1
|
Dai Y, Tian X, Ye X, Gong Y, Xu L, Jiao L. Role of the TME in immune checkpoint blockade resistance of non-small cell lung cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:52. [PMID: 39802954 PMCID: PMC11724356 DOI: 10.20517/cdr.2024.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Primary and secondary resistance to immune checkpoint blockade (ICB) reduces its efficacy. The mechanisms underlying immunotherapy resistance are highly complex. In non-small cell lung cancer (NSCLC), these mechanisms are primarily associated with the loss of programmed cell death-ligand 1 (PD-L1) expression, genetic mutations, circular RNA axis and transcription factor regulation, antigen presentation disorders, and dysregulation of signaling pathways. Additionally, alterations in the tumor microenvironment (TME) play a pivotal role in driving immunotherapy resistance. Primary resistance is mainly attributed to TME alterations, including mutations and co-mutations, modulation of T cell infiltration, enrichment of M2 tumor-associated macrophages (M2-TAMs) and mucosal-associated invariant T (MAIT) cells, vascular endothelial growth factor (VEGF), and pulmonary fibrosis. Acquired resistance mainly stems from changes in cellular infiltration patterns leading to "cold" or "hot" tumors, altered interferon (IFN) signaling pathway expression, involvement of extracellular vesicles (EVs), and oxidative stress responses, as well as post-treatment gene mutations and circadian rhythm disruption (CRD). This review presents an overview of various mechanisms underlying resistance to ICB, elucidates the alterations in the TME during primary, adaptive, and acquired resistance, and discusses existing strategies for overcoming ICB resistance.
Collapse
Affiliation(s)
- Yuening Dai
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xueqi Tian
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xuanting Ye
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yabin Gong
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ling Xu
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Translational Cancer Research for Integrated Chinese and Western Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Lijing Jiao
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Translational Cancer Research for Integrated Chinese and Western Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
2
|
Li H, Liu J, Zhang L, Xu Y, Wang X, Lan S, Cui P, Wang G, Cai S, Cheng Y. Mutation-guided chemotherapy-free strategy in first-line immunotherapy for low PD-L1-expressing non-squamous NSCLC. J Immunother Cancer 2024; 12:e009693. [PMID: 39615893 PMCID: PMC11624766 DOI: 10.1136/jitc-2024-009693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/05/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND The necessity of platinum-doublet chemotherapy in first-line immunotherapy for non-squamous non-small cell lung cancer (nsqNSCLC) with programmed death-ligand 1 (PD-L1) expression on less than 50% of tumor cells remains poorly investigated. Biomarkers predicting this necessity can guide chemotherapy-free treatment to minimize unnecessary toxicity. METHODS Treated with immune checkpoint inhibitor monotherapy (ICI-mono), chemotherapy, or combination (ICI-chemo), 790 low PD-L1-expressing nsqNSCLCs (in-house: n=83; public: n=707) were analyzed for development and validation of the interaction score for additional chemotherapy (ISAC). Transcriptomic (public, n=11) and multiplex immunofluorescence data (in-house, n=100) were analyzed to evaluate the immune microenvironment. RESULTS ICI-chemo, compared with ICI-mono, tended to prolong progression-free survival (PFS; HR=0.72, p=0.004) and overall survival (OS; HR=0.77, p=0.071) as first-line therapy in low PD-L1-expressing nsqNSCLCs. The added value of chemotherapy was observed in the ISAC-low subgroup (PFS: HR=0.48, p<0.001; OS: HR=0.53, p=0.001) rather than the ISAC-high subgroup (PFS: HR=1.08, p=0.65; OS: HR=1.14, p=0.56). This predictive utility was independent of tumor mutational burden and PD-L1 expression, indicated by subgroup and multivariable analyses. A high ISAC was associated with adaptive immune resistance reflected by more proinflammatory (eg, CD8+ T cells and M1 macrophages) rather than anti-inflammatory tumor-infiltrating immune cells (eg, M2 macrophages) and high expression of immune checkpoints except for PD-L1 (eg, programmed cell death protein-1). CONCLUSION A high ISAC was identified as a significant predictor for virtually no added value of platinum-doublet chemotherapy for first-line ICI treatment in low PD-L1-expressing nsqNSCLC. Our findings may help refine personalized therapeutic strategies for nsqNSCLC, thereby improving efficacy and reducing undue toxicity.
Collapse
Affiliation(s)
- Hui Li
- Translational Oncology Research Lab, Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun, Jilin, China
| | - Jingjing Liu
- Department of Thoracic Oncology, Jilin Cancer Hospital, Changchun, Jilin, China
| | - Liang Zhang
- Oncology Department, Jilin Cancer Hospital, Changchun, Jilin, China
| | - Yu Xu
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | - Xinyue Wang
- Postdoctoral Research Workstation, Jilin Cancer Hospital, Changchun, Jilin, China
| | - Shaowei Lan
- Translational Oncology Research Lab, Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun, Jilin, China
| | - Peng Cui
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | | | - Shangli Cai
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | - Ying Cheng
- Department of Thoracic Oncology, Jilin Cancer Hospital, Changchun, Jilin, China
| |
Collapse
|
3
|
Ćeriman Krstić V, Samardžić N, Gajić M, Savić M, Šeha B, Roksandić Milenković M, Jovanović D. Treatment Options for Patients with Non-Small Cell Lung Cancer and Liver Metastases. Curr Issues Mol Biol 2024; 46:13443-13455. [PMID: 39727930 PMCID: PMC11726995 DOI: 10.3390/cimb46120802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Lung cancer represents the most common cause of cancer-related death. Patients with non-small cell lung cancer (NSCLC) and liver metastases have worse prognosis, with an overall survival (OS) from three to six months. The majority of them have a poor response to chemotherapy, and the data are controversial regarding the response to immunotherapy. This could be because the liver is considered to be an immune-tolerant organ, which is characterized by T-cell anergy and immunosuppressive signals. This review evaluates current treatment options for patients with NSCLC and liver metastases. Combination therapies might be a better treatment option for this subgroup of patients. The addition of radiotherapy to immunotherapy could also be an option in selected patients. The resection of single liver metastasis should also be considered.
Collapse
Affiliation(s)
- Vesna Ćeriman Krstić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Clinic for Pulmonology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (N.S.); (M.G.)
| | - Natalija Samardžić
- Clinic for Pulmonology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (N.S.); (M.G.)
| | - Milija Gajić
- Clinic for Pulmonology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (N.S.); (M.G.)
| | - Milan Savić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Clinic for Thoracic Surgery, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Biljana Šeha
- Clinic for Neurosurgery, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | | | | |
Collapse
|
4
|
Zhou N, Leung CH, William Jr. WN, Weissferdt A, Pataer A, Godoy MCB, Carter BW, Fossella FV, Tsao AS, Blumenschein GR, Le X, Zhang J, Skoulidis F, Kurie JM, Altan M, Lu C, Glisson BS, Byers LA, Elamin YY, Mehran RJ, Rice DC, Walsh GL, Hofstetter WL, Roth JA, Tran HT, Wu J, Solis Soto LM, Kadara H, Swisher SG, Vaporciyan AA, Gibbons DL, Lin HY, Lee JJ, Heymach JV, Negrao MV, Sepesi B, Cascone T. Impact of select actionable genomic alterations on efficacy of neoadjuvant immunotherapy in resectable non-small cell lung cancer. J Immunother Cancer 2024; 12:e009677. [PMID: 39448200 PMCID: PMC11499765 DOI: 10.1136/jitc-2024-009677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Neoadjuvant immune checkpoint inhibitors (ICIs) have improved survival outcomes compared with chemotherapy in resectable non-small cell lung cancer (NSCLC). However, the impact of actionable genomic alterations (AGAs) on the efficacy of neoadjuvant ICIs remains unclear. We report the influence of AGAs on treatment failure (TF) in patients with resectable NSCLC treated with neoadjuvant ICIs. METHODS Tumor molecular profiles were obtained from patients with stage I-IIIA resectable NSCLC (American Joint Committee on Cancer seventh edition) treated with either neoadjuvant nivolumab (N, n=23) or nivolumab+ipilimumab (NI, n=21) followed by surgery in a previously reported phase-2 randomized study (NCT03158129). TF was defined as any progression of primary lung cancer after neoadjuvant ICI therapy in patients without surgery, radiographic and/or biopsy-proven primary lung cancer recurrence after surgery, or death from possibly treatment-related complications or from primary lung cancer since randomization. Tumors with AGAs (n=12) were compared with tumors without AGAs and non-profiled squamous cell carcinomas (non-AGAs+NP SCC, n=20). RESULTS With a median follow-up of 60.2 months, the overall TF rate was 34.1% (15/44). Tumor molecular profiling was retrospectively obtained in 47.7% (21/44) of patients and select AGAs were identified in 12 patients: 5 epidermal growth factor receptor (EGFR), 2 KRAS, 1 ERBB2, and 1 BRAF mutations, 2 anaplastic lymphoma kinase (ALK) and 1 RET fusions. The median time to TF in patients with AGAs was 24.7 months (95% CI: 12.6 to 40.4), compared with not reached (95% CI: not evaluable (NE)-NE) in the non-AGAs+NP SCC group. The TF risk was higher in AGAs (HR: 5.51, 95% CI: 1.68 to 18.1), and lower in former/current smokers (HR: 0.24, 95% CI: 0.08 to 0.75). The odds of major pathological response were 4.71 (95% CI: 0.49 to 45.2) times higher in the non-AGAs+NP SCC group, and the median percentage of residual viable tumor was 72.5% in AGAs compared with 33.0% in non-AGS+NP SCC tumors. CONCLUSIONS Patients with NSCLC harboring select AGAs, including EGFR and ALK alterations, have a higher risk for TF, shorter median time to TF, and diminished pathological regression after neoadjuvant ICIs. The suboptimal efficacy of neoadjuvant chemotherapy-sparing, ICI-based regimens in this patient subset underscores the importance of tumor molecular testing prior to initiation of neoadjuvant ICI therapy in patients with resectable NSCLC.
Collapse
Affiliation(s)
- Nicolas Zhou
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cheuk H Leung
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - William N William Jr.
- Department of Thoracic and Head and Neck Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Grupo Oncoclínicas, Sao Paulo, Brazil
| | - Annikka Weissferdt
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Apar Pataer
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Myrna C B Godoy
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brett W Carter
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frank V Fossella
- Department of Thoracic and Head and Neck Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anne S Tsao
- Department of Thoracic and Head and Neck Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - George R Blumenschein
- Department of Thoracic and Head and Neck Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiuning Le
- Department of Thoracic and Head and Neck Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jianjun Zhang
- Department of Thoracic and Head and Neck Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ferdinandos Skoulidis
- Department of Thoracic and Head and Neck Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan M Kurie
- Department of Thoracic and Head and Neck Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mehmet Altan
- Department of Thoracic and Head and Neck Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Charles Lu
- Department of Thoracic and Head and Neck Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bonnie S Glisson
- Department of Thoracic and Head and Neck Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lauren A Byers
- Department of Thoracic and Head and Neck Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yasir Y Elamin
- Department of Thoracic and Head and Neck Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Reza J Mehran
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David C Rice
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Garrett L Walsh
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wayne L Hofstetter
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hai T Tran
- Department of Thoracic and Head and Neck Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jia Wu
- Department of Thoracic and Head and Neck Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Luisa M Solis Soto
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ara A Vaporciyan
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Don L Gibbons
- Department of Thoracic and Head and Neck Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Heather Y Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John V Heymach
- Department of Thoracic and Head and Neck Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marcelo V Negrao
- Department of Thoracic and Head and Neck Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Boris Sepesi
- Sarah Cannon Cancer Institute, Swedish Medical Center, Englewood, Colorado, USA
| | - Tina Cascone
- Department of Thoracic and Head and Neck Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
5
|
Hong Y, Liu J, Lu P, Chang Z, Zhang G, Ma X, Liang W, Tian Y, Xia J, Cao H, Huang J. Feasibility and tolerability of anlotinib plus PD-1 blockades as rechallenge immunotherapy in previously treated advanced ESCC: a retrospective study. Oncologist 2024:oyae245. [PMID: 39303674 DOI: 10.1093/oncolo/oyae245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/01/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Rechallenge with immune checkpoint inhibitor (ICI) seemed favorable in several tumors, but clinical experience on esophageal squamous cell carcinoma (ESCC) was scanty. This real-world study aimed to assess the feasibility and safety of anlotinib plus ICI for patients with previously ICI-treated advanced ESCC. MATERIALS AND METHODS We retrospectively identified advanced ESCC patients who received anlotinib plus ICI in the rechallenge setting for evaluation of clinical outcomes and safety. Totally 110 ICI-pretreated patients, of which 89 (80.9%) received prior first- or second-line treatment, were included from September 9, 2019, to November 30, 2022. Most patients (63.6%) discontinued initial ICI due to disease progression. RESULTS After rechallenge, median overall survival (OS) and progression-free survival (PFS) were 11.1 (95% CI, 8.6-13.7) and 5.6 (95% CI, 4.4-6.8) months, respectively; estimated OS and PFS rates at 12 months were 47.6% (95% CI, 36.8%-57.7%) and 21.4% (95% CI, 10.9%-34.2%), respectively. No complete response was reported and 21 (19.1%) patients attained partial response; the objective response rate was 19.1%. Fifty-five (50.0%) had stable disease for a disease control rate of 69.1%. Of the 21 responders, median duration of response was 6.4 months. Tendencies for longer OS were observed in patients with Eastern Cooperative Oncology Group Performance of 0 (P = .056). The incidence of grade 3 or higher treatment-related adverse events was 10.0%. CONCLUSION Anlotinib plus ICI in the rechallenge setting was promising and resulted in encouraging benefits for patients with previously ICI-treated advanced ESCC. Our findings provided preliminary but unique evidence to help select ESCC patients benefiting from this strategy. TRIAL REGISTRATION chictr.org.cn; number ChiCTR2300070777.
Collapse
Affiliation(s)
- Yonggui Hong
- Gastroenterology, Anyang Tumor Hospital, Anyang 455000, People's Republic of China
| | - Jun Liu
- Radiation Oncology Department, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200025, People's Republic of China
| | - Ping Lu
- Medical Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, People's Republic of China
| | - Zhiwei Chang
- Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Guifang Zhang
- Medical Oncology, Xinxiang Central Hospital, Xinxiang 453700, People's Republic of China
| | - Xiumei Ma
- Radiation Oncology, Renji Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai 200127, People's Republic of China
| | - Wei Liang
- Radiation Oncology, Huixian People's Hospital, Xinxiang 453000, People's Republic of China
| | - Yongjing Tian
- Thoracic surgery, Nanyang Central Hospital, Nanyang 473000, People's Republic of China
| | - Jin Xia
- Department of Oncology and Palliative Care, Anyang Tumor Hospital, Anyang 455000, People's Republic of China
| | - Heng Cao
- Gastroenterology, Anyang Tumor Hospital, Anyang 455000, People's Republic of China
| | - Jing Huang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| |
Collapse
|
6
|
Zhao J, Wang L, Zhou A, Wen S, Fang W, Zhang L, Duan J, Bai H, Zhong J, Wan R, Sun B, Zhuang W, Lin Y, He D, Cui L, Wang Z, Wang J. Decision model for durable clinical benefit from front- or late-line immunotherapy alone or with chemotherapy in non-small cell lung cancer. MED 2024; 5:981-997.e4. [PMID: 38781965 DOI: 10.1016/j.medj.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Predictive biomarkers and models of immune checkpoint inhibitors (ICIs) have been extensively studied in non-small cell lung cancer (NSCLC). However, evidence for many biomarkers remains inconclusive, and the opaqueness of machine learning models hinders practicality. We aimed to provide compelling evidence for biomarkers and develop a transparent decision tree model. METHODS We consolidated data from 3,288 ICI-treated patients with NSCLC across real-world multicenter, public cohorts and the Choice-01 trial (ClinicalTrials.gov: NCT03856411). Over 50 features were examined for predicting durable clinical benefits (DCBs) from ICIs. Noteworthy biomarkers were identified to establish a decision tree model. Additionally, we explored the tumor microenvironment and peripheral CD8+ programmed death-1 (PD-1)+ T cell receptor (TCR) profiles. FINDINGS Multivariate logistic regression analysis identified tumor histology, PD-ligand 1 (PD-L1) expression, tumor mutational burden, line, and regimen of ICI treatment as significant factors. Mutation subtypes of EGFR, KRAS, KEAP1, STK11, and disruptive TP53 mutations were associated with DCB. The decision tree (DT10) model, using the ten clinicopathological and genomic markers, showed superior performance in predicting DCB in the training set (area under the curve [AUC] = 0.82) and consistently outperformed other models in test sets. DT10-predicted-DCB patients manifested longer survival, an enriched inflamed tumor immune phenotype (67%), and higher peripheral TCR diversity, whereas the DT10-predicted-NDB (non-durable benefit) group showed an enriched desert immune phenotype (86%) and higher peripheral TCR clonality. CONCLUSIONS The model effectively predicted DCB after front-/subsequent-line ICI treatment, with or without chemotherapy, for squamous and non-squamous lung cancer, offering clinicians valuable insights into efficacy prediction using cost-effective variables. FUNDING This study was supported by the National Key R&D Program of China.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100021, China
| | - Lu Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Anda Zhou
- School of Informatics, The University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Shidi Wen
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Wenfeng Fang
- Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Li Zhang
- Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100021, China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100021, China
| | - Jia Zhong
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100021, China
| | - Rui Wan
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100021, China
| | - Boyang Sun
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100021, China
| | - Wei Zhuang
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100021, China
| | - Yiwen Lin
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100021, China
| | - Danming He
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100021, China
| | - Lina Cui
- Department of Clinical and Translational Medicine, 3D Medicines, Inc., Shanghai, China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100021, China.
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
7
|
Roussot N, Thibaudin M, Fumet JD, Daumoine S, Hampe L, Rébé C, Limagne E, Lagrange A, Herreros V, Lecuelle J, Mananet H, Ilie A, Rageot D, Boidot R, Goussot V, Comte A, Jacob P, Beltjens F, Bergeron A, Charon-Barra C, Arnould L, Derangère V, Ladoire S, Truntzer C, Ghiringhelli F. Case report: Immune response characterization of a pseudoprogression in a PD-L1-negative, TMB-low, KEAP1/STK11 co-mutated metastatic NSCLC. Front Immunol 2024; 15:1437961. [PMID: 39170614 PMCID: PMC11335479 DOI: 10.3389/fimmu.2024.1437961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
A patient with a PD-L1-negative, TMB-low, KEAP1/STK11 co-mutated metastatic non-small cell lung cancer (NSCLC) experienced a multisite radiological progression at 3 months after initiation of chemoimmunotherapy as first-line treatment for metastatic disease. After the radiological progression, while she was not undergoing treatment, the patient had spontaneous lesions shrinkage and further achieved a prolonged complete response. Genomic and transcriptomic data collected at baseline and at the time of pseudoprogression allowed us to biologically characterize this rare response pattern. We observed the presence of a tumor-specific T-cell response against tumor-specific neoantigens (TNAs). Endogenous retroviruses (ERVs) expression following chemoimmunotherapy was also observed, concurrent with biological features of an anti-viral-like innate immune response with type I IFN signaling and production of CXCR3-associated chemokines. This is the first biological characterization of a NSCLC pseudoprogression under chemoimmunotherapy followed by a prolonged complete response in a PD-L1-negative, TMB-low, KEAP1/STK11 co-mutated NSCLC. These clinical and biological data underline that even patients with multiple factors of resistance to immune checkpoint inhibitors could trigger a tumor-specific immune response to tumor neoantigen, leading to complete eradication of the tumor and probably a vaccinal immune response.
Collapse
Affiliation(s)
- Nicolas Roussot
- Unité Formation Recherche (UFR) des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Equipe Therapies and Immune Response in Cancers (TIRECS), Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| | - Marion Thibaudin
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Equipe Therapies and Immune Response in Cancers (TIRECS), Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Jean-David Fumet
- Unité Formation Recherche (UFR) des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Equipe Therapies and Immune Response in Cancers (TIRECS), Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| | - Susy Daumoine
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Equipe Therapies and Immune Response in Cancers (TIRECS), Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Léa Hampe
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Equipe Therapies and Immune Response in Cancers (TIRECS), Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Cédric Rébé
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Equipe Therapies and Immune Response in Cancers (TIRECS), Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Emeric Limagne
- Unité Formation Recherche (UFR) des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Equipe Therapies and Immune Response in Cancers (TIRECS), Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Aurélie Lagrange
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| | - Victor Herreros
- Department of Interventional Radiology, Centre Georges-François Leclerc, Dijon, France
| | - Julie Lecuelle
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Equipe Therapies and Immune Response in Cancers (TIRECS), Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Hugo Mananet
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Equipe Therapies and Immune Response in Cancers (TIRECS), Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Alis Ilie
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Equipe Therapies and Immune Response in Cancers (TIRECS), Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - David Rageot
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Equipe Therapies and Immune Response in Cancers (TIRECS), Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Romain Boidot
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Equipe Therapies and Immune Response in Cancers (TIRECS), Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Vincent Goussot
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
| | - Anthony Comte
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
| | - Pierre Jacob
- Unité Formation Recherche (UFR) des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Equipe Therapies and Immune Response in Cancers (TIRECS), Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| | - Françoise Beltjens
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
| | - Anthony Bergeron
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
| | - Céline Charon-Barra
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
| | - Laurent Arnould
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
| | - Valentin Derangère
- Unité Formation Recherche (UFR) des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Equipe Therapies and Immune Response in Cancers (TIRECS), Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Sylvain Ladoire
- Unité Formation Recherche (UFR) des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Equipe Therapies and Immune Response in Cancers (TIRECS), Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| | - Caroline Truntzer
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Equipe Therapies and Immune Response in Cancers (TIRECS), Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - François Ghiringhelli
- Unité Formation Recherche (UFR) des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Equipe Therapies and Immune Response in Cancers (TIRECS), Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| |
Collapse
|
8
|
Ikezawa Y, Morita R, Mizugaki H, Tateishi K, Yokoo K, Sumi T, Kikuchi H, Kitamura Y, Nakamura A, Kobayashi M, Aso M, Kimura N, Yoshiike F, Megumi F, Tanaka H, Sekikawa M, Hachiya T, Nakamura K, Hommura F, Sukoh N, Ito K, Kikuchi T, Agatsuma T, Yokouchi H. Real-world first-line treatment with pembrolizumab for non-small cell lung carcinoma with high PD-L1 expression: Updated analysis. Cancer Med 2024; 13:e70036. [PMID: 39030894 PMCID: PMC11258199 DOI: 10.1002/cam4.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND Selecting pembrolizumab monotherapy (MONO) or pembrolizumab plus platinum-based chemotherapy (COMB) for patients with nonsmall cell lung cancer (NSCLC) and high programmed death-ligand 1 (PD-L1) expression is an important issue in clinical practice. We previously conducted a retrospective multicenter observational study of patients with NSCLC and high PD-L1 expression who received MONO or COMB as a first-line treatment. Here, we report updated data and evaluate the long-term outcomes. METHODS We performed a retrospective multicenter study of 298 patients with NSCLC and high PD-L1 expression who received MONO or COMB as first-line treatment between December 2018 and January 2020. We reviewed the medical records and assessed the clinical efficacy and toxicity using a prolonged data cutoff. RESULTS In total, 164 (median age: 74 years) and 134 (median age: 68 years) patients received MONO and COMB, respectively; patients who received COMB were younger and had better performance statuses (0-1). At the prolonged data cutoff, the median follow-up was 20.2 (range: 0.1-41.4) months. The median progression-free survivals were 7.5 and 13.1 months, and overall survivals (OSs) were 17.2 and 33.7 months for MONO and COMB, respectively. Treatment discontinuation rates were 21.9% and 20.1% for the MONO and COMB, respectively. With prolonged follow-up, although COMB demonstrated an OS benefit and higher objective response rate than MONO, in the propensity score matching analysis COMB didn't demonstrate a significant benefit compared to the MONO. CONCLUSIONS COMB may be effective as a first-line treatment for NSCLC with high PD-L1 expression in a selected subset of patients.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Non-Small-Cell Lung/metabolism
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Male
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Lung Neoplasms/mortality
- Lung Neoplasms/metabolism
- Female
- Aged
- B7-H1 Antigen/metabolism
- Retrospective Studies
- Middle Aged
- Aged, 80 and over
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Adult
- Treatment Outcome
- Antineoplastic Agents, Immunological/therapeutic use
Collapse
Affiliation(s)
- Yasuyuki Ikezawa
- Department of Respiratory MedicineOji General HospitalTomakomaiJapan
- Department of Respiratory Medicine, Faculty of MedicineHokkaido UniversitySapporoJapan
| | - Ryo Morita
- Department of Respiratory MedicineAkita Kousei Medical CenterAkitaJapan
| | - Hidenori Mizugaki
- Department of Respiratory MedicineNational Hospital Organization Hokkaido Cancer CenterSapporoJapan
- Department of Advanced Medical DevelopmentThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Kazunari Tateishi
- First Department of Internal MedicineShinshu University School of MedicineMatsumotoJapan
| | - Keiki Yokoo
- Department of Respiratory MedicineTeine Keijinkai HospitalSapporoJapan
| | - Toshiyuki Sumi
- Department of Respiratory MedicineHakodate Goryoukaku HospitalHakodateJapan
| | - Hajime Kikuchi
- Department of Respiratory MedicineObihiro‐Kousei General HospitalObihiroJapan
| | - Yasuo Kitamura
- Department of Respiratory MedicineKushiro City General HospitalKushiroJapan
| | - Atsushi Nakamura
- Department of Pulmonary MedicineSendai Kousei General HospitalSendaiJapan
| | - Maki Kobayashi
- Department of Respiratory MedicineMiyagi Cancer CenterNatoriJapan
| | - Mari Aso
- Department of Respiratory MedicineYamagata Prefectural Central HospitalYamagataJapan
| | - Nozomu Kimura
- Department of Respiratory MedicineTohoku University Graduate School of MedicineSendaiJapan
| | - Fumiaki Yoshiike
- Department of Respiratory MedicineNagano Municipal HospitalNaganoJapan
| | - Furuta Megumi
- Department of Respiratory Medicine, Faculty of MedicineHokkaido UniversitySapporoJapan
| | - Hisashi Tanaka
- Department of Respiratory MedicineHirosaki University, Graduate School of MedicineHirosakiJapan
| | - Motoki Sekikawa
- Department of Respiratory MedicineSteel Memorial Muroran HospitalMuroranJapan
| | - Tsutomu Hachiya
- Department of Respiratory MedicineJapanese Red Cross Suwa HospitalSuwaJapan
| | - Keiichi Nakamura
- Department of Respiratory MedicineNational Hospital Organization Asahikawa Medical CenterAsahikawaJapan
| | - Fumihiro Hommura
- Department of Respiratory MedicineSapporo City General HospitalSapporoJapan
| | - Noriaki Sukoh
- Department of Respiratory MedicineNational Hospital Organization Hokkaido Medical CenterSapporoJapan
| | - Kenichiro Ito
- Department of Respiratory MedicineKKR Sapporo Medical CenterSapporoJapan
| | - Takashi Kikuchi
- Department of Respiratory MedicineIwate Prefecture Isawa HospitalOshuJapan
| | | | - Hiroshi Yokouchi
- Department of Respiratory MedicineNational Hospital Organization Hokkaido Cancer CenterSapporoJapan
| |
Collapse
|
9
|
Yang M, Shulkin N, Gonzalez E, Castillo J, Yan C, Zhang K, Arvanitis L, Borok Z, Wallace WD, Raz D, Torres ETR, Marconett CN. Cell of origin alters myeloid-mediated immunosuppression in lung adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599651. [PMID: 38948812 PMCID: PMC11213232 DOI: 10.1101/2024.06.19.599651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Solid carcinomas are often highly heterogenous cancers, arising from multiple epithelial cells of origin. Yet, how the cell of origin influences the response of the tumor microenvironment is poorly understood. Lung adenocarcinoma (LUAD) arises in the distal alveolar epithelium which is populated primarily by alveolar epithelial type I (AT1) and type II (AT2) cells. It has been previously reported that Gramd2 + AT1 cells can give rise to a histologically-defined LUAD that is distinct in pathology and transcriptomic identity from that arising from Sftpc + AT2 cells1,2. To determine how cells of origin influence the tumor immune microenvironment (TIME) landscape, we comprehensively characterized transcriptomic, molecular, and cellular states within the TIME of Gramd2 + AT1 and Sftpc + AT2-derived LUAD using KRASG12D oncogenic driver mouse models. Myeloid cells within the Gramd2 + AT1-derived LUAD TIME were increased, specifically, immunoreactive monocytes and tumor associated macrophages (TAMs). In contrast, the Sftpc + AT2 LUAD TIME was enriched for Arginase-1+ myeloid derived suppressor cells (MDSC) and TAMs expressing profiles suggestive of immunosuppressive function. Validation of immune infiltration was performed using flow cytometry, and intercellular interaction analysis between the cells of origin and major myeloid cell populations indicated that cell-type specific markers SFTPD in AT2 cells and CAV1 in AT1 cells mediated unique interactions with myeloid cells of the differential immunosuppressive states within each cell of origin mouse model. Taken together, Gramd2 + AT1-derived LUAD presents with an anti-tumor, immunoreactive TIME, while the TIME of Sftpc + AT2-derived LUAD has hallmarks of immunosuppression. This study suggests that LUAD cell of origin influences the composition and suppression status of the TIME landscape and may hold critical implications for patient response to immunotherapy.
Collapse
Affiliation(s)
- Minxiao Yang
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA USA 91010
- Department of Surgery, University of Southern California, Los Angeles, CA USA 90089
- Department of Translational Genomics, University of Southern California, Los Angeles, CA USA 90089
| | - Noah Shulkin
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA USA 91010
| | - Edgar Gonzalez
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA USA 90089
| | - Jonathan Castillo
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA USA 91010
| | - Chunli Yan
- Department of Surgery, University of Southern California, Los Angeles, CA USA 90089
| | - Keqiang Zhang
- Division of Thoracic Surgery, Department of Surgery, City of Hope National Medical Center, City of Hope, Duarte, CA USA 91010
| | - Leonidas Arvanitis
- Department of Pathology, City of Hope National Medical Center, City of Hope, Duarte, CA USA 91010
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA USA 92093
| | - W. Dean Wallace
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA USA 90089
| | - Dan Raz
- Division of Thoracic Surgery, Department of Surgery, City of Hope National Medical Center, City of Hope, Duarte, CA USA 91010
| | - Evanthia T. Roussos Torres
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA USA 90089
| | - Crystal N. Marconett
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA USA 91010
- Department of Surgery, University of Southern California, Los Angeles, CA USA 90089
- Department of Translational Genomics, University of Southern California, Los Angeles, CA USA 90089
| |
Collapse
|
10
|
SUN T, CHEN Z, WEI K, TANG H. [Research Progress on Predictive Biomarkers of Immunotherapy Efficacy
in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:459-465. [PMID: 39026497 PMCID: PMC11258652 DOI: 10.3779/j.issn.1009-3419.2024.106.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Indexed: 07/20/2024]
Abstract
Lung cancer is one of the most common malignant tumors in the world, of which non-small cell lung cancer (NSCLC) is the majority. The emergence of immune checkpoint inhibitors (ICIs) has greatly changed the treatment strategy of NSCLC and improved the prognosis of patients. However, in reality, only a small number of patients can achieve long-term benefit. Therefore, the identification of reliable predictive biomarkers is essential for the selection of treatment modalities. With the development of molecular biology and genome sequencing technology in recent years, as well as the in-depth understanding of tumor and its host immune microenvironment, research on biomarkers has emerged in an endless stream. This review focuses on the predictive biomarkers of immunotherapy efficacy in NSCLC, in order to provide some guidance for precision immunotherapy.
.
Collapse
|
11
|
Zhang C, Shao J, Tang X, Wu J, Li P, Li W, Wang C. The real-world treatment characteristic and efficacy of immune checkpoint inhibitors in non-small cell lung cancer: Data from a retrospective cohort study. Int Immunopharmacol 2024; 134:112152. [PMID: 38761777 DOI: 10.1016/j.intimp.2024.112152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND The efficacy and prognosis of immune checkpoint inhibitors (ICIs) remain unresolved issues. Here, we assessed the treatment characteristics and efficacy of ICIs in non-small cell lung cancer (NSCLC) using real-world data and evaluated the predictive value of factors, including programmed death-ligand 1 (PD-L1) expression, for the clinical outcome of ICIs in NSCLC. METHODS Analyzed data was collected from hospitalized patients in the West China Hospital of Sichuan University between January 2017 and March 2023. The Kaplan-Meier method was utilized for analyzing real-world progression-free survival (rwPFS), while Cox regression models was employed to access the correlation between the efficacy of immunotherapy and sociodemographic characteristics, disease information, and characteristics of ICI treatment. RESULTS A total of 545 patients were included in the retrospective study and characteristics of immunotherapy varied significantly among PD-L1 expression groups. The median rwPFS for the entire population was 9.76 months. Subgroup analyses revealed that patients with high PD-L1 expression, early TNM stage, first-line immunotherapy, EGFR wild-type and those who have not received radiotherapy and targeted therapy previously were more likely to have better rwPFS. Furthermore, multivariate Cox regression analyses identified PD-L1 expression, EGFR mutation status and previous radiotherapy as the most influential predictors of the response to ICI treatment. CONCLUSIONS This study presents the real-world experience of Chinese NSCLC patients undergoing ICI treatment, offering guidance for clinical decision-making based on various patient conditions, preferences, and indications for ICIs, through the evaluation of immunotherapy efficacy and predictors in NSCLC patients.
Collapse
Affiliation(s)
- Chenyang Zhang
- Institute of Hospital Management, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jun Shao
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Targeted Tracer Research and Development Laboratory, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Xiaolong Tang
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayang Wu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Targeted Tracer Research and Development Laboratory, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Peiyi Li
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China.
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Targeted Tracer Research and Development Laboratory, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China.
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Targeted Tracer Research and Development Laboratory, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Bartolomeo V, Cortiula F, Hendriks LEL, De Ruysscher D, Filippi AR. A Glimpse Into the Future for Unresectable Stage III Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2024; 118:1455-1460. [PMID: 38159097 DOI: 10.1016/j.ijrobp.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Affiliation(s)
- Valentina Bartolomeo
- Radiation Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Department of Radiation Oncology (Maastro Clinic), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Francesco Cortiula
- Department of Radiation Oncology (Maastro Clinic), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands; Department of Medical Oncology, Udine University Hospital, Udine, Italy
| | - Lizza E L Hendriks
- Department of Pulmonary Diseases, GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro Clinic), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Andrea R Filippi
- Radiation Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| |
Collapse
|
13
|
Tong X, Patel AS, Kim E, Li H, Chen Y, Li S, Liu S, Dilly J, Kapner KS, Zhang N, Xue Y, Hover L, Mukhopadhyay S, Sherman F, Myndzar K, Sahu P, Gao Y, Li F, Li F, Fang Z, Jin Y, Gao J, Shi M, Sinha S, Chen L, Chen Y, Kheoh T, Yang W, Yanai I, Moreira AL, Velcheti V, Neel BG, Hu L, Christensen JG, Olson P, Gao D, Zhang MQ, Aguirre AJ, Wong KK, Ji H. Adeno-to-squamous transition drives resistance to KRAS inhibition in LKB1 mutant lung cancer. Cancer Cell 2024; 42:413-428.e7. [PMID: 38402609 DOI: 10.1016/j.ccell.2024.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
KRASG12C inhibitors (adagrasib and sotorasib) have shown clinical promise in targeting KRASG12C-mutated lung cancers; however, most patients eventually develop resistance. In lung patients with adenocarcinoma with KRASG12C and STK11/LKB1 co-mutations, we find an enrichment of the squamous cell carcinoma gene signature in pre-treatment biopsies correlates with a poor response to adagrasib. Studies of Lkb1-deficient KRASG12C and KrasG12D lung cancer mouse models and organoids treated with KRAS inhibitors reveal tumors invoke a lineage plasticity program, adeno-to-squamous transition (AST), that enables resistance to KRAS inhibition. Transcriptomic and epigenomic analyses reveal ΔNp63 drives AST and modulates response to KRAS inhibition. We identify an intermediate high-plastic cell state marked by expression of an AST plasticity signature and Krt6a. Notably, expression of the AST plasticity signature and KRT6A at baseline correlates with poor adagrasib responses. These data indicate the role of AST in KRAS inhibitor resistance and provide predictive biomarkers for KRAS-targeted therapies in lung cancer.
Collapse
Affiliation(s)
- Xinyuan Tong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ayushi S Patel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Eejung Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hongjun Li
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yueqing Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Li
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Shengwu Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Julien Dilly
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Biological and biomedical sciences program, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin S Kapner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ningxia Zhang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Yun Xue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Laura Hover
- Monoceros Biosystems, LLC, San Diego, CA 92129, USA
| | - Suman Mukhopadhyay
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Fiona Sherman
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Khrystyna Myndzar
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Priyanka Sahu
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Fei Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Fuming Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Zhaoyuan Fang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yujuan Jin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Juntao Gao
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, BNRist, Tsinghua University, Beijing 100084, China
| | - Minglei Shi
- Institute of Medical Innovation, Peking University Third Hospital, Beijing 100191, China
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200120, China; Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China; West China Biomedical Big Data Center, Med-X Center for Informatics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Thian Kheoh
- Mirati Therapeutics, San Diego, CA 92121, USA
| | | | - Itai Yanai
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Institute of Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - Andre L Moreira
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Vamsidhar Velcheti
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Peter Olson
- Mirati Therapeutics, San Diego, CA 92121, USA
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Michael Q Zhang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas, Richardson, TX 75080, USA.
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200120, China.
| |
Collapse
|
14
|
Kagamu H. Immunotherapy for non-small cell lung cancer. Respir Investig 2024; 62:307-312. [PMID: 38310751 DOI: 10.1016/j.resinv.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Immune checkpoint inhibitors (ICI) bind to programmed cell death-1 (PD-1)/PD-1 ligand-1 (PD-L1) and Cytotoxic T-lymphocyte antigen-4 (CTLA-4), which suppress T-cell function and inhibit their inhibitory function, resulting in T-cell activation. ICI have been approved for a wide range of cancers, including malignant melanoma, renal cell carcinoma, non-small cell lung cancer, head and neck cancer, Hodgkin's disease, small-cell lung cancer, malignant pleural mesothelioma, gastric cancer, esophageal cancer, breast cancer, uterine cancer, and hepatocellular carcinoma, and the number of indications continues to grow. In addition to the treatment of advanced disease, the anti-tumor effect has been demonstrated across disease stages, from locally advanced disease to early-stage operative disease. The treatment of lung cancer is at the forefront of this trend and long-term durable responses and survival benefits in lung cancer have been exhibited that were unimaginable when cytotoxic anticancer agents were the only treatment options. However, treatment efficacy varies greatly from case to case, and no biomarkers have been developed to accurately predict efficacy. In this article, we discuss the past and future of ICI therapy for lung cancer, based on clinical and basic evidence accumulated to-date.
Collapse
Affiliation(s)
- Hiroshi Kagamu
- Department of Respiratory Medicine, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.
| |
Collapse
|
15
|
Qin K, Wang K, Li S, Hong L, Padmakumar P, Waree R, Hubert SM, Le X, Vokes N, Rai K, Vaporciyan A, Gibbons DL, Heymach JV, Lee JJ, Woodman SE, Chung C, Jaffray DA, Altan M, Lou Y, Zhang J. Clinical Benefit from Docetaxel +/- Ramucirumab Is Not Associated with Mutation Status in Metastatic Non-Small-Cell Lung Cancer Patients Who Progressed on Platinum Doublets and Immunotherapy. Cancers (Basel) 2024; 16:935. [PMID: 38473297 PMCID: PMC10931294 DOI: 10.3390/cancers16050935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Docetaxel +/- ramucirumab remains the standard-of-care therapy for patients with metastatic non-small-cell lung cancer (NSCLC) after progression on platinum doublets and immune checkpoint inhibitors (ICIs). The aim of our study was to investigate whether the cancer gene mutation status was associated with clinical benefits from docetaxel +/- ramucirumab. We also investigated whether platinum/taxane-based regimens offered a better clinical benefit in this patient population. A total of 454 patients were analyzed (docetaxel +/- ramucirumab n=381; platinum/taxane-based regimens n=73). Progression-free survival (PFS) and overall survival (OS) were compared among different subpopulations with different cancer gene mutations and between patients who received docetaxel +/- ramucirumab versus platinum/taxane-based regimens. Among patients who received docetaxel +/- ramucirumab, the top mutated cancer genes included TP53 (n=167), KRAS (n=127), EGFR (n=65), STK11 (n=32), ERBB2 (HER2) (n=26), etc. None of these cancer gene mutations or PD-L1 expression was associated with PFS or OS. Platinum/taxane-based regimens were associated with a significantly longer mQS (13.00 m, 95% Cl: 11.20-14.80 m versus 8.40 m, 95% Cl: 7.12-9.68 m, LogRank P=0.019) than docetaxel +/- ramcirumab. Key prognostic factors including age, histology, and performance status were not different between these two groups. In conclusion, in patients with metastatic NSCLC who have progressed on platinum doublets and ICIs, the clinical benefit from docetaxel +/- ramucirumab is not associated with the cancer gene mutation status. Platinum/taxane-based regimens may offer a superior clinical benefit over docetaxel +/- ramucirumab in this patient population.
Collapse
Affiliation(s)
- Kang Qin
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Q.); (L.H.); (R.W.); (S.M.H.); (X.L.); (N.V.); (D.L.G.); (J.V.H.); (M.A.)
| | - Kaiwen Wang
- Division of Pharmacy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Shenduo Li
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Lingzhi Hong
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Q.); (L.H.); (R.W.); (S.M.H.); (X.L.); (N.V.); (D.L.G.); (J.V.H.); (M.A.)
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Priyadharshini Padmakumar
- Department of Enterprise Data Engineering and Analytics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Rinsurongkawong Waree
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Q.); (L.H.); (R.W.); (S.M.H.); (X.L.); (N.V.); (D.L.G.); (J.V.H.); (M.A.)
| | - Shawna M. Hubert
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Q.); (L.H.); (R.W.); (S.M.H.); (X.L.); (N.V.); (D.L.G.); (J.V.H.); (M.A.)
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Q.); (L.H.); (R.W.); (S.M.H.); (X.L.); (N.V.); (D.L.G.); (J.V.H.); (M.A.)
| | - Natalie Vokes
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Q.); (L.H.); (R.W.); (S.M.H.); (X.L.); (N.V.); (D.L.G.); (J.V.H.); (M.A.)
| | - Kunal Rai
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Ara Vaporciyan
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Q.); (L.H.); (R.W.); (S.M.H.); (X.L.); (N.V.); (D.L.G.); (J.V.H.); (M.A.)
| | - John V. Heymach
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Q.); (L.H.); (R.W.); (S.M.H.); (X.L.); (N.V.); (D.L.G.); (J.V.H.); (M.A.)
| | - J. Jack Lee
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Scott E. Woodman
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Caroline Chung
- Department of Radiation Oncology and Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Institute for Data Science in Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David A. Jaffray
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Institute for Data Science in Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mehmet Altan
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Q.); (L.H.); (R.W.); (S.M.H.); (X.L.); (N.V.); (D.L.G.); (J.V.H.); (M.A.)
| | - Yanyan Lou
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Q.); (L.H.); (R.W.); (S.M.H.); (X.L.); (N.V.); (D.L.G.); (J.V.H.); (M.A.)
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
16
|
Sunaga N, Miura Y, Masuda T, Sakurai R. Role of Epiregulin in Lung Tumorigenesis and Therapeutic Resistance. Cancers (Basel) 2024; 16:710. [PMID: 38398101 PMCID: PMC10886815 DOI: 10.3390/cancers16040710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Epidermal growth factor (EGF) signaling regulates multiple cellular processes and plays an essential role in tumorigenesis. Epiregulin (EREG), a member of the EGF family, binds to the epidermal growth factor receptor (EGFR) and ErbB4, and it stimulates EGFR-related downstream pathways. Increasing evidence indicates that both the aberrant expression and oncogenic function of EREG play pivotal roles in tumor development in many human cancers, including non-small cell lung cancer (NSCLC). EREG overexpression is induced by activating mutations in the EGFR, KRAS, and BRAF and contributes to the aggressive phenotypes of NSCLC with oncogenic drivers. Recent studies have elucidated the roles of EREG in a tumor microenvironment, including the epithelial-mesenchymal transition, angiogenesis, immune evasion, and resistance to anticancer therapy. In this review, we summarized the current understanding of EREG as an oncogene and discussed its oncogenic role in lung tumorigenesis and therapeutic resistance.
Collapse
Affiliation(s)
- Noriaki Sunaga
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan; (Y.M.); (T.M.)
| | - Yosuke Miura
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan; (Y.M.); (T.M.)
| | - Tomomi Masuda
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan; (Y.M.); (T.M.)
| | - Reiko Sakurai
- Oncology Center, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
| |
Collapse
|
17
|
Deboever N, Zhang J. The opportunities and challenges of perioperative therapy of localized non-small cell lung cancer-thoughts from the KEYNOTE-671 trial. Transl Lung Cancer Res 2023; 12:2347-2352. [PMID: 38090518 PMCID: PMC10713268 DOI: 10.21037/tlcr-23-570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/08/2023] [Indexed: 02/01/2024]
Affiliation(s)
- Nathaniel Deboever
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
18
|
Fotie J, Matherne CM, Mather JB, Wroblewski JE, Johnson K, Boudreaux LG, Perez AA. The Fundamental Role of Oxime and Oxime Ether Moieties in Improving the Physicochemical and Anticancer Properties of Structurally Diverse Scaffolds. Int J Mol Sci 2023; 24:16854. [PMID: 38069175 PMCID: PMC10705934 DOI: 10.3390/ijms242316854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The present review explores the critical role of oxime and oxime ether moieties in enhancing the physicochemical and anticancer properties of structurally diverse molecular frameworks. Specific examples are carefully selected to illustrate the distinct contributions of these functional groups to general strategies for molecular design, modulation of biological activities, computational modeling, and structure-activity relationship studies. An extensive literature search was conducted across three databases, including PubMed, Google Scholar, and Scifinder, enabling us to create one of the most comprehensive overviews of how oximes and oxime ethers impact antitumor activities within a wide range of structural frameworks. This search focused on various combinations of keywords or their synonyms, related to the anticancer activity of oximes and oxime ethers, structure-activity relationships, mechanism of action, as well as molecular dynamics and docking studies. Each article was evaluated based on its scientific merit and the depth of the study, resulting in 268 cited references and more than 336 illustrative chemical structures carefully selected to support this analysis. As many previous reviews focus on one subclass of this extensive family of compounds, this report represents one of the rare and fully comprehensive assessments of the anticancer potential of this group of molecules across diverse molecular scaffolds.
Collapse
Affiliation(s)
- Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, LA 70402-0878, USA; (C.M.M.); (J.B.M.); (J.E.W.); (K.J.); (L.G.B.); (A.A.P.)
| | | | | | | | | | | | | |
Collapse
|
19
|
Tanimura K, Takeda T, Kataoka N, Yoshimura A, Nakanishi K, Yamanaka Y, Yoshioka H, Honda R, Uryu K, Fukui M, Chihara Y, Takei S, Kawachi H, Yamada T, Tamiya N, Okura N, Yamada T, Murai J, Shiotsu S, Kurata T, Takayama K. First-Line Chemoimmunotherapy versus Sequential Platinum-Based Chemotherapy Followed by Immunotherapy in Patients with Non-Small Cell Lung Cancer with ≤49% Programmed Death-Ligand 1 Expression: A Real-World Multicenter Retrospective Study. Cancers (Basel) 2023; 15:4988. [PMID: 37894357 PMCID: PMC10605814 DOI: 10.3390/cancers15204988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The long overall survival (OS) observed among patients with non-small cell lung cancer (NSCLC) with high programmed death-ligand 1 (PD-L1) expression in chemoimmunotherapy (CIT) groups in previous phase III trials suggests the limited efficacy of CIT among the subgroup with ≤49% PD-L1 expression on tumor cells. Hence, sequential treatment with first-line platinum-based chemotherapy followed by second-line immune checkpoint inhibitor treatment (SEQ) is an option. This study examined whether first-line CIT would provide better outcomes than SEQ in patients with advanced NSCLC with ≤49% PD-L1 expression. METHODS This retrospective study evaluated patients with untreated NSCLC who received first-line CIT or SEQ at nine hospitals in Japan. OS, progression-free survival (PFS), PFS-2 (the time from first-line treatment to progression to second-line treatment or death), and other related outcomes were evaluated between the CIT and SEQ groups. RESULTS Among the 305 enrolled patients, 234 eligible patients were analyzed: 165 in the CIT group and 69 in the SEQ group. The COX proportional hazards model suggested a significant interaction between PD-L1 expression and OS (p = 0.006). OS in the CIT group was significantly longer than that in the SEQ group in the 1-49% PD-L1 expression subgroup but not in the <1% PD-L1 expression subgroup. Among the subgroup with 1-49% PD-L1 expression, the CIT group exhibited longer median PFS than the SEQ group (CIT: 9.3 months (95% CI: 6.7-14.8) vs. SEQ:5.5 months (95% CI: 4.5-6.1); p < 0.001), while the median PFS in the CIT group was not statistically longer than the median PFS-2 in the SEQ group (p = 0.586). There was no significant difference between the median PFS in the CIT and SEQ groups among the <1% PD-L1 expression subgroup (p = 0.883); the median PFS-2 in the SEQ group was significantly longer than the median PFS in the CIT group (10.5 months (95% CI: 5.9-15.3) vs. 6.4 months (95% CI: 4.9-7.5); p = 0.024). CONCLUSIONS CIT is recommended for patients with NSCLC with 1-49% PD-L1 expression because it significantly improved OS and PFS compared to SEQ. CIT had limited benefits in patients with <1% PD-L1 expression, and the median PFS-2 in the SEQ group was significantly longer than the median PFS in the CIT group. These findings will help physicians select the most suitable treatment option for patients with NSCLC, considering PD-L1 expressions.
Collapse
Affiliation(s)
- Keiko Tanimura
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto 602-8026, Japan; (K.T.); (N.K.); (A.Y.)
| | - Takayuki Takeda
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto 602-8026, Japan; (K.T.); (N.K.); (A.Y.)
| | - Nobutaka Kataoka
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto 602-8026, Japan; (K.T.); (N.K.); (A.Y.)
| | - Akihiro Yoshimura
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto 602-8026, Japan; (K.T.); (N.K.); (A.Y.)
| | - Kentaro Nakanishi
- Department of Thoracic Oncology, Kansai Medical University Hospital, Hirakata 573-1191, Japan; (K.N.); (Y.Y.); (H.Y.); (T.K.)
| | - Yuta Yamanaka
- Department of Thoracic Oncology, Kansai Medical University Hospital, Hirakata 573-1191, Japan; (K.N.); (Y.Y.); (H.Y.); (T.K.)
| | - Hiroshige Yoshioka
- Department of Thoracic Oncology, Kansai Medical University Hospital, Hirakata 573-1191, Japan; (K.N.); (Y.Y.); (H.Y.); (T.K.)
| | - Ryoichi Honda
- Department of Respiratory Medicine, Asahi General Hospital, Asahi 289-2511, Japan;
| | - Kiyoaki Uryu
- Department of Respiratory Medicine, Yao Tokushukai General Hospital, Yao 581-0011, Japan;
| | - Mototaka Fukui
- Department of Respiratory Medicine, Uji-Tokushukai Medical Center, Uji 611-0041, Japan; (M.F.); (Y.C.)
| | - Yusuke Chihara
- Department of Respiratory Medicine, Uji-Tokushukai Medical Center, Uji 611-0041, Japan; (M.F.); (Y.C.)
| | - Shota Takei
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (S.T.); (H.K.); (T.Y.); (K.T.)
| | - Hayato Kawachi
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (S.T.); (H.K.); (T.Y.); (K.T.)
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (S.T.); (H.K.); (T.Y.); (K.T.)
| | - Nobuyo Tamiya
- Department of Respiratory Medicine, Rakuwakai Otowa Hospital, Kyoto 607-8062, Japan;
| | - Naoko Okura
- Department of Respiratory Medicine, Matsushita Memorial Hospital, Moriguchi 570-8540, Japan; (N.O.); (T.Y.)
| | - Takahiro Yamada
- Department of Respiratory Medicine, Matsushita Memorial Hospital, Moriguchi 570-8540, Japan; (N.O.); (T.Y.)
| | - Junji Murai
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto 605-0981, Japan; (J.M.); (S.S.)
| | - Shinsuke Shiotsu
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto 605-0981, Japan; (J.M.); (S.S.)
| | - Takayasu Kurata
- Department of Thoracic Oncology, Kansai Medical University Hospital, Hirakata 573-1191, Japan; (K.N.); (Y.Y.); (H.Y.); (T.K.)
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (S.T.); (H.K.); (T.Y.); (K.T.)
| |
Collapse
|
20
|
Boeschen M, Kuhn CK, Wirtz H, Seyfarth HJ, Frille A, Lordick F, Hacker UT, Obeck U, Stiller M, Bläker H, von Laffert M. Comparative bioinformatic analysis of KRAS, STK11 and KEAP1 (co-)mutations in non-small cell lung cancer with a special focus on KRAS G12C. Lung Cancer 2023; 184:107361. [PMID: 37699269 DOI: 10.1016/j.lungcan.2023.107361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
OBJECTIVES Mutations in STK11 (STK11MUT) and KEAP1 (KEAP1MUT) occur frequently in non-small cell lung cancer (NSCLC) and are often co-mutated with KRAS. Several studies linked the co-occurrence of KRASMUT + STK11MUT, as well as KRASMUT + KEAP1MUT to reduced response to immune checkpoint inhibitors (ICI) and even a negative impact on survival. Data focusing STK11 + KEAP1 co-mutations or the triple mutation (KRAS + STK11 + KEAP1) are scarce. The recent availability of KRAS-G12C inhibitors increases the clinical relevance of those co-mutations in KRAS-mutated NSCLC. MATERIALS AND METHODS We present a comprehensive bioinformatic analysis encompassing six datasets retrieved from cBioPortal. RESULTS Independent of the treatment, triple mutations and STK11MUT + KEAP1MUT were significantly associated with a reduced overall survival (OS). Across treatments, OS of patients with a KRAS G12C triple mutation was significantly reduced compared to patients with KRAS G12C-only. Under ICI-therapy, there was no significant difference in OS between patients harboring the KRAS G12C-only and patients with the KRAS G12C triple mutation, but a significant difference between patients harboring KRAS non-G12C and KRAS non-G12C triple mutations. Triple mutated primary tumors showed a significantly increased frequency of distant metastases to bone and adrenal glands compared to KRAS-only mutated tumors. Additionally, our drug response analysis in cancer cell lines harboring the triple mutations revealed the WNT pathway inhibitor XAV-939 as a potential future drug candidate for this mutational situation. CONCLUSION The triple mutation status may serve as a negative prognostic and predictive factor across treatments compared to KRASMUT-only. KRAS G12C generally seems to be a negative predictive marker for ICI-therapy.
Collapse
Affiliation(s)
- Myriam Boeschen
- Institute of Pathology, Leipzig University Medical Center, Liebigstraße 26, 04103 Leipzig, Germany.
| | - Christina Katharina Kuhn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Hubert Wirtz
- Department of Respiratory Medicine, Leipzig University Medical Center, Liebigstrasse 20, 04103 Leipzig
| | - Hans-Jürgen Seyfarth
- Department of Respiratory Medicine, Leipzig University Medical Center, Liebigstrasse 20, 04103 Leipzig
| | - Armin Frille
- Department of Respiratory Medicine, Leipzig University Medical Center, Liebigstrasse 20, 04103 Leipzig
| | - Florian Lordick
- Department of Medicine II, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Leipzig, Germany
| | - Ulrich T Hacker
- Department of Medicine II, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Leipzig, Germany
| | - Ulrike Obeck
- Institute of Pathology, Leipzig University Medical Center, Liebigstraße 26, 04103 Leipzig, Germany
| | - Mathias Stiller
- Institute of Pathology, Leipzig University Medical Center, Liebigstraße 26, 04103 Leipzig, Germany
| | - Hendrik Bläker
- Institute of Pathology, Leipzig University Medical Center, Liebigstraße 26, 04103 Leipzig, Germany
| | - Maximilian von Laffert
- Institute of Pathology, Leipzig University Medical Center, Liebigstraße 26, 04103 Leipzig, Germany.
| |
Collapse
|
21
|
Cerella C, Dicato M, Diederich M. Enhancing personalized immune checkpoint therapy by immune archetyping and pharmacological targeting. Pharmacol Res 2023; 196:106914. [PMID: 37714393 DOI: 10.1016/j.phrs.2023.106914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Immune checkpoint inhibitors (ICIs) are an expanding class of immunotherapeutic agents with the potential to cure cancer. Despite the outstanding clinical response in patient subsets, most individuals become refractory or develop resistance. Patient stratification and personalized immunotherapies are limited by the absence of predictive response markers. Recent findings show that dominant patterns of immune cell composition, T-cell status and heterogeneity, and spatiotemporal distribution of immune cells within the tumor microenvironment (TME) are becoming essential determinants of prognosis and therapeutic response. In this context, ICIs also function as investigational tools and proof of concept, allowing the validation of the identified mechanisms. After reviewing the current state of ICIs, this article will explore new comprehensive predictive markers for ICIs based on recent discoveries. We will discuss the recent establishment of a classification of TMEs into immune archetypes as a tool for personalized immune profiling, allowing patient stratification before ICI treatment. We will discuss the developing comprehension of T-cell diversity and its role in shaping the immune profile of patients. We describe the potential of strategies that score the mutual spatiotemporal modulation between T-cells and other cellular components of the TME. Additionally, we will provide an overview of a range of synthetic and naturally occurring or derived small molecules. We will compare compounds that were recently identified by in silico prediction to wet lab-validated drug candidates with the potential to function as ICIs and/or modulators of the cellular components of the TME.
Collapse
Affiliation(s)
- Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210 Luxembourg, Luxembourg
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|
22
|
Gray S, Ottensmeier CH. Advancing Understanding of Non-Small Cell Lung Cancer with Multiplexed Antibody-Based Spatial Imaging Technologies. Cancers (Basel) 2023; 15:4797. [PMID: 37835491 PMCID: PMC10571797 DOI: 10.3390/cancers15194797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) remains a cause of significant morbidity and mortality, despite significant advances made in its treatment using immune checkpoint inhibitors (ICIs) over the last decade; while a minority experience prolonged responses with ICIs, benefit is limited for most patients. The development of multiplexed antibody-based (MAB) spatial tissue imaging technologies has revolutionised analysis of the tumour microenvironment (TME), enabling identification of a wide range of cell types and subtypes, and analysis of the spatial relationships and interactions between them. Such study has the potential to translate into a greater understanding of treatment susceptibility and resistance, factors influencing prognosis and recurrence risk, and identification of novel therapeutic approaches and rational treatment combinations to improve patient outcomes in the clinic. Herein we review studies that have leveraged MAB technologies to deliver novel insights into the TME of NSCLC.
Collapse
Affiliation(s)
- Simon Gray
- Department of Molecular and Clinical Cancer Medicine, Faculty of Health and Life Sciences, University of Liverpool, Ashton St., Liverpool L69 3GB, UK
- Department of Medical Oncology, The Clatterbridge Cancer Centre NHS Foundation Trust, Pembroke Pl., Liverpool L7 8YA, UK
| | - Christian H. Ottensmeier
- Department of Molecular and Clinical Cancer Medicine, Faculty of Health and Life Sciences, University of Liverpool, Ashton St., Liverpool L69 3GB, UK
- Department of Medical Oncology, The Clatterbridge Cancer Centre NHS Foundation Trust, Pembroke Pl., Liverpool L7 8YA, UK
| |
Collapse
|
23
|
Al-Tashi Q, Saad MB, Sheshadri A, Wu CC, Chang JY, Al-Lazikani B, Gibbons C, Vokes NI, Zhang J, Lee JJ, Heymach JV, Jaffray D, Mirjalili S, Wu J. SwarmDeepSurv: swarm intelligence advances deep survival network for prognostic radiomics signatures in four solid cancers. PATTERNS (NEW YORK, N.Y.) 2023; 4:100777. [PMID: 37602223 PMCID: PMC10435962 DOI: 10.1016/j.patter.2023.100777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/18/2023] [Accepted: 05/26/2023] [Indexed: 08/22/2023]
Abstract
Survival models exist to study relationships between biomarkers and treatment effects. Deep learning-powered survival models supersede the classical Cox proportional hazards (CoxPH) model, but substantial performance drops were observed on high-dimensional features because of irrelevant/redundant information. To fill this gap, we proposed SwarmDeepSurv by integrating swarm intelligence algorithms with the deep survival model. Furthermore, four objective functions were designed to optimize prognostic prediction while regularizing selected feature numbers. When testing on multicenter sets (n = 1,058) of four different cancer types, SwarmDeepSurv was less prone to overfitting and achieved optimal patient risk stratification compared with popular survival modeling algorithms. Strikingly, SwarmDeepSurv selected different features compared with classical feature selection algorithms, including the least absolute shrinkage and selection operator (LASSO), with nearly no feature overlapping across these models. Taken together, SwarmDeepSurv offers an alternative approach to model relationships between radiomics features and survival endpoints, which can further extend to study other input data types including genomics.
Collapse
Affiliation(s)
- Qasem Al-Tashi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maliazurina B. Saad
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carol C. Wu
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joe Y. Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bissan Al-Lazikani
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christopher Gibbons
- Section of Patient-Centered Analytics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Natalie I. Vokes
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - J. Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John V. Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Jaffray
- Office of the Chief Technology and Digital Officer, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Seyedali Mirjalili
- Centre for Artificial Intelligence Research and Optimization, Torrens University Australia, Fortitude Valley, Brisbane, QLD 4006, Australia
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
- University Research and Innovation Center, Obuda University, 1034 Budapest, Hungary
| | - Jia Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
24
|
Gencel-Augusto J, Wu W, Bivona TG. Long Non-Coding RNAs as Emerging Targets in Lung Cancer. Cancers (Basel) 2023; 15:3135. [PMID: 37370745 DOI: 10.3390/cancers15123135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) are mRNA-like molecules that do not encode for proteins and that are longer than 200 nucleotides. LncRNAs play important biological roles in normal cell physiology and organism development. Therefore, deregulation of their activities is involved in disease processes such as cancer. Lung cancer is the leading cause of cancer-related deaths due to late stage at diagnosis, distant metastasis, and high rates of therapeutic failure. LncRNAs are emerging as important molecules in lung cancer for their oncogenic or tumor-suppressive functions. LncRNAs are highly stable in circulation, presenting an opportunity for use as non-invasive and early-stage cancer diagnostic tools. Here, we summarize the latest works providing in vivo evidence available for lncRNAs role in cancer development, therapy-induced resistance, and their potential as biomarkers for diagnosis and prognosis, with a focus on lung cancer. Additionally, we discuss current therapeutic approaches to target lncRNAs. The evidence discussed here strongly suggests that investigation of lncRNAs in lung cancer in addition to protein-coding genes will provide a holistic view of molecular mechanisms of cancer initiation, development, and progression, and could open up a new avenue for cancer treatment.
Collapse
Affiliation(s)
- Jovanka Gencel-Augusto
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
- UCSF Hellen Diller Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Wei Wu
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
- UCSF Hellen Diller Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Trever G Bivona
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
- UCSF Hellen Diller Comprehensive Cancer Center, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
25
|
Otegui N, Houry M, Arozarena I, Serrano D, Redin E, Exposito F, Leon S, Valencia K, Montuenga L, Calvo A. Cancer Cell-Intrinsic Alterations Associated with an Immunosuppressive Tumor Microenvironment and Resistance to Immunotherapy in Lung Cancer. Cancers (Basel) 2023; 15:3076. [PMID: 37370686 PMCID: PMC10295869 DOI: 10.3390/cancers15123076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the great clinical success of immunotherapy in lung cancer patients, only a small percentage of them (<40%) will benefit from this therapy alone or combined with other strategies. Cancer cell-intrinsic and cell-extrinsic mechanisms have been associated with a lack of response to immunotherapy. The present study is focused on cancer cell-intrinsic genetic, epigenetic, transcriptomic and metabolic alterations that reshape the tumor microenvironment (TME) and determine response or refractoriness to immune checkpoint inhibitors (ICIs). Mutations in KRAS, SKT11(LKB1), KEAP1 and TP53 and co-mutations of these genes are the main determinants of ICI response in non-small-cell lung cancer (NSCLC) patients. Recent insights into metabolic changes in cancer cells that impose restrictions on cytotoxic T cells and the efficacy of ICIs indicate that targeting such metabolic restrictions may favor therapeutic responses. Other emerging pathways for therapeutic interventions include epigenetic modulators and DNA damage repair (DDR) pathways, especially in small-cell lung cancer (SCLC). Therefore, the many potential pathways for enhancing the effect of ICIs suggest that, in a few years, we will have much more personalized medicine for lung cancer patients treated with immunotherapy. Such strategies could include vaccines and chimeric antigen receptor (CAR) cells.
Collapse
Affiliation(s)
- Nerea Otegui
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Maeva Houry
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Imanol Arozarena
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Cancer Signaling Unit, Navarrabiomed, University Hospital of Navarra (HUN), Public University of Navarra (UPNA), 31008 Pamplona, Spain
| | - Diego Serrano
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Esther Redin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Francisco Exposito
- Yale Cancer Center, New Haven, CT 06519, USA;
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sergio Leon
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Karmele Valencia
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| | - Luis Montuenga
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| | - Alfonso Calvo
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| |
Collapse
|
26
|
Al-Tashi Q, Saad MB, Muneer A, Qureshi R, Mirjalili S, Sheshadri A, Le X, Vokes NI, Zhang J, Wu J. Machine Learning Models for the Identification of Prognostic and Predictive Cancer Biomarkers: A Systematic Review. Int J Mol Sci 2023; 24:7781. [PMID: 37175487 PMCID: PMC10178491 DOI: 10.3390/ijms24097781] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The identification of biomarkers plays a crucial role in personalized medicine, both in the clinical and research settings. However, the contrast between predictive and prognostic biomarkers can be challenging due to the overlap between the two. A prognostic biomarker predicts the future outcome of cancer, regardless of treatment, and a predictive biomarker predicts the effectiveness of a therapeutic intervention. Misclassifying a prognostic biomarker as predictive (or vice versa) can have serious financial and personal consequences for patients. To address this issue, various statistical and machine learning approaches have been developed. The aim of this study is to present an in-depth analysis of recent advancements, trends, challenges, and future prospects in biomarker identification. A systematic search was conducted using PubMed to identify relevant studies published between 2017 and 2023. The selected studies were analyzed to better understand the concept of biomarker identification, evaluate machine learning methods, assess the level of research activity, and highlight the application of these methods in cancer research and treatment. Furthermore, existing obstacles and concerns are discussed to identify prospective research areas. We believe that this review will serve as a valuable resource for researchers, providing insights into the methods and approaches used in biomarker discovery and identifying future research opportunities.
Collapse
Affiliation(s)
- Qasem Al-Tashi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maliazurina B. Saad
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amgad Muneer
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rizwan Qureshi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Seyedali Mirjalili
- Centre for Artificial Intelligence Research and Optimization, Torrens University Australia, Fortitude Valley, Brisbane, QLD 4006, Australia
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Republic of Korea
- University Research and Innovation Center, Obuda University, 1034 Budapest, Hungary
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Natalie I. Vokes
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jia Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
27
|
Bazhenova L. Exploring the role of accessory biomarkers TMB, STK11, KEAP1, and KRAS in non-small-cell lung cancer: confused, but on a much higher level. Ann Oncol 2023; 34:327-332. [PMID: 37061249 DOI: 10.1016/j.annonc.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 04/17/2023] Open
Affiliation(s)
- L Bazhenova
- University of California San Diego Moores Cancer Center, La Jolla, USA.
| |
Collapse
|