1
|
Caldera JR, Shaw B, Uslan DZ, Yang S. Cluster of extensively drug-resistant Shigella sonnei carrying bla CTX-M-15 in Los Angeles, California, 2023 to 2024. Am J Infect Control 2024:S0196-6553(24)00888-5. [PMID: 39667596 DOI: 10.1016/j.ajic.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
We describe 3 cases of extensively drug-resistant Shigella sonnei infections among men who have sex with men in Los Angeles, CA. Using whole-genome sequencing, we determined that they are highly genetically related, exhibit similar antimicrobial resistomes, and appear to be distinct from other circulating strains. These cases highlight the rapid expansion of extensively drug-resistant Shigella in the United States and the urgent need for appropriate detection and management.
Collapse
Affiliation(s)
- J R Caldera
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA; Infectious Disease, Quest Diagnostics, San Juan Capistrano, CA
| | - Bennett Shaw
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Daniel Z Uslan
- Division of Infectious Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Shangxin Yang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA.
| |
Collapse
|
2
|
Scott TA, Baker KS, Trotter C, Jenkins C, Mostowy S, Hawkey J, Schmidt H, Holt KE, Thomson NR, Baker S. Shigella sonnei: epidemiology, evolution, pathogenesis, resistance and host interactions. Nat Rev Microbiol 2024:10.1038/s41579-024-01126-x. [PMID: 39604656 DOI: 10.1038/s41579-024-01126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Shigella sonnei is a major cause of diarrhoea globally and is increasing in prevalence relative to other Shigella because of multiple demographic and environmental influences. This single-serotype species has traditionally received less attention in comparison to Shigella flexneri and Shigella dysenteriae, which were more common in low-income countries and more tractable in the laboratory. In recent years, we have learned that Shigella are highly complex and highly susceptible to environmental change, as exemplified by epidemiological trends and increasing relevance of S. sonnei. Ultimately, methods, tools and data generated from decades of detailed research into S. flexneri have been used to gain new insights into the epidemiology, microbiology and pathogenesis of S. sonnei. In parallel, widespread adoption of genomic surveillance has yielded insights into antimicrobial resistance, evolution and organism transmission. In this Review, we provide an overview of current knowledge of S. sonnei, highlighting recent insights into this globally disseminated antimicrobial-resistant pathogen and assessing how novel data may impact future vaccine development and implementation.
Collapse
Affiliation(s)
- Timothy A Scott
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
| | - Kate S Baker
- Department of Clinical Microbiology, Immunology and Infection, University of Liverpool, Liverpool, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Caroline Trotter
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Serge Mostowy
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Jane Hawkey
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Hayden Schmidt
- Neutralizing Antibody Center, International AIDS Vaccine Initiative, San Diego, CA, USA
| | - Kathryn E Holt
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Nicholas R Thomson
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Stephen Baker
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
- International AIDS Vaccine Initiative, London, UK.
| |
Collapse
|
3
|
Ayele B, Mihret A, Mekonnen Z, Sisay Tessema T, Melaku K, Nassir MF, Ayele A, Alemayehu DH, Beyene G. Whole genome sequencing and antimicrobial resistance among clinical isolates of Shigella sonnei in Addis Ababa, Ethiopia. PLoS One 2024; 19:e0313310. [PMID: 39531464 PMCID: PMC11556702 DOI: 10.1371/journal.pone.0313310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Shigellosis is an acute gastroenteritis infection and one of Ethiopia's most common causes of morbidity and mortality, especially in children under five. Antimicrobial resistance (AMR) has spread quickly among Shigella species due to inappropriate antibiotic use, inadequacies of diagnostic facilities, and unhygienic conditions. This study aimed to characterize Shigella sonnei (S. sonnei) using whole genome sequence (WGS) analysis in Addis Ababa, Ethiopia. METHODS The raw reads were quality-filtered and trimmed, and a minimum length of 50bp was retained and taxonomically classified using MiniKraken version 1. The whole genome data were aligned with Antibiotic Resistance Gene (ARG) sequences of the Comprehensive Antibiotic Resistance Database (CARD) by Resistance Gene Identifier (RGI). Plasmids were analyzed using the PlasmidFinder tool version 2.1. Additionally, AMR and virulence genes were screened at the Centre for Genomic Epidemiology (CGE) web-based server. RESULTS All isolates in our investigation contained genes encoding blaEC-8 and blaZEG-1. Here, 60.7% of the isolates were phenotypically sensitive to cefoxitin among the blaEC-8 genes detected in the genotyping analysis, whereas all isolates were completely resistant to amoxicillin and erythromycin phenotypically. The study also identified genes that conferred resistance to trimethoprim (dfrA). Plasmid Col156 and Col (BS512) types were found in all isolates, while IncFII and Col (MG828) plasmids were only identified in one isolate. CONCLUSION This study found that many resistant genes were present, confirming the high variety in S. sonnei strains and hence a divergence in phylogenetic relationships. Thus, combining WGS methods for AMR prediction and strain identification into active surveillance may be beneficial for monitoring the spread of AMR in S. sonnei and detecting the potential emergence of novel variations.
Collapse
Affiliation(s)
- Basha Ayele
- Department of Medical Laboratory Science, College of Health Science and Medicine, Dilla University, Dilla, Ethiopia
- School of Medical Laboratory Sciences, Institution of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Zeleke Mekonnen
- School of Medical Laboratory Sciences, Institution of Health Sciences, Jimma University, Jimma, Ethiopia
| | | | | | | | - Abaysew Ayele
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Getenet Beyene
- School of Medical Laboratory Sciences, Institution of Health Sciences, Jimma University, Jimma, Ethiopia
| |
Collapse
|
4
|
Huang M, Zhang X, Luo C, Xu H, Qiu Y, Yang J. Genome and antibiotic resistance characteristics of Shigella clinical isolates in Fujian Province, Southeast China, 2005-2019. Microb Genom 2024; 10. [PMID: 39565081 DOI: 10.1099/mgen.0.001325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Shigellosis is a serious public health issue in many developing countries. The emergence of multidrug-resistant (MDR) Shigella isolates has deepened the treatment difficulty and health burden of shigellosis. China is the largest developing country in the world, but so far, the genome of MDR Shigella isolates has not been well characterized. In this study, 60 clinical isolates of Shigella spp. in Fujian Province, southeast China, from 2005 to 2019 were characterized for drug resistance phenotype, whole-genome sequencing and bioinformatics analysis. The results showed that the MDR rate of Shigella isolates was 100%, among which the resistance rates of cefotaxime, ciprofloxacin and azithromycin were 36.67, 21.67 and 10.00 %, respectively. The positive rate of extended-spectrum beta-lactamase (ESBL)-producing strains was 23.33%. The resistance profiles of Shigella flexneri and Shigella sonnei to some antimicrobials differed. The MDR isolates carried multiple antimicrobial resistance genes, among which blaCTX-M-14 and blaCTX-M-15 mediated ESBL resistance. 'ISEcp1 -blaCTX-M -IS903' (type I) and 'ISEcp1 -blaCTX-M' (type II) were the most common genetic environments around the blaCTX-M genes, and plasmids containing these structures included IncFII, IncI1, IncI2 and IncN. The double gene mutation pattern of gyrA and parC resulted in a significant decrease in the sensitivity of S. flexneri to ciprofloxacin. The overall resistance phenotype and genotype concordance rate was 88.50%, and the sensitivity and specificity of the genotype antimicrobial susceptibility test (AST) were 93.35 and 82.53 %, respectively. However, inconsistency occurred between phenotypic and genotype profiles for a few antibiotics. Phylogenomic investigation with core genome multi-locus sequence typing (cgMLST) and SNPs were used to characterize the endemic transmission of these infections in Fujian and their evolutionary origin within the global context. For S. flexneri, Fujian isolates were all limited to PG3 and could be divided into three phylogenetic clusters. The ciprofloxacin-resistant strains were mainly F2a and FXv and assigned to the three clusters with different quinolone resistance-determining region mutation patterns. For S. sonnei, most Fujian strains belonged to Lineage III with genotype 3.7.6, except three isolates of Lineage I with genotype 1.3. The strains carrying the blaCTX-M genes were dispersed, indicating different origins of gene acquisition. Most of the circulating isolates in Fujian Province were not related to major international outbreak lineages and were only endemic to the country. In conclusion, multi-drug resistance of Shigella isolates in Fujian Province was serious, and genome-based laboratory surveillance will be crucial to the clinical treatment and public health measures for shigellosis.
Collapse
Affiliation(s)
- Mengying Huang
- Fujian Center for Disease Control and Prevention, Fuzhou, PR China
| | - Xiaoxuan Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, PR China
| | - Chaochen Luo
- Fujian Center for Disease Control and Prevention, Fuzhou, PR China
| | - Haibin Xu
- Fujian Center for Disease Control and Prevention, Fuzhou, PR China
| | - Yufeng Qiu
- Fujian Center for Disease Control and Prevention, Fuzhou, PR China
| | - Jinsong Yang
- Fujian Center for Disease Control and Prevention, Fuzhou, PR China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, PR China
- Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, PR China
| |
Collapse
|
5
|
Baumgart S, Phan T, McKew G. Epidemiology and antimicrobial resistance rates for Shigella species in a resource-rich setting. Pathology 2024:S0031-3025(24)00236-8. [PMID: 39455321 DOI: 10.1016/j.pathol.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 10/28/2024]
Abstract
Shigellosis is an acute, often dysenteric, diarrhoeal illness that is responsible for much morbidity and mortality worldwide. Increasing rates of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Shigella species have been detected worldwide and a regular review of local epidemiological and resistance rates is necessary to help guide empirical antibiotic choice. This retrospective laboratory study of faecal isolates between 2013 and 2023 demonstrates increasing rates of resistance to third-generation cephalosporins, azithromycin and ciprofloxacin, alongside an overall increase in MDR and XDR isolates.
Collapse
Affiliation(s)
- Samuel Baumgart
- Department of Microbiology and Infectious Diseases, Concord Repatriation General Hospital, NSW Health, Concord, NSW, Australia
| | - Thuy Phan
- Department of Microbiology and Infectious Diseases, Concord Microbiology, NSW Health Pathology, Concord, NSW, Australia
| | - Genevieve McKew
- Department of Microbiology and Infectious Diseases, Concord Repatriation General Hospital, NSW Health, Concord, NSW, Australia; Department of Microbiology and Infectious Diseases, Concord Microbiology, NSW Health Pathology, Concord, NSW, Australia; Concord Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Sydney Infectious Diseases Institute, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Abou Fayad A, Rafei R, Njamkepo E, Ezzeddine J, Hussein H, Sinno S, Gerges JR, Barada S, Sleiman A, Assi M, Baakliny M, Hamedeh L, Mahfouz R, Dabboussi F, Feghali R, Mohsen Z, Rady A, Ghosn N, Abiad F, Abubakar A, Barakat A, Wauquier N, Quilici ML, Hamze M, Weill FX, Matar GM. An unusual two-strain cholera outbreak in Lebanon, 2022-2023: a genomic epidemiology study. Nat Commun 2024; 15:6963. [PMID: 39138238 PMCID: PMC11322537 DOI: 10.1038/s41467-024-51428-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Cholera is a life-threatening gastrointestinal infection caused by a toxigenic bacterium, Vibrio cholerae. After a lull of almost 30 years, a first case of cholera was detected in Lebanon in October 2022. The outbreak lasted three months, with 8007 suspected cases (671 laboratory-confirmed) and 23 deaths. In this study, we use phenotypic methods and microbial genomics to study 34 clinical and environmental Vibrio cholerae isolates collected throughout this outbreak. All isolates are identified as V. cholerae O1, serotype Ogawa strains from wave 3 of the seventh pandemic El Tor (7PET) lineage. Phylogenomic analysis unexpectedly reveals the presence of two different strains of the seventh pandemic El Tor (7PET) lineage. The dominant strain has a narrow antibiotic resistance profile and is phylogenetically related to South Asian V. cholerae isolates and derived African isolates from the AFR15 sublineage. The second strain is geographically restricted and extensively drug-resistant. It belongs to the AFR13 sublineage and clusters with V. cholerae isolates collected in Yemen. In conclusion, the 2022-2023 Lebanese cholera outbreak is caused by the simultaneous introduction of two different 7PET strains. Genomic surveillance with cross-border collaboration is therefore crucial for the identification of new introductions and routes of circulation of cholera, improving our understanding of cholera epidemiology.
Collapse
Affiliation(s)
- Antoine Abou Fayad
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
- World Health Organization (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut, Lebanon
| | - Rayane Rafei
- Laboratoire Microbiologie, Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Elisabeth Njamkepo
- Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques, Centre National de Référence des vibrions et du choléra, Paris, F-75015, France
| | - Jana Ezzeddine
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
- World Health Organization (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut, Lebanon
| | - Hadi Hussein
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
- World Health Organization (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut, Lebanon
| | | | - Jose-Rita Gerges
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
- World Health Organization (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut, Lebanon
| | - Sara Barada
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
- World Health Organization (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut, Lebanon
| | - Ahmad Sleiman
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
- World Health Organization (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut, Lebanon
| | | | - Maryo Baakliny
- Epidemiological Surveillance Unit, Ministry of Public Health, Beirut, Lebanon
| | - Lama Hamedeh
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rami Mahfouz
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Fouad Dabboussi
- Laboratoire Microbiologie, Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Rita Feghali
- Department of Laboratory Medicine, Rafik Hariri University Hospital, Beirut, 2010, Lebanon
| | - Zeina Mohsen
- Department of Laboratory Medicine, Rafik Hariri University Hospital, Beirut, 2010, Lebanon
| | | | - Nada Ghosn
- Epidemiological Surveillance Unit, Ministry of Public Health, Beirut, Lebanon
| | - Firas Abiad
- Epidemiological Surveillance Unit, Ministry of Public Health, Beirut, Lebanon
| | | | - Amal Barakat
- Infectious Hazard Management, Department of Health Emergency World Health Organisation, Eastern Mediterranean Regional Office Cairo, Cairo, Egypt
| | - Nadia Wauquier
- Cholera Programme, Department of Health Emergency Interventions, World Health Organisation, Geneva, Switzerland
| | - Marie-Laure Quilici
- Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques, Centre National de Référence des vibrions et du choléra, Paris, F-75015, France
| | - Monzer Hamze
- Laboratoire Microbiologie, Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.
| | - François-Xavier Weill
- Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques, Centre National de Référence des vibrions et du choléra, Paris, F-75015, France.
| | - Ghassan M Matar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon.
- World Health Organization (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut, Lebanon.
| |
Collapse
|
7
|
Cohen D, Treygerman O, Ken-Dror S, Sagi O, Strauss M, Parizade M, Goren S, Ezernitchi AV, Rokney A, Keinan-Boker L, Bassal R. Twenty-five years of sentinel laboratory-based surveillance of shigellosis in a high-income country endemic for the disease, Israel, 1998 to 2022. Euro Surveill 2024; 29:2400022. [PMID: 39092530 PMCID: PMC11295440 DOI: 10.2807/1560-7917.es.2024.29.31.2400022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/16/2024] [Indexed: 08/04/2024] Open
Abstract
BackgroundShigella is a leading cause of moderate-to-severe diarrhoea worldwide and diarrhoeal deaths in children in low- and-middle-income countries.AimWe investigated trends and characteristics of shigellosis and antimicrobial resistance of Shigella sonnei in Israel.MethodsWe analysed data generated by the Sentinel Laboratory-Based Surveillance Network for Enteric Pathogens that systematically collects data on detection of Shigella at sentinel laboratories, along with the characterisation of the isolates at the Shigella National Reference Laboratory. Trends in the shigellosis incidence were assessed using Joinpoint regression and interrupted time-series analyses.ResultsThe average incidence of culture-confirmed shigellosis in Israel declined from 114 per 100,000 population (95% confidence interval (CI): 112-115) 1998-2004 to 80 per 100,000 population (95% CI: 79-82) 2005-2011. This rate remained stable 2012-2019, being 18-32 times higher than that reported from the United States or European high-income countries. After decreasing to its lowest values during the COVID-19 pandemic years (19/100,000 in 2020 and 5/100,000 in 2021), the incidence of culture-confirmed shigellosis increased to 39 per 100,000 population in 2022. Shigella sonnei is the most common serogroup, responsible for a cyclic occurrence of propagated epidemics, and the proportion of Shigella flexneri has decreased. Simultaneous resistance of S. sonnei to ceftriaxone, ampicillin and sulphamethoxazole-trimethoprim increased from 8.5% (34/402) in 2020 to 92.0% (801/876) in 2022.ConclusionsThese findings reinforce the need for continuous laboratory-based surveillance and inform the primary and secondary prevention strategies for shigellosis in Israel and other endemic high-income countries or communities.
Collapse
Affiliation(s)
- Dani Cohen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | - Shifra Ken-Dror
- Clinical Microbiology Laboratory, Regional Laboratory Haifa and Western Galilee, Clalit Health Services, Nesher, Israel
| | - Orli Sagi
- Clinical Microbiology Laboratory, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Merav Strauss
- Microbiology Laboratory, Emek Medical Center, Afula, Israel
| | - Miriam Parizade
- Microbiology Mega Lab Rechovot, Maccabi Health Services, Rehovot, Israel
| | - Sophy Goren
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Analía V Ezernitchi
- Public Health Laboratories - Jerusalem, Public Health Services, Ministry of Health, Jerusalem, Israel
| | - Assaf Rokney
- Public Health Laboratories - Jerusalem, Public Health Services, Ministry of Health, Jerusalem, Israel
| | - Lital Keinan-Boker
- School of Public Health, University of Haifa, Haifa, Israel
- Israel Center for Disease Control, Ministry of Health, Sheba Medical Center, Ramat-Gan, Israel
| | - Ravit Bassal
- Israel Center for Disease Control, Ministry of Health, Sheba Medical Center, Ramat-Gan, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Zhou H, Lu Z, Liu X, Bie X, Cui X, Wang Z, Sun X, Yang J. Characterization and transmission of plasmid-mediated multidrug resistance in foodborne Vibrio parahaemolyticus. Front Microbiol 2024; 15:1437660. [PMID: 39144225 PMCID: PMC11322368 DOI: 10.3389/fmicb.2024.1437660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Objectives The purpose of this study was to determine the structural features and transferability of the multidrug-resistance (MDR) plasmid, and resistance phenotypes for the tested antimicrobials in foodborne Vibrio parahaemolyticus. Methods Plasmids were isolated from a V. parahaemolyticus strain of seafood origin, then sequenced using the Illumina NovaSeq 6000 and PacBio Sequel II sequencing platforms to obtain the complete genome data. Characterization of the MDR plasmid pVP52-1, including determination of antimicrobial resistance genes (ARGs), plasmid incompatibility groups, and transferability, was carried out. Results V. parahaemolyticus strain NJIFDCVp52 contained two circular chromosomes and two circular plasmids (pVP52-1 and pVP52-2). Plasmid typing indicated that pVP52-1 belonged to the incompatibility group IncA/C2 and the sequence type pST3. pVP52-1 carried 12 different ARGs, an IS110-composite transposon consisting of aac(6')-Ib-cr, qnrVC1, aac(6')-Ib, dfrA14, and the IS26-mphA-IS6100 unit flanked by inverted sequences of IS5075 and IS4321. pVP52-2 carried no ARGs. A plasmid elimination assay showed that only pVP52-1 and its ARGs were lost, the loss of resistance to several antimicrobials, causing a change from the ampicillin-ampicillin/sulbactam-cefazolin-cefoxitin-ceftazidime-cefotaxime-imipenem-trimethoprim/sulfamethoxazole resistance pattern to the ampicillin resistance pattern. In accordance, a conjugation transfer assay showed that only pVP52-1 and its ARGs were horizontally transferred, leading to increased antimicrobial resistance in Escherichia coli strain EC600, causing a change from the ampicillin-nalidixic acid resistance pattern to the ampicillin-ampicillin/sulbactam-cefazolin-cefoxitin-ceftazidime-cefotaxime-imipenem-nalidixic acid-chloramphenicol-tetracycline-trimethoprim/sulfamethoxazole-azithromycin resistance pattern. Further transferability experiments revealed that pVP52-1 could be transferred to other enterobacterial strains of E. coli and Salmonella. Discussion This study emphasizes the urgent need for continued surveillance of resistance plasmids and changes in antimicrobial resistance profiles among the V. parahaemolyticus population.
Collapse
Affiliation(s)
- Haibo Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xinmei Liu
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xinping Cui
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zuwei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaojie Sun
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing, China
| | - Jun Yang
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing, China
| |
Collapse
|
9
|
Vecilla DF, Urrutikoetxea Gutiérrez MJ, Nieto Toboso MC, Inchaurza KZ, Zárraga EU, Estévez BR, Tuesta Del Arco JLDD. First report of Shigella sonnei carrying a bla CTX-M-15 sexually transmitted among men who have sex with men. Infection 2024:10.1007/s15010-024-02341-7. [PMID: 38985435 DOI: 10.1007/s15010-024-02341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Epidemiology of shigellosis has drastically changed in recent years due to globalization and sexual risk behaviors. Here, through whole-genome sequencing, we characterized two ESBL-producing Shigella sonnei strains (ShSoBUH1 and ShSoBUH2) carrying a blaCTX-M-15 among men who have sex with men (MSM), who had not recently traveled and presented sexual risk behaviors. Both strains harbored IncB/O/K/Z and IncFII plasmids, which carry aadA1, aadA5, sul1, sul2, dfrA1, dfrA17, mph(A), erm(B), tet(B), qacE and blaCTX-M-15 genes conferring resistance to 2nd and 3rd generation cephalosporins, cotrimoxazole, erythromycin, azithromycin and quinolones. IncFII plasmids containing blaCTX-M-15 from ShSoBUH1 and ShSoBUH2 presented 99,8-99,9% similarity with plasmids from another five CTX-M-15 S. sonnei strains detected in Belgium and Switzerland. A single-nucleotide polymorphism (SNP) analysis determined that the study strains differed by 361 SNPs, belonging to different clusters. To the best of our knowledge, this is the first report describing two extensively drug-resistant (XDR) CTX-M-15 S. sonnei strains in MSM.
Collapse
Affiliation(s)
| | - Mikel Joseba Urrutikoetxea Gutiérrez
- Clinical microbiology service. Bilbao, Basurto University Hospital, Basque Country, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Basque Country, Spain
| | - María Carmen Nieto Toboso
- Clinical microbiology service. Bilbao, Basurto University Hospital, Basque Country, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Basque Country, Spain
| | - Kristina Zugazaga Inchaurza
- Clinical microbiology service. Bilbao, Basurto University Hospital, Basque Country, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Basque Country, Spain
| | - Estíbaliz Ugalde Zárraga
- Clinical microbiology service. Bilbao, Basurto University Hospital, Basque Country, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Basque Country, Spain
| | - Beatriz Ruiz Estévez
- Basurto University Hospital. Infectious disease services Bilbao, Basque Country, Spain
| | - José Luis Díaz de Tuesta Del Arco
- Clinical microbiology service. Bilbao, Basurto University Hospital, Basque Country, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Basque Country, Spain
| |
Collapse
|
10
|
Gonzales Rodriguez A, Gonzales Escalante E, Lezameta Abarca L, Saavedra Gutierrez J. Emergence of lineage III of Shigella sonnei ST152 belonging to a high-risk clone harboring the bla CTX-M-15 gene in Peru. Rev Argent Microbiol 2024; 56:205-209. [PMID: 38845247 DOI: 10.1016/j.ram.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 09/20/2024] Open
Abstract
Multidrug-resistant Shigella sonnei ST152, global lineage III, is a high-risk clone, whose dissemination has limited therapeutic options for shigellosis. This study aimed to characterize two isolates of S. sonnei, which were recovered in Lima, Peru, during November 2019, exhibiting resistance to extended-spectrum cephalosporins and quinolones, and concurrently harboring blaCTX-M-15 and qnrS1 genes, in addition to mutations in gyrA-S83L. These isolates were resistant to ceftriaxone, ciprofloxacin and trimethoprim/sulfamethoxazole. The molecular analysis showed that both isolates belonged to lineage III, sublineages IIIa and IIIb. The blaCTX-M-15 gene was located in the same genetic platform as qnrS1, flanked upstream by ISKpn19, on a conjugative plasmid belonging to the IncI-γ group. To the best of our knowledge, this would be the first report on S. sonnei isolates carrying the blaCTX-M-15 gene in Peru. The global dissemination of S. sonnei ST152, co-resistant to β-lactams and quinolones, could lead to a worrisome scenario in the event of potential acquisition of genetic resistance mechanisms to azithromycin.
Collapse
Affiliation(s)
| | | | - Lizet Lezameta Abarca
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Peru; Laboratorio de Resistencia Antibiótica e Inmunopatología, Universidad Peruana Cayetano Heredia, Peru; Clínica Centenario Peruano Japonesa, Lima, Peru
| | | |
Collapse
|
11
|
Melogmo Dongmo YK, Tchatat Tali MB, Dize D, Jiatsa Mbouna CD, Kache Fotsing S, Ngouana V, Pinlap BR, Zeuko'o Menkem E, Yamthe Tchokouaha LR, Fotso Wabo G, Lenta Ndjakou B, Lunga PK, Fekam Boyom F. Anti-Shigella and antioxidant-based screening of some Cameroonian medicinal plants, UHPLC-LIT-MS/MS fingerprints, and prediction of pharmacokinetic and drug-likeness properties of identified chemicals. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117788. [PMID: 38296176 DOI: 10.1016/j.jep.2024.117788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/15/2024] [Indexed: 02/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shigella infection is a public health problem responsible for approximately 700,000 deaths annually. The management of this disease is impaired by the emergence of multidrug-resistant Shigella species, highlighting the urgent need to search for alternative treatment options. In this regard, investigating medicinal plants traditionally used for the treatment of dysentery, diarrheal infections, and/or associated symptoms in endemic regions might provide an opportunity to identify phytochemicals that could be further used as a basis for the development of future anti-shigella drug candidates. AIM OF THE STUDY This study was designed to investigate the anti-shigella and antioxidant-based ethnopharmacological potency of some Cameroonian medicinal plants with an emphasis on pharmacokinetic properties of the identified chemical pharmacophore. MATERIALS AND METHODS Briefly, plant species were selected and collected based on their ethnopharmacological uses and information reported in the literature. Crude aqueous, ethanolic, methanolic, and hydroethanolic (30:70, v/v) extracts from these plants were prepared and then screened for their anti-Shigella activity against four Shigella strains and cytotoxicity against Vero and Raw cell lines using microdilution and resazurin-based methods, respectively. The antioxidant activities of potent extracts were evaluated using DPPH, ABTS, NO, and FRAP scavenging assays. The chemical profile of potent extracts was performed using the UHPLC-LIT-MS/MS and the pharmacokinetic properties, druglikeness, and likely molecular targets of the chemical scaffolds identified were predicted using SwissADME and SwissTargetPredictor. RESULTS Thirty-nine (39) plants belonging to 26 plant families were harvested. Out of the 228 extracts tested, 18 extracts originating from 6 plants (15.38 %) were active (MICs 250-1000 μg/mL) and nontoxic toward Vero (CC50 129.25-684.55 μg/mL) and Raw cell lines (CC50 336.20 to >1000 μg/mL). Six potent extracts from the two plants exhibited moderate to potent DPPH (SC50 8.870-54.410 μg/mL), ABTS (SC50 12.020-27.36 μg/mL), and NO (SC50 0.02-195.85 μg/mL) scavenging activities. Later, these extracts showed interesting ferric iron-reducing power (1.28-12.14 μg equivalent NH2OH/g of extract). The shortest onset of action time (4 and 6 h) observed following inhibition kinetics studies was observed with extracts BFSHE, PMSE, and PMSM. The UHPLC-LIT-MS/MS and some databases (Mass Spectral Library (NIST 14), Human Metabolome Database (HMD), MassBank, SuperNatural 3.0, The Food Database (FooDB), and Chemical Entities of Biological Interest (ChEBI)) allowed the annotation of 18 and 17 metabolites in the extracts from stem bark of P. macrophylla and B. ferruginea respectively. Pharmacokinetic prediction of these chemicals showed that compound 6 (4,6a-bis(Hydroxymethyl)-9a-methyl-3-oxo-1a,1b,3,5,6,6a,7a,9a-octahydrobis (oxireno)[2',3':5,6; 2″,3'':9,10]cyclodeca[1,2-b]furan-5-yl methacrylate), compound 8 (Corynoxeine), and compounds 35 (Stachybotrydial acetate) demonstrated acceptable druglike and pharmacokinetic properties and might act through inhibition of kinase, transferase, protease, oxidoreductase, and family AG protein-linked receptors. CONCLUSION The findings from this investigation demonstrated that Cameroonian medicinal plants are suitable reservoirs of anti-Shigella and antioxidant agents with good drug candidate properties.
Collapse
Affiliation(s)
- Yanick Kevin Melogmo Dongmo
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Cameroon.
| | - Mariscal Brice Tchatat Tali
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Cameroon.
| | - Darline Dize
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Cameroon.
| | - Cedric Derick Jiatsa Mbouna
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Cameroon.
| | - Sorelle Kache Fotsing
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon.
| | - Vincent Ngouana
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Cameroon; Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, P.O. Box 96, Dschang, Cameroon.
| | - Brice Rostan Pinlap
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Cameroon.
| | - Elisabeth Zeuko'o Menkem
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Cameroon; Department of Biomedical Sciences, University of Buea, P.O. Box 63, Buea, Cameroon.
| | - Lauve Rachel Yamthe Tchokouaha
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Cameroon; Institute of Medical Research and Medicinal Plants Studies (IMPM), Ministry of Scientific Research and Innovation, P.O. Box 6133, Yaounde, Cameroon.
| | - Ghislain Fotso Wabo
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon.
| | - Bruno Lenta Ndjakou
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé 1, P.O. Box 47, Yaoundé, Cameroon.
| | - Paul Keilah Lunga
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Cameroon.
| | - Fabrice Fekam Boyom
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Cameroon.
| |
Collapse
|
12
|
Batani G, Vezzani G, Lashchuk S, Allaoui A, Cardamone D, Raso MM, Boero E, Roscioli E, Ridelfi M, Gasperini G, Pizza M, Rossi O, Berlanda Scorza F, Micoli F, Rappuoli R, Sala C. Development of a visual Adhesion/Invasion Inhibition Assay to assess the functionality of Shigella-specific antibodies. Front Immunol 2024; 15:1374293. [PMID: 38680489 PMCID: PMC11045934 DOI: 10.3389/fimmu.2024.1374293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Shigella is the etiologic agent of a bacillary dysentery known as shigellosis, which causes millions of infections and thousands of deaths worldwide each year due to Shigella's unique lifestyle within intestinal epithelial cells. Cell adhesion/invasion assays have been extensively used not only to identify targets mediating host-pathogen interaction, but also to evaluate the ability of Shigella-specific antibodies to reduce virulence. However, these assays are time-consuming and labor-intensive and fail to assess differences at the single-cell level. Objectives and methods Here, we developed a simple, fast and high-content method named visual Adhesion/Invasion Inhibition Assay (vAIA) to measure the ability of anti-Shigellaantibodies to inhibit bacterial adhesion to and invasion of epithelial cells by using the confocal microscope Opera Phenix. Results We showed that vAIA performed well with a pooled human serum from subjects challenged with S. sonnei and that a specific anti-IpaD monoclonal antibody effectively reduced bacterial virulence in a dose-dependent manner. Discussion vAIA can therefore inform on the functionality of polyclonal and monoclonal responses thereby supporting the discovery of pathogenicity mechanisms and the development of candidate vaccines and immunotherapies. Lastly, this assay is very versatile and may be easily applied to other Shigella species or serotypes and to different pathogens.
Collapse
Affiliation(s)
- Giampiero Batani
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| | - Giacomo Vezzani
- GlaxoSmithKline (GSK) Vaccines Institute for Global Health (GVGH), Siena, Italy
| | - Sabrina Lashchuk
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| | - Abdelmounaaim Allaoui
- The Microbiology Laboratory, University Mohammed VI Polytechnic, Ben, Guerir, Morocco
| | - Dario Cardamone
- Data Science for Health Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| | | | - Elena Boero
- GlaxoSmithKline (GSK) Vaccines Institute for Global Health (GVGH), Siena, Italy
| | - Emanuele Roscioli
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| | - Matteo Ridelfi
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| | - Gianmarco Gasperini
- GlaxoSmithKline (GSK) Vaccines Institute for Global Health (GVGH), Siena, Italy
| | - Mariagrazia Pizza
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Omar Rossi
- GlaxoSmithKline (GSK) Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | | - Francesca Micoli
- GlaxoSmithKline (GSK) Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | | - Claudia Sala
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| |
Collapse
|
13
|
Hossain MA, Al Amin M, Khan MA, Refat MRR, Sohel M, Rahman MH, Islam A, Hoque MN. Genome-Wide Investigation Reveals Potential Therapeutic Targets in Shigella spp. BIOMED RESEARCH INTERNATIONAL 2024; 2024:5554208. [PMID: 38595330 PMCID: PMC11003385 DOI: 10.1155/2024/5554208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 04/11/2024]
Abstract
Shigella stands as a major contributor to bacterial dysentery worldwide scale, particularly in developing countries with inadequate sanitation and hygiene. The emergence of multidrug-resistant strains exacerbates the challenge of treating Shigella infections, particularly in regions where access to healthcare and alternative antibiotics is limited. Therefore, investigations on how bacteria evade antibiotics and eventually develop resistance could open new avenues for research to develop novel therapeutics. The aim of this study was to analyze whole genome sequence (WGS) of human pathogenic Shigella spp. to elucidate the antibiotic resistance genes (ARGs) and their mechanism of resistance, gene-drug interactions, protein-protein interactions, and functional pathways to screen potential therapeutic candidate(s). We comprehensively analyzed 45 WGS of Shigella, including S. flexneri (n = 17), S. dysenteriae (n = 14), S. boydii (n = 11), and S. sonnei (n = 13), through different bioinformatics tools. Evolutionary phylogenetic analysis showed three distinct clades among the circulating strains of Shigella worldwide, with less genomic diversity. In this study, 2,146 ARGs were predicted in 45 genomes (average 47.69 ARGs/genome), of which only 91 ARGs were found to be shared across the genomes. Majority of these ARGs conferred their resistance through antibiotic efflux pump (51.0%) followed by antibiotic target alteration (23%) and antibiotic target replacement (18%). We identified 13 hub proteins, of which four proteins (e.g., tolC, acrR, mdtA, and gyrA) were detected as potential hub proteins to be associated with antibiotic efflux pump and target alteration mechanisms. These hub proteins were significantly (p < 0.05) enriched in biological process, molecular function, and cellular components. Therefore, the finding of this study suggests that human pathogenic Shigella strains harbored a wide range of ARGs that confer resistance through antibiotic efflux pumps and antibiotic target modification mechanisms, which must be taken into account to devise and formulate treatment strategy against this pathogen. Moreover, the identified hub proteins could be exploited to design and develop novel therapeutics against MDR pathogens like Shigella.
Collapse
Affiliation(s)
- Md. Arju Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
- Department of Microbiology, Primeasia University, Dhaka 1213, Bangladesh
| | - Md. Al Amin
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md. Arif Khan
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh
- EcoHealth Alliance, New York, NY 10018, USA
| | - Md. Rashedur Rahman Refat
- Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Sohel
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka 1213, Bangladesh
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia 7003, Bangladesh
- Center for Advanced Bioinformatics and Artificial Intelligence Research, Islamic University, Kushtia 7003, Bangladesh
| | - Ariful Islam
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh
- EcoHealth Alliance, New York, NY 10018, USA
| | - M. Nazmul Hoque
- Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| |
Collapse
|
14
|
Horne B, Badji H, Bhuiyan MTR, Romaina Cachique L, Cornick J, Hotwani A, Juma J, Ochieng JB, Abdou M, Apondi E, Atlas HE, Awuor AO, Baker KS, Ceesay BE, Charles M, Cunliffe NA, Feutz E, Galagan SR, Guindo I, Hossain MJ, Iqbal J, Jallow F, Keita NY, Khanam F, Kotloff KL, Maiden V, Manzanares Villanueva K, Mito O, Mosharraf MP, Nkeze J, Ikumapayi UN, Paredes Olortegui M, Pavlinac PB, Pinedo Vasquez T, Qadri F, Qamar FN, Qureshi S, Rahman N, Sangare A, Sen S, Peñataro Yori P, Yousafzai MT, Ahmed D, Jere KC, Kosek MN, Omore R, Permala-Booth J, Secka O, Tennant SM. Microbiological Methods Used in the Enterics for Global Health Shigella Surveillance Study. Open Forum Infect Dis 2024; 11:S25-S33. [PMID: 38532949 PMCID: PMC10962722 DOI: 10.1093/ofid/ofad576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Background Shigella is a major cause of diarrhea in young children worldwide. Multiple vaccines targeting Shigella are in development, and phase 3 clinical trials are imminent to determine efficacy against shigellosis. Methods The Enterics for Global Health (EFGH) Shigella surveillance study is designed to determine the incidence of medically attended shigellosis in 6- to 35-month-old children in 7 resource-limited settings. Here, we describe the microbiological methods used to isolate and identify Shigella. We developed a standardized laboratory protocol for isolation and identification of Shigella by culture. This protocol was implemented across all 7 sites, ensuring consistency and comparability of results. Secondary objectives of the study are to determine the antibiotic resistance profiles of Shigella, compare isolation of Shigella from rectal swabs versus whole stool, and compare isolation of Shigella following transport of rectal swabs in Cary-Blair versus a modified buffered glycerol saline transport medium. Conclusions Data generated from EFGH using culture methods described herein can potentially be used for microbiological endpoints in future phase 3 clinical trials to evaluate vaccines against shigellosis and for other clinical and public health studies focused on these organisms.
Collapse
Affiliation(s)
- Bri’Anna Horne
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Henry Badji
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | | | | | - Jennifer Cornick
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | - Aneeta Hotwani
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Jane Juma
- Centre pour le Développement des Vaccins du Mali, Bamako, Mali
| | | | - Mahamadou Abdou
- Centre pour le Développement des Vaccins du Mali, Bamako, Mali
| | - Evans Apondi
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Hannah E Atlas
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Alex O Awuor
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Kate S Baker
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Bubacarr E Ceesay
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Mary Charles
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | - Nigel A Cunliffe
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Erika Feutz
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Sean R Galagan
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Ibrehima Guindo
- Centre pour le Développement des Vaccins du Mali, Bamako, Mali
| | - M Jahangir Hossain
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Junaid Iqbal
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Fatima Jallow
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | | | - Farhana Khanam
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Karen L Kotloff
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Victor Maiden
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | | | - Oscar Mito
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Md Parvej Mosharraf
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Joseph Nkeze
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Usman N Ikumapayi
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | | | - Patricia B Pavlinac
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | | | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Farah Naz Qamar
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Sonia Qureshi
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Nazia Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Aminata Sangare
- Centre pour le Développement des Vaccins du Mali, Bamako, Mali
| | - Sunil Sen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Pablo Peñataro Yori
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | | | - Dilruba Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Khuzwayo C Jere
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
- Department of Medical Laboratory Sciences, School of Life Sciences and Health Professions, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Margaret N Kosek
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Richard Omore
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Jasnehta Permala-Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Ousman Secka
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Sharon M Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| |
Collapse
|
15
|
Ritchie G, Chorlton SD, Matic N, Bilawka J, Gowland L, Leung V, Stefanovic A, Romney MG, Lowe CF. WGS of a cluster of MDR Shigella sonnei utilizing Oxford Nanopore R10.4.1 long-read sequencing. J Antimicrob Chemother 2024; 79:55-60. [PMID: 37965757 DOI: 10.1093/jac/dkad346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
OBJECTIVES To utilize long-read nanopore sequencing (R10.4.1 flowcells) for WGS of a cluster of MDR Shigella sonnei, specifically characterizing genetic predictors of antimicrobial resistance (AMR). METHODS WGS was performed on S. sonnei isolates identified from stool and blood between September 2021 and October 2022. Bacterial DNA from clinical isolates was extracted on the MagNA Pure 24 and sequenced on the GridION utilizing R10.4.1 flowcells. Phenotypic antimicrobial susceptibility testing was interpreted based on CLSI breakpoints. Sequencing data were processed with BugSeq, and AMR was assessed with BugSplit and ResFinder. RESULTS Fifty-six isolates were sequenced, including 53 related to the cluster of cases. All cluster isolates were identified as S. sonnei by sequencing, with global genotype 3.6.1.1.2 (CipR.MSM5), MLST 152 and PopPUNK cluster 3. Core genome MLST (cgMLST, examining 2513 loci) and reference-based MLST (refMLST, examining 4091 loci) both confirmed the clonality of the isolates. Cluster isolates were resistant to ampicillin (blaTEM-1), trimethoprim/sulfamethoxazole (dfA1, dfrA17; sul1, sul2), azithromycin (ermB, mphA) and ciprofloxacin (gyrA S83L, gyrA D87G, parC S80I). No genomic predictors of resistance to carbapenems were identified. CONCLUSIONS WGS with R10.4.1 enabled rapid sequencing and identification of an MDR S. sonnei community cluster. Genetic predictors of AMR were concordant with phenotypic antimicrobial susceptibility testing.
Collapse
Affiliation(s)
- Gordon Ritchie
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Providence Health Care, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Samuel D Chorlton
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Nancy Matic
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Providence Health Care, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Jennifer Bilawka
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Providence Health Care, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
| | - Leah Gowland
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Providence Health Care, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
| | - Victor Leung
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Providence Health Care, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Aleksandra Stefanovic
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Providence Health Care, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Marc G Romney
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Providence Health Care, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Christopher F Lowe
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Providence Health Care, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
16
|
Matanza XM, Clements A. Pathogenicity and virulence of Shigella sonnei: A highly drug-resistant pathogen of increasing prevalence. Virulence 2023; 14:2280838. [PMID: 37994877 PMCID: PMC10732612 DOI: 10.1080/21505594.2023.2280838] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023] Open
Abstract
Shigella spp. are the causative agent of shigellosis (or bacillary dysentery), a diarrhoeal disease characterized for the bacterial invasion of gut epithelial cells. Among the 4 species included in the genus, Shigella flexneri is principally responsible for the disease in the developing world while Shigella sonnei is the main causative agent in high-income countries. Remarkably, as more countries improve their socioeconomic conditions, we observe an increase in the relative prevalence of S. sonnei. To date, the reasons behind this change in aetiology depending on economic growth are not understood. S. flexneri has been widely used as a model to study the pathogenesis of the genus, but as more research data are collected, important discrepancies with S. sonnei have come to light. In comparison to S. flexneri, S. sonnei can be differentiated in numerous aspects; it presents a characteristic O-antigen identical to that of one serogroup of the environmental bacterium Plesiomonas shigelloides, a group 4 capsule, antibacterial mechanisms to outcompete and displace gut commensal bacteria, and a poorer adaptation to an intracellular lifestyle. In addition, the World Health Organization (WHO) have recognized the significant threat posed by antibiotic-resistant strains of S. sonnei, demanding new approaches. This review gathers knowledge on what is known about S. sonnei within the context of other Shigella spp. and aims to open the door for future research on understanding the increasing spread of this pathogen.
Collapse
Affiliation(s)
- Xosé M. Matanza
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, UK
| | - Abigail Clements
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
17
|
Yassine I, Rafei R, Pardos de la Gandara M, Osman M, Fabre L, Dabboussi F, Hamze M, Weill FX. Genomic analysis of Shigella isolates from Lebanon reveals marked genetic diversity and antimicrobial resistance. Microb Genom 2023; 9:001157. [PMID: 38100171 PMCID: PMC10763507 DOI: 10.1099/mgen.0.001157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
In this study, we characterized 54 clinical isolates of Shigella collected in North Lebanon between 2009 and 2017 through phenotypic and genomic analyses. The most prevalent serogroup was S. sonnei, accounting for 46.3 % (25/54) of the isolates, followed by S. flexneri (27.8 %, 15/54), S. boydii (18.5 %, 10/54) and S. dysenteriae (7.4 %, 4/54). Only three isolates were pan-susceptible, and 87 % (47/54) of the isolates had multidrug resistance phenotypes. Notably, 27.8 % (15/54) of the isolates were resistant to third-generation cephalosporins (3GCs) and 77.8 % (42/54) were resistant to nalidixic acid. 3GC resistance was mediated by the extended-spectrum beta-lactamase genes bla CTX-M-15 and bla CTX-M-3, which were present on various plasmids. Quinolone resistance was conferred by single point mutations in the gyrA DNA gyrase gene, leading to GyrA S83L, GyrA D87Y or GyrA S83A amino acid substitutions. This is the first study, to our knowledge, to provide genomic insights into the serotypes of Shigella circulating in Lebanon and the various antimicrobial resistance determinants carried by these strains.
Collapse
Affiliation(s)
- Iman Yassine
- Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, Paris, F-75015, France
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
- Present address: Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Maria Pardos de la Gandara
- Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, Paris, F-75015, France
| | - Marwan Osman
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Laetitia Fabre
- Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, Paris, F-75015, France
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - François-Xavier Weill
- Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, Paris, F-75015, France
| |
Collapse
|
18
|
Alphonse N, Odendall C. Animal models of shigellosis: a historical overview. Curr Opin Immunol 2023; 85:102399. [PMID: 37952487 DOI: 10.1016/j.coi.2023.102399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Shigella spp. are major causative agents of bacillary dysentery, a severe enteric disease characterized by destruction and inflammation of the colonic epithelium accompanied by acute diarrhea, fever, and abdominal pain. Although antibiotics have traditionally been effective, the prevalence of multidrug-resistant strains is increasing, stressing the urgent need for a vaccine. The human-specific nature of shigellosis and the absence of a dependable animal model have posed significant obstacles in understanding Shigella pathogenesis and the host immune response, both of which are crucial for the development of an effective vaccine. Efforts have been made over time to develop a physiological model that mimics the pathological features of the human disease with limited success until the recent development of genetically modified mouse models. In this review, we provide an overview of Shigella pathogenesis and chronicle the historical development of various shigellosis models, emphasizing their strengths and weaknesses.
Collapse
Affiliation(s)
- Noémie Alphonse
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK; Immunoregulation Laboratory, Francis Crick Institute, London, UK.
| | - Charlotte Odendall
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
19
|
Gestels Z, Manoharan-Basil SS, Kenyon C. Doxycycline post exposure prophylaxis could select for cross-resistance to other antimicrobials in various pathogens: An in silico analysis. Int J STD AIDS 2023; 34:962-968. [PMID: 37466467 DOI: 10.1177/09564624231190108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
BACKGROUND A number of randomized controlled trials have found that doxycycline post exposure prophylaxis (PEP) can reduce the incidence of gonorrhoea, chlamydia and syphilis in men who have sex with men (MSM). If tetracycline resistance is associated with resistance to other antimicrobials in a range of bacterial species, then doxycycline PEP could have the unintended effect of selecting for resistance to other antimicrobials in these bacterial species. METHODS Antimicrobial susceptibility data were retrieved from two sources: pubMLST (https://pubmlst.org/) and Pathogenwatch (https://pathogen.watch/) for the following bacterial pathogens: Klebsiella pneumoniae, Salmonella enterica subsp. Enterica serovar Typhi, Campylobacter jejuni, Staphylococcus aureus, Streptococcus pneumoniae and Streptococcus pyogenes. We assessed if tetracycline resistance was associated with resistance to six relevant antimicrobials. RESULTS We found evidence of cross resistance to various antimicrobials in all six bacterial species assessed. Cross resistance was found in 4 of 5 antimicrobials for K. pneumoniae, 1 of 2 for C. jejuni, 3 of 5 for S. enterica subsp. Enterica serovar Typhi, 5 of 5 for S. aureus, 5 of 6 for S. pneumoniae and 2 of 3 for S. pyogenes. These associations include a higher prevalence of methicillin resistance in tetracycline resistant S. aureus, penicillin resistance in S. pneumoniae, macrolide and clindamycin resistance in S. pyogenes, fluoroquinolone resistance in S. enterica subsp. Enterica serovar Typhi and third-generation cephalosporin resistance in K. pneumoniae. CONCLUSION These results suggest that studies evaluating the effects of doxycycline PEP should include the effects of doxycycline on resistance not only to doxycycline but also to other antimicrobials and in a broader array of bacterial species than has been included in doxycycline PEP studies thus far.
Collapse
Affiliation(s)
- Zina Gestels
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Chris Kenyon
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
20
|
Yang C, Xiang Y, Qiu S. Resistance in Enteric Shigella and nontyphoidal Salmonella : emerging concepts. Curr Opin Infect Dis 2023; 36:360-365. [PMID: 37594001 PMCID: PMC10487366 DOI: 10.1097/qco.0000000000000960] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
PURPOSE OF REVIEW The emergence of globally resistant enteric Shigella and nontyphoidal Salmonella strains (NTS) has limited the selection of effective drugs, which has become a major challenge for the treatment of infections. The purpose of this review is to provide the current opinion on the antimicrobial-resistant enteric Shigella and nontyphoidal Salmonella . RECENT FINDINGS Enteric Shigella and NTS are resistant to almost all classes of antimicrobials in recent years. Those with co-resistance to ciprofloxacin, azithromycin and ceftriaxone, the first-line antibiotics for the treatment of infectious diarrhoea have emerged worldwide. Some of them have caused interregional and international spread by travel, trade, MSM, and polluted water sources. Several strains have even developed resistance to colistin, the last-resort antibiotic used for treatment of multidrug-resistant Gram-negative bacteria infections. SUMMARY The drug resistance of enteric Shigella and NTS is largely driven by the use of antibiotics and horizontal gene transfer of mobile genetic elements. These two species show various drug resistance patterns in different regions and serotypes. Hence treatment decisions for Shigella and Salmonella infections need to take into consideration prevalent antimicrobial drug resistance patterns. It is worth noting that the resistance genes such as blaCTX,mph, ermB , qnr and mcr , which can cause resistance to ciprofloxacin, cephalosporin, azithromycin and colistin are widespread because of transmission by IncFII, IncI1, IncI2 and IncB/O/K/Z plasmids. Therefore, continuous global monitoring of resistance in Shigella and Salmonella is imperative.
Collapse
Affiliation(s)
- Chaojie Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | | | | |
Collapse
|
21
|
Kenyon C, Gestels Z, Vanbaelen T, Abdellati S, Van Den Bossche D, De Baetselier I, Xavier BB, Manoharan-Basil SS. Doxycycline PEP can induce doxycycline resistance in Klebsiella pneumoniae in a Galleria mellonella model of PEP. Front Microbiol 2023; 14:1208014. [PMID: 37711686 PMCID: PMC10498386 DOI: 10.3389/fmicb.2023.1208014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/03/2023] [Indexed: 09/16/2023] Open
Abstract
Background Four randomized controlled trials have now established that doxycycline post exposure (sex) prophylaxis (PEP) can reduce the incidence of chlamydia and syphilis in men who have sex with men. These studies have concluded that the risk of selecting for antimicrobial resistance is low. We evaluated this risk in vitro and in vivo using a Galleria mellonella infection model. Methods We evaluated how long it took for doxycycline resistance to emerge during passage on doxycycline containing agar plates in 4 species - Escherichia coli, Klebsiella pneumoniae, Neisseria gonorrhoeae and Neisseria subflava. We then assessed if K. pneumoniae could acquire resistance to doxycycline (and cross resistance to other antimicrobials) during intermittent exposure to doxycycline in a Galleria mellonella model of doxycycline PEP. Results In our passage experiments, we found that resistance first emerged in K. pneumoniae. By day 7 the K. pneumoniae MIC had increased from 2 mg/L to a median of 96 mg/L (IQR 64-96). Under various simulations of doxycycline PEP in the G. mellonella model, the doxycycline MIC of K. pneumoniae increased from 2 mg/L to 48 mg/L (IQR 48-84). Ceftriaxone and ciprofloxacin MICs increased over ten-fold. Whole genome sequencing revealed acquired mutations in ramR which regulates the expression of the AcrAB-TolC efflux pump. Conclusion Doxycycline PEP can select for doxycycline, ceftriaxone and ciprofloxacin resistance in K. pneumoniae in a G. mellonella model. The emergent ramR mutations were similar to those seen in circulating strains of K. pneumoniae. These findings suggest that we need to assess the effect of doxycycline PEP on resistance induction on a broader range of bacterial species than has hitherto been the case.
Collapse
Affiliation(s)
- Chris Kenyon
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, South Africa
| | - Zina Gestels
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Thibaut Vanbaelen
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Said Abdellati
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Dorien Van Den Bossche
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Irith De Baetselier
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Basil Britto Xavier
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Hospital Outbreak Support Team-HOST, Ziekenhuis Netwerk Antwerpen Middelheim, Antwerp, Belgium
| | | |
Collapse
|
22
|
Haidar-Ahmad N, Manigat FO, Silué N, Pontier SM, Campbell-Valois FX. A Tale about Shigella: Evolution, Plasmid, and Virulence. Microorganisms 2023; 11:1709. [PMID: 37512882 PMCID: PMC10383432 DOI: 10.3390/microorganisms11071709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Shigella spp. cause hundreds of millions of intestinal infections each year. They target the mucosa of the human colon and are an important model of intracellular bacterial pathogenesis. Shigella is a pathovar of Escherichia coli that is characterized by the presence of a large invasion plasmid, pINV, which encodes the characteristic type III secretion system and icsA used for cytosol invasion and cell-to-cell spread, respectively. First, we review recent advances in the genetic aspects of Shigella, shedding light on its evolutionary history within the E. coli lineage and its relationship to the acquisition of pINV. We then discuss recent insights into the processes that allow for the maintenance of pINV. Finally, we describe the role of the transcription activators VirF, VirB, and MxiE in the major virulence gene regulatory cascades that control the expression of the type III secretion system and icsA. This provides an opportunity to examine the interplay between these pINV-encoded transcriptional activators and numerous chromosome-encoded factors that modulate their activity. Finally, we discuss novel chromosomal genes icaR, icaT, and yccE that are regulated by MxiE. This review emphasizes the notion that Shigella and E. coli have walked the fine line between commensalism and pathogenesis for much of their history.
Collapse
Affiliation(s)
- Nathaline Haidar-Ahmad
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - France Ourida Manigat
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Navoun Silué
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Stéphanie M Pontier
- Centre de Recherche Santé Environnementale et Biodiversité de l'Outaouais (SEBO), CEGEP de l'Outaouais, Gatineau, QC J8Y 6M4, Canada
| | - François-Xavier Campbell-Valois
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Centre for Infection, Immunity and Inflammation, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
23
|
Boero E, Vezzani G, Micoli F, Pizza M, Rossi O. Functional assays to evaluate antibody-mediated responses against Shigella: a review. Front Cell Infect Microbiol 2023; 13:1171213. [PMID: 37260708 PMCID: PMC10227456 DOI: 10.3389/fcimb.2023.1171213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023] Open
Abstract
Shigella is a major global pathogen and the etiological agent of shigellosis, a diarrheal disease that primarily affects low- and middle-income countries. Shigellosis is characterized by a complex, multistep pathogenesis during which bacteria use multiple invasion proteins to manipulate and invade the intestinal epithelium. Antibodies, especially against the O-antigen and some invasion proteins, play a protective role as titres against specific antigens inversely correlate with disease severity; however, the context of antibody action during pathogenesis remains to be elucidated, especially with Shigella being mostly an intracellular pathogen. In the absence of a correlate of protection, functional assays rebuilding salient moments of Shigella pathogenesis can improve our understanding of the role of protective antibodies in blocking infection and disease. In vitro assays are important tools to build correlates of protection. Only recently animal models to recapitulate human pathogenesis, often not in full, have been established. This review aims to discuss in vitro assays to evaluate the functionality of anti-Shigella antibodies in polyclonal sera in light of the multistep and multifaced Shigella infection process. Indeed, measurement of antibody level alone may limit the evaluation of full vaccine potential. Serum bactericidal assay (SBA), and other functional assays such as opsonophagocytic killing assays (OPKA), and adhesion/invasion inhibition assays (AIA), are instead physiologically relevant and may provide important information regarding the role played by these effector mechanisms in protective immunity. Ultimately, the review aims at providing scientists in the field with new points of view regarding the significance of functional assays of choice which may be more representative of immune-mediated protection mechanisms.
Collapse
Affiliation(s)
- Elena Boero
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Giacomo Vezzani
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Mariagrazia Pizza
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| |
Collapse
|