
Chan-Colli DG, Agaliotis EM, Frias-Bastar D, Shen L, Carrillo JG, Herrera-Franco PJ, Flores-Johnson EA. Ballistic Behavior of Bioinspired Nacre-like Composites. Biomimetics (Basel) 2023; 8:341. [PMID: 37622946 PMCID: PMC10452249 DOI: 10.3390/biomimetics8040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
In this paper, the ballistic performance of a multilayered composite inspired by the structural characteristics of nacre is numerically investigated using finite element (FE) simulations. Nacre is a natural composite material found in the shells of some marine mollusks, which has remarkable toughness due to its hierarchical layered structure. The bioinspired nacre-like composites investigated here were made of five wavy aluminum alloy 7075-T651 (AA7075) layers composed of ~1.1-mm thick square tablets bonded together with toughened epoxy resin. Two composite configurations with continuous layers (either wavy or flat) were also studied. The ballistic performance of the composite plates was compared to that of a bulk monolithic AA7075 plate. The ballistic impact was simulated in the 300-600 m/s range using two types of spherical projectiles, i.e., rigid and elastoplastic. The results showed that the nacre plate exhibited improved ballistic performance compared to the bulk plate and the plates with continuous layers. The structural design of the nacre plate improved the ballistic performance by producing a more ductile failure and enabling localized energy absorption via the plastic deformation of the tablets and the globalized energy dissipation due to interface debonding and friction. All the plate configurations exhibited a better ballistic performance when impacted by an elastoplastic projectile compared to a rigid one, which is explained by the projectile plastic deformation absorbing some of the impact energy and the enlarged contact area between the projectile and the plates producing more energy absorption by the plates.
Collapse
Affiliation(s)
- Danny G. Chan-Colli
- Centro de Investigación Científica de Yucatán, Unidad de Materiales, Calle 43 No. 130 Col. Chuburná de Hidalgo, Mérida 97205, Yucatán, Mexico; (D.G.C.-C.); (D.F.-B.); (J.G.C.)
| | - Eliana M. Agaliotis
- Facultad de Ingeniería, Universidad de Buenos Aires, Av. Las Heras 2214, Buenos Aires C1127AAR, Argentina;
- Instituto de Tecnología en Polímeros y Nanotecnología (ITPN), CONICET-Universidad de Buenos Aires, Av. Las Heras 2214, Buenos Aires C1127AAR, Argentina
| | - David Frias-Bastar
- Centro de Investigación Científica de Yucatán, Unidad de Materiales, Calle 43 No. 130 Col. Chuburná de Hidalgo, Mérida 97205, Yucatán, Mexico; (D.G.C.-C.); (D.F.-B.); (J.G.C.)
| | - Luming Shen
- School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Jose G. Carrillo
- Centro de Investigación Científica de Yucatán, Unidad de Materiales, Calle 43 No. 130 Col. Chuburná de Hidalgo, Mérida 97205, Yucatán, Mexico; (D.G.C.-C.); (D.F.-B.); (J.G.C.)
| | - Pedro J. Herrera-Franco
- Centro de Investigación Científica de Yucatán, Unidad de Materiales, Calle 43 No. 130 Col. Chuburná de Hidalgo, Mérida 97205, Yucatán, Mexico; (D.G.C.-C.); (D.F.-B.); (J.G.C.)
| | - Emmanuel A. Flores-Johnson
- Australian Nuclear Science and Technology Organization (ANSTO), Lucas Heights, NSW 2234, Australia
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| |
Collapse
|
15
|
Wang Z, Bo R, Bai H, Cao S, Wang S, Chang J, Lan Y, Li Y, Zhang Y. Flexible Impact-Resistant Composites with Bioinspired Three-Dimensional Solid-Liquid Lattice Designs. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22553-22562. [PMID: 37098745 DOI: 10.1021/acsami.3c02761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The ubiquitous solid-liquid systems in nature usually present an interesting mechanical property, the rate-dependent stiffness, which could be exploited for impact protection in flexible systems. Herein, a typical natural system, the durian peel, has been systematically characterized and studied, showing a solid-liquid dual-phase cellular structure. A bioinspired design of flexible impact-resistant composites is then proposed by combining 3D lattices and shear thickening fluids. The resulting dual-phase composites offer, simultaneously, low moduli (e.g., 71.9 kPa, lower than those of many reported soft composites) under quasi-static conditions and excellent energy absorption (e.g., 425.4 kJ/m3, which is close to those of metallic and glass-based lattices) upon dynamic impact. Numerical simulations based on finite element analyses were carried out to understand the enhanced buffering of the developed composites, unveiling a lattice-guided fluid-structure interaction mechanism. Such biomimetic lattice-based flexible impact-resistant composites hold promising potential for the development of next-generation flexible protection systems that can be used in wearable electronics and robotic systems.
Collapse
Affiliation(s)
- Zhanyu Wang
- Institute of Advanced Structure Technology, Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081 P. R. China
| | - Renheng Bo
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Haoran Bai
- Institute of Advanced Structure Technology, Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081 P. R. China
| | - Shunze Cao
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Shuheng Wang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Jiahui Chang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Yu Lan
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Ying Li
- Institute of Advanced Structure Technology, Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081 P. R. China
| | - Yihui Zhang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
16
|
Wang K, Wu X, An L, Li R, Li Z, Li G, Zhou Z. Crack modes and toughening mechanism of a bioinspired helicoidal recursive composite with nonlinear recursive rotation angle-based layups. J Mech Behav Biomed Mater 2023; 142:105866. [PMID: 37141743 DOI: 10.1016/j.jmbbm.2023.105866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
The rotation angle is an important parameter affecting the performance of helical structures, and helical structures with nonlinearly increasing rotation angles have been studied. The fracture behavior of a 3D-printed helicoidal recursive (HR) composite with nonlinear rotation angle-based layups was investigated by performing quasistatic three-point bending experiments and simulations. First, the crack propagation paths during the loading of the samples were observed, and the critical deformation displacements and fracture toughness were calculated. It was found that the crack path that propagated along the soft phase increased the critical failure displacement and toughness of the samples. Then, the deformation and interlayer stress distribution of the helical structure under static loading were obtained by finite element simulation. The results showed that the variation in the rotation angle between the layers caused different degrees of shear deformation at the interface between adjacent layers, resulting in different shear stress distributions and thus different crack modes of the HR structures. The mixed-mode I + II cracks induced crack deflection, which slowed the eventual failure of the sample and improved the fracture toughness.
Collapse
Affiliation(s)
- Ke Wang
- College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiaodong Wu
- College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Department of Nuclear Emergency and Safety, China Institute for Radiation Protection, Taiyuan, 030006, China.
| | - Lianhao An
- College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Runzhi Li
- College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhiqiang Li
- College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Guoqiang Li
- Department of Nuclear Emergency and Safety, China Institute for Radiation Protection, Taiyuan, 030006, China
| | - Zhihui Zhou
- Zhejiang Lab, Hangzhou, Zhejiang, 311100, China
| |
Collapse
|