1
|
Brough HDA, Cheneler D, Hardy JG. Progress in Multiscale Modeling of Silk Materials. Biomacromolecules 2024. [PMID: 39438248 DOI: 10.1021/acs.biomac.4c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
As a result of their hierarchical structure and biological processing, silk fibers rank among nature's most remarkable materials. The biocompatibility of silk-based materials and the exceptional mechanical properties of certain fibers has inspired the use of silk in numerous technical and medical applications. In recent years, computational modeling has clarified the relationship between the molecular architecture and emergent properties of silk fibers and has demonstrated predictive power in studies on novel biomaterials. Here, we review advances in modeling the structure and properties of natural and synthetic silk-based materials, from early structural studies of silkworm cocoon fibers to cutting-edge atomistic simulations of spider silk nanofibrils and the recent use of machine learning models. We explore applications of modeling across length scales: from quantum mechanical studies on model peptides, to atomistic and coarse-grained molecular dynamics simulations of silk proteins, to finite element analysis of spider webs. As computational power and algorithmic efficiency continue to advance, we expect multiscale modeling to become an indispensable tool for understanding nature's most impressive fibers and developing bioinspired functional materials.
Collapse
Affiliation(s)
- Harry D A Brough
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - David Cheneler
- School of Engineering, Lancaster University, Lancaster LA1 4YW, United Kingdom
- Materials Science Lancaster, Lancaster University, Lancaster, LA1 4YW, United Kingdom
| | - John G Hardy
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
- Materials Science Lancaster, Lancaster University, Lancaster, LA1 4YW, United Kingdom
| |
Collapse
|
2
|
Park W, Yoon T, You J, Na S. Application of Silk Light Chain on a Graphene Composite Surface: A Molecular Dynamics and Electrochemical Experiment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54761-54771. [PMID: 39319439 DOI: 10.1021/acsami.4c15705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The surface functionalization of pristine graphene (PG) with beneficial biocomposites is important for biomedical and tissue engineering. This study introduces silk light chain as novel biocomposites to increase the biocompatibility of PG. We explored the supramolecular structures of the silk heavy and light chains. Through molecular dynamics, we compared and analyzed the structural effects and binding mechanisms of these domains in their interaction with PG. Our results highlighted a significant hydrophobic interaction between the silk light chain and PG, without structural collapse. The supramolecular structure of the silk light chain was identified by analyzing the amino acids bound to PG. Moreover, using the silk light chain, the hydrophobic surface of PG has changed to a hydrophilic surface, and the silk light-chain-PG electron transfer rate was evaluated for the graphene congeners: graphene oxide (GO) and reduced graphene oxide. Therefore, we are confident that the dispersibility and biocompatibility of PG can be increased using silk light chains, which will contribute to broadening the field of application of PG-based materials.
Collapse
Affiliation(s)
- Wooboum Park
- Department of Mechanical Engineering, Korea University, 02841 Seoul, Republic of Korea
| | - Taeyoung Yoon
- Department of Mechanical Engineering, Changwon National University, 51140 Changwon, Gyeongsangnam-do, Republic of Korea
| | - Juneseok You
- Department of Mechanical Engineering, Kumoh National Institute of Technology, 39177 Gumi, Gyeongsangbuk-do, Republic of Korea
| | - Sungsoo Na
- Department of Mechanical Engineering, Korea University, 02841 Seoul, Republic of Korea
| |
Collapse
|
3
|
Shi C, Zorman M, Zhao X, Salmeron MB, Pfaendtner J, Liu XY, Zhang S, De Yoreo JJ. Two-dimensional silk. SCIENCE ADVANCES 2024; 10:eado4142. [PMID: 39292781 PMCID: PMC11409968 DOI: 10.1126/sciadv.ado4142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Despite the promise of silk-based devices, the inherent disorder of native silk limits performance. Here, we report highly ordered two-dimensional silk fibroin (SF) films grown epitaxially on van der Waals (vdW) substrates. Using atomic force microscopy, nano-Fourier transform infrared spectroscopy, and molecular dynamics, we show that the films consist of lamellae of SF molecules that exhibit the same secondary structure as the nanocrystallites of native silk. Increasing the SF concentration results in multilayers that grow either by direct assembly of SF molecules into the lamellae or, at high concentrations, along a two-step pathway beginning with a disordered monolayer that then crystallizes. Scanning Kelvin probe measurements show that these films substantially alter the surface potential; thus, they provide a platform for silk-based electronics on vdW solids.
Collapse
Affiliation(s)
- Chenyang Shi
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Marlo Zorman
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Xiao Zhao
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Miquel B Salmeron
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Jim Pfaendtner
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Xiang Yang Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Shuai Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Dong K, Zhou Q, Gao B. New light-illuminated silk road: emerging silk fibroin-based optical biomedical sensors. Analyst 2024; 149:4322-4342. [PMID: 39073410 DOI: 10.1039/d4an00665h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Biomedical silk protein optics has become the subject of intensive research aimed at solving the challenges associated with traditional medical devices in terms of biocompatibility and performance balance. With its significant potential for biomedical applications in the field of drug storage and wound monitoring, it is dedicated to reducing the perturbation of neighbouring tissues. The transparency and biocompatibility of silk proteins make them ideal materials in the field of optical device fabrication, effectively overcoming the challenges posed by conventional materials. In this paper, we explore in detail the complex aspects of the design, synthesis and application related to biomedical silk protein optical devices and comprehensively analyse the potential use of silk protein-centric microstructures (e.g., micropillars, microneedles, and photonic crystals) in the development of optical devices. This review also offers insights into the challenges of applying silk protein optical devices in healthcare and their future trends, aiming to provide a comprehensive overview of the advances, potential impacts and emerging research directions in the field of biomedical silk protein optical devices.
Collapse
Affiliation(s)
- Kaiyi Dong
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Qian Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
5
|
Brookstein O, Shimoni E, Eliaz D, Kaplan-Ashiri I, Carmel I, Shimanovich U. Metal ions guide the production of silkworm silk fibers. Nat Commun 2024; 15:6671. [PMID: 39107276 PMCID: PMC11303403 DOI: 10.1038/s41467-024-50879-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/23/2024] [Indexed: 08/09/2024] Open
Abstract
Silk fibers' unique mechanical properties have made them desirable materials, yet their formation mechanism remains poorly understood. While ions are known to support silk fiber production, their exact role has thus far eluded discovery. Here, we use cryo-electron microscopy coupled with elemental analysis to elucidate the changes in the composition and spatial localization of metal ions during silk evolution inside the silk gland. During the initial protein secretion and storage stages, ions are homogeneously dispersed in the silk gland. Once the fibers are spun, the ions delocalize from the fibroin core to the sericin-coating layer, a process accompanied by protein chain alignment and increased feedstock viscosity. This change makes the protein more shear-sensitive and initiates the liquid-to-solid transition. Selective metal ion doping modifies silk fibers' mechanical performance. These findings enhance our understanding of the silk fiber formation mechanism, laying the foundations for developing new concepts in biomaterial design.
Collapse
Affiliation(s)
- Ori Brookstein
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, Faculty of Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Dror Eliaz
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Ifat Kaplan-Ashiri
- Department of Chemical Research Support, Faculty of Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Itay Carmel
- Department of Chemical and Structural Biology, Faculty of Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Ulyana Shimanovich
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
6
|
Eliaz D, Kellersztein I, Miali ME, Benyamin D, Brookstein O, Daraio C, Wagner HD, Raviv U, Shimanovich U. Fine Structural Analysis of Degummed Fibroin Fibers Reveals Its Superior Mechanical Capabilities. CHEMSUSCHEM 2024:e202401148. [PMID: 39023515 DOI: 10.1002/cssc.202401148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
Bombyx mori silk fibroin fibers constitute a class of protein building blocks capable of functionalization and reprocessing into various material formats. The properties of these fibers are typically affected by the intense thermal treatments needed to remove the sericin gum coating layer. Additionally, their mechanical characteristics are often misinterpreted by assuming the asymmetrical cross-sectional area (CSA) as a perfect circle. The thermal treatments impact not only the mechanics of the degummed fibroin fibers, but also the structural configuration of the resolubilized protein, thereby limiting the performance of the resulting silk-based materials. To mitigate these limitations, we explored varying alkali conditions at low temperatures for surface treatment, effectively removing the sericin gum layer while preserving the molecular structure of the fibroin protein, thus, maintaining the hierarchical integrity of the exposed fibroin microfiber core. The precise determination of the initial CSA of the asymmetrical silk fibers led to a comprehensive analysis of their mechanical properties. Our findings indicate that the alkali surface treatment raised the Young's modulus and tensile strength, by increasing the extent of the fibers' crystallinity, by approximately 40 % and 50 %, respectively, without compromising their strain. Furthermore, we have shown that this treatment facilitated further production of high-purity soluble silk protein with rheological and self-assembly characteristics comparable to those of native silk feedstock, initially stored in the animal's silk gland. The developed approaches benefits both the development of silk-based materials with tailored properties and the proper mechanical characterization of asymmetrical fibrous biological materials made of natural building blocks.
Collapse
Affiliation(s)
- D Eliaz
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001, Rehovot, Israel
- Present address: SilkIt Ltd., Ness Ziona, 7403626, Israel
| | - I Kellersztein
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - M E Miali
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - D Benyamin
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Present address: Department of Physics of Complex Systems, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - O Brookstein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - C Daraio
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - H D Wagner
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - U Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - U Shimanovich
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001, Rehovot, Israel
| |
Collapse
|
7
|
Moreno-Tortolero RO, Luo Y, Parmeggiani F, Skaer N, Walker R, Serpell LC, Holland C, Davis SA. Molecular organization of fibroin heavy chain and mechanism of fibre formation in Bombyx mori. Commun Biol 2024; 7:786. [PMID: 38951579 PMCID: PMC11217467 DOI: 10.1038/s42003-024-06474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
Fibroins' transition from liquid to solid is fundamental to spinning and underpins the impressive native properties of silk. Herein, we establish a fibroin heavy chain fold for the Silk-I polymorph, which could be relevant for other similar proteins, and explains mechanistically the liquid-to-solid transition of this silk, driven by pH reduction and flow stress. Combining spectroscopy and modelling we propose that the liquid Silk-I fibroin heavy chain (FibH) from the silkworm, Bombyx mori, adopts a newly reported β-solenoid structure. Similarly, using rheology we propose that FibH N-terminal domain (NTD) templates reversible higher-order oligomerization driven by pH reduction. Our integrated approach bridges the gap in understanding FibH structure and provides insight into the spatial and temporal hierarchical self-assembly across length scales. Our findings elucidate the complex rheological behaviour of Silk-I, solutions and gels, and the observed liquid crystalline textures within the silk gland. We also find that the NTD undergoes hydrolysis during standard regeneration, explaining key differences between native and regenerated silk feedstocks. In general, in this study we emphasize the unique characteristics of native and native-like silks, offering a fresh perspective on our fundamental understanding of silk-fibre production and applications.
Collapse
Affiliation(s)
- Rafael O Moreno-Tortolero
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, BS8 1TS, UK.
| | - Yijie Luo
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Fabio Parmeggiani
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Ave, Cardiff, CF10 3NB, UK
| | - Nick Skaer
- Orthox Ltd, Milton Park, 66 Innovation Drive, Abingdon, OX14 4RQ, UK
| | - Robert Walker
- Orthox Ltd, Milton Park, 66 Innovation Drive, Abingdon, OX14 4RQ, UK
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Chris Holland
- Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Sean A Davis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
8
|
Wu C, Duan Y, Yu L, Hu Y, Zhao C, Ji C, Guo X, Zhang S, Dai X, Ma P, Wang Q, Ling S, Yang X, Dai Q. In-situ observation of silk nanofibril assembly via graphene plasmonic infrared sensor. Nat Commun 2024; 15:4643. [PMID: 38821959 PMCID: PMC11143229 DOI: 10.1038/s41467-024-49076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
Silk nanofibrils (SNFs), the fundamental building blocks of silk fibers, endow them with exceptional properties. However, the intricate mechanism governing SNF assembly, a process involving both protein conformational transitions and protein molecule conjunctions, remains elusive. This lack of understanding has hindered the development of artificial silk spinning techniques. In this study, we address this challenge by employing a graphene plasmonic infrared sensor in conjunction with multi-scale molecular dynamics (MD). This unique approach allows us to probe the secondary structure of nanoscale assembly intermediates (0.8-6.2 nm) and their morphological evolution. It also provides insights into the dynamics of silk fibroin (SF) over extended molecular timeframes. Our novel findings reveal that amorphous SFs undergo a conformational transition towards β-sheet-rich oligomers on graphene. These oligomers then connect to evolve into SNFs. These insights provide a comprehensive picture of SNF assembly, paving the way for advancements in biomimetic silk spinning.
Collapse
Affiliation(s)
- Chenchen Wu
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing, 100190, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Duan
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing, 100190, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Lintao Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Yao Hu
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chenxi Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Chunwang Ji
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing, 100190, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xiangdong Guo
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing, 100190, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shu Zhang
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing, 100190, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaokang Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing, 100190, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Puyi Ma
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing, 100190, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Wang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China.
| | - Xiaoxia Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing, 100190, China.
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing, 100190, China.
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
9
|
Karger S, Miali ME, Solomonov A, Eliaz D, Varsano N, Shimanovich U. Protein Compartments Modulate Fibrillar Self-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308069. [PMID: 38148317 DOI: 10.1002/smll.202308069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/04/2023] [Indexed: 12/28/2023]
Abstract
A notable feature of complex cellular environments is protein-rich compartments that are formed via liquid-liquid phase separation. Recent studies have shown that these biomolecular condensates can play both promoting and inhibitory roles in fibrillar protein self-assembly, a process that is linked to Alzheimer's, Parkinson's, Huntington's, and various prion diseases. Yet, the exact regulatory role of these condensates in protein aggregation remains unknown. By employing microfluidics to create artificial protein compartments, the self-assembly behavior of the fibrillar protein lysozyme within them can be characterized. It is observed that the volumetric parameters of protein-rich compartments can change the kinetics of protein self-assembly. Depending on the change in compartment parameters, the lysozyme fibrillation process either accelerated or decelerated. Furthermore, the results confirm that the volumetric parameters govern not only the nucleation and growth phases of the fibrillar aggregates but also affect the crosstalk between the protein-rich and protein-poor phases. The appearance of phase-separated compartments in the vicinity of natively folded protein complexes triggers their abrupt percolation into the compartments' core and further accelerates protein aggregation. Overall, the results of the study shed more light on the complex behavior and functions of protein-rich phases and, importantly, on their interaction with the surrounding environment.
Collapse
Affiliation(s)
- Shay Karger
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Marco E Miali
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Aleksei Solomonov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Dror Eliaz
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Neta Varsano
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ulyana Shimanovich
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
10
|
Egan G, Hannah AJ, Donnelly S, Connolly P, Seib FP. The Biologically Active Biopolymer Silk: The Antibacterial Effects of Solubilized Bombyx mori Silk Fibroin with Common Wound Pathogens. Adv Biol (Weinh) 2024; 8:e2300115. [PMID: 38411381 DOI: 10.1002/adbi.202300115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 12/22/2023] [Indexed: 02/28/2024]
Abstract
Antibacterial properties are desirable in wound dressings. Silks, among many material formats, have been investigated for use in wound care. However, the antibacterial properties of liquid silk are poorly understood. The aim of this study is to investigate the inherent antibacterial properties of a Bombyx mori silk fibroin solution. Silk fibroin solutions containing ≥ 4% w/v silk fibroin do not support the growth of two common wound pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. When liquid silk is added to a wound pad and placed on inoculated culture plates mimicking wound fluid, silk is bacteriostatic. Viability tests of the bacterial cells in the presence of liquid silk show that cells remain intact within the silk but could not be cultured. Liquid silk appears to provide a hostile environment for S. aureus and P. aeruginosa and inhibits growth without disrupting the cell membrane. This effect can be beneficial for wound healing and supports future healthcare applications for silk. This observation also indicates that liquid silk stored prior to processing is unlikely to experience microbial spoilage.
Collapse
Affiliation(s)
- Gemma Egan
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - Aiden J Hannah
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - Sean Donnelly
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - Patricia Connolly
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
- Branch Bioresources, Fraunhofer Institute for Molecular Biology & Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany
- Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstr. 8, 07743, Jena, Germany
| |
Collapse
|
11
|
Tan G, Jia T, Qi Z, Lu S. Regenerated Fiber's Ideal Target: Comparable to Natural Fiber. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1834. [PMID: 38673192 PMCID: PMC11050933 DOI: 10.3390/ma17081834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
The toughness of silk naturally obtained from spiders and silkworms exceeds that of all other natural and man-made fibers. These insects transform aqueous protein feedstocks into mechanically specialized materials, which represents an engineering phenomenon that has developed over millions of years of natural evolution. Silkworms have become a new research hotspot due to the difficulties in collecting spider silk and other challenges. According to continuous research on the natural spinning process of the silkworm, it is possible to divide the main aspects of bionic spinning into two main segments: the solvent and behavior. This work focuses on the various methods currently used for the spinning of artificial silk fibers to replicate natural silk fibers, providing new insights based on changes in the fiber properties and production processes over time.
Collapse
Affiliation(s)
| | | | | | - Shenzhou Lu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (G.T.); (T.J.); (Z.Q.)
| |
Collapse
|
12
|
Solomonov A, Kozell A, Shimanovich U. Designing Multifunctional Biomaterials via Protein Self-Assembly. Angew Chem Int Ed Engl 2024; 63:e202318365. [PMID: 38206201 DOI: 10.1002/anie.202318365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Protein self-assembly is a fundamental biological process where proteins spontaneously organize into complex and functional structures without external direction. This process is crucial for the formation of various biological functionalities. However, when protein self-assembly fails, it can trigger the development of multiple disorders, thus making understanding this phenomenon extremely important. Up until recently, protein self-assembly has been solely linked either to biological function or malfunction; however, in the past decade or two it has also been found to hold promising potential as an alternative route for fabricating materials for biomedical applications. It is therefore necessary and timely to summarize the key aspects of protein self-assembly: how the protein structure and self-assembly conditions (chemical environments, kinetics, and the physicochemical characteristics of protein complexes) can be utilized to design biomaterials. This minireview focuses on the basic concepts of forming supramolecular structures, and the existing routes for modifications. We then compare the applicability of different approaches, including compartmentalization and self-assembly monitoring. Finally, based on the cutting-edge progress made during the last years, we summarize the current knowledge about tailoring a final function by introducing changes in self-assembly and link it to biomaterials' performance.
Collapse
Affiliation(s)
- Aleksei Solomonov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 234 Herzl st., Rehovot, 76100, Israel
| | - Anna Kozell
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 234 Herzl st., Rehovot, 76100, Israel
| | - Ulyana Shimanovich
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 234 Herzl st., Rehovot, 76100, Israel
| |
Collapse
|
13
|
Rosenberg A, Solomonov A, Cohen H, Eliaz D, Kellersztein I, Brookstein O, Kozell A, Wang L, Wagner HD, Daraio C, Shimanovich U. From Basic Principles of Protein-Polysaccharide Association to the Rational Design of Thermally Sensitive Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9210-9223. [PMID: 38330192 PMCID: PMC10895586 DOI: 10.1021/acsami.3c12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Biology resolves design requirements toward functional materials by creating nanostructured composites, where individual components are combined to maximize the macroscale material performance. A major challenge in utilizing such design principles is the trade-off between the preservation of individual component properties and emerging composite functionalities. Here, polysaccharide pectin and silk fibroin were investigated in their composite form with pectin as a thermal-responsive ion conductor and fibroin with exceptional mechanical strength. We show that segregative phase separation occurs upon mixing, and within a limited compositional range, domains ∼50 nm in size are formed and distributed homogeneously so that decent matrix collective properties are established. The composite is characterized by slight conformational changes in the silk domains, sequestering the hydrogen-bonded β-sheets as well as the emergence of randomized pectin orientations. However, most dominant in the composite's properties is the introduction of dense domain interfaces, leading to increased hydration, surface hydrophilicity, and increased strain of the composite material. Using controlled surface charging in X-ray photoelectron spectroscopy, we further demonstrate Ca ions (Ca2+) diffusion in the pectin domains, with which the fingerprints of interactions at domain interfaces are revealed. Both the thermal response and the electrical conductance were found to be strongly dependent on the degree of composite hydration. Our results provide a fundamental understanding of the role of interfacial interactions and their potential applications in the design of material properties, polysaccharide-protein composites in particular.
Collapse
Affiliation(s)
- Asaf Rosenberg
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Aleksei Solomonov
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hagai Cohen
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dror Eliaz
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Israel Kellersztein
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Ori Brookstein
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anna Kozell
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Linghui Wang
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Hanoch Daniel Wagner
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Chiara Daraio
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Ulyana Shimanovich
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
14
|
Qi H, Ding Y, Teng Y, Liang X, Chen L, Ma J, Yang Q, Liu T. A Core Structural Protein That Builds the Locust Mandible with a Mechanical Gradient. ACS NANO 2023; 17:25311-25321. [PMID: 38064446 DOI: 10.1021/acsnano.3c08715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Natural materials, such as locust mandibles and squid beaks, define significant mechanical gradients that have been attributed to the chemical gradients of their specialized structural proteins (SPs). However, the mechanism by which SPs form chemical gradients in these materials remains unknown. In this study, a highly abundant histidine-rich structural protein (LmMHSP) was identified in the mandible of a migratory locust (Locusta migratoria). LmMHSP was proven by both in vivo and in vitro evidence to act as a core building block of the mandible with a variety of synergistic functions including chitin binding, matrix formation via liquid-liquid phase separation, chemical cross-linking, and metal coordination. Furthermore, we found that the SP gradient in the locust mandible stems from the chitin-binding activity of LmMHSP and different microstructures of chitin scaffolds in different regions. These findings advance our understanding of the formation mechanisms of natural biomaterials and have implications for the fabrication of biomimetic materials.
Collapse
Affiliation(s)
- Huitang Qi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yi Ding
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yingda Teng
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xiangyu Liang
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Lei Chen
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jianli Ma
- Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Qing Yang
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tian Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
15
|
Raviv U, Asor R, Shemesh A, Ginsburg A, Ben-Nun T, Schilt Y, Levartovsky Y, Ringel I. Insight into structural biophysics from solution X-ray scattering. J Struct Biol 2023; 215:108029. [PMID: 37741561 DOI: 10.1016/j.jsb.2023.108029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/09/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
The current challenges of structural biophysics include determining the structure of large self-assembled complexes, resolving the structure of ensembles of complex structures and their mass fraction, and unraveling the dynamic pathways and mechanisms leading to the formation of complex structures from their subunits. Modern synchrotron solution X-ray scattering data enable simultaneous high-spatial and high-temporal structural data required to address the current challenges of structural biophysics. These data are complementary to crystallography, NMR, and cryo-TEM data. However, the analysis of solution scattering data is challenging; hence many different analysis tools, listed in the SAS Portal (http://smallangle.org/), were developed. In this review, we start by briefly summarizing classical X-ray scattering analyses providing insight into fundamental structural and interaction parameters. We then describe recent developments, integrating simulations, theory, and advanced X-ray scattering modeling, providing unique insights into the structure, energetics, and dynamics of self-assembled complexes. The structural information is essential for understanding the underlying physical chemistry principles leading to self-assembled supramolecular architectures and computational structural refinement.
Collapse
Affiliation(s)
- Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel; The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel.
| | - Roi Asor
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Asaf Shemesh
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Avi Ginsburg
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Tal Ben-Nun
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Yaelle Schilt
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Yehonatan Levartovsky
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Israel Ringel
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| |
Collapse
|
16
|
Vargo E, Ma L, Li H, Zhang Q, Kwon J, Evans KM, Tang X, Tovmasyan VL, Jan J, Arias AC, Destaillats H, Kuzmenko I, Ilavsky J, Chen WR, Heller W, Ritchie RO, Liu Y, Xu T. Functional composites by programming entropy-driven nanosheet growth. Nature 2023; 623:724-731. [PMID: 37938779 DOI: 10.1038/s41586-023-06660-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/20/2023] [Indexed: 11/09/2023]
Abstract
Nanomaterials must be systematically designed to be technologically viable1-5. Driven by optimizing intermolecular interactions, current designs are too rigid to plug in new chemical functionalities and cannot mitigate condition differences during integration6,7. Despite extensive optimization of building blocks and treatments, accessing nanostructures with the required feature sizes and chemistries is difficult. Programming their growth across the nano-to-macro hierarchy also remains challenging, if not impossible8-13. To address these limitations, we should shift to entropy-driven assemblies to gain design flexibility, as seen in high-entropy alloys, and program nanomaterial growth to kinetically match target feature sizes to the mobility of the system during processing14-17. Here, following a micro-then-nano growth sequence in ternary composite blends composed of block-copolymer-based supramolecules, small molecules and nanoparticles, we successfully fabricate high-performance barrier materials composed of more than 200 stacked nanosheets (125 nm sheet thickness) with a defect density less than 0.056 µm-2 and about 98% efficiency in controlling the defect type. Contrary to common perception, polymer-chain entanglements are advantageous to realize long-range order, accelerate the fabrication process (<30 min) and satisfy specific requirements to advance multilayered film technology3,4,18. This study showcases the feasibility, necessity and unlimited opportunities to transform laboratory nanoscience into nanotechnology through systems engineering of self-assembly.
Collapse
Affiliation(s)
- Emma Vargo
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Le Ma
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - He Li
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Qingteng Zhang
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Junpyo Kwon
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Katherine M Evans
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Xiaochen Tang
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Victoria L Tovmasyan
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Jasmine Jan
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Ana C Arias
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Hugo Destaillats
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ivan Kuzmenko
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Jan Ilavsky
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Wei-Ren Chen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - William Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Yi Liu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ting Xu
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Kavli Energy NanoScience Institute, Berkeley, CA, USA.
| |
Collapse
|
17
|
Lim CM, González Díaz A, Fuxreiter M, Pun FW, Zhavoronkov A, Vendruscolo M. Multiomic prediction of therapeutic targets for human diseases associated with protein phase separation. Proc Natl Acad Sci U S A 2023; 120:e2300215120. [PMID: 37774095 PMCID: PMC10556643 DOI: 10.1073/pnas.2300215120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/02/2023] [Indexed: 10/01/2023] Open
Abstract
The phenomenon of protein phase separation (PPS) underlies a wide range of cellular functions. Correspondingly, the dysregulation of the PPS process has been associated with numerous human diseases. To enable therapeutic interventions based on the regulation of this association, possible targets should be identified. For this purpose, we present an approach that combines the multiomic PandaOmics platform with the FuzDrop method to identify PPS-prone disease-associated proteins. Using this approach, we prioritize candidates with high PandaOmics and FuzDrop scores using a profiling method that accounts for a wide range of parameters relevant for disease mechanism and pharmacological intervention. We validate the differential phase separation behaviors of three predicted Alzheimer's disease targets (MARCKS, CAMKK2, and p62) in two cell models of this disease. Overall, the approach that we present generates a list of possible therapeutic targets for human diseases associated with the dysregulation of the PPS process.
Collapse
Affiliation(s)
- Christine M. Lim
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Alicia González Díaz
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Monika Fuxreiter
- Department of Biomedical Sciences, University of Padova, Padova35131, Italy
| | - Frank W. Pun
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong, China
| | - Alex Zhavoronkov
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong, China
| | - Michele Vendruscolo
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| |
Collapse
|
18
|
Adly N, Teshima TF, Hassani H, Boustani GA, Weiß LJ, Cheng G, Alexander J, Wolfrum B. Printed Silk Microelectrode Arrays for Electrophysiological Recording and Controlled Drug Delivery. Adv Healthc Mater 2023; 12:e2202869. [PMID: 36827235 PMCID: PMC11468847 DOI: 10.1002/adhm.202202869] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/12/2023] [Indexed: 02/25/2023]
Abstract
The use of soft and flexible bioelectronic interfaces can enhance the quality for recording cells' electrical activity by ensuring a continuous and intimate contact with the smooth, curving surfaces found in the physiological environment. This work develops soft microelectrode arrays (MEAs) made of silk fibroin (SF) films for recording interfaces that can also serve as a drug delivery system. Inkjet printing is used as a tool to deposit the substrate, conductive electrode, and insulator, as well as a drug-delivery nanocomposite film. This approach is highly versatile, as shown in the fabrication of carbon microelectrodes, sandwiched between a silk substrate and a silk insulator. The technique permits the development of thin-film devices that can be employed for in vitro extracellular recordings of HL-1 cell action potentials. The tuning of SF by applying an electrical stimulus to produce a permeable layer that can be used in on-demand drug delivery systems is also demonstrated. The multifunctional MEA developed here can pave the way for in vitro drug screening by applying time-resolved and localized chemical stimuli.
Collapse
Affiliation(s)
- Nouran Adly
- Neuroelectronics – Munich Institute of Biomedical EngineeringDepartment of Electrical EngineeringTUM School of ComputationInformation and TechnologyTechnical University of MunichHans‐Piloty‐Strasse 185748GarchingGermany
- Medical & Health Informatics LaboratoriesNTT Research Incorporated940 Stewart DrSunnyvaleCA94085USA
| | - Tetsuhiko F. Teshima
- Neuroelectronics – Munich Institute of Biomedical EngineeringDepartment of Electrical EngineeringTUM School of ComputationInformation and TechnologyTechnical University of MunichHans‐Piloty‐Strasse 185748GarchingGermany
- Medical & Health Informatics LaboratoriesNTT Research Incorporated940 Stewart DrSunnyvaleCA94085USA
| | | | - George Al Boustani
- Neuroelectronics – Munich Institute of Biomedical EngineeringDepartment of Electrical EngineeringTUM School of ComputationInformation and TechnologyTechnical University of MunichHans‐Piloty‐Strasse 185748GarchingGermany
| | - Lennart J.K. Weiß
- Neuroelectronics – Munich Institute of Biomedical EngineeringDepartment of Electrical EngineeringTUM School of ComputationInformation and TechnologyTechnical University of MunichHans‐Piloty‐Strasse 185748GarchingGermany
| | - Gordon Cheng
- Chair for Cognitive SystemsDepartment of Electrical EngineeringTUM School of ComputationInformation and TechnologyTechnical University of MunichArcisstrasse 2180333MunichGermany
| | - Joe Alexander
- Medical & Health Informatics LaboratoriesNTT Research Incorporated940 Stewart DrSunnyvaleCA94085USA
| | - Bernhard Wolfrum
- Neuroelectronics – Munich Institute of Biomedical EngineeringDepartment of Electrical EngineeringTUM School of ComputationInformation and TechnologyTechnical University of MunichHans‐Piloty‐Strasse 185748GarchingGermany
- Medical & Health Informatics LaboratoriesNTT Research Incorporated940 Stewart DrSunnyvaleCA94085USA
| |
Collapse
|