1
|
Zheng ZJ, Ye H, Guo ZP. Bacterial Cellulose Applications in Electrochemical Energy Storage Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412908. [PMID: 39491807 DOI: 10.1002/adma.202412908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/14/2024] [Indexed: 11/05/2024]
Abstract
Bacterial cellulose (BC) is produced via the fermentation of various microorganisms. It has an interconnected 3D porous network structure, strong water-locking ability, high mechanical strength, chemical stability, anti-shrinkage properties, renewability, biodegradability, and a low cost. BC-based materials and their derivatives have been utilized to fabricate advanced functional materials for electrochemical energy storage devices and flexible electronics. This review summarizes recent progress in the development of BC-related functional materials for electrochemical energy storage devices. The origin, components, and microstructure of BC are discussed, followed by the advantages of using BC in energy storage applications. Then, BC-related material design strategies in terms of solid electrolytes, binders, and separators, as well as BC-derived carbon nanofibers for electroactive materials are discussed. Finally, a short conclusion and outlook regarding current challenges and future research opportunities related to BC-based advanced functional materials for next-generation energy storage devices suggestions are proposed.
Collapse
Affiliation(s)
- Zi-Jian Zheng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan, 430062, China
| | - Huan Ye
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zai-Ping Guo
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
2
|
Liu X, Wang D, Zhang Z, Li G, Wang J, Yang G, Lin H, Lin J, Ou X, Zheng W. Gel Polymer Electrolyte Enables Low-Temperature and High-Rate Lithium-Ion Batteries via Bionic Interface Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404879. [PMID: 39101287 DOI: 10.1002/smll.202404879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Traditional ethylene carbonate (EC)-based electrolytes constrain the applications of silicon carbon (Si-C) anodes under fast-charging and low-temperature conditions due to sluggish Li+ migration kinetics and unstable solid electrolyte interphase (SEI). Herein, inspired by the efficient water purification and soil stabilization of aquatic plants, a stable SEI with a 3D desolvation interface is designed with gel polymer electrolyte (GPE), accelerating Li+ desolvation and migration at the interface and within stable SEI. As demonstrated by theoretical simulations and experiment results, the resulting poly(1,3-dioxolane) (PDOL), prepared by in situ ring-opening polymerization of 1,3-dioxolane (DOL), creates a 3D desolvation area, improving the Li+ desolvation at the interface and yielding an amorphous GPE with a high Li+ ionic conductivity (5.73 mS cm-1). Furthermore, more anions participate in the solvated structure, forming an anion-derived stable SEI and improving Li+ transport through SEI. Consequently, the Si-C anode achieves excellent rate performance with GPE at room temperature (RT) and low temperature (-40 °C). The pouch full cell coupled with LiFePO4 cathode obtains 97.42 mAh g-1 after 500 cycles at 5 C/5 C. This innovatively designed 3D desolvation interface and SEI represent significant breakthroughs for developing fast-charging and low-temperature batteries.
Collapse
Affiliation(s)
- Xiaofei Liu
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130013, P. R. China
| | - Dong Wang
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130013, P. R. China
| | - Zibo Zhang
- Engineering Research Centre of the Ministry of Education for Advanced Battery Materials, School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Gaunwu Li
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130013, P. R. China
| | - Jian Wang
- i-Lab & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- Helmholtz Institute Ulm (HIU), D89081, Ulm, Germany
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Guangmin Yang
- College of Physics, Changchun Normal University, Changchun, 130032, P. R. China
| | - Hongzhen Lin
- i-Lab & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Jianyan Lin
- College of Physics, Changchun Normal University, Changchun, 130032, P. R. China
| | - Xing Ou
- Engineering Research Centre of the Ministry of Education for Advanced Battery Materials, School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130013, P. R. China
| |
Collapse
|
3
|
Lang J, Liu Y, Liu Q, Yang J, Yang X, Tang Y. Regulation of Interfacial Chemistry Enabling High-Power Dual-Ion Batteries at Low Temperatures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401200. [PMID: 38984748 DOI: 10.1002/smll.202401200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Interfacial chemistry plays a crucial role in determining the electrochemical properties of low-temperature rechargeable batteries. Although existing interface engineering has significantly improved the capacity of rechargeable batteries operating at low temperatures, challenges such as sharp voltage drops and poor high-rate discharge capabilities continue to limit their applications in extreme environments. In this study, an energy-level-adaptive design strategy for electrolytes to regulate interfacial chemistry in low-temperature Li||graphite dual-ion batteries (DIBs) is proposed. This strategy enables the construction of robust interphases with superior ion-transfer kinetics. On the graphite cathode, the design endues the cathode interface with solvent/anion-coupled interfacial chemistry, which yields an nitrogen/phosphor/sulfur/fluorin (N/P/S/F)-containing organic-rich interphase to boost anion-transfer kinetics and maintains excellent interfacial stability. On the Li metal anode, the anion-derived interfacial chemistry promotes the formation of an inorganic-dominant LiF-rich interphase, which effectively suppresses Li dendrite growth and improves the Li plating/stripping kinetics at low temperatures. Consequently, the DIBs can operate within a wide temperature range, spanning from -40 to 45 °C. At -40 °C, the DIB exhibits exceptional performance, delivering 97.4% of its room-temperature capacity at 1 C and displaying an extraordinarily high-rate discharge capability with 62.3% capacity retention at 10 C. This study demonstrates a feasible strategy for the development of high-power and low-temperature rechargeable batteries.
Collapse
Affiliation(s)
- Jihui Lang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, China
| | - Yuhan Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, China
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qirong Liu
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Juan Yang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Xinyu Yang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- College of Material Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
4
|
Yuan Y, Liu X, Dong X, Kong Y, Liu H, Ma Y, Lu H. Stabilizing the Bilateral Interfaces by a PVDF-Based Double-Layer Solid Composite Electrolyte with a Relieved Dehydrofluorination Effect for Solid-State Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59547-59555. [PMID: 39418780 DOI: 10.1021/acsami.4c12305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The dehydrofluorination effect of poly(vinylidene fluoride) (PVDF) induced by ceramic fillers with an alkaline surface compromises the comprehensive properties of the solid composite electrolyte (SCE) and leads to the deficient performance of the solid-state lithium metal batteries (SLMBs). In this work, a unique PVDF-based double-layer solid electrolyte was fabricated, which consisted of a Li6.4La3Zr1.4Ta0.6O12 (LLZTO)-filled SCE with poly(acrylic acid) (PAA) as an alkalinity-scavenging agent in contact with the Li anode, and another SCE with lithium difluoro(oxalato)borate (LiDFOB) as a film-formation additive facing the cathode. It is found that a moderate amount of PAA relieves the dehydrofluorination degree of the PVDF matrix and improves the Li plating/stripping reversibility, and the addition of LiDFOB is involved in the formation of a stable passivation film on the cathode. Consequently, the resultant double-layer SCE holds favorable overall properties, especially being well-compatible with both electrodes, endowing the SLMBs with superior cycle and rate performance at room temperature.
Collapse
Affiliation(s)
- Yan Yuan
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuyi Liu
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xinyi Dong
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yaxin Kong
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huan Liu
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yitian Ma
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Hai Lu
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
5
|
Zhao S, Ning F, Yu X, Guo B, Teófilo RF, Huang J, Shi Q, Wu S, Feng W, Zhao Y. Inhomogeneous Coordination in High-Entropy O3-Type Cathodes Enables Suppressed Slab Gliding and Durable Sodium Storage. Angew Chem Int Ed Engl 2024:e202416290. [PMID: 39387848 DOI: 10.1002/anie.202416290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
O3-type layered oxides are highly promising cathodes for sodium-ion batteries (SIBs), however they undergo complex phase transitions and exhibit high sensibility to air, leading to subpar cycling performance and commercial viability. In this work, we report a layered cathode material (NaNi0.29Cu0.1Mg0.05Li0.05Mn0.2Ti0.2Sn0.11O2) with a sate-of-the-art high-entropy compositional design. We unveil that such a configuration featuring inhomogeneous coordination environment of transition metal (TM) elements, can enable enhanced gliding energy (-0.38 vs -0.58 eV) of TMO2 slabs upon desodiation both theoretically and experimentally, which underlies the fundamental origin of the outstanding structural stability of HEO materials. As a consequence, the complex phase transitions (O3-O'3-P3-P'3-P3'-O3') of conventional O3-type cathode have been eliminated, and the as-obtained material demonstrates exceptional structural robustness and integrity with an ultra-long cycle life in a quasi-solid-state cell (maintaining 73.2 % capacity after 1000 cycles at 2 C). Moreover, the material presents satisfactory air stability, with minimal structural and electrochemical degradation when directly exposed to the air. An Ah-scale pouch cell based on the cathode material is constructed, demonstrating a capacity retention of 83.6 % after 500 cycles, signaling substantial promise for commercial applications.
Collapse
Affiliation(s)
- Shengyu Zhao
- Institute for Sustainable Energy & College of Science, Shanghai University, Shanghai, 200444, China
| | - Fanghua Ning
- Institute for Sustainable Energy & College of Science, Shanghai University, Shanghai, 200444, China
| | - Xuan Yu
- Institute for Sustainable Energy & College of Science, Shanghai University, Shanghai, 200444, China
| | - Baiyu Guo
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Reinaldo F Teófilo
- Applied Chemistry Laboratory, Department of Chemistry, Federal University of Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Jianyu Huang
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Qinhao Shi
- Institute for Sustainable Energy & College of Science, Shanghai University, Shanghai, 200444, China
| | - Shuang Wu
- Institute for Sustainable Energy & College of Science, Shanghai University, Shanghai, 200444, China
| | - Wuliang Feng
- Institute for Sustainable Energy & College of Science, Shanghai University, Shanghai, 200444, China
| | - Yufeng Zhao
- Institute for Sustainable Energy & College of Science, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
6
|
Ye G, Zhu L, Ma Y, He M, Zheng C, Shen K, Hong X, Xiao Z, Jia Y, Gao P, Pang Q. Molecular Design of Solid Polymer Electrolytes with Enthalpy-Entropy Manipulation for Li Metal Batteries with Aggressive Cathode Chemistry. J Am Chem Soc 2024; 146:27668-27678. [PMID: 39323328 DOI: 10.1021/jacs.4c09062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Solid polymer electrolytes (SPEs) with high ion conductivity, high Li+ transference number, and a wide electrochemical window are promising for the next-generation high-energy Li metal batteries (LMBs). Here we describe an enthalpy-entropy manipulation strategy enabling a class of polycarbonate-based copolymeric electrolytes (PCCEs) with regulated cation/anion solvation via a molecular design of the polymer backbone. By integrating a weakly solvating linear carbonate with another strongly solvating cyclic carbonate segment in the polymer backbone, the cation-dipole coordination for Li+ ions (with two types of carbonyl groups) is weakened (low enthalpy penalty) and nondirectional (high entropy penalty), which enables a weak solvation and rapid diffusion of Li+. We further introduce a bis-acrylamide-based cross-linking segment which, other than imparting high mechanical strength, exhibits dihydrogen bonding with the difluoro(oxalate) borate anions, which is strong (high enthalpy penalty) and directional (low entropy penalty), thus restricting the migration of anions. As a result, the PCCE delivers a high ionic conductivity of 0.66 mS cm-1 with a high Li+ transference number (0.76) at 25 °C, as well as high oxidation stability. By an in situ polymerization approach, the PCCE enables LMBs using high-nikel LiNi0.8Co0.1Mn0.1O2 cathodes with a high capacity retention of 82.2% over 800 cycles with a cutoff voltage of 4.5 V and further LMBs using aggressive LiNi0.5Mn1.5O4 cathodes with a 96.4% capacity retention over 300 cycles with a cutoff voltage of 5.0 V. The described enthalpy-entropy manipulation approach offers a unique perspective for the molecular design of high-performance SPEs for high-energy Li metal batteries.
Collapse
Affiliation(s)
- Guo Ye
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lujun Zhu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yue Ma
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mengxue He
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Chenxi Zheng
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China
| | - Kaier Shen
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xufeng Hong
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhitong Xiao
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yongfeng Jia
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Peng Gao
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China
| | - Quanquan Pang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Yun S, Liang X, Xi J, Liao L, Cui S, Chen L, Li S, Hu Q. Electrolytes for High-Safety Lithium-Ion Batteries at Low Temperature: A Review. Polymers (Basel) 2024; 16:2661. [PMID: 39339125 PMCID: PMC11435898 DOI: 10.3390/polym16182661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
As the core of modern energy technology, lithium-ion batteries (LIBs) have been widely integrated into many key areas, especially in the automotive industry, particularly represented by electric vehicles (EVs). The spread of LIBs has contributed to the sustainable development of societies, especially in the promotion of green transportation. However, the high demand for battery performance and safety in these fields has made the high viscosity, volatility, and potential leakage inherent in traditional organic liquid electrolytes a constraint on their further expansion. Especially at low temperature, the increased viscosity of the electrolyte, reduced solubility of lithium salts, crystallization or solidification of the electrolyte, increased resistance to charge transfer due to interfacial by-products, and short-circuiting due to the growth of anode lithium dendrites all affect the performance and safety of LIBs. Therefore, improving the safety performance of LIBs under low-temperature environments has become a focus of current research. This paper primarily reviews the progress made in utilizing different types of electrolytes in LIBs to enhance safety and optimize low temperature performance and discusses the current research progress as well as the future development direction of the field.
Collapse
Affiliation(s)
- Shuhong Yun
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou 545006, China
- Industry College of Intelligent Vehicle (Manufacturing) and New Energy Automobile, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Xinghua Liang
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou 545006, China
- Industry College of Intelligent Vehicle (Manufacturing) and New Energy Automobile, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Junjie Xi
- Industry College of Intelligent Vehicle (Manufacturing) and New Energy Automobile, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Leyu Liao
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou 545006, China
- Industry College of Intelligent Vehicle (Manufacturing) and New Energy Automobile, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Shuwan Cui
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou 545006, China
- Industry College of Intelligent Vehicle (Manufacturing) and New Energy Automobile, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Lihong Chen
- Zhejiang Kaili New Materials Co., Ltd., Shaoxing 312000, China
| | - Siying Li
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou 545006, China
- Industry College of Intelligent Vehicle (Manufacturing) and New Energy Automobile, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Qicheng Hu
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou 545006, China
- Industry College of Intelligent Vehicle (Manufacturing) and New Energy Automobile, Guangxi University of Science and Technology, Liuzhou 545006, China
| |
Collapse
|
8
|
Gao S, Yang T, Liu J, Zhang X, Zhang X, Yang T, Zhang Y, Chen Z. Incorporating Sodium-Conductive Polymeric Interfacial Adhesive with Inorganic Solid-State Electrolytes for Quasi-Solid-State Sodium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401892. [PMID: 38794995 DOI: 10.1002/smll.202401892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/29/2024] [Indexed: 05/27/2024]
Abstract
Inorganic solid-state electrolytes have attracted enormous attention due to their potential safety, increased energy density, and long cycle-life benefits. However, their application in solid-state batteries is limited by unstable electrode-electrolyte interface, poor point-to-point physical contact, and low utilization of metallic anodes. Herein, interfacial engineering based on sodium (Na)-conductive polymeric solid-state interfacial adhesive is studied to improve interface stability and optimize physical contacts, constructing a robust organic-rich solid electrolyte interphase layer to prevent dendrite-induced crack propagation and security issues. The interfacial adhesive strategy significantly increases the room-temperature critical current density of inorganic Na-ion conductors from 0.8 to 3.2 mA cm-2 and markedly enhances the cycling performance of solid-state batteries up to 500 cycles, respectively. Particularly, the Na3V2(PO4)3-based full solid-state batteries with high cathode loading of 10.16 mg cm-2 also deliver an excellent cycling performance, further realizing the stable operation of solid-state laminated pouch cells. The research provides fundamental perspectives into the role of interfacial chemistry and takes the field a step closer to realizing practical solid-state batteries.
Collapse
Affiliation(s)
- Shihui Gao
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Tingzhou Yang
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Jiabing Liu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Xinyu Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Xiaoyi Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Tai Yang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Yongguang Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Zhongwei Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
9
|
Ahmed MS, Islam M, Raut B, Yun S, Kim HY, Nam KW. A Comprehensive Review of Functional Gel Polymer Electrolytes and Applications in Lithium-Ion Battery. Gels 2024; 10:563. [PMID: 39330165 PMCID: PMC11430829 DOI: 10.3390/gels10090563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024] Open
Abstract
The rapid expansion of flexible and wearable electronics has necessitated a focus on ensuring their safety and operational reliability. Gel polymer electrolytes (GPEs) have become preferred alternatives to traditional liquid electrolytes, offering enhanced safety features and adaptability to the design requirements of flexible lithium-ion batteries. This review provides a comprehensive and critical overview of recent advancements in GPE technology, highlighting significant improvements in its physicochemical properties, which contribute to superior long-term cycling stability and high-rate capacity compared with traditional organic liquid electrolytes. Special attention is given to the development of smart GPEs endowed with advanced functionalities such as self-protection, thermotolerance, and self-healing properties, which further enhance battery safety and reliability. This review also critically examines the application of GPEs in high-energy cathode materials, including lithium nickel cobalt manganese (NCM), lithium nickel cobalt aluminum (NCA), and thermally stable lithium iron phosphate (LiFePO4). Despite the advancements, several challenges in GPE development remain unresolved, such as improving ionic conductivity at low temperatures and ensuring mechanical integrity and interfacial compatibility. This review concludes by outlining future research directions and the remaining technical hurdles, providing valuable insights to guide ongoing and future efforts in the field of GPEs for lithium-ion batteries, with a particular emphasis on applications in high-energy and thermally stable cathodes.
Collapse
Affiliation(s)
- Md Shahriar Ahmed
- Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Mobinul Islam
- Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Bikash Raut
- Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Sua Yun
- Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Hae Yong Kim
- Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyung-Wan Nam
- Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
10
|
Zhang H, Deng J, Xu H, Xu H, Xiao Z, Fei F, Peng W, Xu L, Cheng Y, Liu Q, Hu GH, Mai L. Molecule Crowding Strategy in Polymer Electrolytes Inducing Stable Interfaces for All-Solid-State Lithium Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403848. [PMID: 38837906 DOI: 10.1002/adma.202403848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/21/2024] [Indexed: 06/07/2024]
Abstract
All-solid-state lithium batteries with polymer electrolytes suffer from electrolyte decomposition and lithium dendrites because of the unstable electrode/electrolyte interfaces. Herein, a molecule crowding strategy is proposed to modulate the Li+ coordinated structure, thus in situ constructing the stable interfaces. Since 15-crown-5 possesses superior compatibility with polymer and electrostatic repulsion for anion of lithium salt, the anions are forced to crowd into a Li+ coordinated structure to weaken the Li+ coordination with polymer and boost the Li+ transport. The coordinated anions prior decompose to form LiF-rich, thin, and tough interfacial passivation layers for stabilizing the electrode/electrolyte interfaces. Thus, the symmetric Li-Li cell can stably operate over 4360 h, the LiFePO4||Li full battery presents 97.18% capacity retention in 700 cycles at 2 C, and the NCM811||Li full battery possesses the capacity retention of 83.17% after 300 cycles. The assembled pouch cell shows excellent flexibility (stand for folding over 2000 times) and stability (89.42% capacity retention after 400 cycles). This work provides a promising strategy to regulate interfacial chemistry by modulating the ion environment to accommodate the interfacial issues and will inspire more effective approaches to general interface issues for polymer electrolytes.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiahui Deng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Hantao Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Haoran Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zixin Xiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Fan Fei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Wei Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Lin Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang, Hubei, 441000, China
- Hainan Institute, Wuhan University of Technology Sanya, Wuhan, 572000, China
| | - Yu Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Qin Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Guo-Hua Hu
- Université de Lorraine, CNRS, LRGP, Nancy, F-54001, France
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang, Hubei, 441000, China
- Hainan Institute, Wuhan University of Technology Sanya, Wuhan, 572000, China
| |
Collapse
|
11
|
Wang S, Zeng T, Wen X, Xu H, Fan F, Wang X, Tian G, Liu S, Liu P, Wang C, Zeng C, Shu C. Optimized Lithium Ion Coordination via Chlorine Substitution to Enhance Ionic Conductivity of Garnet-Based Solid Electrolytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309874. [PMID: 38453676 DOI: 10.1002/smll.202309874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Indexed: 03/09/2024]
Abstract
Garnet-type solid-state electrolytes attract abundant attentions due to the broad electrochemical window and remarkable thermal stability while their poor ionic conductivity obstructs their widespread application in all-solid-state batteries. Herein, the enhanced ionic conductivity of garnet-type solid electrolytes is achieved by partially substituting O2- sites with Cl- anions, which effectively reduce Li+ migration barriers while preserving the highly conductive cubic phase of garnet-type solid-state electrolytes. This substitution not only weakens the anchoring effect of anions on Li+ to widen the size of Li+ diffusion channel but also optimizes the occupancy of Li+ at different sites, resulting in a substantial reduction of the Li+ migration barrier and a notable improvement in ionic conductivity. Leveraging these advantageous properties, the developed Li6.35La3Zr1.4Ta0.6O11.85-Cl0.15 (LLZTO-0.15Cl) electrolyte demonstrates high Li+ conductivity of 4.21×10-6 S cm-1. When integrated with LiFePO4 (LFP) cathode and metallic lithium anode, the LLZTO-0.15Cl electrolyte enables the solid-state battery to operate for more than 100 cycles with a high capacity retention of 76.61% and superior Coulombic efficiency of 99.48%. This work shows a new strategy for modulating anionic framework to enhance the conductivity of garnet-type solid-state electrolytes.
Collapse
Affiliation(s)
- Shuhan Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Ting Zeng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Xiaojuan Wen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Haoyang Xu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Fengxia Fan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Xinxiang Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Guilei Tian
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Sheng Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Pengfei Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Chuan Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Chenrui Zeng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| | - Chaozhu Shu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan, 610059, P. R. China
| |
Collapse
|
12
|
Li C, Wang J, Ye Q, Li P, Zhang K, Li J, Zhang Y, Ye L, Song T, Gao Y, Wang B, Peng H. Decreased Electrically and Increased Ionically Conducting Scaffolds for Long-Life, High-Rate and Deep-Capacity Lithium-Metal Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400570. [PMID: 38600895 DOI: 10.1002/smll.202400570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Indexed: 04/12/2024]
Abstract
Lithium (Li) metal batteries are deemed as promising next-generation power solutions but are hindered by the uncontrolled dendrite growth and infinite volume change of Li anodes. The extensively studied 3D scaffolds as solutions generally lead to undesired "top-growth" of Li due to their high electrical conductivity and the lack of ion-transporting pathways. Here, by reducing electrical conductivity and increasing the ionic conductivity of the scaffold, the deposition spot of Li to the bottom of the scaffold can be regulated, thus resulting in a safe bottom-up plating mode of the Li and dendrite-free Li deposition. The resulting symmetrical cells with these scaffolds, despite with a limited pre-plated Li capacity of 5 mAh cm-2, exhibit ultra-stable Li plating/stripping for over 1 year (11 000 h) at a high current density of 3 mA cm-2 and a high areal capacity of 3 mAh cm-2. Moreover, the full cells with these scaffolds further demonstrate high cycling stability under challenging conditions, including high cathode loading of 21.6 mg cm-2, low negative-to-positive ratio of 1.6, and limited electrolyte-to-capacity ratio of 4.2 g Ah-1.
Collapse
Affiliation(s)
- Chuanfa Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Qian Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Pengzhou Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Kun Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Jiaxin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Yanan Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Lei Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Tianbing Song
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Yue Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Bingjie Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
13
|
Hu L, Gao X, Wang H, Song Y, Zhu Y, Tao Z, Yuan B, Hu R. Progress of Polymer Electrolytes Worked in Solid-State Lithium Batteries for Wide-Temperature Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312251. [PMID: 38461521 DOI: 10.1002/smll.202312251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/20/2024] [Indexed: 03/12/2024]
Abstract
Solid-state Li-ion batteries have emerged as the most promising next-generation energy storage systems, offering theoretical advantages such as superior safety and higher energy density. However, polymer-based solid-state Li-ion batteries face challenges across wide temperature ranges. The primary issue lies in the fact that most polymer electrolytes exhibit relatively low ionic conductivity at or below room temperature. This sensitivity to temperature variations poses challenges in operating solid-state lithium batteries at sub-zero temperatures. Moreover, elevated working temperatures lead to polymer shrinkage and deformation, ultimately resulting in battery failure. To address this challenge of polymer-based solid-state batteries, this review presents an overview of various promising polymer electrolyte systems. The review provides insights into the temperature-dependent physical and electrochemical properties of polymers, aiming to expand the temperature range of operation. The review also further summarizes modification strategies for polymer electrolytes suited to diverse temperatures. The final section summarizes the performance of various polymer-based solid-state batteries at different temperatures. Valuable insights and potential future research directions for designing wide-temperature polymer electrolytes are presented based on the differences in battery performance. This information is intended to inspire practical applications of wide-temperature polymer-based solid-state batteries.
Collapse
Affiliation(s)
- Long Hu
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
| | - Xue Gao
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
| | - Hui Wang
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
| | - Yun Song
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yongli Zhu
- Guangdong Huajing New Energy Technology Co. Ltd, Foshan, 528313, China
| | - Zhijun Tao
- Guangdong Huajing New Energy Technology Co. Ltd, Foshan, 528313, China
| | - Bin Yuan
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
- Guangdong Huajing New Energy Technology Co. Ltd, Foshan, 528313, China
| | - Renzong Hu
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
- Guangdong Huajing New Energy Technology Co. Ltd, Foshan, 528313, China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| |
Collapse
|
14
|
Zhou Q, Zhao H, Fu C, Jian J, Huo H, Ma Y, Du C, Gao Y, Yin G, Zuo P. Tailoring Electric Double Layer by Cation Specific Adsorption for High-Voltage Quasi-Solid-State Lithium Metal Batteries. Angew Chem Int Ed Engl 2024; 63:e202402625. [PMID: 38709979 DOI: 10.1002/anie.202402625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
The interfacial instability of high-nickel layered oxides severely plagues practical application of high-energy quasi-solid-state lithium metal batteries (LMBs). Herein, a uniform and highly oxidation-resistant polymer layer within inner Helmholtz plane is engineered by in situ polymerizing 1-vinyl-3-ethylimidazolium (VEIM) cations preferentially adsorbed on LiNi0.83Co0.11Mn0.06O2 (NCM83) surface, inducing the formation of anion-derived cathode electrolyte interphase with fast interfacial kinetics. Meanwhile, the copolymerization of [VEIM][BF4] and vinyl ethylene carbonate (VEC) endows P(VEC-IL) copolymer with the positively-charged imidazolium moieties, providing positive electric fields to facilitate Li+ transport and desolvation process. Consequently, the Li||NCM83 cells with a cut-off voltage up to 4.5 V exhibit excellent reversible capacity of 130 mAh g-1 after 1000 cycles at 25 °C and considerable discharge capacity of 134 mAh g-1 without capacity decay after 100 cycles at -20 °C. This work provides deep understanding on tailoring electric double layer by cation specific adsorption for high-voltage quasi-solid-state LMBs.
Collapse
Affiliation(s)
- Qingjie Zhou
- State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China
| | - Huaian Zhao
- State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China
| | - Chuankai Fu
- State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China
| | - Jiyuan Jian
- State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China
| | - Hua Huo
- State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China
| | - Yulin Ma
- State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China
| | - Chunyu Du
- State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China
| | - Yunzhi Gao
- State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China
| | - Geping Yin
- State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China
| | - Pengjian Zuo
- State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China
| |
Collapse
|
15
|
Liu X, Shi W, Zhuang S, Liu Y, He D, Feng G, Ge T, Wang T. The Progress of Polymer Composites Protecting Safe Li Metal Batteries: Solid-/Quasi-Solid Electrolytes and Electrolyte Additives. CHEMSUSCHEM 2024; 17:e202301896. [PMID: 38375994 DOI: 10.1002/cssc.202301896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
The impressive theoretical capacity and low electrode potential render Li metal anodes the most promising candidate for next-generation Li-based batteries. However, uncontrolled growth of Li dendrites and associated parasitic reactions have impeded their cycling stability and raised safety concerns regarding future commercialization. The uncontrolled growth of Li dendrites and associated parasitic reactions, however, pose challenges to the cycling stability and safety concerns for future commercialization. To tackle these challenges and enhance safety, a range of polymers have demonstrated promising potential owing to their distinctive electrochemical, physical, and mechanical properties. This review provides a comprehensive discussion on the utilization of polymers in rechargeable Li-metal batteries, encompassing solid polymer electrolytes, quasi-solid electrolytes, and electrolyte polymer additives. Furthermore, it conducts an analysis of the benefits and challenges associated with employing polymers in various applications. Lastly, this review puts forward future development directions and proposes potential strategies for integrating polymers into Li metal anodes.
Collapse
Affiliation(s)
- Xiaoyue Liu
- University of Queensland, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Chemical Engineering, Yangzhou University, #180 Si-Wang-Ting Road, Yangzhou City, 225002, Jiangsu Province, P. R. China
- Jiangsu College of Tourism, #88 Yu-Xiu Road, Yangzhou City, 225000, Jiangsu Province, P. R. China
| | - Wenjun Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, #180 Si-Wang-Ting Road, Yangzhou City, 225002, Jiangsu Province, P. R. China
| | - Sidong Zhuang
- School of Chemistry and Chemical Engineering, Yangzhou University, #180 Si-Wang-Ting Road, Yangzhou City, 225002, Jiangsu Province, P. R. China
| | - Yu Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, #180 Si-Wang-Ting Road, Yangzhou City, 225002, Jiangsu Province, P. R. China
| | - Di He
- School of Chemistry and Chemical Engineering, Yangzhou University, #180 Si-Wang-Ting Road, Yangzhou City, 225002, Jiangsu Province, P. R. China
| | - Gang Feng
- Jiangsu College of Tourism, #88 Yu-Xiu Road, Yangzhou City, 225000, Jiangsu Province, P. R. China
| | - Tao Ge
- Jiangsu College of Tourism, #88 Yu-Xiu Road, Yangzhou City, 225000, Jiangsu Province, P. R. China
| | - Tianyi Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, #180 Si-Wang-Ting Road, Yangzhou City, 225002, Jiangsu Province, P. R. China
| |
Collapse
|
16
|
Liu Y, Wang P, Yang Z, Wang L, Li Z, Liu C, Liu B, Sun Z, Pei H, Lv Z, Hu W, Lu Y, Zhu G. Lignin Derived Ultrathin All-Solid Polymer Electrolytes with 3D Single-Ion Nanofiber Ionic Bridge Framework for High Performance Lithium Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400970. [PMID: 38623832 DOI: 10.1002/adma.202400970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/21/2024] [Indexed: 04/17/2024]
Abstract
The lignin derived ultrathin all-solid composite polymer electrolyte (CPE) with a thickness of only 13.2 µm, which possess 3D nanofiber ionic bridge networks composed of single-ion lignin-based lithium salt (L-Li) and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) as the framework, and poly(ethylene oxide)/lithium bis(trifluoromethanesulfonyl)imide (PEO/LiTFSI) as the filler, is obtained through electrospinning/spraying and hot-pressing. t. The Li-symmetric cell assembled with the CPE can stably cycle more than 6000 h under 0.5 mA cm-2 with little Li dendrites growth. Moreover, the assembled Li||CPE||LiFePO4 cells can stably cycle over 700 cycles at 0.2 C with a super high initial discharge capacity of 158.5 mAh g-1 at room temperature, and a favorable capacity of 123 mAh g-1 at -20 °C for 250 cycles. The excellent electrochemical performance is mainly attributed to the reason that the nanofiber ionic bridge network can afford uniformly dispersed single-ion L-Li through electrospinning, which synergizes with the LiTFSI well dispersed in PEO to form abundant and efficient 3D Li+ transfer channels. The ultrathin CPE induces uniform deposition of Li+ at the interface, and effectively inhibit the lithium dendrites. This work provides a promising strategy to achieve ultrathin biobased electrolytes for solid-state lithium ion batteries.
Collapse
Affiliation(s)
- Yuhan Liu
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Pinhui Wang
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Zhenyue Yang
- Frontier Interdisciplinary Research Institute, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Liying Wang
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Zhangnan Li
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Chengzhe Liu
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Baijun Liu
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Zhaoyan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Hanwen Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Zhongyuan Lv
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Wei Hu
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Yunfeng Lu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 East North Third Ring Road, Beijing, 100029, P. R. China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| |
Collapse
|
17
|
Park J, Seong H, Yuk C, Lee D, Byun Y, Lee E, Lee W, Kim BJ. Design of Fluorinated Elastomeric Electrolyte for Solid-State Lithium Metal Batteries Operating at Low Temperature and High Voltage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403191. [PMID: 38713915 DOI: 10.1002/adma.202403191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/28/2024] [Indexed: 05/09/2024]
Abstract
This work demonstrates the low-temperature operation of solid-state lithium metal batteries (LMBs) through the development of a fluorinated and plastic-crystal-embedded elastomeric electrolyte (F-PCEE). The F-PCEE is formed via polymerization-induced phase separation between the polymer matrix and plastic crystal phase, offering a high mechanical strain (≈300%) and ionic conductivity (≈0.23 mS cm-1) at -10 °C. Notably, strong phase separation between two phases leads to the selective distribution of lithium (Li) salts within the plastic crystal phase, enabling superior elasticity and high ionic conductivity at low temperatures. The F-PCEE in a Li/LiNi0.8Co0.1Mn0.1O2 full cell maintains 74.4% and 42.5% of discharge capacity at -10 °C and -20 °C, respectively, compared to that at 25 °C. Furthermore, the full cell exhibits 85.3% capacity retention after 150 cycles at -10 °C and a high cut-off voltage of 4.5 V, representing one of the highest cycling performances among the reported solid polymer electrolytes for low-temperature LMBs. This work attributes the prolonged cycling lifetime of F-PCEE at -10 °C to the great mechanical robustness to suppress the Li-dendrite growth and ability to form superior LiF-rich interphases. This study establishes the design strategies of elastomeric electrolytes for developing solid-state LMBs operating at low temperatures and high voltages.
Collapse
Affiliation(s)
- Jinseok Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyeonseok Seong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Chanho Yuk
- Department of Polymer Science and Engineering, Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Dongkyu Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Youyoung Byun
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Wonho Lee
- Department of Polymer Science and Engineering, Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
18
|
Deng Y, Zhao S, Chen Y, Wan S, Chen S. Wide-Temperature and High-Rate Operation of Lithium Metal Batteries Enabled by an Ionic Liquid Functionalized Quasi-Solid-State Electrolyte. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310534. [PMID: 38326097 DOI: 10.1002/smll.202310534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/07/2024] [Indexed: 02/09/2024]
Abstract
The development of high-energy-density solid-state lithium metal battery has been hindered by the unstable cycling of Ni-rich cathodes at high rate and limited wide-temperatures adoptability. In this study, an ionic liquid functionalized quasi-solid-state electrolyte (FQSE) is prepared to address these challenges. The FQSE features a semi-immobilized ionic liquid capable of anchoring solvent molecules through electrostatic interactions, which facilitates Li+ desolvation and reduces deleterious solvent-cathode reactions. The FQSE exhibits impressive electrochemical characteristics, including high ionic conductivity (1.9 mS cm-1 at 30 °C and 0.2 mS cm-1 at -30 °C) and a Li+ transfer number of 0.7. Consequently, Li/NCM811 cells incorporating FQSE demonstrate exceptional stability during high-rate cycling, enduring 700 cycles at 1 C. Notably, the Li/LFP cells with FQSE maintain high capacity across a wide temperature range, from -30 to 60 °C. This research provides a new way to promote the practical application of high-energy lithium metal batteries.
Collapse
Affiliation(s)
- Yonghui Deng
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shunshun Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yong Chen
- UTS School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Shuang Wan
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shimou Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
19
|
Peng HY, Xu YS, Wei XY, Li YN, Liang X, Wang J, Tan SJ, Guo YG, Cao FF. Anchoring Active Li Metal in Oriented Channel by In Situ Formed Nucleation Sites Enabling Durable Lithium-Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313034. [PMID: 38478881 DOI: 10.1002/adma.202313034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/29/2024] [Indexed: 03/20/2024]
Abstract
Lithium metal is the ultimate anode material for pursuing the increased energy density of rechargeable batteries. However, fatal dendrites growth and huge volume change seriously hinder the practical application of lithium metal batteries (LMBs). In this work, a lithium host that preinstalled CoSe nanoparticles on vertical carbon vascular tissues (VCVT/CoSe) is designed and fabricated to resolve these issues, which provides sufficient Li plating space with a robust framework, enabling dendrite-free Li deposition. Their inherent N sites coupled with the in situ formed lithiophilic Co sites loaded at the interface of VCVT not only anchor the initial Li nucleation seeds but also accelerate the Li+ transport kinetics. Meanwhile, the Li2Se originated from the CoSe conversion contributes to constructing a stable solid-electrolyte interphase with high ionic conductivity. This optimized Li/VCVT/CoSe composite anode exhibits a prominent long-term cycling stability over 3000 h with a high areal capacity of 10 mAh cm-2. When paired with a commercial nickel-rich LiNi0.83Co0.12Mn0.05O2 cathode, the full-cell presents substantially enhanced cycling performance with 81.7% capacity retention after 300 cycles at 0.2 C. Thus, this work reveals the critical role of guiding Li deposition behavior to maintain homogeneous Li morphology and pave the way to stable LMBs.
Collapse
Affiliation(s)
- Huai-Yu Peng
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Yan-Song Xu
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Xu-Yang Wei
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Yun-Nuo Li
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Xiongyi Liang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Jun Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Shuang-Jie Tan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Yu-Guo Guo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Fei-Fei Cao
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| |
Collapse
|
20
|
Yang H, Wang W, Huang Z, Wang Z, Hu L, Wang M, Yang S, Jiao S. Weak Electrostatic Force on K + in Gel Polymer Electrolyte Realizes High Ion Transference Number for Quasi Solid-State Potassium Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401008. [PMID: 38446734 DOI: 10.1002/adma.202401008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/01/2024] [Indexed: 03/08/2024]
Abstract
Quasi-solid-state potassium-ion batteries (SSPIBs) are of great potential for commercial use due to the abundant reserves and cost-effectiveness of resources, as well as high safety. Gel polymer electrolytes (GPEs) with high ionic conductivity and fast interfacial charge transport are necessary for SSPIBs. Here, the weak electrostatic force between K+ and electronegative functional groups in the ethoxylated trimethylolpropane triacrylate (ETPTA) polymer chains, which can promote fast migration of free K+, is revealed. To further enhance the interfacial reaction kinetics, a multilayered GPE by in situ growth of poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) on ETPTA (PVDF-HFP|ETPTA|PVDF-HFP) is constructed to improve the interface contact and provide sufficient K+ concentration in PVDF-HFP. A high ion transference number (0.92) and a superior ionic conductivity (5.15 × 10-3 S cm-1) are achieved. Consequently, the SSPIBs with both intercalation-type (PB) and conversion-type (PTCDA) cathodes show the best battery performance among all reported SSPIBs of the same cathode. These findings demonstrate that potassium-ion batteries have the potential to surpass Li/Na ion batteries in solid-state systems.
Collapse
Affiliation(s)
- Huize Yang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zheng Huang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhe Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China
| | - Liwen Hu
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Mingyong Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shufeng Yang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuqiang Jiao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| |
Collapse
|
21
|
Xin M, Zhang Y, Liu Z, Zhang Y, Zhai Y, Xie H, Liu Y. In Situ-Initiated Poly-1,3-dioxolane Gel Electrolyte for High-Voltage Lithium Metal Batteries. Molecules 2024; 29:2454. [PMID: 38893331 PMCID: PMC11173723 DOI: 10.3390/molecules29112454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
To realize high-energy-density Li metal batteries at low temperatures, a new electrolyte is needed to solve the high-voltage compatibility and fast lithium-ion de-solvation process. A gel polymer electrolyte with a small-molecular-weight polymer is widely investigated by combining the merits of a solid polymer electrolyte (SPE) and liquid electrolyte (LE). Herein, we present a new gel polymer electrolyte (P-DOL) by the lithium difluoro(oxalate)borate (LiDFOB)-initiated polymerization process using 1,3-dioxolane (DOL) as a monomer solvent. The P-DOL presents excellent ionic conductivity (1.12 × 10-4 S cm-1) at -20 °C, with an oxidation potential of 4.8 V. The Li‖LiCoO2 cell stably cycled at 4.3 V under room temperature, with a discharge capacity of 130 mAh g-1 at 0.5 C and a capacity retention rate of 86.4% after 50 cycles. Moreover, a high-Ni-content LiNi0.8Co0.1Mn0.1O2 (NCM811) cell can steadily run for 120 cycles at -20 °C, with a capacity retention of 88.4%. The underlying mechanism of high-voltage compatibility originates from the dense and robust B- and F-rich cathode interface layer (CEI) formed at the cathode interface. Our report will shed light on the real application of Li metal batteries under all-climate conditions in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Haiming Xie
- School of Chemistry, Northeast Normal University, Changchun 130024, China; (M.X.); (Y.Z.); (Z.L.); (Y.Z.); (Y.Z.)
| | - Yulong Liu
- School of Chemistry, Northeast Normal University, Changchun 130024, China; (M.X.); (Y.Z.); (Z.L.); (Y.Z.); (Y.Z.)
| |
Collapse
|
22
|
Zhou X, Zhou Y, Yu L, Qi L, Oh KS, Hu P, Lee SY, Chen C. Gel polymer electrolytes for rechargeable batteries toward wide-temperature applications. Chem Soc Rev 2024; 53:5291-5337. [PMID: 38634467 DOI: 10.1039/d3cs00551h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Rechargeable batteries, typically represented by lithium-ion batteries, have taken a huge leap in energy density over the last two decades. However, they still face material/chemical challenges in ensuring safety and long service life at temperatures beyond the optimum range, primarily due to the chemical/electrochemical instabilities of conventional liquid electrolytes against aggressive electrode reactions and temperature variation. In this regard, a gel polymer electrolyte (GPE) with its liquid components immobilized and stabilized by a solid matrix, capable of retaining almost all the advantageous natures of the liquid electrolytes and circumventing the interfacial issues that exist in the all-solid-state electrolytes, is of great significance to realize rechargeable batteries with extended working temperature range. We begin this review with the main challenges faced in the development of GPEs, based on extensive literature research and our practical experience. Then, a significant section is dedicated to the requirements and design principles of GPEs for wide-temperature applications, with special attention paid to the feasibility, cost, and environmental impact. Next, the research progress of GPEs is thoroughly reviewed according to the strategies applied. In the end, we outline some prospects of GPEs related to innovations in material sciences, advanced characterizations, artificial intelligence, and environmental impact analysis, hoping to spark new research activities that ultimately bring us a step closer to realizing wide-temperature rechargeable batteries.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China.
- School of Science, Hubei University of Technology, Wuhan 430070, P. R. China.
| | - Yifang Zhou
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China.
| | - Le Yu
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China.
| | - Luhe Qi
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China.
| | - Kyeong-Seok Oh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea.
| | - Pei Hu
- School of Science, Hubei University of Technology, Wuhan 430070, P. R. China.
| | - Sang-Young Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea.
| | - Chaoji Chen
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China.
| |
Collapse
|
23
|
Tu H, He Z, Sun A, Mushtaq F, Li L, Wang Z, Kong Y, Huang R, Lin H, Li W, Ye F, Xue P, Liu M. Superior Li + Kinetics by "Low-Activity-Solvent" Engineering for Stable Lithium Metal Batteries. NANO LETTERS 2024; 24:5714-5721. [PMID: 38695488 DOI: 10.1021/acs.nanolett.4c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The structure of solvated Li+ has a significant influence on the electrolyte/electrode interphase (EEI) components and desolvation energy barrier, which are two key factors in determining the Li+ diffusion kinetics in lithium metal batteries. Herein, the "solvent activity" concept is proposed to quantitatively describe the correlation between the electrolyte elements and the structure of solvated Li+. Through fitting the correlation of the electrode potential and solvent concentration, we suggest a "low-activity-solvent" electrolyte (LASE) system for deriving a stable inorganic-rich EEI. Nano LiF particles, as a model, were used to capture free solvent molecules for the formation of a LASE system. This advanced LASE not only exhibits outstanding antidendrite growth behavior but also delivers an impressive performance in Li/LiNi0.8Co0.1Mn0.1O2 cells (a capacity of 169 mAh g-1 after 250 cycles at 0.5 C).
Collapse
Affiliation(s)
- Haifeng Tu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Zhigang He
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Ao Sun
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Farwa Mushtaq
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Linge Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Zhicheng Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Yaping Kong
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Rong Huang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Hongzhen Lin
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Wanfei Li
- Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Fangmin Ye
- Center for Optoelectronic Materials and Devices, Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pan Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Meinan Liu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- Guangdong Institute of Semiconductor Micro-nano Manufacturing Technology, Foshan 528225, China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang 330200, China
| |
Collapse
|
24
|
Yu P, Zhang H, Hussain F, Luo J, Tang W, Lei J, Gao L, Butenko D, Wang C, Zhu J, Yin W, Zhang H, Han S, Zou R, Chen W, Zhao Y, Xia W, Sun X. Lithium Metal-Compatible Antifluorite Electrolytes for Solid-State Batteries. J Am Chem Soc 2024; 146:12681-12690. [PMID: 38652868 DOI: 10.1021/jacs.4c02170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Lithium (Li) metal solid-state batteries feature high energy density and improved safety and thus are recognized as promising alternatives to traditional Li-ion batteries. In practice, using Li metal anodes remains challenging because of the lack of a superionic solid electrolyte that has good stability against reduction decomposition at the anode side. Here, we propose a new electrolyte design with an antistructure (compared to conventional inorganic structures) to achieve intrinsic thermodynamic stability with a Li metal anode. Li-rich antifluorite solid electrolytes are designed and synthesized, which give a high ionic conductivity of 2.1 × 10-4 S cm-1 at room temperature with three-dimensional fast Li-ion transport pathways and demonstrate high stability in Li-Li symmetric batteries. Reversible full cells with a Li metal anode and LiCoO2 cathode are also presented, showing the potential of Li-rich antifluorites as Li metal-compatible solid electrolytes for high-energy-density solid-state batteries.
Collapse
Affiliation(s)
- Pengcheng Yu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315201, China
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Faculty of Science, National University of Singapore, Singapore 117546, Singapore
| | - Haochang Zhang
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Fiaz Hussain
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315201, China
| | - Jing Luo
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Wen Tang
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315201, China
| | - Jiuwei Lei
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lei Gao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Denys Butenko
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Changhong Wang
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315201, China
| | - Jinlong Zhu
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wen Yin
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Hao Zhang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Songbai Han
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ruqiang Zou
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Wei Chen
- Faculty of Science, National University of Singapore, Singapore 117546, Singapore
| | - Yusheng Zhao
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315201, China
| | - Wei Xia
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315201, China
| | - Xueliang Sun
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315201, China
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| |
Collapse
|
25
|
Wang C, Zhao X, Li D, Yan C, Zhang Q, Fan LZ. Anion-modulated Ion Conductor with Chain Conformational Transformation for stabilizing Interfacial Phase of High-Voltage Lithium Metal Batteries. Angew Chem Int Ed Engl 2024; 63:e202317856. [PMID: 38389190 DOI: 10.1002/anie.202317856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
In solid-state lithium metal batteries (SSLMBs), the inhomogeneous electrolyte-electrode interphase layer aggravates the interfacial stability, leading to discontinuous interfacial ion/charge transport and continuous degradation of the electrolyte. Herein, we constructed an anion-modulated ionic conductor (AMIC) that enables in situ construction of electrolyte/electrode interphases for high-voltage SSLMBs by exploiting conformational transitions under multiple interactions between polymer and lithium salt anions. Anions modulate the decomposition behavior of supramolecular poly (vinylene carbonate) (PVC) at the electrode interface by changing the spatial conformation of the polymer chains, which further enhances ion transport and stabilizes the interfacial morphology. In addition, the AMIC weakens the "Li+-solvation" and increases Li+ vehicle sites, thereby enhancing the lithium-ion transport number (tLi +=~0.67). Consequently, Li || LiNi0.8Co0.1Mn0.1O2 cell maintains about 85 % capacity retention and Coulombic efficiency >99.8 % in 200 cycles at a charge cut-off voltage of 4.5 V. This study provides a new understanding of lithium salt anions regulating polymer chain segment behavior in the solid-state polymer electrolyte (SPE) and highlights the importance of the ion environment in the construction of interfacial phases and ionic conduction.
Collapse
Affiliation(s)
- Chao Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, P. R.China
| | - Xiaoxue Zhao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, P. R.China
| | - Dabing Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, P. R.China
| | - Chong Yan
- Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan, 030032, P. R.China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R.China
| | - Li-Zhen Fan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, P. R.China
| |
Collapse
|
26
|
Jin Y, Li Y, Lin R, Zhang X, Shuai Y, Xiong Y. In Situ Constructing Robust and Highly Conductive Solid Electrolyte with Tailored Interfacial Chemistry for Durable Li Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307942. [PMID: 38054774 DOI: 10.1002/smll.202307942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/18/2023] [Indexed: 12/07/2023]
Abstract
Employing nanofiber framework for in situ polymerized solid-state lithium metal batteries (SSLMBs) is impeded by the insufficient Li+ transport properties and severe dendritic Li growth. Both critical issues originate from the shortage of Li+ conduction highways and nonuniform Li+ flux, as randomly-scattered nanofiber backbone is highly prone to slippage during battery assembly. Herein, a robust fabric of Li0.33La0.56Ce0.06Ti0.94O3-δ/polyacrylonitrile framework (p-LLCTO/PAN) with inbuilt Li+ transport channels and high interfacial Li+ flux is reported to manipulate the critical current density of SSLMBs. Upon the merits of defective LLCTO fillers, TFSI- confinement and linear alignment of Li+ conduction pathways are realized inside 1D p-LLCTO/PAN tunnels, enabling remarkable ionic conductivity of 1.21 mS cm-1 (26 °C) and tLi+ of 0.93 for in situ polymerized polyvinylene carbonate (PVC) electrolyte. Specifically, molecular reinforcement protocol on PAN framework further rearranges the Li+ highway distribution on Li metal and alters Li dendrite nucleation pattern, boosting a homogeneous Li deposition behavior with favorable SEI interface chemistry. Accordingly, excellent capacity retention of 76.7% over 1000 cycles at 2 C for Li||LiFePO4 battery and 76.2% over 500 cycles at 1 C for Li||LiNi0.5Co0.2Mn0.3O2 battery are delivered by p-LLCTO/PAN/PVC electrolyte, presenting feasible route in overcoming the bottleneck of dendrite penetration in in situ polymerized SSLMBs.
Collapse
Affiliation(s)
- Yingmin Jin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and chemical engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yumeng Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and chemical engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ruifan Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and chemical engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xuebai Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and chemical engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yong Shuai
- Key Laboratory of Aerospace Thermophysics of MIIT, School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yueping Xiong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and chemical engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
27
|
Zhang X, Cui X, Li Y, Yang J, Pan Q. A Star-Structured Polymer Electrolyte for Low-Temperature Solid-State Lithium Batteries. SMALL METHODS 2024:e2400356. [PMID: 38682271 DOI: 10.1002/smtd.202400356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/13/2024] [Indexed: 05/01/2024]
Abstract
Solid-state polymer lithium metal batteries (SSLMBs) have attracted considerable attention because of their excellent safety and high energy density. However, the application of SSLMBs is significantly impeded by uneven Li deposition at the interface between solid-state electrolytes and lithium metal anode, especially at a low temperature. Herein, this issue is addressed by designing an agarose-based solid polymer electrolyte containing branched structure. The star-structured polymer is synthesized by grafting poly (ethylene glycol) monomethyl-ether methacrylate and lithium 2-acrylamido-2-methylpropanesulfonate onto tannic acid. The star structure regulates Li-ion flux in the bulk of the electrolyte and at the electrolyte/electrode interfaces. This unique omnidirectional Li-ion transportation effectively improves ionic conductivity, facilitates a uniform Li-ion flux, inhibits Li dendrite growth, and alleviates polarization. As a result, a solid-state LiFePO4||Li battery with the electrolyte exhibits outstanding cyclability with a specific capacity of 134 mAh g-1 at 0.5C after 800 cycles. The battery shows a high discharge capacity of 145 mAh g-1 at 0.1 C after 200 cycles, even at 0 °C. The study offers a promising strategy to address the uneven Li deposition at the solid-state electrolyte/electrode interface, which has potential applications in long-life solid-state lithium metal batteries at a low temperature.
Collapse
Affiliation(s)
- Xingzhao Zhang
- State Key Laboratory of Space Power-Source, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ximing Cui
- State Key Laboratory of Space Power-Source, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yuxuan Li
- State Key Laboratory of Space Power-Source, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jing Yang
- State Key Laboratory of Space Power-Source, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Qinmin Pan
- State Key Laboratory of Space Power-Source, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
28
|
Guo X, Xie Z, Wang R, Luo J, Chen J, Guo S, Tang G, Shi Y, Chen W. Interface-Compatible Gel-Polymer Electrolyte Enabled by NaF-Solubility-Regulation toward All-Climate Solid-State Sodium Batteries. Angew Chem Int Ed Engl 2024; 63:e202402245. [PMID: 38462504 DOI: 10.1002/anie.202402245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Gel-polymer electrolyte (GPE) is a pragmatic choice for high-safety sodium batteries but still plagued by interfacial compatibility with both cathode and anode simultaneously. Here, salt-in-polymer fibers with NaF salt inlaid in polylactide (PLA) fiber network was fabricated via electrospinning and subsequent in situ forming gel-polymer electrolyte in liquid electrolytes. The obtained PLA-NaF GPE achieves a high ion conductivity (2.50×10-3 S cm-1) and large Na+ transference number (0.75) at ambient temperature. Notably, the dissolution of NaF salt occupies solvents leading to concentrated-electrolyte environment, which facilitates aggregates with increased anionic coordination (anion/Na+ >1). Aggregates with higher HOMO realize the preferential oxidation on the cathode so that inorganic-rich and stable CEI covers cathode' surface, preventing particles' breakage and showing good compatibility with different cathodes (Na3V2(PO4)3, Na2+2xFe2-x(SO4)3, Na0.72Ni0.32Mn0.68O2, NaTi2(PO4)3). While, passivated Na anode induced by the lower LUMO of aggregates, and the lower surface tension between Na anode and PLA-NaF GPE interface, leading to the dendrites-free Na anode. As a result, the assembled Na || Na3V2(PO4)3 cells display excellent electrochemical performance at all-climate conditions.
Collapse
Affiliation(s)
- Xiaoniu Guo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, P. R. China
| | - Zhengkun Xie
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, P. R. China
| | - Ruixue Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, P. R. China
| | - Jun Luo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, P. R. China
| | - Jiacheng Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, P. R. China
| | - Shuai Guo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, P. R. China
| | - Guochuan Tang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, P. R. China
| | - Yu Shi
- Leeds Institute of Textiles and Colour (LITAC), School of Design, University of, Leeds, LS29JT, UK
| | - Weihua Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, P. R. China
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou, 450002, Henan, P. R. China
- Yaoshan laboratory, Pingdingshan University, Pingdingshan Henan, 467000, P. R. China
| |
Collapse
|
29
|
Wang H, Yang Y, Gao C, Chen T, Song J, Zuo Y, Fang Q, Yang T, Xiao W, Zhang K, Wang X, Xia D. An entanglement association polymer electrolyte for Li-metal batteries. Nat Commun 2024; 15:2500. [PMID: 38509078 PMCID: PMC10954637 DOI: 10.1038/s41467-024-46883-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
To improve the interface stability between Li-rich Mn-based oxide cathodes and electrolytes, it is necessary to develop new polymer electrolytes. Here, we report an entanglement association polymer electrolyte (PVFH-PVCA) based on a poly (vinylidene fluoride-co-hexafluoropropylene) (PVFH) matrix and a copolymer stabilizer (PVCA) prepared from acrylonitrile, maleic anhydride, and vinylene carbonate. The entangled structure of the PVFH-PVCA electrolyte imparts excellent mechanical properties and eliminates the stress arising from dendrite growth during cycling and forms a stable interface layer, enabling Li//Li symmetric cells to cycle steadily for more than 4500 h at 8 mA cm-2. The PVCA acts as a stabilizer to promote the formation of an electrochemically robust cathode-electrolyte interphase. It delivers a high specific capacity and excellent cycling stability with 84.7% capacity retention after 400 cycles. Li1.2Mn0.56Ni0.16Co0.08O2/PVFH-PVCA/Li full cell achieved 125 cycles at 1 C (4.8 V cut-off) with a stable discharge capacity of ~2.5 mAh cm-2.
Collapse
Affiliation(s)
- Hangchao Wang
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yali Yang
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Chuan Gao
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Tao Chen
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jin Song
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yuxuan Zuo
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Qiu Fang
- Institute of carbon neutrality, Peking University, Beijing, 100871, China
| | - Tonghuan Yang
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Wukun Xiao
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Kun Zhang
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xuefeng Wang
- Institute of carbon neutrality, Peking University, Beijing, 100871, China.
- Laboratory for Advanced Materials & Electron Microscopy, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dingguo Xia
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
- Institute of carbon neutrality, Peking University, Beijing, 100871, China.
| |
Collapse
|
30
|
Yang Y, Wang J, Li Z, Yang Z, Wang B, Zhao H. Constructing LiF-Dominated Interphases with Polymer Interwoven Outer Layer Enables Long-Term Cycling of Si Anodes. ACS NANO 2024; 18:7666-7676. [PMID: 38415604 DOI: 10.1021/acsnano.4c00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Constructing a robust solid electrolyte interphase (SEI) is extremely critical to developing high-energy-density silicon (Si)-based lithium-ion batteries. However, it is still elusive how to accurately manipulate the chemical composition and structure of the SEI layer. Herein, a LiF-dominated SEI film intertwined by a highly elastic polymer is achieved by regulating the defluorination mechanism of the fluorinated carbonate additive on the Si electrode surface. The experimental and computational results confirm that the decomposition route of trans-difluoroethylene carbonate (DFEC) molecules can be significantly altered in the presence of lithium difluoro(oxalato)borate (LiDFOB) additive. The induction of direct defluorination of DFEC step by LiDFOB, as opposed to the breaking of C-O bonds without LiDFOB addition, is crucial in ensuring the exclusive formation of LiF-dominated SEI and maintaining the cyclic structure of DFEC. The defluorinated DFEC easily polymerizes to form poly(vinylene carbonate), enhancing the elasticity of the SEI. The resulting LiF-dominated SEI film with a polymer interwoven outer layer shows enhanced ionic conductivity and mechanical stability, which can effectively accelerate electrode reaction kinetics and maintain the structural stability of the Si electrode. As a result, the Si electrode with the electrolyte containing the designed dual-additive exhibits superior cycling stability and excellent rate performance, delivering a high reversible capacity of 1487.3 mAh g-1 after 1000 cycles at 2 A g-1.
Collapse
Affiliation(s)
- Yaozong Yang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Jie Wang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Municipal Key Laboratory of New Energy Materials and Technologies, Beijing 100083, People's Republic of China
| | - Zhaolin Li
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Municipal Key Laboratory of New Energy Materials and Technologies, Beijing 100083, People's Republic of China
| | - Zhao Yang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Bo Wang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, People's Republic of China
| | - Hailei Zhao
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Municipal Key Laboratory of New Energy Materials and Technologies, Beijing 100083, People's Republic of China
| |
Collapse
|
31
|
Je M, Son HB, Han YJ, Jang H, Kim S, Kim D, Kang J, Jeong JH, Hwang C, Song G, Song HK, Ha TS, Park S. Formulating Electron Beam-Induced Covalent Linkages for Stable and High-Energy-Density Silicon Microparticle Anode. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305298. [PMID: 38233196 DOI: 10.1002/advs.202305298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Indexed: 01/19/2024]
Abstract
High-capacity silicon (Si) materials hold a position at the forefront of advanced lithium-ion batteries. The inherent potential offers considerable advantages for substantially increasing the energy density in batteries, capable of maximizing the benefit by changing the paradigm from nano- to micron-sized Si particles. Nevertheless, intrinsic structural instability remains a significant barrier to its practical application, especially for larger Si particles. Here, a covalently interconnected system is reported employing Si microparticles (5 µm) and a highly elastic gel polymer electrolyte (GPE) through electron beam irradiation. The integrated system mitigates the substantial volumetric expansion of pure Si, enhancing overall stability, while accelerating charge carrier kinetics due to the high ionic conductivity. Through the cost-effective but practical approach of electron beam technology, the resulting 500 mAh-pouch cell showed exceptional stability and high gravimetric/volumetric energy densities of 413 Wh kg-1, 1022 Wh L-1, highlighting the feasibility even in current battery production lines.
Collapse
Affiliation(s)
- Minjun Je
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hye Bin Son
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yu-Jin Han
- Ulsan Advanced Energy Technology R&D Center, Korea Institute of Energy Research (KIER), Ulsan, 44776, Republic of Korea
| | - Hangeol Jang
- Ulsan Advanced Energy Technology R&D Center, Korea Institute of Energy Research (KIER), Ulsan, 44776, Republic of Korea
- School of Materials Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Sungho Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dongjoo Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jieun Kang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | | | - Chihyun Hwang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science & Technology (UNIST), Ulsan, 44919, Republic of Korea
- Advanced Batteries Research Center, Korea Electronics Technology Institute (KETI), Gyeonggi-do, 13509, Republic of Korea
| | - Gyujin Song
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Ulsan Advanced Energy Technology R&D Center, Korea Institute of Energy Research (KIER), Ulsan, 44776, Republic of Korea
| | - Hyun-Kon Song
- School of Energy and Chemical Engineering, Ulsan National Institute of Science & Technology (UNIST), Ulsan, 44919, Republic of Korea
| | | | - Soojin Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
32
|
Liu H, Li W, Chang H, Hu H, Cui S, Hou C, Liu W, Jin Y. Micro Area Interface Wetting Structure with Tailored Li +-Solvation and Fast Transport Properties in Composite Polymer Electrolytes for Enhanced Performance in Solid-State Lithium Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3489-3501. [PMID: 38214534 DOI: 10.1021/acsami.3c16609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
To satisfy the demand for high safety and energy density in energy storage devices, all-solid-state lithium metal batteries with solid polymer electrolytes (SPE) replacing traditional liquid electrolytes and separators have been proposed and are increasingly regarded as one of the most promising candidates as next-generation energy storage systems. In this study, poly(vinylidene fluoride)-hexafluoropropylene/lignosulfonic acid (PVDF-HFP/LSA) composite polymer electrolyte (CPE) membranes with a micro area interface wetting structure were successfully prepared by incorporating LSA into the PVDF-HFP polymer matrix. The enhanced interaction between the polar functional group in LSA and the C═O in N-methylpyrrolidone (NMP) hinders the evaporation of solvent NMP, thus creating a micro area wetting structure, which offers a flexible region for the chain segment movement and enlarging the area of the amorphous zone in PVDF-HFP. From the results of IR and Raman spectroscopy, it was found that the presence of LSA induced unique ion transport channels created by the massive aggregated ion pair (AGG) and contact ion pair (CIP) of ion cluster structures composed of Li+ and multiple TFSI- and, at the same time, effectively reduced the crystallinity of the polymer electrolyte, hence further contributing to the Li+ diffusion. As a result, at a rate of 2 C, the Li|CPE-15|LiFePO4 solid-state battery delivers an initial discharge-specific capacity of 134.9 mAh g-1 and maintains stability with a retention of 84% during 400 charge-discharge cycles while the Li|CPE-0|LiFePO4 battery fails after only a few cycles at the same rate.
Collapse
Affiliation(s)
- Haojing Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Weiya Li
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Hui Chang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Hongkai Hu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Shengrui Cui
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Chunchao Hou
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Wei Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Yongcheng Jin
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China
| |
Collapse
|
33
|
Wu Y, Wang C, Wang C, Zhang Y, Liu J, Jin Y, Wang H, Zhang Q. Recent progress in SEI engineering for boosting Li metal anodes. MATERIALS HORIZONS 2024; 11:388-407. [PMID: 37975715 DOI: 10.1039/d3mh01434g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Lithium metal anodes (LMAs) are ideal anode candidates for achieving next-generation high-energy-density battery systems due to their high theoretical capacity (3680 mA h g-1) and low working potential (-3.04 V versus the standard hydrogen electrode). However, the non-ideal solid electrolyte interface (SEI) derived from electrolyte/electrode interfacial reactions plays a vital role in the lithium deposition/stripping process and battery cycling performance. The composition and morphology of a SEI, which is sensitive to the outside environment, make it difficult to characterize and understand. With the development of characterization techniques, the mechanism, composition, and structure of a SEI can be better understood. In this review, the mechanism formation, the structure model evolution, and the composition of a SEI are briefly presented. Moreover, the development of in situ characterization techniques in recent years is introduced to better understand a SEI followed by the properties of the SEI, which are beneficial to the battery performance. Furthermore, recent optimization strategies of the SEI including the improvement of intrinsic SEIs and construction of artificial SEIs are summarized. Finally, the current challenges and future perspectives of SEI research are summarized.
Collapse
Affiliation(s)
- Yue Wu
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Ce Wang
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Chengjie Wang
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Yan Zhang
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Jingbing Liu
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Yuhong Jin
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Hao Wang
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Qianqian Zhang
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
34
|
Fang M, Du B, Zhang X, Dong X, Yue X, Liang Z. An Electrolyte with Less Space-Occupying Diluent at Cathode Inner Helmholtz Plane for Stable 4.6 V Lithium-Ion Batteries. Angew Chem Int Ed Engl 2024; 63:e202316839. [PMID: 38014862 DOI: 10.1002/anie.202316839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 11/29/2023]
Abstract
Reasonably elevating the working voltage (≥4.4 V vs. Li/Li+ ) of the cathode is one of the efficient approaches to maximize the energy density of lithium-ion batteries (LIBs). As a preferred partner for high-voltage LIB systems, localized high-concentration electrolyte (LHCE), characterized by a stronger Li solvation structure, less free solvent, and robust electrode/electrolyte interphase has attracted much attention in academic circles. Herein, we systematically studied the role of the diluent in LHCE on the formation of the cathode electrolyte interphase (CEI) and elucidated that the existing anion-diluent pairing in the inner Helmholtz plane (IHP) results in an uneven CEI and subsequent battery degradation under high voltage. A m-fluorotoluene (mFT) diluent was further employed in the LHCE containing lithium difluoro(oxalato)borate (LiDFOB) to facilitate a uniform and rich-anion-derived CEI, since the weaker interaction of HmFT -BDFOB - , as compared to the HHhydrofluoroether -BDFOB - , reduces the influence of mFT in IHP or initial CEI formation. Consequently, the mFT-dominated LHCE propels the high-voltage performance of LIBs one step forward, endowing a 4.6 V-class 1.2-Ah graphite||LiNi0.8 Co0.1 Mn0.1 O2 pouch cells a 90.4 % capacity retention after 130 cycles. Our study thus describes a new index affecting the CEI formation and proposes novel strategies to deeply optimize the high-voltage LIBs.
Collapse
Affiliation(s)
- Mingming Fang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Bingyuan Du
- Department of Chemistry, Imperial College London, 80 Wood Ln, London, W12 7TA, UK
| | - Xinran Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xubing Dong
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xinyang Yue
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zheng Liang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
35
|
Hu A, Chen W, Li F, He M, Chen D, Li Y, Zhu J, Yan Y, Long J, Hu Y, Lei T, Li B, Wang X, Xiong J. Nonflammable Polyfluorides-Anchored Quasi-Solid Electrolytes for Ultra-Safe Anode-Free Lithium Pouch Cells without Thermal Runaway. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304762. [PMID: 37669852 DOI: 10.1002/adma.202304762] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/01/2023] [Indexed: 09/07/2023]
Abstract
The safe operation of rechargeable batteries is crucial because of numerous instances of fire and explosion mishaps. However, battery chemistry involving metallic lithium (Li) as the anode is prone to thermal runaway in flammable organic electrolytes under abusive conditions. Herein, an in situ encapsulation strategy is proposed to construct nonflammable quasi-solid electrolytes through the radical polymerization of a hexafluorobutyl acrylate (HFBA) monomer and a pentaerythritol tetraacrylate (PETEA) crosslinker. The quasi-solid system eliminates the inherent flammability of ether electrolytes with zero self-extinguishing time owing to the gas-phase radical capturing ability of HFBA. Additionally, the graphitized carbon layer generated during the decomposition of PETEA at high temperatures obstructs the heat and oxygen required for combustion. When coupled with Au-modified reduced graphene oxide anodic current collectors and lithium sulfide cathodes, the assembled anode-free Li-metal cell based on the quasi-solid electrolyte exhibits no signs of cell expansion or gas generation during cycling, and thermal runaway is eliminated under multiple mechanical, electrical, and thermal abuse scenarios and even rigorous strikes. This nonflammable quasi-solid configuration with gas- and condensed-phase flame-retardant mechanisms can drive a technological leap in anode-free Li-metal pouch cells and secure the practical applications necessary to power this society in a safe manner.
Collapse
Affiliation(s)
- Anjun Hu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Wei Chen
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Fei Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Miao He
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Dongjiang Chen
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yaoyao Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jun Zhu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yichao Yan
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jianping Long
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Yin Hu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Tianyu Lei
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Baihai Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xianfu Wang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jie Xiong
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
36
|
Sun S, Wang K, Hong Z, Zhi M, Zhang K, Xu J. Electrolyte Design for Low-Temperature Li-Metal Batteries: Challenges and Prospects. NANO-MICRO LETTERS 2023; 16:35. [PMID: 38019309 PMCID: PMC10687327 DOI: 10.1007/s40820-023-01245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/13/2023] [Indexed: 11/30/2023]
Abstract
Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation. To get the most energy storage out of the battery at low temperatures, improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases. Herein, this review critically outlines electrolytes' limiting factors, including reduced ionic conductivity, large de-solvation energy, sluggish charge transfer, and slow Li-ion transportation across the electrolyte/electrode interphases, which affect the low-temperature performance of Li-metal batteries. Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding. Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared. Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries.
Collapse
Affiliation(s)
- Siyu Sun
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, People's Republic of China
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Kehan Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zhanglian Hong
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Mingjia Zhi
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Kai Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Jijian Xu
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, People's Republic of China.
- Department of Chemical and Biomolecular Engineering, University of Maryland College Park, College Park, MD, 20742, USA.
| |
Collapse
|
37
|
Guo Q, Luo R, Tang Z, Li X, Feng X, Ding Z, Gao B, Zhang X, Huo K, Zheng Y. Bidirectional Interphase Modulation of Phosphate Electrolyte Enables Intrinsic Safety and Superior Stability for High-Voltage Lithium-Metal Batteries. ACS NANO 2023. [PMID: 37992278 DOI: 10.1021/acsnano.3c09643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Developing advanced high voltage lithium-metal batteries (LMBs) with superior stability and intrinsic safety is of great significance for practical applications. However, the easy flammability of conventional carbonate solvents and inferior compatibility of commercial electrolytes for both highly reactive Li anodes and high-voltage cathodes severely hinder the implementation process. Hence, we rationally designed an intrinsically nonflammable and low-cost phosphate electrolyte toward stable high-voltage LMBs by bidirectionally modulating the interphases. Benefiting from the synergistic regulation of LiNO3 and DME dual-additives in the 1.5 M LiTFSI/Triethyl phosphate electrolyte, thin, dense and robust electrodes/electrolyte interphases were well constructed simultaneously on the surfaces of Li anode and Ni-rich cathode, dramatically improving the stability and compatibility between electrodes and electrolyte. Consequently, boosted kinetic and high Coulombic efficiency of 98.6% for Li metal plating/stripping over 400 cycles and superior cycling stability of exceeding 4,000 h in Li symmetric cell is achieved. More importantly, the Li∥LiNi0.6Mn0.2Co0.2O2 cell assembled with a thin Li anode and high mass-loading cathode at a high cutoff voltage of 4.6 V retains a 98.4% capacity retention after 500 cycles at 1C. This work affords a promising strategy to develop nonflammable electrolytes enabling the high safety, good cyclability, and low cost of high-energy LMBs.
Collapse
Affiliation(s)
- Qifei Guo
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Rongjie Luo
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zihuan Tang
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xingxing Li
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiaoyu Feng
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zhao Ding
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| | - Biao Gao
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xuming Zhang
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Kaifu Huo
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang Zheng
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
38
|
Zhang L, Wang S, Wang Q, Shao H, Jin Z. Dendritic Solid Polymer Electrolytes: A New Paradigm for High-Performance Lithium-Based Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303355. [PMID: 37269533 DOI: 10.1002/adma.202303355] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Indexed: 06/05/2023]
Abstract
Li-ions battery is widely used and recognized, but its energy density based on organic electrolytes has approached the theoretical upper limit, while the use of organic electrolytes also brings some safety hazards (leakage and flammability). Polymer electrolytes (PEs) are expected to fundamentally solve the safety problem and improve energy density. Therefore, Li-ions battery based on solid PE has become a research hotspot in recent years. However, low ionic conductivity and poor mechanical properties, as well as a narrow electrochemical window limit its further development. Dendritic PEs with unique topology structure has low crystallinity, high segmental mobility, and reduced chain entanglement, providing a new avenue for designing high-performance PEs. In this review, the basic concept and synthetic chemistry of dendritic polymers are first introduced. Then, this story will turn to how to balance the mechanical properties, ionic conductivity, and electrochemical stability of dendritic PEs from synthetic chemistry. In addition, accomplishments on dendritic PEs based on different synthesis strategies and recent advances in battery applications are summarized and discussed. Subsequently, the ionic transport mechanism and interfacial interaction are deeply analyzed. In the end, the challenges and prospects are outlined to promote further development in this booming field.
Collapse
Affiliation(s)
- Lei Zhang
- School of Materials and Chemical Engineering, Chuzhou University, 1528 Fengle Avenue, Chuzhou, 239099, China
| | - Shi Wang
- School of Materials and Chemical Engineering, Chuzhou University, 1528 Fengle Avenue, Chuzhou, 239099, China
- State Key Laboratory of Organic Electronics & Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High-Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qian Wang
- Institute of Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Huaiyu Shao
- Institute of Applied Physics and Materials Engineering (IAPME), University of Macau, N23-4022, Avenida da Universidad, Taipa, Maca, 519000, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High-Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
39
|
Cai D, Zhang J, Li F, Han X, Zhong Y, Wang X, Tu J. LLZTO Nanoparticle- and Cellulose Mesh-Coreinforced Flexible Composite Electrolyte for Stable Li Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37884-37892. [PMID: 37523717 DOI: 10.1021/acsami.3c05058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Composite electrolytes have been regarded as the most prospective electrolytes for commercial application because they acquire the advantages of both polymer and inorganic electrolytes, commonly exhibiting appreciated flexibility and suitable ionic conductivity. Nevertheless, the conventional solution-casting method with toxic solvent and poor interfacial contact still hamper their commercialization process. Moreover, electrolytes with higher ionic conductivity and transference number are urgently needed for satisfying fast-charging batteries. Herein, a novel composite electrolyte (LZEC) reinforced by mechanically robust LLZTO nanoparticles and flexible cellulose mesh was fabricated by a simple and advanced in situ thermal polymerization method, with adding of highly ion-conductive liquid plasticizer. Consequently, the rationally designed LZEC composite electrolyte exhibits superior flexibility and remarkable electrochemical properties in the form of high ionic conductivity, wide electrochemical stability window, and high Li+ transference number. Importantly, the in situ synthesis method is expected to help construct an enhanced electrolyte/electrode interface inside the battery, and the LZEC composite electrolyte is capable of suppressing Li dendrite growth effectively, as evidenced by the prolonged stable cycling of the Li/Li symmetric cell. Therefore, the LFP/LZEC/Li full cell exhibits superior rate performance and long cyclic life. These attractive properties make LZEC a potential composite electrolyte for boosting the practical application of safe and long-life Li metal batteries.
Collapse
Affiliation(s)
- Dan Cai
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiaheng Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Fanqun Li
- Wanxiang A123 Systems Corp., Hangzhou 311215, China
| | - Xiao Han
- Wanxiang A123 Systems Corp., Hangzhou 311215, China
| | - Yu Zhong
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiuli Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiangping Tu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
40
|
Huo H, Janek J. Solid-state batteries: from 'all-solid' to 'almost-solid'. Natl Sci Rev 2023; 10:nwad098. [PMID: 37193578 PMCID: PMC10182669 DOI: 10.1093/nsr/nwad098] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/18/2023] Open
Abstract
The 'all-solid' concept is not necessarily the most rewarding target, and 'almost-solid' may rather be the most feasible strategy.
Collapse
|