1
|
Katoh M, Fujii T, Tabuchi Y, Shimizu T, Sakai H. Negative regulation of thyroid adenoma-associated protein (THADA) in the cardiac glycoside-induced anti-cancer effect. J Physiol Sci 2025; 74:23. [PMID: 39843021 PMCID: PMC10985892 DOI: 10.1186/s12576-024-00914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Cardiac glycosides, known as inhibitors of Na+,K+-ATPase, have anti-cancer effects such as suppression of cancer cell proliferation and induction of cancer cell death. Here, we examined the signaling pathway elicited by cardiac glycosides in the human hepatocellular carcinoma HepG2 cells and human epidermoid carcinoma KB cells. Three kinds of cardiac glycosides (ouabain, oleandrin, and digoxin) inhibited the cancer cell proliferation and decreased the expression level of thyroid adenoma-associated protein (THADA). Interestingly, the knockdown of THADA inhibited cancer cell proliferation, and the proliferation was significantly rescued by re-expression of THADA in the THADA-knockdown cells. In addition, the THADA-knockdown markedly decreased the expression level of L-type amino acid transporter LAT1. Cardiac glycosides also reduced the LAT1 expression. The LAT1 inhibitor, JPH203, significantly weakened the cancer cell proliferation. These results suggest that the binding of cardiac glycosides to Na+,K+-ATPase negatively regulates the THADA-LAT1 pathway, exerting the anti-proliferative effect in cancer cells.
Collapse
Affiliation(s)
- Mizuki Katoh
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, 930-0194, Toyama, Japan
| | - Takuto Fujii
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, 930-0194, Toyama, Japan.
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, 930-0194, Toyama, Japan
| | - Takahiro Shimizu
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, 930-0194, Toyama, Japan
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, 930-0194, Toyama, Japan
| |
Collapse
|
2
|
Zhou J, Shi Y, Zhao L, Wang R, Luo L, Yin Z. γ-Glutamylcysteine restores glucolipotoxicity-induced islet β-cell apoptosis and dysfunction via inhibiting endoplasmic reticulum stress. Toxicol Appl Pharmacol 2024; 495:117206. [PMID: 39701215 DOI: 10.1016/j.taap.2024.117206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
PURPOSE The impaired function of islet β-cell is associated with the pathogenesis of type 2 diabetes mellitus (T2DM). γ-glutamylcysteine (γ-GC), an immediate precursor of glutathione (GSH), has antioxidant and neuroprotective functions. Its level has been reported to be down-regulated in hyperglycemia. However, whether γ-GC has a protective effect on islet β-cell dysfunction remains elusive. Recently, we explore the molecular mechanism by which γ-GC protects islet β-cell from glucolipotoxicity-induced dysfunction. METHODS In vivo mice models and in vitro cell models were established to examine the therapeutic effects and molecular mechanisms of γ-GC. RESULTS db mice develop impaired glucose-stimulated insulin secretion (GSIS) due to reduced islet number and damaged islet microstructure. Serious oxidative damage, apoptosis and lipid accumulation are also observed in β-cell stimulated by glucolipotoxicity. Mechanistic studies suggest that glucolipotoxicity inhibits PDX-1 nuclear translocation by inducing endoplasmic reticulum (ER) stress, which leads to impaired insulin (INS) secretion in β-cell. Nevertheless, γ-GC as an inhibitor of ER stress can alleviate the damage of islet microstructure in db mice. Importantly, γ-GC promotes INS gene expression and GSIS through driving nuclear translocation of PDX-1, thereby enhancing intracellular INS content. Moreover, treatment with γ-GC can also mitigate oxidative damage, apoptosis and lipid accumulation of β-cell, resulting in ameliorating islet β-cell dysfunction induced by glucolipotoxicity. CONCLUSION Our results support the use of γ-GC as an inhibitor of ER stress for prevention and treatment of T2DM in the future.
Collapse
Affiliation(s)
- Jinyi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Yingying Shi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Lishuang Zhao
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Rong Wang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
3
|
Carvalho LRRA, Shimari M, Boeder AM, Zhuge Z, Cai M, Leijding C, Gastaldello S, Kleschyov AL, Schiffer TA, Guimarães DD, Picozzi G, Lund LH, Fellström B, Weitzberg E, Lundberg JO, Hagberg CE, Pironti G, Andersson DC, Carlström M. A novel model of cardiovascular-kidney-metabolic syndrome combining unilateral nephrectomy and high-salt-sugar-fat diet in mice. Lab Anim (NY) 2024; 53:336-346. [PMID: 39438661 PMCID: PMC11519006 DOI: 10.1038/s41684-024-01457-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
The aim of this study was to explore biological interaction and pathophysiology mechanisms in a new mouse model of cardiovascular-kidney-metabolic (CKM) syndrome, induced by chronic moderate renal failure in combination with consumption of a customized Western diet rich in carbohydrates, fat and salt. Male C57BL/6J mice were subjected to unilateral nephrectomy, fed a customized Western diet rich not only in sugar and fat but also in salt, and followed for 12 weeks or 20 weeks. Sham-operated mice on a standard chow served as healthy controls. Body composition, weight gain, glucose metabolism, fat distribution, blood pressure, cardiac function, vascular reactivity, renal function, inflammation and mitochondrial function were measured and combined with biochemical and histopathological analyses. The novel triple-hit model of CKM syndrome showed signs and symptoms of metabolic syndrome, disturbed glucose metabolism, impaired adipocyte physiology and fat redistribution, cardiovascular dysfunction, renal damage and dysfunction, systemic inflammation, elevated blood pressure and cardiac remodeling. The pathological changes were more pronounced in mice after prolonged exposure for 20 weeks, but no deaths occurred. In the present mouse model of CKM syndrome, profound and significant metabolic, cardiac, vascular and renal dysfunctions and injuries emerged by using a Western diet rich not only in fat and carbohydrates but also in salt. This multisystem disease model could be used for mechanistic studies and the evaluation of new therapeutic strategies.
Collapse
Affiliation(s)
| | - Miho Shimari
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ariela Maína Boeder
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Zhengbing Zhuge
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Min Cai
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Leijding
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Stefano Gastaldello
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Andrei L Kleschyov
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Tomas A Schiffer
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Gaia Picozzi
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lars H Lund
- Department of Medicine, Cardiology Unit, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Bengt Fellström
- Department of Medical Science, Renal Unit, University Hospital, Uppsala, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gianluigi Pironti
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Cardiology Unit, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel C Andersson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Heart, Vascular and Neurology Theme, Cardiology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Park SY, Mun JG, Lee YS, Lee SB, Kim SJ, Jang JH, Kim HY, Hong SH, Kee JY. Inhibitory Effect of Alnustone on Survival and Lung Metastasis of Colorectal Cancer Cells. Nutrients 2024; 16:3737. [PMID: 39519569 PMCID: PMC11547205 DOI: 10.3390/nu16213737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Alnustone (Aln) is an effective compound of Alpinia katsumadae Hayata. Aln possesses various pharmacological activities such as antibacterial, anti-inflammatory, and anti-cancer effects. However, the inhibitory effect of Aln on colorectal cancer (CRC) has not yet been identified. Thus, research was conducted to clarify whether Aln can suppress the proliferative and metastatic ability of CRC cells. METHODS A cell viability assay was performed to confirm the decrease in CRC cell viability following Aln treatment. Flow cytometry was carried out to evaluate the effects of Aln on cell cycle arrest, autophagy, and apoptosis in CRC cells. In addition, a lung metastasis animal model was used to check the inhibitory effect of Aln on the metastasis of CRC cells. RESULTS Aln remarkably diminished the viability and colony-forming ability of several CRC cell lines. In addition, Aln led to a halt at the G0/G1 phase through downregulating cyclin D1-CDK4 in CRC cells. The upregulation of LC3B and p62 expression by Aln triggered autophagy of CRC cells. Moreover, Aln promoted mitochondrial depolarization, resulting in apoptosis of CRC cells. Oral administration of Aln significantly restrained the metastasized lung tumor nodules. CONCLUSIONS This study demonstrated that Aln can suppress the survival and lung metastasis of CRC cells by promoting cell cycle arrest, autophagy, and apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Seung-Heon Hong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea; (S.-Y.P.); (J.-G.M.); (Y.-S.L.); (S.-B.L.); (S.-J.K.); (J.-H.J.); (H.-Y.K.)
| | - Ji-Ye Kee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea; (S.-Y.P.); (J.-G.M.); (Y.-S.L.); (S.-B.L.); (S.-J.K.); (J.-H.J.); (H.-Y.K.)
| |
Collapse
|
5
|
Lu X, Xie Q, Pan X, Zhang R, Zhang X, Peng G, Zhang Y, Shen S, Tong N. Type 2 diabetes mellitus in adults: pathogenesis, prevention and therapy. Signal Transduct Target Ther 2024; 9:262. [PMID: 39353925 PMCID: PMC11445387 DOI: 10.1038/s41392-024-01951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/21/2024] [Accepted: 08/06/2024] [Indexed: 10/03/2024] Open
Abstract
Type 2 diabetes (T2D) is a disease characterized by heterogeneously progressive loss of islet β cell insulin secretion usually occurring after the presence of insulin resistance (IR) and it is one component of metabolic syndrome (MS), and we named it metabolic dysfunction syndrome (MDS). The pathogenesis of T2D is not fully understood, with IR and β cell dysfunction playing central roles in its pathophysiology. Dyslipidemia, hyperglycemia, along with other metabolic disorders, results in IR and/or islet β cell dysfunction via some shared pathways, such as inflammation, endoplasmic reticulum stress (ERS), oxidative stress, and ectopic lipid deposition. There is currently no cure for T2D, but it can be prevented or in remission by lifestyle intervention and/or some medication. If prevention fails, holistic and personalized management should be taken as soon as possible through timely detection and diagnosis, considering target organ protection, comorbidities, treatment goals, and other factors in reality. T2D is often accompanied by other components of MDS, such as preobesity/obesity, metabolic dysfunction associated steatotic liver disease, dyslipidemia, which usually occurs before it, and they are considered as the upstream diseases of T2D. It is more appropriate to call "diabetic complications" as "MDS-related target organ damage (TOD)", since their development involves not only hyperglycemia but also other metabolic disorders of MDS, promoting an up-to-date management philosophy. In this review, we aim to summarize the underlying mechanism, screening, diagnosis, prevention, and treatment of T2D, especially regarding the personalized selection of hypoglycemic agents and holistic management based on the concept of "MDS-related TOD".
Collapse
Affiliation(s)
- Xi Lu
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Qingxing Xie
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohui Pan
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Ruining Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyi Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Ge Peng
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Sumin Shen
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Huang D, Bai F, Hu T, Li J, Wang G, Wu C. Salvia miltiorrhiza bge. f. alba ameliorates type 2 diabetes mellitus-associated non-alcoholic fatty liver disease via the STING pathway. Am J Transl Res 2024; 16:3678-3689. [PMID: 39262750 PMCID: PMC11384384 DOI: 10.62347/xuno9933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/27/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE To elucidate the functional role and underlying mechanism of Salvia miltiorrhiza bge. f. alba (SMBFA) in patients with type 2 diabetes mellitus (T2DM) accompanied by non-alcoholic fatty liver disease (NAFLD). METHODS A retrospective analysis was conducted on 90 patients with T2DM-NAFLD who met the inclusion criteria. The control group was comprised of 45 patients treated with Fenofibrate, while the observation group consisted of 45 patients who received SMBFA in addition to the control treatment. An in vivo mouse model of T2DM-NAFLD was established using a high-fat diet combined with streptozotocin. Serum levels of fasting plasma glucose (FPG), 2-hour postprandial glucose (2h PG), hemoglobin A1c (HbA1c), homeostasis model assessment of insulin resistance (HOMA-IR), total cholesterol (TC), and triglyceride (TG) were measured in both patients and mice using an automated biochemical analyzer. Liver indices and function were also evaluated. ELISA assays were performed to quantify inflammatory cytokine levels. Western blotting was utilized to assess the protein levels related to the stimulator of interferon genes (STING)-interferon regulatory factor 3 (IRF3) pathway. RESULTS After treatment, significant reductions in blood glucose indices, HOMA-IR, lipid metabolism markers, liver function indices, and inflammatory cytokines were observed in both groups of T2DM-NAFLD patients. Notably, the decreases were more pronounced in the observation group compared to the control group. Similarly, in T2DM-NAFLD mouse models, the levels of these parameters were significantly lower in the observation group than in the normal control (NC) group. Additionally, SMBFA suppressed the elevated levels of STING, p-IRF3, and p-TANK-binding kinase 1 in the T2DM-NAFLD mice. CONCLUSION SMBFA exhibits the potential to regulate glucose and lipid metabolism, inhibit insulin resistance, and protect liver function by modulating the STING signaling pathway.
Collapse
Affiliation(s)
- Donghui Huang
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University Tai'an 271000, Shandong, China
| | - Fuyan Bai
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University Tai'an 271000, Shandong, China
| | - Tingting Hu
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University Tai'an 271000, Shandong, China
| | - Jing Li
- Department of Pediatrics, The Secondary TCM Hospital of Tai'an City Tai'an 271000, Shandong, China
| | - Guoning Wang
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University Tai'an 271000, Shandong, China
| | - Chengsheng Wu
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University Tai'an 271000, Shandong, China
| |
Collapse
|
7
|
Chen Q, Zhao X, Xu Z, Liu Y. Endoplasmic reticulum stress mechanisms and exercise intervention in type 2 diabetes mellitus. Biomed Pharmacother 2024; 177:117122. [PMID: 38991302 DOI: 10.1016/j.biopha.2024.117122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease primarily characterized by insulin resistance (IR) and insufficient insulin secretion. The unfolded protein response (UPR) overactivation induced by endoplasmic reticulum stress (ERS) appears to play a key role in this process, although the exact pathogenesis of T2DM is not fully understood. Studies have demonstrated that appropriate exercise can regulate ERS in the heart, liver, pancreas, skeletal muscle, and other body tissues leading to an improvement in diabetes and its complications. However, the exact mechanism remains unclear. By analyzing the relationship between ERS, T2DM pathology, and exercise intervention, this review concludes that exercise can increase insulin sensitivity, inhibit IR, promote insulin secretion and alleviate T2DM by regulating ERS. This paper specifically reviews the signaling pathways by which ERS induces diabetes, the mechanisms of exercise regulation of ERS in diabetes, and the varying effects of different types of exercise on diabetes improvement through ERS mechanisms. Physical exercise is an effective non-pharmacological intervention for T2DM. Thus, further exploration of how exercise regulates ERS in diabetes could refine "precision exercise medicine" for diabetes and identify new drug targets.
Collapse
Affiliation(s)
- Qianyu Chen
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Xiaoqin Zhao
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Zujie Xu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Yiyao Liu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| |
Collapse
|
8
|
Guo J, Nie J, Li D, Zhang H, Zhao T, Zhang S, Ma L, Lu J, Ji H, Li S, Tao S, Xu B. The role of NAD-dependent deacetylase sirtuin-2 in liver metabolic stress through regulating pyruvate kinase M2 ubiquitination. J Transl Med 2024; 22:656. [PMID: 39004743 PMCID: PMC11247741 DOI: 10.1186/s12967-024-05435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
NAD-dependent deacetylase Sirt2 is involved in mammalian metabolic activities, matching energy demand with energy production and expenditure, and is relevant to a variety of metabolic diseases. Here, we constructed Sirt2 knockout and adeno-associated virus overexpression mice and found that deletion of hepatic Sirt2 accelerated primary obesity and insulin resistance in mice with concomitant hepatic metabolic dysfunction. However, the key targets of Sirt2 are unknown. We identified the M2 isoform of pyruvate kinase (PKM2) as a key Sirt2 target involved in glycolysis in metabolic stress. Through yeast two-hybrid and mass spectrometry combined with multi-omics analysis, we identified candidate acetylation modification targets of Sirt2 on PKM2 lysine 135 (K135). The Sirt2-mediated deacetylation-ubiquitination switch of PKM2 regulated the development of glycolysis. Here, we found that Sirt2 deficiency led to impaired glucose tolerance and insulin resistance and induced primary obesity. Sirt2 severely disrupted liver function in mice under metabolic stress, exacerbated the metabolic burden on the liver, and affected glucose metabolism. Sirt2 underwent acetylation modification of lysine 135 of PKM2 through a histidine 187 enzyme active site-dependent effect and reduced ubiquitination of the K48 ubiquitin chain of PKM2. Our findings reveal that the hepatic glucose metabolism links nutrient state to whole-body energetics through the rhythmic regulation of Sirt2.
Collapse
Affiliation(s)
- Jingru Guo
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Junshu Nie
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongni Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huaixiu Zhang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tianrui Zhao
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shoufeng Zhang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Li Ma
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingjing Lu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hong Ji
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shize Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Sha Tao
- The University of Georgia, Athens, GA, USA
| | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China.
| |
Collapse
|
9
|
Ali SI, Elkhalifa AME, Nabi SU, Hayyat FS, Nazar M, Taifa S, Rakhshan R, Shah IH, Shaheen M, Wani IA, Muzaffer U, Shah OS, Makhdoomi DM, Ahmed EM, Khalil KAA, Bazie EA, Zawbaee KI, Al Hasan Ali MM, Alanazi RJ, Al Bataj IA, Al Gahtani SM, Salwi AJ, Alrodan LS. Aged garlic extract preserves beta-cell functioning via modulation of nuclear factor kappa-B (NF-κB)/Toll-like receptor (TLR)-4 and sarco endoplasmic reticulum calcium ATPase (SERCA)/Ca 2+ in diabetes mellitus. Diabetol Metab Syndr 2024; 16:110. [PMID: 38778421 PMCID: PMC11110209 DOI: 10.1186/s13098-024-01350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Peripheral insulin resistance and compromised insulin secretion from pancreatic β-cells are significant factors and pathogenic hallmarks of diabetes mellitus (DM). NF-κβ/TLR-4 and SERCA/Ca2+ pathways have been identified as potential pathways regulating insulin synthesis by preserving pancreatic β-cell functioning. The current study aimed to evaluate the therapeutic effect of aged garlic extract (AGE) against DM in a streptozotocin (STZ)-induced rat model with particular emphasis on pancreatic β-cell functioning. METHODS AGE was characterized by gas chromatography-mass spectrometry (GC-MS), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) to evaluate its physio-chemical characteristics followed by in-vitro anti-diabetic and antioxidant potential. This was followed by the induction of DM in laboratory animals for investigating the therapeutic action of AGE by evaluating the role of NF-κβ/TLR-4 and the SERCA/Ca2+ pathway. The parameters assessed in the present experimental setup encompassed antioxidant parameters, metabolic indicators, insulin concentration, intracellular calcium levels, apoptotic markers (CCK-8 and Caspase Glo-8), and protein expression (P-62 and APACHE-II). RESULTS AGE characterization by SEM, GC-MS, and X-ray diffraction (XRD) revealed the presence of phenylalanine, alliin, S-allylmercaptocysteine (SAMC), tryptophan, 1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid as major bioactive constituents of AGE. Metabolic studies, including intraperitoneal glucose tolerance test (IPGTT), revealed significantly lower blood glucose levels in the AGE group compared to the disease control group. In contrast, the intraperitoneal insulin tolerance test (ITT) exhibited no significant difference in insulin sensitivity between the AGE supplementation group and the DM control group. Interestingly, AGE was found to have no significant effect on fasting glucose and serum insulin levels. In contrast, AGE supplementation was found to cause significant hypoglycaemia in postprandial blood glucose and insulin levels. Importantly, AGE causes restoration of intracellular Ca2+ levels by modulation of SERCA/Ca2 functioning and inhibition NF-κB/TLR-4 pathway. AGE was found to interact with and inhibit the DR-5/ caspase-8/3 apoptotic complex. Furthermore, microscopic studies revealed degeneration and apoptotic changes in pancreatic β-cells of the DM control group, while supplementation of AGE resulted in inhibition of apoptotic pathway and regeneration of pancreatic β-cells. CONCLUSION The current study suggests that AGE enhance glucose homeostasis by exerting their effects on pancreatic β-cells, without ameliorating peripheral sensitivity. Moreover, AGEs promote an increase in β-cell mass by mitigating the apoptosis of pancreatic β-cells. These findings suggest that AGE could aid in developing a viable alternative therapy for diabetes mellitus (DM).
Collapse
Affiliation(s)
- Sofi Imtiyaz Ali
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics and Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, Jammu and Kashmir, 190006, India
| | - Ahmed M E Elkhalifa
- Department of Public Health, College of Health Sciences, Saudi Electronic University, 11673, Riyadh, Saudi Arabia.
- Department of Haematology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, 1158, Sudan.
| | - Showkat Ul Nabi
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics and Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, Jammu and Kashmir, 190006, India.
| | | | - Mehak Nazar
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics and Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, Jammu and Kashmir, 190006, India
| | - Syed Taifa
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics and Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, Jammu and Kashmir, 190006, India
| | - Rabia Rakhshan
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Iqra Hussain Shah
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics and Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, Jammu and Kashmir, 190006, India
| | - Muzaffer Shaheen
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics and Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, Jammu and Kashmir, 190006, India
| | - Imtiyaz Ahmad Wani
- Department of Endocrinology and Clinical Research, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, 190002, India
| | - Umar Muzaffer
- Department of Medicine, Govt. Medical College, Srinagar, Jammu and Kashmir, India
| | - Ovais Shabir Shah
- Department of Sheep Husbandry, Srinagar, Jammu and Kashmir, 190006, India
| | - Dil Mohammad Makhdoomi
- Directorate of Extension, Sher-E-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, Jammu and Kashmir, 190006, India
| | - Elsadig Mohamed Ahmed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Khalil A A Khalil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Elsharif A Bazie
- Pediatric Department, Faculty of Medicine, University of El Imam El Mahdi, Kosti, 1158, Sudan
| | - Khalid Ibrahim Zawbaee
- Department of Blood Bank, Autonomous University of Barcelona, Al-Ghad International College for Applied Sciences, 155166, Riyadh, Saudi Arabia
| | - Moataz Mohamed Al Hasan Ali
- Department of Pathology, Faculty of Medicine, Al-Baha University, Al-Baha, Saudi Arabia
- Department of Pathology, Faculty of Medicine, University of El Imam El Mahdi, Kosti, 1158, Sudan
| | - Rakan J Alanazi
- Department of Pharmacy Practice, College of Pharmacy, Alfaisal University, 50927, Riyadh, Saudi Arabia
| | | | - Saeed Musfar Al Gahtani
- Department of Blood Bank, College of Applied Medical Sciences, University of King Saud, 11433, Riyadh, Saudi Arabia
| | - Ali Jubran Salwi
- Department of Blood Bank, College of Applied Medical Sciences, University of King Saud, 11433, Riyadh, Saudi Arabia
| | - Lina Saeed Alrodan
- Department of Blood Bank, College of Applied Medical Sciences, University of King Saud, 11433, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Tao Y, Peng F, Wang L, Sun J, Ding Y, Xiong S, Tenzin U, MiMa, Nhamdriel T, Fan G. Ji-Ni-De-Xie ameliorates type 2 diabetes mellitus by modulating the bile acids metabolism and FXR/FGF15 signaling pathway. Front Pharmacol 2024; 15:1383896. [PMID: 38835663 PMCID: PMC11148236 DOI: 10.3389/fphar.2024.1383896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction: Ji-Ni-De-Xie (JNDX) is a traditional herbal preparation in China. It is widely used to treat type 2 diabetes mellitus (T2DM) in traditional Tibetan medicine system. However, its antidiabetic mechanisms have not been elucidated. The aim of this study is to elucidate the underlying mechanism of JNDX on bile acids (BAs) metabolism and FXR/FGF15 signaling pathway in T2DM rats. Methods: High-performance liquid chromatography-triple quadrupole mass spectrometry (HPLC-QQQ-MS) and UPLC-Q-Exactive Orbitrap MS technology were used to identify the constituents in JNDX. High-fat diet (HFD) combined with streptozotocin (45 mg∙kg-1) (STZ) was used to establish a T2DM rat model, and the levels of fasting blood-glucose (FBG), glycosylated serum protein (GSP), homeostasis model assessment of insulin resistance (HOMA-IR), LPS, TNF-α, IL-1β, IL-6, TG, TC, LDL-C, HDL-C, and insulin sensitivity index (ISI) were measured to evaluate the anti-diabetic activity of JNDX. In addition, metagenomic analysis was performed to detect changes in gut microbiota. The metabolic profile of BAs was analyzed by HPLC-QQQ-MS. Moreover, the protein and mRNA expressions of FXR and FGF15 in the colon and the protein expressions of FGF15 and CYP7A1 in the liver of T2DM rats were measured by western blot and RT-qPCR. Results: A total of 12 constituents were identified by HPLC-QQQ-MS in JNDX. Furthermore, 45 chemical components in serum were identified from JNDX via UPLC-Q-Exactive Orbitrap MS technology, including 22 prototype components and 23 metabolites. Using a T2DM rat model, we found that JNDX (0.083, 0.165 and 0.33 g/kg) reduced the levels of FBG, GSP, HOMA-IR, LPS, TNF-α, IL-1β, IL-6, TG, TC, and LDL-C, and increased ISI and HDL-C levels in T2DM rats. Metagenomic results demonstrated that JNDX treatment effectively improved gut microbiota dysbiosis, including altering some bacteria (e.g., Streptococcus and Bacteroides) associated with BAs metabolism. Additionally, JNDX improved BAs disorder in T2DM rats, especially significantly increasing cholic acid (CA) levels and decreasing ursodeoxycholic acid (UDCA) levels. Moreover, the protein and mRNA expressions of FXR and FGF15 of T2DM rats were significantly increased, while the expression of CYP7A1 protein in the liver was markedly inhibited by JNDX. Discussion: JNDX can effectively improve insulin resistance, hyperglycemia, hyperlipidemia, and inflammation in T2DM rats. The mechanism is related to its regulation of BAs metabolism and activation of FXR/FGF15 signaling pathway.
Collapse
Affiliation(s)
- Yiwen Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lijie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yin Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuangfeng Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ugen Tenzin
- Dege County Tibetan Hospital (Institute of Tibetan Medicine), Dege, China
| | - MiMa
- Department of Tibetan Medicine, University of Tibetan Medicine, Lhasa, China
| | - Tsedien Nhamdriel
- Department of Tibetan Medicine, University of Tibetan Medicine, Lhasa, China
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, China
| |
Collapse
|
11
|
Bai X, Qu H, Zhang J, Li L, Zhang C, Li S, Li G. Effect of steviol glycosides as natural sweeteners on glucose metabolism in adult participants. Food Funct 2024; 15:3908-3919. [PMID: 38512280 DOI: 10.1039/d3fo04695h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Steviol glycosides (SGs) are recognized as safe natural sweeteners; however, evidence from randomized controlled trials (RCTs) showed an inconclusive effect of SGs on glucose metabolism in adult participants. We aimed to conduct a systematic review and meta-analysis of RCTs to assess the effect of SGs on glucose metabolism. We systematically searched PubMed, Web of Science and EMBASE to include eligible RCTs. Our primary outcomes were differences between SGs and the control group with respect to changes in blood glucose from the baseline to the end of intervention (including fasting blood glucose [FBG], and HbA1c measurements). A random-effects meta-analysis was conducted for data synthesis to calculate the pooled mean difference (MD). There were twelve RCTs included for analyses with a total of 871 participants (48% females). A significant effect of SGs on FBG (MD = -4.10 mg dl-1, 95% CI -6.55 to -1.65) was found, while no significant difference in HbA1c (MD = 0.01%, 95% CI -0.12% to 0.13%) was observed between SGs and controls. The whole quality of evidence was rated as low. Subgroup analyses demonstrated favorable effects of SGs on FBG in participants aged ≤50 years, those without diabetes mellitus (DM) or hypertension at the baseline, and overweight and obese adults. Sensitivity analyses yielded results largely similar to the main findings. To conclude, SGs are found to produce significant improvement in glucose metabolism in adult participants when compared with the control. More evidence is required to further clarify and support the benefit of SGs as a sugar substitute for glucose metabolism.
Collapse
Affiliation(s)
- Xuerui Bai
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Hongying Qu
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jingyi Zhang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Likang Li
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Changfa Zhang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shuai Li
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
- Father Sean O'Sullivan Research Centre, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence, and Impact (HEI), McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
12
|
Wang Y, Gao B, Chen X, Shi X, Li S, Zhang Q, Zhang C, Piao F. Improvement of diabetes-induced spinal cord axon injury with taurine via nerve growth factor-dependent Akt/mTOR pathway. Amino Acids 2024; 56:32. [PMID: 38637413 PMCID: PMC11026277 DOI: 10.1007/s00726-024-03392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
Diabetic neuropathy (DN) is a common neurological complication caused by diabetes mellitus (DM). Axonal degeneration is generally accepted to be the major pathological change in peripheral DN. Taurine has been evidenced to be neuroprotective in various aspects, but its effect on spinal cord axon injury (SCAI) in DN remains barely reported. This study showed that taurine significantly ameliorated axonal damage of spinal cord (SC), based on morphological and functional analyses, in a rat model of DN induced by streptozotocin (STZ). Taurine was also found to induce neurite outgrowth in cultured cerebral cortex neurons with high glucose exposure. Moreover, taurine up-regulated the expression of nerve growth factor (NGF) and neurite outgrowth relative protein GAP-43 in rat DN model and cultured cortical neurons/VSC4.1 cells. Besides, taurine increased the activating phosphorylation signals of TrkA, Akt, and mTOR. Mechanistically, the neuroprotection by taurine was related to the NGF-pAKT-mTOR axis, because either NGF-neutralizing antibody or Akt or mTOR inhibitors was found to attenuate its beneficial effects. Together, our results demonstrated that taurine promotes spinal cord axon repair in a model of SCAI in STZ-induced diabetic rats, mechanistically associating with the NGF-dependent activation of Akt/mTOR pathway.
Collapse
Affiliation(s)
- Yachen Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Bihu Gao
- Department of Nephrology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaochi Chen
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Shuangyue Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Qing Zhang
- Department of Integrative Laboratory, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China.
| | - Cong Zhang
- Department of Nutrition and Food Safety, Dalian Medical University, Dalian, 116044, Liaoning, China.
| | - Fengyuan Piao
- Department of Scientific Research Project, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China.
| |
Collapse
|
13
|
Cui D, Feng X, Lei S, Zhang H, Hu W, Yang S, Yu X, Su Z. Pancreatic β-cell failure, clinical implications, and therapeutic strategies in type 2 diabetes. Chin Med J (Engl) 2024; 137:791-805. [PMID: 38479993 PMCID: PMC10997226 DOI: 10.1097/cm9.0000000000003034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Indexed: 04/06/2024] Open
Abstract
ABSTRACT Pancreatic β-cell failure due to a reduction in function and mass has been defined as a primary contributor to the progression of type 2 diabetes (T2D). Reserving insulin-producing β-cells and hence restoring insulin production are gaining attention in translational diabetes research, and β-cell replenishment has been the main focus for diabetes treatment. Significant findings in β-cell proliferation, transdifferentiation, pluripotent stem cell differentiation, and associated small molecules have served as promising strategies to regenerate β-cells. In this review, we summarize current knowledge on the mechanisms implicated in β-cell dynamic processes under physiological and diabetic conditions, in which genetic factors, age-related alterations, metabolic stresses, and compromised identity are critical factors contributing to β-cell failure in T2D. The article also focuses on recent advances in therapeutic strategies for diabetes treatment by promoting β-cell proliferation, inducing non-β-cell transdifferentiation, and reprograming stem cell differentiation. Although a significant challenge remains for each of these strategies, the recognition of the mechanisms responsible for β-cell development and mature endocrine cell plasticity and remarkable advances in the generation of exogenous β-cells from stem cells and single-cell studies pave the way for developing potential approaches to cure diabetes.
Collapse
Affiliation(s)
- Daxin Cui
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingrong Feng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siman Lei
- Clinical Translational Innovation Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongmei Zhang
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wanxin Hu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shanshan Yang
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoqian Yu
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhiguang Su
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Clinical Translational Innovation Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
14
|
Li B, Zhang Y, Zheng Y, Cai H. The mechanisms and therapeutic potential of clopidogrel in mitigating diabetic cardiomyopathy in db/db mice. iScience 2024; 27:109134. [PMID: 38375215 PMCID: PMC10875154 DOI: 10.1016/j.isci.2024.109134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Clopidogrel has been shown to play a protective role against diabetic nephropathy. However, whether clopidogrel exerts a protective effect against diabetic cardiomyopathy (DCM) is unknown. Three-month-old male db/db mice were administered clopidogrel daily at doses of 5, 10, and 20 mg/kg by gavage for 5 months. Here, we showed that clopidogrel effectively attenuated diabetes-induced cardiac hypertrophy and cardiac dysfunction by inhibiting cardiac fibrosis, inflammatory responses, and oxidative stress damage in db/db mice. Diabetes-induced cardiac fibrosis was inhibited by clopidogrel treatment via blockade of the TGF-β1/Smad3/P2RY12 pathway and inhibition of macrophage infiltration in db/db mice. The protective effects of clopidogrel against oxidative damage were mediated by the induction of the Nrf2 signaling pathway. Taken together, our findings provide strong evidence that clopidogrel is a promising effective agent for the treatment of DCM by alleviating diabetes-induced cardiac hypertrophy and dysfunction. P2RY12 might be an effective target for the treatment of DCM.
Collapse
Affiliation(s)
- Bing Li
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - Yaoting Zhang
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - Yang Zheng
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - He Cai
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
15
|
Liu C, Dou Y, Zhang M, Han S, Hu S, Li Y, Yu Z, Liu Y, Liang X, Chen ZJ, Zhao H, Zhang Y. High-fat and high-sucrose diet impairs female reproduction by altering ovarian transcriptomic and metabolic signatures. J Transl Med 2024; 22:145. [PMID: 38347623 PMCID: PMC10860219 DOI: 10.1186/s12967-024-04952-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/03/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Excessive energy intake in modern society has led to an epidemic surge in metabolic diseases, such as obesity and type 2 diabetes, posing profound threats to women's reproductive health. However, the precise impact and underlying pathogenesis of energy excess on female reproduction remain unclear. METHODS We established an obese and hyperglycemic female mouse model induced by a high-fat and high-sucrose (HFHS) diet, then reproductive phenotypes of these mice were evaluated by examing sexual hormones, estrous cycles, and ovarian morphologies. Transcriptomic and precise metabolomic analyses of the ovaries were performed to compare the molecular and metabolic changes in HFHS mice. Finally, orthogonal partial least squares discriminant analysis was performed to compare the similarities of traits between HFHS mice and women with polycystic ovary syndrome (PCOS). RESULTS The HFHS mice displayed marked reproductive dysfunctions, including elevated serum testosterone and luteinizing hormone levels, irregular estrous cycles, and impaired folliculogenesis, mimicking the clinical manifestations of women with PCOS. Precise metabolomic overview suggested that HFHS diet disrupted amino acid metabolism in the ovaries of female mice. Additionally, transcriptional profiling revealed pronounced disturbances in ovarian steroid hormone biosynthesis and glucolipid metabolism in HFHS mice. Further multi-omics analyses unveiled prominent aberration in ovarian arginine biosynthesis pathway. Notably, comparisons between HFHS mice and a cohort of PCOS patients identified analogous reproductive and metabolic signatures. CONCLUSIONS Our results provide direct in vivo evidence for the detrimental effects of overnutrition on female reproduction and offer insights into the metabolic underpinnings of PCOS.
Collapse
Affiliation(s)
- Congcong Liu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Yunde Dou
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Mengge Zhang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Shan Han
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Shourui Hu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Yuxuan Li
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Zhiheng Yu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Yue Liu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaofan Liang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Zi-Jiang Chen
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, 250012, Shandong, China
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Han Zhao
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, 250012, Shandong, China.
| | - Yuqing Zhang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, 250012, Shandong, China.
| |
Collapse
|
16
|
Son J, Accili D. Reversing pancreatic β-cell dedifferentiation in the treatment of type 2 diabetes. Exp Mol Med 2023; 55:1652-1658. [PMID: 37524865 PMCID: PMC10474037 DOI: 10.1038/s12276-023-01043-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/29/2023] [Accepted: 04/24/2023] [Indexed: 08/02/2023] Open
Abstract
The maintenance of glucose homeostasis is fundamental for survival and health. Diabetes develops when glucose homeostasis fails. Type 2 diabetes (T2D) is characterized by insulin resistance and pancreatic β-cell failure. The failure of β-cells to compensate for insulin resistance results in hyperglycemia, which in turn drives altered lipid metabolism and β-cell failure. Thus, insulin secretion by pancreatic β-cells is a primary component of glucose homeostasis. Impaired β-cell function and reduced β-cell mass are found in diabetes. Both features stem from a failure to maintain β-cell identity, which causes β-cells to dedifferentiate into nonfunctional endocrine progenitor-like cells or to trans-differentiate into other endocrine cell types. In this regard, one of the key issues in achieving disease modification is how to reestablish β-cell identity. In this review, we focus on the causes and implications of β-cell failure, as well as its potential reversibility as a T2D treatment.
Collapse
Affiliation(s)
- Jinsook Son
- Department of Medicine and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
| | - Domenico Accili
- Department of Medicine and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
17
|
Aberra YT, Ma L, Björkegren JLM, Civelek M. Predicting mechanisms of action at genetic loci associated with discordant effects on type 2 diabetes and abdominal fat accumulation. eLife 2023; 12:e79834. [PMID: 37326626 PMCID: PMC10275637 DOI: 10.7554/elife.79834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Obesity is a major risk factor for cardiovascular disease, stroke, and type 2 diabetes (T2D). Excessive accumulation of fat in the abdomen further increases T2D risk. Abdominal obesity is measured by calculating the ratio of waist-to-hip circumference adjusted for the body-mass index (WHRadjBMI), a trait with a significant genetic inheritance. Genetic loci associated with WHRadjBMI identified in genome-wide association studies are predicted to act through adipose tissues, but many of the exact molecular mechanisms underlying fat distribution and its consequences for T2D risk are poorly understood. Further, mechanisms that uncouple the genetic inheritance of abdominal obesity from T2D risk have not yet been described. Here we utilize multi-omic data to predict mechanisms of action at loci associated with discordant effects on abdominal obesity and T2D risk. We find six genetic signals in five loci associated with protection from T2D but also with increased abdominal obesity. We predict the tissues of action at these discordant loci and the likely effector Genes (eGenes) at three discordant loci, from which we predict significant involvement of adipose biology. We then evaluate the relationship between adipose gene expression of eGenes with adipogenesis, obesity, and diabetic physiological phenotypes. By integrating these analyses with prior literature, we propose models that resolve the discordant associations at two of the five loci. While experimental validation is required to validate predictions, these hypotheses provide potential mechanisms underlying T2D risk stratification within abdominal obesity.
Collapse
Affiliation(s)
- Yonathan Tamrat Aberra
- Department of Biomedical Engineering, University of VirginiaCharlottesvilleUnited States
- Center for Public Health Genomics, University of VirginiaCharlottesvilleUnited States
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Johan LM Björkegren
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine, Karolinska Institutet, HuddingeStockholmSweden
| | - Mete Civelek
- Department of Biomedical Engineering, University of VirginiaCharlottesvilleUnited States
- Center for Public Health Genomics, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
18
|
Zhang X, Duan Y, Zhang X, Jiang M, Man W, Zhang Y, Wu D, Zhang J, Song X, Li C, Lin J, Sun D. Adipsin alleviates cardiac microvascular injury in diabetic cardiomyopathy through Csk-dependent signaling mechanism. BMC Med 2023; 21:197. [PMID: 37237266 DOI: 10.1186/s12916-023-02887-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Microvascular complications are associated with an overtly increased risk of adverse outcomes in patients with diabetes including coronary microvascular injury which manifested as disruption of adherens junctions between cardiac microvascular endothelial cells (CMECs). However, particular mechanism leading to diabetic coronary microvascular hyperpermeability remains elusive. METHODS Experimental diabetes was induced in mice with adipose tissue-specific Adipsin overexpression (AdipsinLSL/LSL-Cre) and their respective control (AdipsinLSL/LSL). In addition, cultured CMECs were subjected to high glucose/palmitic acid (HG + PA) treatment to simulate diabetes for a mechanistic approach. RESULTS The results showed that Adipsin overexpression significantly reduced cardiac microvascular permeability, preserved coronary microvascular integrity, and increased coronary microvascular density. Adipsin overexpression also attenuated cardiac dysfunction in diabetic mice. E/A ratio, an indicator of cardiac diastolic function, was improved by Adipsin. Adipsin overexpression retarded left ventricular adverse remodeling, enhanced LVEF, and improved cardiac systolic function. Adipsin-enriched exosomes were taken up by CMECs, inhibited CMECs apoptosis, and increased CMECs proliferation under HG + PA treatment. Adipsin-enriched exosomes also accelerated wound healing, rescued cell migration defects, and promoted tube formation in response to HG + PA challenge. Furthermore, Adipsin-enriched exosomes maintained adherens junctions at endothelial cell borders and reversed endothelial hyperpermeability disrupted by HG + PA insult. Mechanistically, Adipsin blocked HG + PA-induced Src phosphorylation (Tyr416), VE-cadherin phosphorylation (Tyr685 and Tyr731), and VE-cadherin internalization, thus maintaining CMECs adherens junctions integrity. LC-MS/MS analysis and co-immunoprecipitation analysis (Co-IP) unveiled Csk as a direct downstream regulator of Adipsin. Csk knockdown increased Src phosphorylation (Tyr416) and VE-cadherin phosphorylation (Tyr685 and Tyr731), while abolishing Adipsin-induced inhibition of VE-cadherin internalization. Furthermore, Csk knockdown counteracted Adipsin-induced protective effects on endothelial hyperpermeability in vitro and endothelial barrier integrity of coronary microvessels in vivo. CONCLUSIONS Together, these findings favor the vital role of Adipsin in the regulation of CMECs adherens junctions integrity, revealing its promises as a treatment target against diabetic coronary microvascular dysfunction. Graphical abstract depicting the mechanisms of action behind Adipsin-induced regulation of diabetic coronary microvascular dysfunction.
Collapse
Affiliation(s)
- Xuebin Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yu Duan
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Mengyuan Jiang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wanrong Man
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yan Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dexi Wu
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiye Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xinglong Song
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|