1
|
Tan LJ, Shin S. Impact of Eating Duration on Weight Management, Sleeping Quality, and Psychological Stress: A Pilot Study. J Nutr Biochem 2024:109835. [PMID: 39701471 DOI: 10.1016/j.jnutbio.2024.109835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/09/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND The daily eating window significantly impacts weight and metabolic health, yet its ideal duration remains uncertain. METHODS Thirty-four healthy middle-aged women were randomly assigned to two intervention groups: 8-hour time-restricted eating (TRE) and 14-hour time-extended eating (EXE). Each intervention lasted 4 weeks, with a 16-day washout period before switching to the other intervention. Clinical biomarkers were collected before and after each intervention, and sleep quality was assessed using the Korean Version of the Pittsburgh Sleep Quality Index (PSQI-K). Additionally, a daily visual analogue scale (VAS) was used to evaluate psychological changes. RESULTS The TRE group experienced significant weight reduction, lower fasting plasma glucose and total serum cholesterol levels compared to the EXE group, but with an increase in systolic blood pressure. The EXE group showed improved blood pressure. The TRE group reported higher stress levels on the VAS, but the PSQI-K indicated improved sleep quality during the second intervention. CONCLUSIONS An 8-hour TRE, without calorie restriction or diet composition changes, proves more beneficial for weight management and plasma glucose control compared to the 14-hour EXE among Korean women. Implementation of this approach is recommended to be gradual to mitigate psychological fluctuations and adverse blood pressure changes.
Collapse
Affiliation(s)
- Li-Juan Tan
- Department of Critical Care Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China; Nutritional Epidemiology Laboratory, Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do 17546, South Korea
| | - Sangah Shin
- Nutritional Epidemiology Laboratory, Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do 17546, South Korea.
| |
Collapse
|
2
|
Moraes RCM, Roth JR, Mao H, Crawley SR, Xu BP, Watson JC, Melkani GC. Apolipoprotein E Induces Lipid Accumulation Through Dgat2 That Is Prevented with Time-Restricted Feeding in Drosophila. Genes (Basel) 2024; 15:1376. [PMID: 39596576 PMCID: PMC11594465 DOI: 10.3390/genes15111376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Apolipoprotein E (ApoE) is the leading genetic risk factor for late-onset Alzheimer's disease (AD), which is the leading cause of dementia worldwide. Most people have two ApoE-ε3 (ApoE3) alleles, while ApoE-ε2 (ApoE2) is protective from AD, and ApoE-ε4 (ApoE4) confers AD risk. How these alleles modulate AD risk is not clearly defined, and ApoE's role in lipid metabolism is also not fully known. Lipid droplets increase in AD. However, how ApoE contributes to lipid accumulation in the brain remains unknown. Methods: Here, we use Drosophila to study the effects of ApoE alleles on lipid accumulation in the brain and muscle in a cell-autonomous and non-cell-autonomous manner. Results: We report that pan-neuronal expression of each ApoE allele induces lipid accumulation specifically in the brain, but not in the muscle. However, this was not the case when expressed with muscle-specific drivers. ApoE2- and ApoE3-induced lipid accumulation is dependent on the expression of Dgat2, a key regulator of triacylglycerol production, while ApoE4 still induces lipid accumulation even with knock-down of Dgat2. Additionally, we find that implementation of time-restricted feeding (TRF), a dietary intervention in which food access only occurs in the active period (day), prevents ApoE-induced lipid accumulation in the brain of flies and modulates lipid metabolism genes. Conclusions: Altogether, our results demonstrate that ApoE induces lipid accumulation in the brain, that ApoE4 is unique in causing lipid accumulation independent of Dgat2, and that TRF prevents ApoE-induced lipid accumulation. These results support the idea that lipid metabolism is critical in AD, and that TRF could be a promising therapeutic approach to prevent ApoE-associated dysfunction in lipid metabolism.
Collapse
Affiliation(s)
- Ruan C. M. Moraes
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jonathan R. Roth
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hailey Mao
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Savannah R. Crawley
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Brittney P. Xu
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John C. Watson
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Girish C. Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- UAB Nathan Shock Center, 1300 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
3
|
Lenhart A, Ahsan A, McHaty M, Bergland AO. Improvement of starvation resistance via periodic fasting is genetically variable in Drosophila melanogaster. PHYSIOLOGICAL ENTOMOLOGY 2024; 49:270-278. [PMID: 39130127 PMCID: PMC11315414 DOI: 10.1111/phen.12443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/23/2024] [Indexed: 08/13/2024]
Abstract
Organisms subjected to periodic nutrient limitation early in life exhibit improvements in aspects of survival, including resistance to some environmental stressors. Recent findings indicate that forms of periodic fasting such as intermittent fasting and time restricted feeding can improve starvation resistance. However, it remains unclear to what extent this survival improvement persists across different genetic backgrounds. In this study, we examine fasting-induced starvation resistance across a broad survey of wild-derived lineages and document genetic variation within this trait. We adopt a standard dietary intervention and show improvement to starvation resistance within a common laboratory lineage, replicating previous results. Next, we examine fasting-induced starvation resistance across isofemale lines collected across latitudes and in different seasons, and among inbred lines derived from flies collected on different continents. We discover genetic variation of fasting-induced starvation resistance, and show that fasting improved starvation resistance as often as it worsened starvation resistance. Fasted flies generally showed reduced fat concentration, and their starvation survival varied with sex, season of collection, and geographic origin. While specific lineages common to the laboratory can show a specific fasting-induced phenotype, we show that this result is not consistent across genetic backgrounds, reinforcing the idea that phenotypes observed in historic laboratory strains may not be conserved across a species.
Collapse
Affiliation(s)
- Adam Lenhart
- Department of Biology, University of Virginia, Charlottesville, Virginia, 22554
| | - Ayesha Ahsan
- Department of Biology, University of Virginia, Charlottesville, Virginia, 22554
| | - Margaret McHaty
- Department of Biology, University of Virginia, Charlottesville, Virginia, 22554
| | - Alan O. Bergland
- Department of Biology, University of Virginia, Charlottesville, Virginia, 22554
| |
Collapse
|
4
|
Yin X, Tong Q, Wang J, Wei J, Qin Z, Wu Y, Zhang R, Guan B, Qiu H. The impact of altered dietary adenine concentrations on the gut microbiota in Drosophila. Front Microbiol 2024; 15:1433155. [PMID: 39161604 PMCID: PMC11330887 DOI: 10.3389/fmicb.2024.1433155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024] Open
Abstract
The gut microbiota influences host metabolism and health, impacting diseases. Research into how diet affects gut microbiome dynamics in model organisms is crucial but underexplored. Herein, we examined how dietary adenine affects uric acid levels and the gut microbiota over five generations of Drosophila melanogaster. Wild-type W1118 flies consumed diets with various adenine concentrations (GC: 0%, GL: 0.05%, and GH: 0.10%), and their gut microbiota were assessed via Illumina MiSeq sequencing. Adenine intake significantly increased uric acid levels in the GH group > the GC group. Despite no significant differences in the alpha diversity indices, there were significant disparities in the gut microbiota health index (GMHI) and dysbiosis index (MDI) among the groups. Adenine concentrations significantly altered the diversity and composition of the gut microbiota. High adenine intake correlated with increased uric acid levels and microbial population shifts, notably affecting the abundances of Proteobacteria and Firmicutes. The gut microbiota phenotypes included mobile elements, gram-positive bacteria, biofilm-forming bacteria, and gram-negative bacteria. The significantly enriched KEGG pathways included ageing, carbohydrate metabolism, and the immune system. In conclusion, adenine intake increases uric acid levels, alters gut microbiota, and affects KEGG pathways in Drosophila across generations. This study highlights the impact of dietary adenine on uric acid levels and the gut microbiota, providing insights into intergenerational nutritional effects.
Collapse
Affiliation(s)
- Xianglin Yin
- School of Basic Medical Sciences, Jiamusi University, Heilongjiang, China
- School of Public Health, Jiamusi University, Heilongjiang, China
| | - Qing Tong
- School of Biology and Agriculture, Jiamusi University, Heilongjiang, China
| | - Jingtao Wang
- School of Basic Medical Sciences, Jiamusi University, Heilongjiang, China
| | - Jinfeng Wei
- School of Public Health, Jiamusi University, Heilongjiang, China
| | - Zhenbo Qin
- School of Public Health, Jiamusi University, Heilongjiang, China
| | - Yujie Wu
- School of Public Health, Jiamusi University, Heilongjiang, China
| | - Ruidi Zhang
- School of Public Health, Jiamusi University, Heilongjiang, China
| | - Baosheng Guan
- School of Public Health, Jiamusi University, Heilongjiang, China
| | - Hongbin Qiu
- School of Basic Medical Sciences, Jiamusi University, Heilongjiang, China
- School of Public Health, Jiamusi University, Heilongjiang, China
| |
Collapse
|
5
|
Wang R, Liao Y, Deng Y, Shuang R. Unraveling the Health Benefits and Mechanisms of Time-Restricted Feeding: Beyond Caloric Restriction. Nutr Rev 2024:nuae074. [PMID: 38954563 DOI: 10.1093/nutrit/nuae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Time-restricted feeding (TRF) is a lifestyle intervention that aims to maintain a consistent daily cycle of feeding and fasting to support robust circadian rhythms. Recently, it has gained scientific, medical, and public attention due to its potential to enhance body composition, extend lifespan, and improve overall health, as well as induce autophagy and alleviate symptoms of diseases like cardiovascular diseases, type 2 diabetes, neurodegenerative diseases, cancer, and ischemic injury. However, there is still considerable debate on the primary factors that contribute to the health benefits of TRF. Despite not imposing strict limitations on calorie intake, TRF consistently led to reductions in calorie intake. Therefore, while some studies suggest that the health benefits of TRF are primarily due to caloric restriction (CR), others argue that the key advantages of TRF arise not only from CR but also from factors like the duration of fasting, the timing of the feeding period, and alignment with circadian rhythms. To elucidate the roles and mechanisms of TRF beyond CR, this review incorporates TRF studies that did not use CR, as well as TRF studies with equivalent energy intake to CR, which addresses the previous lack of comprehensive research on TRF without CR and provides a framework for future research directions.
Collapse
Affiliation(s)
- Ruhan Wang
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 43000, China
| | - Yan Deng
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| | - Rong Shuang
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| |
Collapse
|
6
|
Guo Y, Abou Daya F, Le HD, Panda S, Melkani GC. Diurnal expression of Dgat2 induced by time-restricted feeding maintains cardiac health in the Drosophila model of circadian disruption. Aging Cell 2024; 23:e14169. [PMID: 38616316 PMCID: PMC11258440 DOI: 10.1111/acel.14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/16/2024] Open
Abstract
Circadian disruption is associated with an increased risk of cardiometabolic disorders and cardiac diseases. Time-restricted feeding/eating (TRF/TRE), restricting food intake within a consistent window of the day, has shown improvements in heart function from flies and mice to humans. However, whether and how TRF still conveys cardiac benefits in the context of circadian disruption remains unclear. Here, we demonstrate that TRF sustains cardiac performance, myofibrillar organization, and regulates cardiac lipid accumulation in Drosophila when the circadian rhythm is disrupted by constant light. TRF induces oscillations in the expression of genes associated with triglyceride metabolism. In particular, TRF induces diurnal expression of diacylglycerol O-acyltransferase 2 (Dgat2), peaking during the feeding period. Heart-specific manipulation of Dgat2 modulates cardiac function and lipid droplet accumulation. Strikingly, heart-specific overexpression of human Dgat2 at ZT 0-10 significantly improves cardiac performance in flies exposed to constant light. We have demonstrated that TRF effectively attenuates cardiac decline induced by circadian disruption. Moreover, our data suggests that diurnal expression of Dgat2 induced by TRF is beneficial for heart health under circadian disruption. Overall, our findings have underscored the relevance of TRF in preserving heart health under circadian disruptions and provided potential targets, such as Dgat2, and strategies for therapeutic interventions in mitigating cardiac aging, metabolic disorders, and cardiac diseases in humans.
Collapse
Affiliation(s)
- Yiming Guo
- Department of Pathology, Division of Molecular and Cellular PathologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Farah Abou Daya
- Department of Pathology, Division of Molecular and Cellular PathologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Hiep Dinh Le
- Regulatory Biology LaboratorySalk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Satchidananda Panda
- Regulatory Biology LaboratorySalk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Girish C. Melkani
- Department of Pathology, Division of Molecular and Cellular PathologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
7
|
Melkani Y, Pant A, Guo Y, Melkani GC. Automated assessment of cardiac dynamics in aging and dilated cardiomyopathy Drosophila models using machine learning. Commun Biol 2024; 7:702. [PMID: 38849449 PMCID: PMC11161577 DOI: 10.1038/s42003-024-06371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
The Drosophila model is pivotal in deciphering the pathophysiological underpinnings of various human ailments, notably aging and cardiovascular diseases. Cutting-edge imaging techniques and physiology yield vast high-resolution videos, demanding advanced analysis methods. Our platform leverages deep learning to segment optical microscopy images of Drosophila hearts, enabling the quantification of cardiac parameters in aging and dilated cardiomyopathy (DCM). Validation using experimental datasets confirms the efficacy of our aging model. We employ two innovative approaches deep-learning video classification and machine-learning based on cardiac parameters to predict fly aging, achieving accuracies of 83.3% (AUC 0.90) and 79.1%, (AUC 0.87) respectively. Moreover, we extend our deep-learning methodology to assess cardiac dysfunction associated with the knock-down of oxoglutarate dehydrogenase (OGDH), revealing its potential in studying DCM. This versatile approach promises accelerated cardiac assays for modeling various human diseases in Drosophila and holds promise for application in animal and human cardiac physiology under diverse conditions.
Collapse
Affiliation(s)
- Yash Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Engineering Physics Department, College of Engineering, University of California, Berkeley, CA, USA
| | - Aniket Pant
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yiming Guo
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Girish C Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
8
|
Williams AS, Crown SB, Lyons SP, Koves TR, Wilson RJ, Johnson JM, Slentz DH, Kelly DP, Grimsrud PA, Zhang GF, Muoio DM. Ketone flux through BDH1 supports metabolic remodeling of skeletal and cardiac muscles in response to intermittent time-restricted feeding. Cell Metab 2024; 36:422-437.e8. [PMID: 38325337 PMCID: PMC10961007 DOI: 10.1016/j.cmet.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/20/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Time-restricted feeding (TRF) has gained attention as a dietary regimen that promotes metabolic health. This study questioned if the health benefits of an intermittent TRF (iTRF) schedule require ketone flux specifically in skeletal and cardiac muscles. Notably, we found that the ketolytic enzyme beta-hydroxybutyrate dehydrogenase 1 (BDH1) is uniquely enriched in isolated mitochondria derived from heart and red/oxidative skeletal muscles, which also have high capacity for fatty acid oxidation (FAO). Using mice with BDH1 deficiency in striated muscles, we discover that this enzyme optimizes FAO efficiency and exercise tolerance during acute fasting. Additionally, iTRF leads to robust molecular remodeling of muscle tissues, and muscle BDH1 flux does indeed play an essential role in conferring the full adaptive benefits of this regimen, including increased lean mass, mitochondrial hormesis, and metabolic rerouting of pyruvate. In sum, ketone flux enhances mitochondrial bioenergetics and supports iTRF-induced remodeling of skeletal muscle and heart.
Collapse
Affiliation(s)
- Ashley S Williams
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Scott B Crown
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Scott P Lyons
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Division of Geriatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Rebecca J Wilson
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Jordan M Johnson
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Dorothy H Slentz
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Daniel P Kelly
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Paul A Grimsrud
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Guo-Fang Zhang
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Deborah M Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
9
|
Pfefferkorn RM, Mortzfeld BM, Fink C, von Frieling J, Bossen J, Esser D, Kaleta C, Rosenstiel P, Heine H, Roeder T. Recurrent Phases of Strict Protein Limitation Inhibit Tumor Growth and Restore Lifespan in A Drosophila Intestinal Cancer Model. Aging Dis 2024; 15:226-244. [PMID: 37962464 PMCID: PMC10796089 DOI: 10.14336/ad.2023.0517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/17/2023] [Indexed: 11/15/2023] Open
Abstract
Diets that restrict caloric or protein intake offer a variety of benefits, including decreasing the incidence of cancer. However, whether such diets pose a substantial therapeutic benefit as auxiliary cancer treatments remains unclear. We determined the effects of severe protein depletion on tumorigenesis in a Drosophila melanogaster intestinal tumor model, using a human RAF gain-of-function allele. Severe and continuous protein restriction significantly reduced tumor growth but resulted in premature death. Therefore, we developed a diet in which short periods of severe protein restriction alternated cyclically with periods of complete feeding. This nutritional regime reduced tumor mass, restored gut functionality, and rescued the lifespan of oncogene-expressing flies to the levels observed in healthy flies on a continuous, fully nutritious diet. Furthermore, this diet reduced the chemotherapy-induced stem cell activity associated with tumor recurrence. Transcriptome analysis revealed long-lasting changes in the expression of key genes involved in multiple major developmental signaling pathways. Overall, the data suggest that recurrent severe protein depletion effectively mimics the health benefits of continuous protein restriction, without undesired nutritional shortcomings. This provides seminal insights into the mechanisms of the memory effect required to maintain the positive effects of protein restriction throughout the phases of a full diet. Finally, the repetitive form of strict protein restriction is an ideal strategy for adjuvant cancer therapy that is useful in many tumor contexts.
Collapse
Affiliation(s)
- Roxana M. Pfefferkorn
- Department of Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany.
| | - Benedikt M. Mortzfeld
- Department of Cell and Developmental Biology, Zoological Institute, Kiel University, Kiel, Germany.
| | - Christine Fink
- Department of Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany.
| | - Jakob von Frieling
- Department of Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany.
| | - Judith Bossen
- Department of Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany.
| | - Daniela Esser
- Department of Neuroimmunology, Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, Kiel, Germany.
| | - Christoph Kaleta
- Department Medical Systems Biology, Institute for Experimental Medicine, Kiel University, Germany.
| | - Philip Rosenstiel
- Department Molecular Cell Biology, Institute for Clinical Molecular Biology, Kiel University, Germany.
| | - Holger Heine
- Division of Innate Immunity, Research Center Borstel - Leibniz Lung Center, Borstel, Germany.
| | - Thomas Roeder
- Department of Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany.
| |
Collapse
|
10
|
Guo Y, Livelo C, Melkani G. Time-restricted feeding regulates lipid metabolism under metabolic challenges. Bioessays 2023; 45:e2300157. [PMID: 37850554 PMCID: PMC10841423 DOI: 10.1002/bies.202300157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
Dysregulation of lipid metabolism is a commonly observed feature associated with metabolic syndrome and leads to the development of negative health outcomes such as obesity, diabetes mellitus, non-alcoholic fatty liver disease, or atherosclerosis. Time-restricted feeding/eating (TRF/TRE), an emerging dietary intervention, has been shown to promote pleiotropic health benefits including the alteration of diurnal expression of genes associated with lipid metabolism, as well as levels of lipid species. Although TRF likely induces a response in multiple organs leading to the modulation of lipid metabolism, a majority of the studies related to TRF effects on lipids have focused only on individual tissues, and furthermore there is a lack of insight into potential underlying mechanisms. In this review, we summarize the current insights regarding TRF effects on lipid metabolism and the potential mechanisms in adipose tissue, liver, skeletal muscle, and heart, and conclude by outlining possible avenues for future exploration.
Collapse
Affiliation(s)
- Yiming Guo
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christopher Livelo
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Girish Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
11
|
Alassaf M, Rajan A. Diet-induced glial insulin resistance impairs the clearance of neuronal debris in Drosophila brain. PLoS Biol 2023; 21:e3002359. [PMID: 37934726 PMCID: PMC10629620 DOI: 10.1371/journal.pbio.3002359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023] Open
Abstract
Obesity significantly increases the risk of developing neurodegenerative disorders, yet the precise mechanisms underlying this connection remain unclear. Defects in glial phagocytic function are a key feature of neurodegenerative disorders, as delayed clearance of neuronal debris can result in inflammation, neuronal death, and poor nervous system recovery. Mounting evidence indicates that glial function can affect feeding behavior, weight, and systemic metabolism, suggesting that diet may play a role in regulating glial function. While it is appreciated that glial cells are insulin sensitive, whether obesogenic diets can induce glial insulin resistance and thereby impair glial phagocytic function remains unknown. Here, using a Drosophila model, we show that a chronic obesogenic diet induces glial insulin resistance and impairs the clearance of neuronal debris. Specifically, obesogenic diet exposure down-regulates the basal and injury-induced expression of the glia-associated phagocytic receptor, Draper. Constitutive activation of systemic insulin release from Drosophila insulin-producing cells (IPCs) mimics the effect of diet-induced obesity on glial Draper expression. In contrast, genetically attenuating systemic insulin release from the IPCs rescues diet-induced glial insulin resistance and Draper expression. Significantly, we show that genetically stimulating phosphoinositide 3-kinase (Pi3k), a downstream effector of insulin receptor (IR) signaling, rescues high-sugar diet (HSD)-induced glial defects. Hence, we establish that obesogenic diets impair glial phagocytic function and delays the clearance of neuronal debris.
Collapse
Affiliation(s)
- Mroj Alassaf
- Basic Sciences Division, Fred Hutch, Seattle, Washington, United States of America
| | - Akhila Rajan
- Basic Sciences Division, Fred Hutch, Seattle, Washington, United States of America
| |
Collapse
|
12
|
Roth JR, de Moraes RCM, Xu BP, Crawley SR, Khan MA, Melkani GC. Rapamycin reduces neuronal mutant huntingtin aggregation and ameliorates locomotor performance in Drosophila. Front Aging Neurosci 2023; 15:1223911. [PMID: 37823007 PMCID: PMC10562706 DOI: 10.3389/fnagi.2023.1223911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease characterized by movement and cognitive dysfunction. HD is caused by a CAG expansion in exon 1 of the HTT gene that leads to a polyglutamine (PQ) repeat in the huntingtin protein, which aggregates in the brain and periphery. Previously, we used Drosophila models to determine that Htt-PQ aggregation in the heart causes shortened lifespan and cardiac dysfunction that is ameliorated by promoting chaperonin function or reducing oxidative stress. Here, we further study the role of neuronal mutant huntingtin and how it affects peripheral function. We overexpressed normal (Htt-PQ25) or expanded mutant (Htt-PQ72) exon 1 of huntingtin in Drosophila neurons and found that mutant huntingtin caused age-dependent Htt-PQ aggregation in the brain and could cause a loss of synapsin. To determine if this neuronal dysfunction led to peripheral dysfunction, we performed a negative geotaxis assay to measure locomotor performance and found that neuronal mutant huntingtin caused an age-dependent decrease in locomotor performance. Next, we found that rapamycin reduced Htt-PQ aggregation in the brain. These results demonstrate the role of neuronal Htt-PQ in dysfunction in models of HD, suggest that brain-periphery crosstalk could be important to the pathogenesis of HD, and show that rapamycin reduces mutant huntingtin aggregation in the brain.
Collapse
Affiliation(s)
- Jonathan R. Roth
- Department of Pathology, Cellular and Molecular Division, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ruan Carlos Macedo de Moraes
- Department of Pathology, Cellular and Molecular Division, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Brittney P. Xu
- Department of Pathology, Cellular and Molecular Division, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Savannah R. Crawley
- Department of Pathology, Cellular and Molecular Division, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Malghalara A. Khan
- Department of Pathology, Cellular and Molecular Division, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Girish C. Melkani
- Department of Pathology, Cellular and Molecular Division, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
13
|
Mihaylova MM, Chaix A, Delibegovic M, Ramsey JJ, Bass J, Melkani G, Singh R, Chen Z, Ja WW, Shirasu-Hiza M, Latimer MN, Mattison JA, Thalacker-Mercer AE, Dixit VD, Panda S, Lamming DW. When a calorie is not just a calorie: Diet quality and timing as mediators of metabolism and healthy aging. Cell Metab 2023; 35:1114-1131. [PMID: 37392742 PMCID: PMC10528391 DOI: 10.1016/j.cmet.2023.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/07/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
An epidemic of obesity has affected large portions of the world, increasing the risk of developing many different age-associated diseases, including cancer, cardiovascular disease, and diabetes. In contrast with the prevailing notion that "a calorie is just a calorie," there are clear differences, within and between individuals, in the metabolic response to different macronutrient sources. Recent findings challenge this oversimplification; calories from different macronutrient sources or consumed at different times of day have metabolic effects beyond their value as fuel. Here, we summarize discussions conducted at a recent NIH workshop that brought together experts in calorie restriction, macronutrient composition, and time-restricted feeding to discuss how dietary composition and feeding schedule impact whole-body metabolism, longevity, and healthspan. These discussions may provide insights into the long-sought molecular mechanisms engaged by calorie restriction to extend lifespan, lead to novel therapies, and potentially inform the development of a personalized food-as-medicine approach to healthy aging.
Collapse
Affiliation(s)
- Maria M Mihaylova
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA; The Ohio State University, Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, Columbus, OH, USA.
| | - Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Mirela Delibegovic
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill Health Campus, Aberdeen, UK
| | - Jon J Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Girish Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rajat Singh
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - William W Ja
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Michele Shirasu-Hiza
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | - Mary N Latimer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Anna E Thalacker-Mercer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vishwa Deep Dixit
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA; Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA; Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Satchidananda Panda
- Regulatory Biology Lab, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|