1
|
Zhang J, Cao LNY, Li R, Yang J, Li L, Yang K, Wang ZL, Pu X. Breaking Mass Transport Limit for Hydrogen Evolution-Inhibited and Dendrite-Free Aqueous Zn Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410244. [PMID: 39506525 DOI: 10.1002/adma.202410244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/25/2024] [Indexed: 11/08/2024]
Abstract
It is commonly accepted that batteries perform better at low current densities below the mass-transport limit, which restricts their current rate and capacity. Here, it is demonstrated that the performance of Zn metal electrodes can be dramatically enhanced at current densities and cut-off capacities exceeding the mass-transport limit by using pulsed-current protocols. These protocols achieve cumulative plating/stripping capacities of 11.0 Ah cm-2 and 3.8 Ah cm-2 at record-high current densities of 80 and 160 mA cm-2, respectively. The study identifies and understands the promoted (002)-textured Zn growth and suppressed hydrogen evolution based on the thermodynamics and kinetics of competing reactions. Furthermore, the over-limiting pulsed-current protocol enables long-life Zn batteries with high mass loading (29 mgcathode cm-2) and high areal capacity (7.9 mAh cm-2), outperforming cells using constant-current protocols at equivalent energy and time costs. The work provides a comprehensive understanding of the current-capacity-performance relationship in Zn plating/stripping and offers an effective strategy for dendrite-free metal batteries that meet practical requirements for high capacity and high current rates.
Collapse
Affiliation(s)
- Jingmin Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Leo N Y Cao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rongrong Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Key Laboratory of Blue Energy and Systems Integration (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Longwei Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kai Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Key Laboratory of Blue Energy and Systems Integration (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou, 510555, P. R. China
| | - Xiong Pu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Key Laboratory of Blue Energy and Systems Integration (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
2
|
Chen Z, Wang Y, Wu Q, Wang C, He Q, Hu T, Han X, Chen J, Zhang Y, Chen J, Yang L, Wang X, Ma Y, Zhao J. Grain Boundary Filling Empowers (002)-Textured Zn Metal Anodes with Superior Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411004. [PMID: 39300904 DOI: 10.1002/adma.202411004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Aqueous Zn battery is promising for grid-level energy storage due to its high safety and low cost, but dendrite growth and side reactions at the Zn metal anode hinder its development. Designing Zn with (002) orientation improves the stability of the Zn anode, yet grain boundaries remain susceptible to corrosion and dendrite growth. Addressing these intergranular issues is crucial for enhancing the electrochemical performance of (002)-textured Zn. Here, a strategy based on grain boundary wetting to fill intergranular regions and mitigate these issues is reported. By systematically investigating boundary fillers and filling conditions, In metal is chosen as the filler, and one-step annealing is used to synergistically convert commercial Zn foils into single (002)-textured Zn while filling In into the boundaries. The inter-crystalline-modified (002)-textured Zn (IM(002) Zn) effectively inhibits corrosion and dendrite growth, resulting in excellent stability in batteries. This work offers new insights into Zn anode protection and the development of high-energy Zn batteries.
Collapse
Affiliation(s)
- Zibo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Yizhou Wang
- Materials Science and Engineering, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Qiang Wu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Cheng Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Qian He
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Tao Hu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Xuran Han
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Jialu Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Yu Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Jianyu Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xuebin Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| | - Yanwen Ma
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
- Suzhou Vocational Institute of Industrial Technology, Suzhou, 215104, P. R. China
| | - Jin Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
3
|
Zhang M, Sun C, Chen G, Kang Y, Lv Z, Yang J, Li S, Lin P, Tang R, Wen Z, Li CC, Zhao J, Yang Y. Synergetic bifunctional Cu-In alloy interface enables Ah-level Zn metal pouch cells. Nat Commun 2024; 15:9455. [PMID: 39487128 PMCID: PMC11530701 DOI: 10.1038/s41467-024-53831-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
Rechargeable aqueous zinc-metal batteries, considered as the possible post-lithium-ion battery technology for large-scale energy storage, face severe challenges such as dendrite growth and hydrogen evolution side reaction (HER) on Zn negative electrode. Herein, a three-dimensional Cu-In alloy interface is developed through a facile potential co-replacement route to realize uniform Zn nucleation and HER anticatalytic effect simultaneously. Both theoretical calculations and experimental results demonstrate that this bifunctional Cu-In alloy interface inherits the merits of low Zn-nucleation overpotential and high HER overpotential from individual copper and indium constituents, respectively. Moreover, the dynamical self-reconstruction during cycling leads to an HER-anticatalytic and zincophilic gradient hierarchical structure, enabling highly reversible Zn chemistry with dendrite-free Zn (002) deposition and inhibited HER. Moreover, the improved interface stability featured by negligible pH fluctuations in the diffusion layer and suppressed by-product formation is evidenced by in-situ scanning probe technology, Raman spectroscopy, and electrochemical gas chromatography. Consequently, the lifespan of the CuIn@Zn symmetric cell is extended to more than one year with a voltage hysteresis of 6 mV. Importantly, the CuIn@Zn negative electrode is also successfully coupled with high-loading iodine positive electrode to fabricate Ah-level (1.1 Ah) laminated pouch cell, which exhibits a capacity retention of 67.9% after 1700 cycles.
Collapse
Affiliation(s)
- Minghao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China
| | - Chenxi Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China
| | - Guanhong Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China
| | - Yuanhong Kang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China
| | - Zeheng Lv
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China
| | - Jin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China
| | - Siyang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China
| | - Pengxiang Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China
| | - Rong Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China
| | - Zhipeng Wen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, P. R. China
| | - Cheng Chao Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, P. R. China
| | - Jinbao Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China.
- State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, Xiamen, P. R. China.
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China.
- State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, Xiamen, P. R. China.
| |
Collapse
|
4
|
Zhang SJ, Hao J, Wu H, Kao CC, Chen Q, Ye C, Qiao SZ. Toward High-Energy-Density Aqueous Zinc-Iodine Batteries: Multielectron Pathways. ACS NANO 2024; 18:28557-28574. [PMID: 39383309 DOI: 10.1021/acsnano.4c10901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Aqueous zinc-iodine batteries (ZIBs) based on the reversible conversion between various iodine species have garnered global attention due to their advantages of fast redox kinetics, good reversibility, and multielectron conversion feasibility. Although significant progress has been achieved in ZIBs with the two-electron I-/I2 pathway (2eZIBs), their relatively low energy density has hindered practical application. Recently, ZIBs with four-electron I-/I2/I+ electrochemistry (4eZIBs) have shown a significant improvement in energy density. Nonetheless, the practical use of 4eZIBs is challenged by poor redox reversibility due to polyiodide shuttling during I-/I2 conversion and I+ hydrolysis during I2/I+ conversion. In this Review, we thoroughly summarize the fundamental understanding of two ZIBs, including reaction mechanisms, limitations, and improvement strategies. Importantly, we provide an intuitive evaluation on the energy density of ZIBs to assess their practical potential and highlight the critical impacts of the Zn utilization rate. Finally, we emphasize the cost issues associated with iodine electrodes and propose potential closed-loop recycling routes for sustainable energy storage with ZIBs. These findings aim to motivate the practical application of advanced ZIBs and promote sustainable global energy storage.
Collapse
Affiliation(s)
- Shao-Jian Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Junnan Hao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Han Wu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Chun-Chuan Kao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Qianru Chen
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Chao Ye
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
5
|
Pensini E, Hsiung C, Kashlan N. Potential toxic effects linked to taurine interactions with alkanolamines and diisopropylamine. DISCOVER WATER 2024; 4:86. [PMID: 39429726 PMCID: PMC11489302 DOI: 10.1007/s43832-024-00146-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Diisopropylamine (DIPA), aminomethyl propanol (AMP), amino ethoxy ethanol (AEE), diethanolamine (DEA), ethanolamine (EA), pyridine (PYR) and methyl diethanolamine (MDEA) are used for carbon capture and to sweeten sour gas, and are found in groundwater. They are also used in cosmetic products. Taurine is abundant in the body, with key biological functions linked to its charged SO groups. Interactions between SO and amines have not been studied, but can strongly affect the biological function of taurine. Fourier transform infrared spectroscopy indicates SO…HN hydrogen bonding between taurine and DIPA, AMP, AEE, DEA, EA and MDEA. These interactions induce the formation of hydrophobic amine-taurine clusters, thus decreasing amine miscibility in water, as revealed by light scattering. This effect is most marked for DIPA, leading to turbid mixtures indicative of micron-sized droplets. PYR and taurine likely interact via S…N bonding. This study offers insights regarding potential mechanisms of amine toxicity to humans. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s43832-024-00146-1.
Collapse
Affiliation(s)
- Erica Pensini
- School of Engineering, College of Engineering and Physical Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1 Canada
- Biophysics Interdepartmental Group (BIG), University of Guelph, 50 Stone Road East, Guelph, ON) N1G 2W1 Canada
| | - Caitlyn Hsiung
- School of Engineering, College of Engineering and Physical Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1 Canada
| | - Nour Kashlan
- School of Engineering, College of Engineering and Physical Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
6
|
Qin S, Zhang J, Xu M, Xu P, Zou J, Li J, Luo D, Zhang Y, Dou H, Chen Z. Formulating Self-Repairing Solid Electrolyte Interface via Dynamic Electric Double Layer for Practical Zinc Ion Batteries. Angew Chem Int Ed Engl 2024; 63:e202410422. [PMID: 39039835 DOI: 10.1002/anie.202410422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/24/2024]
Abstract
Zinc ion batteries (ZIBs) encounter interface issues stemming from the water-rich electrical double layer (EDL) and unstable solid-electrolyte interphase (SEI). Herein, we propose the dynamic EDL and self-repairing hybrid SEI for practical ZIBs via incorporating the horizontally-oriented dual-site additive. The rearrangement of distribution and molecular configuration of additive constructs the robust dynamic EDL under different interface charges. And, a self-repairing organic-inorganic hybrid SEI is constructed via the electrochemical decomposition of additive. The dynamic EDL and self-repairing SEI accelerate interfacial kinetics, regulate deposition and suppress side reactions in the both stripping and plating during long-term cycles, which affords high reversibility for 500 h at 42.7 % depth of discharge or 50 mA ⋅ cm-1. Remarkably, Zn//NVO full cells deliver the impressive cycling stability for 10000 cycles with 100 % capacity retention at 3 A ⋅ g-1 and for over 3000 cycles even at lean electrolyte (7.5 μL ⋅ mAh-1) and high loading (15.26 mg ⋅ cm-2). Moreover, effectiveness of this strategy is further demonstrated in the low-temperature full cell (-30 °C).
Collapse
Affiliation(s)
- Siqi Qin
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Jie Zhang
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Mi Xu
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Peiwen Xu
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Jiabin Zou
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Jianhui Li
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Dan Luo
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Yongguang Zhang
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Haozhen Dou
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Zhongwei Chen
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| |
Collapse
|
7
|
Ji J, Du H, Zhu Z, Qi X, Zhou F, Li R, Jiang R, Qie L, Huang Y. Thin Zinc Electrodes Stabilized with Organobromine-Partnered H 2O-Zn-MeOH Cluster Ions for Practical Zinc-Metal Pouch Cells. Angew Chem Int Ed Engl 2024:e202414562. [PMID: 39385346 DOI: 10.1002/anie.202414562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
The utilization of thin zinc (Zn) anodes with a high depth of discharge is an effective strategy to increase the energy density of aqueous Zn metal batteries (ZMBs), but challenged by the poor reversibility of Zn electrode due to the serious Zn-consuming side reactions at the Zn||electrolyte interface. Here, we introduce 2-bromomethyl-1,3-dioxolane (BDOL) and methanol (MeOH) as electrolyte additive into aqueous ZnSO4 electrolyte. In the as-formulated electrolyte, BDOL with a strong electron-withdrawing group (-CH2Br) tends to pair with the H2O-Zn-MeOH complex, leading to the formation of organobromine-partnered H2O-Zn-MeOH cluster ions. During the Zn electrodeposition process, the formed ZnO-dominated by-products induce the polymerization of BDOL monomers, which are previously adsorbed on the electrode. As a result, a uniform dual-layer SEI with ZnO-dominated outer layer and polyether-dominated inner layer is built on the surface of Zn electrode. With such an in situ formed dual-layer SEI, the Zn||Mg0.9Mn3O7 ⋅ 2.7H2O pouch cell using a 10-um Zn anode (corresponding to a low negative to positive areal capacity ratio of 3.56) successfully operated for 300 cycles with a high capacity retention of 86 %, promising a high practical energy density of >120 Wh/kg (based on the total mass of Zn and Mg0.9Mn3O7 ⋅ 2.7H2O).
Collapse
Affiliation(s)
- Jie Ji
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074
| | - Haoran Du
- Key Laboratory of Materials and Technologies for Advanced Batteries, School of Energy Materials and Chemical Engineering, Hefei University, Hefei, Anhui, 230601, China
| | - Zhenglu Zhu
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074
| | - Xiaoqun Qi
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074
| | - Fei Zhou
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074
| | - Rui Li
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074
| | - Ruining Jiang
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074
| | - Long Qie
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074
| |
Collapse
|
8
|
Chen W, Wang Y, Wang F, Zhang Z, Li W, Fang G, Wang F. Zinc Chemistries of Hybrid Electrolytes in Zinc Metal Batteries: From Solvent Structure to Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411802. [PMID: 39373284 DOI: 10.1002/adma.202411802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Indexed: 10/08/2024]
Abstract
Along with the booming research on zinc metal batteries (ZMBs) in recent years, operational issues originated from inferior interfacial reversibility have become inevitable. Presently, single-component electrolytes represented by aqueous solution, "water-in-salt," solid, eutectic, ionic liquids, hydrogel, or organic solvent system are hard to undertake independently the task of guiding the practical application of ZMBs due to their specific limitations. The hybrid electrolytes modulate microscopic interaction mode between Zn2+ and other ions/molecules, integrating vantage of respective electrolyte systems. They even demonstrate original Zn2+ mobility pattern or interfacial chemistries mechanism distinct from single-component electrolytes, providing considerable opportunities for solving electromigration and interfacial problems in ZMBs. Therefore, it is urgent to comprehensively summarize the zinc chemistries principles, characteristics, and applications of various hybrid electrolytes employed in ZMBs. This review begins with elucidating the chemical bonding mode of Zn2+ and interfacial physicochemical theory, and then systematically elaborates the microscopic solvent structure, Zn2+ migration forms, physicochemical properties, and the zinc chemistries mechanisms at the anode/cathode interfaces in each type of hybrid electrolytes. Among of which, the scotoma and amelioration strategies for the current hybrid electrolytes are actively exposited, expecting to provide referenceable insights for further progress of future high-quality ZMBs.
Collapse
Affiliation(s)
- Wenyong Chen
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yanyan Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Fengmei Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Zihao Zhang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Wei Li
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Guozhao Fang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083, China
| | - Fei Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
9
|
Jagadeesan SN, Guo F, Pidathala RT, Abeykoon AMM, Kwon G, Olds D, Narayanan B, Teng X. Unlocking High Capacity and Reversible Alkaline Iron Redox Using Silicate-Sodium Hydroxide Hybrid Electrolytes. CHEMSUSCHEM 2024; 17:e202400050. [PMID: 38898597 DOI: 10.1002/cssc.202400050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/19/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Alkaline iron (Fe) batteries are attractive due to the high abundance, low cost, and multiple valent states of Fe but show limited columbic efficiency and storage capacity when forming electrochemically inert Fe3O4 on discharging and parasitic H2 on charging. Herein, sodium silicate is found to promote Fe(OH)2/FeOOH against Fe(OH)2/Fe3O4 conversions. Electrochemical experiments, operando X-ray characterization, and atomistic simulations reveal that improved Fe(OH)2/FeOOH conversion originates from (i) strong interaction between sodium silicate and iron oxide and (ii) silicate-induced strengthening of hydrogen-bond networks in electrolytes that inhibits water transport. Furthermore, the silicate additive suppresses hydrogen evolution by impairing energetics of water dissociation and hydroxyl de-sorption on iron surfaces. This new silicate-assisted redox chemistry mitigates H2 and Fe3O4 formation, improving storage capacity (199 mAh g-1 in half-cells) and coulombic efficiency (94 % after 400 full-cell cycles), paving a path to realizing green battery systems built from earth-abundant materials.
Collapse
Affiliation(s)
- Sathya Narayanan Jagadeesan
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Fenghua Guo
- Department of Chemical Engineering, University of New Hampshire, 33 Academic Way, Durham, NH 03824, United States
| | - Ranga Teja Pidathala
- Department of Mechanical Engineering, University of Louisville, 332 Eastern Pkwy, Louisville, Kentucky, 40292, United States
| | - A M Milinda Abeykoon
- National Synchrotron Light Source II, Brookhaven National Laboratory, 743 Brookhaven Avenue, Upton, New York, 11973, United States
| | - Gihan Kwon
- National Synchrotron Light Source II, Brookhaven National Laboratory, 743 Brookhaven Avenue, Upton, New York, 11973, United States
| | - Daniel Olds
- National Synchrotron Light Source II, Brookhaven National Laboratory, 743 Brookhaven Avenue, Upton, New York, 11973, United States
| | - Badri Narayanan
- Department of Mechanical Engineering, University of Louisville, 332 Eastern Pkwy, Louisville, Kentucky, 40292, United States
| | - Xiaowei Teng
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| |
Collapse
|
10
|
Zhang C, Chen B, Chen Q, Liu Y, Kong X, Suo L, Lu J, Pan H. Regulation of Molecular Microheterogeneity in Electrolytes Enables Ampere-Hour-Level Aqueous LiMn 2O 4||Li 4Ti 5O 12 Pouch Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405913. [PMID: 39166451 DOI: 10.1002/adma.202405913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Aqueous batteries are attractive due to their high safety and fast reaction kinetics, but the narrow electrochemical stability window of H2O limits their applications. It is a big challenge to broaden the electrochemical operation window of aqueous electrolytes while retaining fast reaction kinetics. Here, a new organic aqueous mixture electrolyte of manipulatable (3D) molecular microheterogeneity with H2O-rich and H2O-poor domains is demonstrated. H2O-poor domains molecularly surround the reformed microclusters of H2O molecules through interfacial H-bonds, which thus not only inhibit the long-range transfer of H2O but also allow fast and consecutive Li+ transport. This new design enables low-voltage anodes reversibly cycling with aqueous-based electrolytes and high ionic conductivity of 4.5 mS cm-1. LiMn2O4||Li4Ti5O12 full cells demonstrate excellent cycling stability over 1000 cycles under various C rates and a low temperature of -20 °C. 1 Ah pouch cell delivers a high energy density of 79.3 Wh kg-1 and high Coulombic efficiency of 99.4% at 1 C over 200 cycles. This work provides new insights into the design of electrolytes based on the molecular microheterogeneity for rechargeable batteries.
Collapse
Affiliation(s)
- Canfu Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Binbin Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Qinlong Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yingchun Liu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xueqian Kong
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Liumin Suo
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jun Lu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Huilin Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310012, P. R. China
| |
Collapse
|
11
|
Meng Y, Wang M, Wang J, Huang X, Zhou X, Sajid M, Xie Z, Luo R, Zhu Z, Zhang Z, Khan NA, Wang Y, Li Z, Chen W. Robust bilayer solid electrolyte interphase for Zn electrode with high utilization and efficiency. Nat Commun 2024; 15:8431. [PMID: 39343779 PMCID: PMC11439932 DOI: 10.1038/s41467-024-52611-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Construction of a solid electrolyte interphase (SEI) of zinc (Zn) electrode is an effective strategy to stabilize Zn electrode/electrolyte interface. However, single-layer SEIs of Zn electrodes undergo rupture and consequent failure during repeated Zn plating/stripping. Here, we propose the construction of a robust bilayer SEI that simultaneously achieves homogeneous Zn2+ transport and durable mechanical stability for high Zn utilization rate (ZUR) and Coulombic efficiency (CE) of Zn electrode by adding 1,3-Dimethyl-2-imidazolidinone as a representative electrolyte additive. This bilayer SEI on Zn surface consists of a crystalline ZnCO3-rich outer layer and an amorphous ZnS-rich inner layer. The ordered outer layer improves the mechanical stability during cycling, and the amorphous inner layer homogenizes Zn2+ transport for homogeneous, dense Zn deposition. As a result, the bilayer SEI enables reversible Zn plating/stripping for 4800 cycles with an average CE of 99.95% (± 0.06%). Meanwhile, Zn | |Zn symmetric cells show durable lifetime for over 550 h with a high ZUR of 98% under an areal capacity of 28.4 mAh cm-2. Furthermore, the Zn full cells based on the bilayer SEI functionalized Zn negative electrodes coupled with different positive electrodes all exhibit stable cycling performance under high ZUR.
Collapse
Affiliation(s)
- Yahan Meng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Mingming Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiazhi Wang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuehai Huang
- Center for Electron Microscopy, South China Advanced Institute for Soft Matter and Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
| | - Xiang Zhou
- Center for Electron Microscopy, South China Advanced Institute for Soft Matter and Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
| | - Muhammad Sajid
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Zehui Xie
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Ruihao Luo
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhengxin Zhu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Zuodong Zhang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Nawab Ali Khan
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Yu Wang
- Center for Electron Microscopy, South China Advanced Institute for Soft Matter and Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China.
| | - Zhenyu Li
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, China.
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
12
|
Yao J, Zhang B, Wang X, Tao L, Ji J, Wu Z, Liu X, Li J, Gan Y, Zheng J, Lv L, Ji X, Wang H, Zhang J, Wang H, Wan H. Atomic Level-Macroscopic Structure-Activity of Inhomogeneous Localized Aggregates Enabled Ultra-Low Temperature Hybrid Aqueous Batteries. Angew Chem Int Ed Engl 2024; 63:e202409986. [PMID: 38923276 DOI: 10.1002/anie.202409986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
The utilization of hybrid aqueous electrolytes has significantly broadened the electrochemical and temperature ranges of aqueous batteries, such as aqueous zinc and lithium-ion batteries, but the design principles for extreme operating conditions remain poorly understood. Here, we systematically unveil the ternary interaction involving salt-water-organic co-solvents and its intricate impacts on both the atomic-level and macroscopic structural features of the hybrid electrolytes. This highlights a distinct category of micelle-like structure electrolytes featuring organic-enriched phases and nanosized aqueous electrolyte aggregates, enabled by appropriate low donor number co-solvents and amphiphilic anions. Remarkably, the electrolyte enables exceptional high solubility, accommodating up to 29.8 m zinc triflate within aqueous micelles. This configuration maintains an intra-micellar salt-in-water setup, allowing for a broad electrochemical window (up to 3.86 V), low viscosity, and state-of-the-art ultralow-temperature zinc ion conductivity (1.58 mS cm-1 at -80 °C). Building upon the unique nature of the inhomogeneous localized aggregates, this micelle-like electrolyte facilitates dendrite-free Zn plating/stripping, even at -80 °C. The assembled Zn||PANI battery showcases an impressive capacity of 71.8 mAh g-1 and an extended lifespan of over 3000 cycles at -80 °C. This study opens up a promising approach in electrolyte design that transcends conventional local atomic solvation structures, broadening the water-in-salt electrolyte concept.
Collapse
Affiliation(s)
- Jia Yao
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, Wuhan, 430062, PR China
| | - Bao Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Xiaofang Wang
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, Wuhan, 430062, PR China
| | - Li Tao
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, Wuhan, 430062, PR China
| | - Jie Ji
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ziang Wu
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, Wuhan, 430062, PR China
| | - Xingtai Liu
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, Wuhan, 430062, PR China
| | - Jingying Li
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, Wuhan, 430062, PR China
| | - Yi Gan
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, Wuhan, 430062, PR China
| | - Junjie Zheng
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, Wuhan, 430062, PR China
| | - Lin Lv
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, Wuhan, 430062, PR China
| | - Xiao Ji
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Hanbin Wang
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, Wuhan, 430062, PR China
| | - Jun Zhang
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, Wuhan, 430062, PR China
| | - Hao Wang
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, Wuhan, 430062, PR China
| | - Houzhao Wan
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, Wuhan, 430062, PR China
| |
Collapse
|
13
|
Ju Z, Zheng T, Zhang B, Yu G. Interfacial chemistry in multivalent aqueous batteries: fundamentals, challenges, and advances. Chem Soc Rev 2024; 53:8980-9028. [PMID: 39158505 DOI: 10.1039/d4cs00474d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
As one of the most promising electrochemical energy storage systems, aqueous batteries are attracting great interest due to their advantages of high safety, high sustainability, and low costs when compared with commercial lithium-ion batteries, showing great promise for grid-scale energy storage. This invited tutorial review aims to provide universal design principles to address the critical challenges at the electrode-electrolyte interfaces faced by various multivalent aqueous battery systems. Specifically, deposition regulation, ion flux homogenization, and solvation chemistry modulation are proposed as the key principles to tune the inter-component interactions in aqueous batteries, with corresponding interfacial design strategies and their underlying working mechanisms illustrated. In the end, we present a critical analysis on the remaining obstacles necessitated to overcome for the use of aqueous batteries under different practical conditions and provide future prospects towards further advancement of sustainable aqueous energy storage systems with high energy and long durability.
Collapse
Affiliation(s)
- Zhengyu Ju
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Tianrui Zheng
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Bowen Zhang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
14
|
Guan K, Chen W, Yang Y, Ye F, Hong Y, Zhang J, Gu Q, Wu Y, Hu L. A Dual Salt/Dual Solvent Electrolyte Enables Ultrahigh Utilization of Zinc Metal Anode for Aqueous Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405889. [PMID: 39054923 DOI: 10.1002/adma.202405889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/01/2024] [Indexed: 07/27/2024]
Abstract
Rechargeable aqueous zinc batteries are promising in next-generation sustainable energy storage. However, the low zinc (Zn) metal anode reversibility and utilization in aqueous electrolytes due to Zn corrosion and poor Zn2+ deposition kinetics significantly hinder the development of Zn-ion batteries. Here, a dual salt/dual solvent electrolyte composed of Zn(BF4)2/Zn(Ac)2 in water/TEGDME (tetraethylene glycol dimethyl ether) solvents to achieve reversible Zn anode at an ultrahigh depth of discharge (DOD) is developed. An "inner co-salt and outer co-solvent" synergistic effect in this unique dual salt/dual solvent system is revealed. Experimental results and theoretical calculations provide evidence that the ether co-solvent inhibits water activity by forming hydrogen bonding with the water and coordination effects with the proton in the outer Zn2+ solvation structure. Meanwhile, the anion of zinc acetate co-salt enters the inner Zn2+ solvation structure, thereby accelerating the desolvation kinetics. Strikingly, based on the electrolyte design, the zinc anode shows high reversibility at an ultrahigh utilization of 60% DOD with 99.80% Coulombic efficiency and 9.39 mAh cm-2 high capacity. The results far exceed the performance reported in electrolyte design work recently. The work provides fundamental insights into inner co-salt and outer co-solvent synergistic regulation in multifunctional electrolytes for reversible aqueous metal-ion batteries.
Collapse
Affiliation(s)
- Kailin Guan
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Wenshu Chen
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yunting Yang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Fei Ye
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Ye Hong
- Industrial Training Center, Guangdong Polytechnic Normal University, Guangzhou, 510665, China
| | - Jian Zhang
- State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Qinfen Gu
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Yuping Wu
- Z Energy Storage Center, Southeast University, Nanjing, 211189, P. R. China
- School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| | - Linfeng Hu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
- Z Energy Storage Center, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
15
|
Zhou K, Liu G, Zhu X, Liu G, Yu X, Guo Z, Wang Y. Nonflammable Fluorinated Electrolyte Realizing High Voltage Anode-Free Zn Dual-Ion Batteries. Angew Chem Int Ed Engl 2024:e202413959. [PMID: 39210634 DOI: 10.1002/anie.202413959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Due to the low decomposition potential of H2O and its corrosive effect to Zn foil, the Zn metal battery with aqueous electrolytes operates within a narrow electrochemical window and exhibits low anode utilization ratio. Fluorinated carbonate ester, exhibiting low highest occupied molecular orbital (HOMO) energy level, is suitable for constructing high-voltage batteries, yet its application in Zn metal battery has been scarcely explored. Herein, we propose an electrolyte based on fluorinated solvents and ethoxy (pentafluoro) cyclotriphosphazene (PFPN) additive, which exhibits a high decomposition voltage of 2.75 V in Zn batteries. The fluorinated carbonate esters possess non-flammability and exhibit reduced solvation capacity which in turn promotes the incorporation of anions into Zn2+ solvation shell. Consequently, an anion-derived interface layer is formed on Zn anode, aiding the compact and planar growth of deposited Zn. Therefore, the Zn//Zn cell exhibits an impressive Zn utilization of 91 % for 140 h, a level seldom reported previously. Benefitting from the oxidation resistant solvents and cathode-electrolyte interface layer formed by PFPN additive, the Zn//graphite dual-ions battery shows an extended cycling life of 1000 cycles. Furthermore, an anode-free cell was constructed and stably operated for 100 cycles, with a notably high average discharge midpoint voltage of 1.84 V.
Collapse
Affiliation(s)
- Kang Zhou
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Gaohong Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Xiao Zhu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Gaopan Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Xiaomeng Yu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Ziyang Guo
- College of Energy Material and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| |
Collapse
|
16
|
Kim J, Kim M, Lee J, An J, Yang S, Ahn HC, Yoo DJ, Choi JW. Insights from Li and Zn systems for advancing Mg and Ca metal batteries. Chem Soc Rev 2024; 53:8878-8902. [PMID: 39106108 DOI: 10.1039/d4cs00557k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
The inherent limitations of lithium (Li)-ion batteries have sparked interest in exploring alternative technologies, especially those relying on metallic anodes: monovalent Li and divalent zinc (Zn), magnesium (Mg), and calcium (Ca) metals. In particular, Mg and Ca metal batteries offer significant advantages based on the natural abundance of their raw materials and high energy-storage capabilities resulting from the bivalency of the carrier ions. Yet, these battery systems are far from commercialization, and the lack of reliable electrolytes constitutes a primary concern. The formation of ion-insulating passivation layers on these metallic anodes and their inferior desolvation kinetics have long been recognized as formidable hurdles in the way of optimizing the electrolyte composition. These impediments call for innovative strategies in electrolyte engineering and an extensive analysis of the resulting solid-electrolyte-interphase (SEI) layer. In this review, we introduce recent pioneering studies of divalent Mg and Ca metal batteries that have been concerned with these issues. This review particularly focuses on drawing an analogy with Li and Zn metal batteries in terms of the relative advancement and by benchmarking against the strategies developed for these analogous systems. The areas of interest include a fundamental understanding of the thermodynamics and evolution of the morphology of metallic anodes, a correlation between the electrolyte and SEI compositions, state-of-the-art electrolyte strategies to realize reversible (de)plating of Mg and Ca, and new perspectives on the SEI properties and their relevance to corrosion and the calendar life. We finally encourage researchers in the community to delve into these emerging areas by linking with successful stories in the analogous systems, but identifying distinct aspects of Mg and Ca batteries that still require attention.
Collapse
Affiliation(s)
- Jinyoung Kim
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 1-Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Minkwan Kim
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 1-Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Jimin Lee
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 1-Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Jiwoo An
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 1-Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Seonmo Yang
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 1-Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Hyo Chul Ahn
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 1-Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Dong-Joo Yoo
- School of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Jang Wook Choi
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 1-Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
17
|
Peng H, Wang D, Zhang F, Yang L, Jiang X, Zhang K, Qian Z, Yang J. Improvements and Challenges of Hydrogel Polymer Electrolytes for Advanced Zinc Anodes in Aqueous Zinc-Ion Batteries. ACS NANO 2024; 18:21779-21803. [PMID: 39132720 DOI: 10.1021/acsnano.4c06502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Aqueous zinc-ion batteries (AZIBs) are widely regarded as desirable energy storage devices due to their inherent safety and low cost. Hydrogel polymer electrolytes (HPEs) are cross-linked polymers filled with water and zinc salts. They are not only widely used in flexible batteries but also represent an ideal electrolyte candidate for addressing the issues associated with the Zn anode, including dendrite formation and side reactions. In HPEs, an abundance of hydrophilic groups can form strong hydrogen bonds with water molecules, reducing water activity and inhibiting water decomposition. At the same time, special Zn2+ transport channels can be constructed in HPEs to homogenize the Zn2+ flux and promote uniform Zn deposition. However, HPEs still face issues in practical applications, including poor ionic conductivity, low mechanical strength, poor interface stability, and narrow electrochemical stability windows. This Review discusses the issues associated with HPEs for advanced AZIBs, and the recent progresses are summarized. Finally, the Review outlines the opportunities and challenges for achieving high performance HPEs, facilitating the utilization of HPEs in AZIBs.
Collapse
Affiliation(s)
- Huili Peng
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Dongdong Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Fenglong Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Lishan Yang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Xiaolei Jiang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Kaiyuan Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Zhao Qian
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| | - Jian Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
18
|
You K, Wang Z, Lin J, Guo X, Lin L, Liu Y, Li F, Huang W. On-Demand Picoliter-Level-Droplet Inkjet Printing for Micro Fabrication and Functional Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2402638. [PMID: 39149907 DOI: 10.1002/smll.202402638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/29/2024] [Indexed: 08/17/2024]
Abstract
With the advent of Internet of Things (IoTs) and wearable devices, manufacturing requirements have shifted toward miniaturization, flexibility, environmentalization, and customization. Inkjet printing, as a non-contact picoliter-level droplet printing technology, can achieve material deposition at the microscopic level, helping to achieve high resolution and high precision patterned design. Meanwhile, inkjet printing has the advantages of simple process, high printing efficiency, mask-free digital printing, and direct pattern deposition, and is gradually emerging as a promising technology to meet such new requirements. However, there is a long way to go in constructing functional materials and emerging devices due to the uncommercialized ink materials, complicated film-forming process, and geometrically/functionally mismatched interface, limiting film quality and device applications. Herein, recent developments in working mechanisms, functional ink systems, droplet ejection and flight process, droplet drying process, as well as emerging multifunctional and intelligence applications including optics, electronics, sensors, and energy storage and conversion devices is reviewed. Finally, it is also highlight some of the critical challenges and research opportunities. The review is anticipated to provide a systematic comprehension and valuable insights for inkjet printing, thereby facilitating the advancement of their emerging applications.
Collapse
Affiliation(s)
- Kejia You
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Zhen Wang
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Jiasong Lin
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Xuan Guo
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Liangxu Lin
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yang Liu
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Fushan Li
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350117, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
19
|
Wang C, Xian K, Zhao S, Yang L, Zhou J, Yang Y, Chen X, Yin J, Wang J, Qin H, Tian Z, Lai Y, Wang Z, Zhang B, Wang H. ZnMn 2(PO 4) 2· nH 2O: An H 2O-Imbedding-Activated Cathode for Robust Aqueous Zinc-Ion Batteries. NANO LETTERS 2024; 24:9816-9823. [PMID: 39094116 DOI: 10.1021/acs.nanolett.4c01420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Component modulation endows Mn-based electrodes with prominent energy storage properties due to their adjustable crystal structure characteristics. Herein, ZnMn2(PO4)2·nH2O (ZMP·nH2O) was obtained by a hydration reaction from ZnMn2(PO4)2 (ZMP) during an electrode-aging evolution. Benefiting from the introduction of lattice H2O molecules into the ZMP structure, the ion transmission path has been expanded along with the extended d-spacing, which will further facilitate the ZMP → ZMP·nH2O phase evolution and electrochemical reaction kinetics. Meanwhile, the hydrogen bond can be generated between H2O and O in PO43-, which strengthens the structure stability of ZMP·nH2O and lowers the conversion barrier from ZMP to ZMP·4H2O during the Zn2+ uptake/removal process. Thereof, ZMP·nH2O delivers enhanced electrochemical reaction kinetics with robust structure tolerance (106.52 mA h g-1 at 100 mA g-1 over 620 cycles). This high-energy aqueous Zn||ZMP·nH2O battery provides a facile strategy for engineering and exploration of high-performance ZIBs to realize the practical application of Mn-based cathodes.
Collapse
Affiliation(s)
- Chunhui Wang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Keyi Xian
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Shuangshuang Zhao
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Lishan Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
- Department of Quantum and Energy Materials, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga s/n, Braga 4715-330, Portugal
| | - Junjian Zhou
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Yahui Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Xiangping Chen
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Jiang Yin
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Jun Wang
- School of electrical engineering and automation, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
- Department of Quantum and Energy Materials, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga s/n, Braga 4715-330, Portugal
| | - Haozhe Qin
- School of Metallurgy and Environment, Central South University, No.932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Zhongliang Tian
- School of Metallurgy and Environment, Central South University, No.932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Yanqing Lai
- School of Metallurgy and Environment, Central South University, No.932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Zhongchang Wang
- Department of Quantum and Energy Materials, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga s/n, Braga 4715-330, Portugal
| | - Bao Zhang
- School of Metallurgy and Environment, Central South University, No.932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Haiyan Wang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China
| |
Collapse
|
20
|
Manna A, Pal S, Das B, Ogale S, Bhunia MK. Modulation of Electron Push-Pull by Redox Non-Innocent Additives for Long Cycle Life Zinc Anode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404752. [PMID: 39105401 DOI: 10.1002/smll.202404752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/26/2024] [Indexed: 08/07/2024]
Abstract
Application of an aqueous Zn-ion battery is plagued by a water-induced hydrogen evolution reaction (HER), resulting in local pH variations and an unstable electrode-electrolyte interface (EEI) with uncontrolled Zn plating and side reactions. Here, 4-methyl pyridine N-oxide (PNO) is introduced as a redox non-innocent additive that comprises a hydrophilic bipolar N+-O- ion pair as a coordinating ligand for Zn and a hydrophobic ─CH3 group at the para position of the pyridine ring that reduces water activity at the EEI, thereby enhancing stability. The N+-O- moiety of PNO possesses the unique functionality of an efficient push electron donor and pull electron acceptor, thus maintaining the desired pH during charging/discharging. Intriguingly, replacing ─CH3 (electron pushing +I effect) by ─CF3 group (electron pulling ─I effect), however, does not improve the reversibility; instead, it degrades the cell performance. The electrolyte with 2 m ZnSO4 + 15 mm PNO enables symmetric cell Zn plating/stripping for a remarkable > 10 000 h at 0.5 mA cm-2 and exhibits coulombic efficiency (CE) ≈99.61% at 0.8 mA cm-2 in Zn/Cu asymmetric cell. This work showcases the immense interplay of the electron push-pull of the additives on the cycling.
Collapse
Affiliation(s)
- Arghyadip Manna
- Research Institute for Sustainable Energy, Center for Research and Education in Science and Technology (TCG-CREST), Salt Lake, Kolkata, 700091, India
| | - Souvik Pal
- Agri and Environmental Electronics (AEE) Group, Centre for Development of Advanced Computing (C-DAC), Salt Lake, Kolkata, 700091, India
| | - Bidisa Das
- Research Institute for Sustainable Energy, Center for Research and Education in Science and Technology (TCG-CREST), Salt Lake, Kolkata, 700091, India
| | - Satishchandra Ogale
- Research Institute for Sustainable Energy, Center for Research and Education in Science and Technology (TCG-CREST), Salt Lake, Kolkata, 700091, India
| | - Manas K Bhunia
- Research Institute for Sustainable Energy, Center for Research and Education in Science and Technology (TCG-CREST), Salt Lake, Kolkata, 700091, India
| |
Collapse
|
21
|
Xie W, Zhu K, Jiang W, Yang H, Ma M, Zhao L, Yang W. Highly 002-Oriented Dendrite-Free Anode Achieved by Enhanced Interfacial Electrostatic Adsorption for Aqueous Zinc-Ion Batteries. ACS NANO 2024. [PMID: 39094098 DOI: 10.1021/acsnano.4c04181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Rechargeable aqueous zinc-ion batteries (AZIBs) are gaining recognition as promising next-generation energy storage solution, due to their intrinsic safety and low cost. Nevertheless, the advancement of AZIBs is greatly limited by the abnormal growth of zinc dendrites during cycling. Electrolyte additives are effective at suppressing zinc dendrites, but there is currently no effective additive screening criterion. Herein, we propose employing the interfacial electrostatic adsorption strength of zinc ions for the initial screening of additives. Subsequently, dendrite-free plating is achieved by employing the anionic surfactant sodium dodecyl benzenesulfonate (SDBS) to enhance electrostatic adsorption. The cycled zinc anode exhibited a dense plating morphology and a high (002) orientation (I002/I101 = 22). The Zn||MnO2 full cell with SDBS exhibited a capacity retention of 85% after 1000 cycles at 1 A g-1. Furthermore, an instantaneous nucleation model and continuous nucleation model (CNM) are constructed to reveal the microscale plating/stripping dynamics under the scenarios of weak adsorption and strong adsorption. The CNM accurately explains the self-optimizing reconstruction of electrodes resulting from enhanced electrostatic adsorption. Our exploration was extended to other anionic surfactants (sodium dodecyl sulfate and disodium laureiminodipropionate), confirming the effectiveness of strong electrostatic adsorption in the screening of electrolyte additives.
Collapse
Affiliation(s)
- Weili Xie
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Dalian 116023 (China)
- University of Chinese Academy of Sciences, Beijing 100049 (China)
| | - Kaiyue Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Dalian 116023 (China)
- University of Chinese Academy of Sciences, Beijing 100049 (China)
| | - Weikang Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Dalian 116023 (China)
- Department of Chemical Physics, University of Science and Technology of China, Anhui 230026 (China)
| | - Hanmiao Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Dalian 116023 (China)
- University of Chinese Academy of Sciences, Beijing 100049 (China)
| | - Manxia Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Dalian 116023 (China)
- Department of Chemical Physics, University of Science and Technology of China, Anhui 230026 (China)
| | - Lingli Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Dalian 116023 (China)
- University of Chinese Academy of Sciences, Beijing 100049 (China)
| | - Weishen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Dalian 116023 (China)
- University of Chinese Academy of Sciences, Beijing 100049 (China)
| |
Collapse
|
22
|
Huang J, Zhong Y, Fu H, Zhao Y, Li S, Xie Y, Zhang H, Lu B, Chen L, Liang S, Zhou J. Interfacial Biomacromolecular Engineering Toward Stable Ah-Level Aqueous Zinc Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406257. [PMID: 38899574 DOI: 10.1002/adma.202406257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Interfacial instability within aqueous zinc batteries (AZBs) spurs technical obstacles including parasitic side reactions and dendrite failure to reach the practical application standards. Here, an interfacial engineering is showcased by employing a bio- derived zincophilic macromolecule as the electrolyte additive (0.037 wt%), which features a long-chain configuration with laterally distributed hydroxyl and sulfate anion groups, and has the propensity to remodel the electric double layer of Zn anodes. Tailored Zn2+-rich compact layer is the result of their adaptive adsorption that effectively homogenizes the interfacial concentration field, while enabling a hybrid nucleation and growth mode characterized as nuclei-rich and space-confined dense plating. Further resonated with curbed corrosion and by-products, a dendrite-free deposition morphology is achieved. Consequently, the macromolecule-modified zinc anode delivers over 1250 times of reversible plating/stripping at a practical area capacity of 5 mAh cm-2, as well as a high zinc utilization rate of 85%. The Zn//NH4V4O10 pouch cell with the maximum capacity of 1.02 Ah can be steadily operated at 71.4 mA g-1 (0.25 C) with 98.7% capacity retained after 50 cycles, which demonstrates the scale-up capability and highlights a "low input and high return" interfacial strategy toward practical AZBs.
Collapse
Affiliation(s)
- Jiangtao Huang
- School of Materials Science & Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan, 410083, China
| | - Yunpeng Zhong
- School of Materials Science & Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan, 410083, China
| | - Hongwei Fu
- School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, China
| | - Yunxiang Zhao
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Shenglong Li
- School of Materials Science & Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan, 410083, China
| | - Yiman Xie
- Information and Network Center, Central South University, Changsha, Hunan, 410083, China
| | - Hao Zhang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, China
| | - Lina Chen
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Shuquan Liang
- School of Materials Science & Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan, 410083, China
| | - Jiang Zhou
- School of Materials Science & Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
23
|
Zhang G, Fu L, Chen Y, Fan K, Zhang C, Dai H, Guan L, Mao M, Ma J, Wang C. Hofmeister Effects in Supramolecular Chemistry for Anion-Modulation to Stabilize Zn Anode. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405949. [PMID: 38944888 DOI: 10.1002/adma.202405949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Aqueous Zn-ion batteries (AZIBs) are considered as promising candidates for the next-generation large-scale energy storage, which, however, is facing the challenge of instable Zn anodes. The anion is pivotal in the stability of anodes, which are not being paid enough attention to. Herein, the modulation of anions is reported using the Hofmeister series in supramolecular chemistry to boost the stability of Zn anodes. It is found that the right-side anions in the Hofmeister series (e.g., OTf-) can enhance the Zn2+ transference number, increase the Coulombic efficiency, facilitate uniform Zn deposition, reduce the freezing point of electrolytes, and thereby stabilize the Zn anodes. More importantly, the right-side anions can form strong interaction with β-cyclodextrin (β-CD) compared to the left-side anions, and hence the addition of β-CD can further enhance the stability of Zn anodes in OTf--based electrolytes, showing enhancement of cycling lifespan in the Zn//Zn symmetric cells more than 45.5 times with β-CD compared with those without β-CD. On the contrary, the left-side anions show worse rate performance after the addition of β-CD. These results provide an effective and novel approach for choosing anions and matching additives to stabilize the anodes and achieve high-performance AZIBs through the Hofmeister effect.
Collapse
Affiliation(s)
- Guoqun Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Lulu Fu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yuan Chen
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kun Fan
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chenyang Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Huichao Dai
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Linnan Guan
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Minglei Mao
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jing Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Chengliang Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
24
|
Zhang SJ, Hao J, Wu H, Chen Q, Ye C, Qiao SZ. Protein Interfacial Gelation toward Shuttle-Free and Dendrite-Free Zn-Iodine Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404011. [PMID: 38970531 DOI: 10.1002/adma.202404011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/20/2024] [Indexed: 07/08/2024]
Abstract
Aqueous zinc-iodine (Zn-I2) batteries hold potential for large-scale energy storage but struggle with shuttle effects of I2 cathodes and poor reversibility of Zn anodes. Here, an interfacial gelation strategy is proposed to suppress the shuttle effects and improve the Zn reversibility simultaneously by introducing silk protein (SP) additive. The SP can migrate bidirectionally toward cathode and anode interfaces driven by the periodically switched electric field direction during charging/discharging. For I2 cathodes, the interaction between SP and polyiodides forms gelatinous precipitate to avoid the polyiodide dissolution, evidenced by excellent electrochemical performance, including high specific capacity and Coulombic efficiency (CE) (215 mAh g-1 and 99.5% at 1 C), excellent rate performance (≈170 mAh g-1 at 50 C), and extended durability (6000 cycles at 10 C). For Zn anodes, gelatinous SP serves as protective layer to boost the Zn reversibility (99.7% average CE at 2 mA cm-2) and suppress dendrites. Consequently, a 500 mAh Zn-I2 pouch cell with high-loading cathode (37.5 mgiodine cm-2) and high-utilization Zn anode (20%) achieves remarkable energy density (80 Wh kg-1) and long-term durability (>1000 cycles). These findings underscore the simultaneous modulation of both cathode and anode and demonstrate the potential for practical applications of Zn-I2 batteries.
Collapse
Affiliation(s)
- Shao-Jian Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Junnan Hao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Han Wu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Qianru Chen
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Chao Ye
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
25
|
Wang S, Huang Z, Zhu J, Wang Y, Li D, Wei Z, Hong H, Zhang D, Xiong Q, Li S, Chen Z, Li N, Zhi C. Quantifying Asymmetric Zinc Deposition: A Guide Factor for Designing Durable Zinc Anodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406451. [PMID: 38888505 DOI: 10.1002/adma.202406451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Zinc metal is recognized as the most promising anode for aqueous energy storage but suffers from severe dendrite growth and poor reversibility. However, the coulombic efficiency lacks specificity for zinc dendrite growth, particularly in Zn||Zn symmetric cells. Herein, a novel indicator (fD) based on the characteristic crystallization peaks is proposed to evaluate the growth and distribution of zinc dendrites. As a proof of concept, triethylenetetramine (TETA) is adopted as an electrolyte additive to manipulate the zinc flux for uniform deposition, with a corroborating low fD value. A highly durable zinc symmetric cell is achieved, lasting over 2500 h at 10 mA cm-2 and 400 h at a large discharge of depth (10 mA cm-2, 10 mAh cm-2). Supported by the low fD value, the Zn||TETA-ZnSO4||MnO2 batteries overcome the sudden short circuit and fast capacity fading. The study provides a feasible method to evaluate zinc dendrites and sheds light on the design of highly reversible zinc anodes.
Collapse
Affiliation(s)
- Shixun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 999077, P. R. China
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 999077, P. R. China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong, SAR, 999077, P. R. China
| | - Jiaxiong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 999077, P. R. China
| | - Yiqiao Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 999077, P. R. China
| | - Dedi Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 999077, P. R. China
| | - Zhiquan Wei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 999077, P. R. China
| | - Hu Hong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 999077, P. R. China
| | - Dechao Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 999077, P. R. China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong, SAR, 999077, P. R. China
| | - Qi Xiong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 999077, P. R. China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong, SAR, 999077, P. R. China
| | - Shimei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 999077, P. R. China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong, SAR, 999077, P. R. China
| | - Ze Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 999077, P. R. China
| | - Nan Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 999077, P. R. China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 999077, P. R. China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong, SAR, 999077, P. R. China
| |
Collapse
|
26
|
Li H, Li S, Hou R, Rao Y, Guo S, Chang Z, Zhou H. Recent advances in zinc-ion dehydration strategies for optimized Zn-metal batteries. Chem Soc Rev 2024; 53:7742-7783. [PMID: 38904425 DOI: 10.1039/d4cs00343h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Aqueous Zn-metal batteries have attracted increasing interest for large-scale energy storage owing to their outstanding merits in terms of safety, cost and production. However, they constantly suffer from inadequate energy density and poor cycling stability due to the presence of zinc ions in the fully hydrated solvation state. Thus, designing the dehydrated solvation structure of zinc ions can effectively address the current drawbacks of aqueous Zn-metal batteries. In this case, considering the lack of studies focused on strategies for the dehydration of zinc ions, herein, we present a systematic and comprehensive review to deepen the understanding of zinc-ion solvation regulation. Two fundamental design principles of component regulation and pre-desolvation are summarized in terms of solvation environment formation and interfacial desolvation behavior. Subsequently, specific strategy based distinct principles are carefully discussed, including preparation methods, working mechanisms, analysis approaches and performance improvements. Finally, we present a general summary of the issues addressed using zinc-ion dehydration strategies, and four critical aspects to promote zinc-ion solvation regulation are presented as an outlook, involving updating (de)solvation theories, revealing interfacial evolution, enhancing analysis techniques and developing functional materials. We believe that this review will not only stimulate more creativity in optimizing aqueous electrolytes but also provide valuable insights into designing other battery systems.
Collapse
Affiliation(s)
- Haoyu Li
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Sijie Li
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0814, Japan
| | - Ruilin Hou
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Yuan Rao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Shaohua Guo
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Zhi Chang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan, China.
| | - Haoshen Zhou
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
27
|
Yao L, Liu J, Zhang F, Wen B, Chi X, Liu Y. Reconstruction of zinc-metal battery solvation structures operating from -50 ~ +100 °C. Nat Commun 2024; 15:6249. [PMID: 39048566 PMCID: PMC11269709 DOI: 10.1038/s41467-024-50219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Serious solvation effect of zinc ions has been considered as the cause of the severe side reactions (hydrogen evolution, passivation, dendrites, and etc.) of aqueous zinc metal batteries. Even though the regulation of cationic solvation structure has been widely studied, effects of the anionic solvation structures on the zinc metal were rarely examined. Herein, co-reconstruction of anionic and cationic solvation structures was realized through constructing a new multi-component electrolyte (Zn(BF4)2-glycerol-boric acid-chitosan-polyacrylamide, simplified as ZGBCP), which incorporates double crosslinking network via the esterification, protonation and polymerization reactions, thereby combining multiple advantages of 'liquid-like' high conductivity, 'gel-like' robust interface, and 'solid-like' high Zn2+ transfer number. Based on the ZGBCP electrolyte, the Zn anodes achieve record-low polarization and stable cycling. Furthermore, the ZGBCP electrolyte renders the AZMBs ultrawide working temperature (-50 °C ~ +100 °C) and ultralong cycle life (30000 cycles), which further validates the feasibility of the dual solvation structure strategy and provides a innovative perspective for the development of high-performance AZMBs.
Collapse
Affiliation(s)
- Lingbo Yao
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiahe Liu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Feifan Zhang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Bo Wen
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaowei Chi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China.
| | - Yu Liu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China.
| |
Collapse
|
28
|
Zhang M, Li S, Tang R, Sun C, Yang J, Chen G, Kang Y, Lv Z, Wen Z, Li CC, Zhao J, Yang Y. Stabilizing Zn/electrolyte Interphasial Chemistry by a Sustained-Release Drug Inspired Indium-Chelated Resin Protective Layer for High-Areal-Capacity Zn//V 2O 5 Batteries. Angew Chem Int Ed Engl 2024; 63:e202405593. [PMID: 38716660 DOI: 10.1002/anie.202405593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Indexed: 06/16/2024]
Abstract
For zinc-metal batteries, the instable chemistry at Zn/electrolyte interphasial region results in severe hydrogen evolution reaction (HER) and dendrite growth, significantly impairing Zn anode reversibility. Moreover, an often-overlooked aspect is this instability can be further exacerbated by the interaction with dissolved cathode species in full batteries. Here, inspired by sustained-release drug technology, an indium-chelated resin protective layer (Chelex-In), incorporating a sustained-release mechanism for indium, is developed on Zn surface, stabilizing the anode/electrolyte interphase to ensure reversible Zn plating/stripping performance throughout the entire lifespan of Zn//V2O5 batteries. The sustained-release indium onto Zn electrode promotes a persistent anticatalytic effect against HER and fosters uniform heterogeneous Zn nucleation. Meanwhile, on the electrolyte side, the residual resin matrix with immobilized iminodiacetates anions can also repel detrimental anions (SO4 2- and polyoxovanadate ions dissolved from V2O5 cathode) outside the electric double layer. This dual synergetic regulation on both electrode and electrolyte sides culminates a more stable interphasial environment, effectively enhancing Zn anode reversibility in practical high-areal-capacity full battery systems. Consequently, the bio-inspired Chelex-In protective layer enables an ultralong lifespan of Zn anode over 2800 h, which is also successfully demonstrated in ultrahigh areal capacity Zn//V2O5 full batteries (4.79 mAh cm-2).
Collapse
Affiliation(s)
- Minghao Zhang
- State Key Lab of Physical Chemistry of Solid Surfaces, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Siyang Li
- State Key Lab of Physical Chemistry of Solid Surfaces, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Rong Tang
- State Key Lab of Physical Chemistry of Solid Surfaces, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Chenxi Sun
- State Key Lab of Physical Chemistry of Solid Surfaces, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jin Yang
- State Key Lab of Physical Chemistry of Solid Surfaces, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Guanhong Chen
- State Key Lab of Physical Chemistry of Solid Surfaces, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yuanhong Kang
- State Key Lab of Physical Chemistry of Solid Surfaces, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zeheng Lv
- State Key Lab of Physical Chemistry of Solid Surfaces, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhipeng Wen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Cheng Chao Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Jinbao Zhao
- State Key Lab of Physical Chemistry of Solid Surfaces, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yang Yang
- State Key Lab of Physical Chemistry of Solid Surfaces, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
29
|
Pan Y, Zuo Z, Jiao Y, Wu P. Constructing Lysozyme Protective Layer via Conformational Transition for Aqueous Zn Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314144. [PMID: 38715517 DOI: 10.1002/adma.202314144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/25/2024] [Indexed: 05/16/2024]
Abstract
The practical applications for aqueous Zn ion batteries (ZIBs) are promising yet still impeded by the severe side reactions on Zn metal. Here, a lysozyme protective layer (LPL) is prepared on Zn metal surface by a simple and facile self-adsorption strategy. The LPL exhibits extremely strong adhesion on Zn metal to provide stable interface during long-term cycling. In addition, the self-adsorption strategy triggered by the hydrophobicity-induced aggregation effect endows the protective layer with a gap-free and compacted morphology which can reject free water for effective side reaction inhibition performance. More importantly, the lysozyme conformation is transformed from α-helix to β-sheet structure before layer formation, thus abundant functional groups are exposed to interact with Zn2+ for electrical double layer (EDL) modification, desolvation energy decrease, and ion diffusion kinetics acceleration. Consequently, the LPL renders the symmetrical Zn battery with ultra-long cycling performance for more than 1200 h under high Zn depth of discharge (DOD) for 77.7%, and the Zn/Zn0.25V2O5 pouch cell with low N/P ratio of 2.1 at high Zn utilization of 48% for over 300 cycles. This study proposes a facile and low-cost method for constructing a stable protective layer of Zn metal for high Zn utilization aqueous devices.
Collapse
Affiliation(s)
- Yifan Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Zhicheng Zuo
- College of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Yucong Jiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
30
|
Lu H, Zhang D, Zhu Z, Lyu N, Jiang X, Duan C, Qin Y, Yuan X, Jin Y. Three-in-One Zinc Anodes Created by a Large-scale Two-Step Method Achieving Excellent Long-Term Cyclic Reversibility and Thin Electrode Integrity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401575. [PMID: 38767189 PMCID: PMC11267265 DOI: 10.1002/advs.202401575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Practical aqueous zinc-ion batteries require low-cost thin zinc anodes with long-term reversible stripping/depositing. However, thin zinc anodes encounter more severe issues than thick zinc, such as dendrites and uneven stripping, resulting in subpar performance and limited lifetimes. Here, this work proposes a three-in-one zinc anode obtained by a large-scale two-step method to address the above issues. In a three-in-one zinc anode, the copper foil as an inactive current collector solves the gradual reduction of the active area when only the pure zinc as an active current collector. This work develops an automatic electroplating device that can continuously deposit a zinc layer on a conducting foil to meet the demand for zinc-coated copper foils. The sodium carboxymethylcellulose (CMC)-zinc fluoride (ZnF2) protective layer prevents direct contact between zinc and separator, and provides a uniform and sufficient supply of zinc ions. The CMC-ZnF2-coated copper foil performs up to 3000 reversible zinc deposition/stripping cycles with a cumulative capacity of 6 Ah cm-2 and an average Coulombic efficiency of 99.94%. The Zn||ZnVO cell using the three-in-one anode achieved a high capacity retention of over 70% after 15 000 cycles. The proposed three-in-one anode and the automatic electroplating device will facilitate industrialization of practical thin zinc anodes.
Collapse
Affiliation(s)
- Hongfei Lu
- Research Center of Grid Energy Storage and Battery ApplicationSchool of Electrical and Information EngineeringZhengzhou UniversityZhengzhouHenan450001China
| | - Di Zhang
- Research Center of Grid Energy Storage and Battery ApplicationSchool of Electrical and Information EngineeringZhengzhou UniversityZhengzhouHenan450001China
| | - Zhenjie Zhu
- Research Center of Grid Energy Storage and Battery ApplicationSchool of Electrical and Information EngineeringZhengzhou UniversityZhengzhouHenan450001China
| | - Nawei Lyu
- Research Center of Grid Energy Storage and Battery ApplicationSchool of Electrical and Information EngineeringZhengzhou UniversityZhengzhouHenan450001China
| | - Xin Jiang
- Research Center of Grid Energy Storage and Battery ApplicationSchool of Electrical and Information EngineeringZhengzhou UniversityZhengzhouHenan450001China
| | - Chenxu Duan
- Research Center of Grid Energy Storage and Battery ApplicationSchool of Electrical and Information EngineeringZhengzhou UniversityZhengzhouHenan450001China
| | - Yi Qin
- Research Center of Grid Energy Storage and Battery ApplicationSchool of Electrical and Information EngineeringZhengzhou UniversityZhengzhouHenan450001China
| | - Xinyao Yuan
- Research Center of Grid Energy Storage and Battery ApplicationSchool of Electrical and Information EngineeringZhengzhou UniversityZhengzhouHenan450001China
| | - Yang Jin
- Research Center of Grid Energy Storage and Battery ApplicationSchool of Electrical and Information EngineeringZhengzhou UniversityZhengzhouHenan450001China
| |
Collapse
|
31
|
Guo S, Qin L, Wu J, Liu Z, Huang Y, Xie Y, Fang G, Liang S. Conversion-type anode chemistry with interfacial compatibility toward Ah-level near-neutral high-voltage zinc ion batteries. Natl Sci Rev 2024; 11:nwae181. [PMID: 38912515 PMCID: PMC11193386 DOI: 10.1093/nsr/nwae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/13/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024] Open
Abstract
High-voltage aqueous zinc ion batteries (AZIBs) with a high-safety near-neutral electrolyte is of great significance for practical sustainable application; however, they suffer from anode and electrode/electrolyte interfacial incompatibility. Herein, a conversion-type anode chemistry with a low anodic potential, which is guided by the Gibbs free energy change of conversion reaction, was designed for high-voltage near-neutral AZIBs. A reversible conversion reaction between ZnC2O4·2H2O particles and three-dimensional Zn metal networks well-matched in CH3COOLi-based electrolyte was revealed. This mechanism can be universally validated in the battery systems with sodium or iodine ions. More importantly, a cathodic crowded micellar electrolyte with a water confinement effect was proposed in which lies the core for the stability and reversibility of the cathode under an operating platform voltage beyond 2.0 V, obtaining a capacity retention of 95% after 100 cycles. Remarkably, the scientific and technological challenges from the coin cell to Ah-scale battery, sluggish kinetics of the solid-solid electrode reaction, capacity excitation under high loading of active material, and preparation complexities associated with large-area quasi-solid electrolytes, were explored, successfully achieving an 88% capacity retention under high loading of more than 20 mg cm-2 and particularly a practical 1.1 Ah-level pouch cell. This work provides a path for designing low-cost, eco-friendly and high-voltage aqueous batteries.
Collapse
Affiliation(s)
- Shan Guo
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| | - Liping Qin
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Jia Wu
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| | - Zhexuan Liu
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| | - Yuhao Huang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| | - Yiman Xie
- Information and Network Center, Central South University, Changsha 410083, China
| | - Guozhao Fang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| | - Shuquan Liang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| |
Collapse
|
32
|
Zhang Y, Fu X, Ding Y, Liu Y, Zhao Y, Jiao S. Electrolyte Solvation Chemistry for Stabilizing the Zn Anode via Functionalized Organic Agents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311407. [PMID: 38351471 DOI: 10.1002/smll.202311407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Indexed: 07/13/2024]
Abstract
As a potential candidate for grid-scale energy storage technology, aqueous Zn-ion batteries (ZIBs) have attracted considerable attention due to their intrinsic safety, environmental friendliness, and ease of fabrication. Nevertheless, the road to industry for this technique is hindered by serious issues, including undesired side reactions, random growth of the Zn dendrites, electrode passivation, and anode corrosion, which are associated with the high reactivity of water molecules during the electrochemical reactions. These challenges are strongly dependent on electrolyte solvation chemistry (ESC), which subsequently determines the electrochemical behavior of the metal ions and water molecules on the electrode surface. In this work, a comprehensive understanding of optimized ESC with specified functional groups on the mixing agents to stabilize the Zn anode is provided. First, the challenges facing the ZIBs and their chemical principles are outlined. Specific attention is paid to the working principles of the mixing agents with different functional groups. Then the recent progress is summarized and compared. Finally, perspectives on future research for the aqueous Zn batteries are presented from the point of view.
Collapse
Affiliation(s)
- Yan Zhang
- Key Lab for Special Functional Materials of Ministry of Education, National, Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Xianwei Fu
- Engineering Research Center for Nanomaterials, National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Yueling Ding
- Key Lab for Special Functional Materials of Ministry of Education, National, Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Ye Liu
- Key Lab for Special Functional Materials of Ministry of Education, National, Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education, National, Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Shilong Jiao
- Key Lab for Special Functional Materials of Ministry of Education, National, Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
33
|
Kumankuma-Sarpong J, Chang C, Hao J, Li T, Deng X, Han C, Li B. Entanglement Added to Cross-Linked Chains Enables Tough Gelatin-Based Hydrogel for Zn Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403214. [PMID: 38748854 DOI: 10.1002/adma.202403214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/08/2024] [Indexed: 05/23/2024]
Abstract
Currently, it is still challenging to develop a hydrogel electrolyte matrix that can successfully achieve a harmonious combination of mechanical strength, ionic conductivity, and interfacial adaptability. Herein, a multi-networked hydrogel electrolyte with a high entanglement effect based on gelatin/oxidized dextran/methacrylic anhydride, denoted as ODGelMA is constructed. Attribute to the Schiff base network formulation of ─RC═N─, oxidized dextran integrated gelatin chains induce a dense hydrophilic conformation group. Furthermore, addition of methacrylic anhydride through a grafting process, the entangled hydrogel achieves impressive mechanical features (6.8 MPa tensile strength) and high ionic conductivity (3.68 mS cm-1 at 20 °C). The ODGelMA electrolyte regulates the zinc electrode by circumventing dendrite growth, and showcases an adaptable framework reservoir to accelerate the Zn2+ desolvation process. Benefiting from the entanglement effect, the Zn anode achieves an outstanding average Coulombic efficiency (CE) of 99.8% over 500 cycles and cycling stability of 900 h at 5 mA cm-2 and 2.5 mAh cm-2. The Zn||I2 full cell yields an ultra-long cycling stability of 10 000 cycles with a capacity retention of 92.4% at 5 C. Furthermore, a 60 mAh single-layer pouch cell maintains a stable work of 350 cycles.
Collapse
Affiliation(s)
- James Kumankuma-Sarpong
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Caiyun Chang
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jing Hao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Titi Li
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, China
| | - Xianming Deng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Cuiping Han
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Baohua Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
34
|
Yu X, Chen M, Li Z, Tan X, Zhang H, Wang J, Tang Y, Xu J, Yin W, Yang Y, Chao D, Wang F, Zou Y, Feng G, Qiao Y, Zhou H, Sun SG. Unlocking Dynamic Solvation Chemistry and Hydrogen Evolution Mechanism in Aqueous Zinc Batteries. J Am Chem Soc 2024; 146:17103-17113. [PMID: 38869216 DOI: 10.1021/jacs.4c02558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Understanding the interfacial hydrogen evolution reaction (HER) is crucial to regulate the electrochemical behavior in aqueous zinc batteries. However, the mechanism of HER related to solvation chemistry remains elusive, especially the time-dependent dynamic evolution of the hydrogen bond (H-bond) under an electric field. Herein, we combine in situ spectroscopy with molecular dynamics simulation to unravel the dynamic evolution of the interfacial solvation structure. We find two critical change processes involving Zn-electroplating/stripping, including the initial electric double layer establishment to form an H2O-rich interface (abrupt change) and the subsequent dynamic evolution of an H-bond (gradual change). Moreover, the number of H-bonds increases, and their strength weakens in comparison with the bulk electrolyte under bias potential during Zn2+ desolvation, forming a diluted interface, resulting in massive hydrogen production. On the contrary, a concentrated interface (H-bond number decreases and strength enhances) is formed and produces a small amount of hydrogen during Zn2+ solvation. The insights on the above results contribute to deciphering the H-bond evolution with competition/corrosion HER during Zn-electroplating/stripping and clarifying the essence of electrochemical window widened and HER suppression by high concentration. This work presents a new strategy for aqueous electrolyte regulation by benchmarking the abrupt change of the interfacial state under an electric field as a zinc performance-enhancement criterion.
Collapse
Affiliation(s)
- Xiaoyu Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ming Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Zhengang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xi Tan
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Haitang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Junhao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yonglin Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Juping Xu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Wen Yin
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dongliang Chao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, China
| | - Fei Wang
- Department of Chemistry, Department of Materials Science, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Yeguo Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen 361005, PR China
| | - Guang Feng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yu Qiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen 361005, PR China
| | - Haoshen Zhou
- Center of Energy-storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
35
|
Chen J, Shi Y, Zheng S, Zhao W, Li R, Ye K, Zhao X, Zuo Z, Pan Z, Yang X. Blocking Interfacial Proton Transport via Self-Assembled Monolayer for Hydrogen Evolution-Free Zinc Batteries. Angew Chem Int Ed Engl 2024; 63:e202404825. [PMID: 38647332 DOI: 10.1002/anie.202404825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
Aqueous Zn-ion batteries (ZIBs) are promising next-generation energy storage devices, yet suffer from the issues of hydrogen evolution reaction (HER) and intricate side reactions on the Zn anode surface. The hydrogen (H)-bond networks play a critical role in interfacial proton transport that may closely relate to HER but are rarely investigated. Herein, we report a self-assembled monolayer (SAM) strategy which is constructed by anchoring ionic liquid cations on Ti3C2Tx substrate for HER-free Zn anode. Molecule dynamics simulations reveal that the rationally designed SAM with a high coordination number of water molecules (25-27, 4-6 for Zn2+) largely reduces the interfacial densities of H2O molecules, therefore breaking the connectivity of H-bond networks and blocking proton transport on the interface, by which the HER is suppressed. Then, a series of in situ characterizations demonstrate that negligible amounts of H2 gas are collected from the Zn@SAM-MXene anode. Consequently, the symmetric cell enables a long-cycling life of 3000 h at 1 mA cm-2 and 1000 h at 5 mA cm-2. More significantly, the stable Zn@SAM-MXene films are successfully used for coin full cells showing high-capacity retention of over 94 % after 1000 cycles and large-area (10×5 cm2) pouch cells with desired performance.
Collapse
Affiliation(s)
- Jianping Chen
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yayun Shi
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Songhe Zheng
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Wanyu Zhao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ruimin Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Ke Ye
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Xiaoli Zhao
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Zhijun Zuo
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Zhenghui Pan
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Xiaowei Yang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
36
|
Chen W, Xie Z, Chen H, Wang X. Low-Cost Aqueous Electrolyte with MBA Additives for Uniform and Stable Zinc Deposition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30580-30588. [PMID: 38822788 DOI: 10.1021/acsami.4c05430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Aqueous zinc ion batteries (AZIBs) are attracting increasing research interest due to their intrinsic safety, low cost, and scalability. However, the issues including hydrogen evolution, interface corrosion, and zinc dendrites at anodes have seriously limited the development of aqueous zinc ion batteries. Here, N,N-methylenebis(acrylamide) (MBA) additives with -CONH- groups are introduced to form hydrogen bonds with water and suppress H2O activity, inhibiting the occurrence of hydrogen evolution and corrosion reactions at the interface. In situ optical microscopy demonstrates that the MBA additive promotes the uniform deposition of Zn2+ and then suppresses the dendrite growth on the zinc anode. Therefore, Zn//Ti asymmetric batteries demonstrate a high plating/stripping efficiency of 99.5%, while Zn//Zn symmetric batteries display an excellent cycle stability for more than 1000 h. The Zn//MnO2 full cells exhibit remarkable cycling stability for 700 cycles in aqueous electrolytes with MBA additives. The additive engineering via MBA achieved the dendrite-free Zn anodes and stable full batteries, which is favorable for advanced AZIBs in practical applications.
Collapse
Affiliation(s)
- Wenyan Chen
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhibo Xie
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | | | - Xianfen Wang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
37
|
Wang S, Wang Y, Wei Z, Zhu J, Chen Z, Hong H, Xiong Q, Zhang D, Li S, Wang S, Huang Y, Zhi C. Halide Exchange in Perovskites Enables Bromine/Iodine Hybrid Cathodes for Highly Durable Zinc Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401924. [PMID: 38593988 DOI: 10.1002/adma.202401924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Indexed: 04/11/2024]
Abstract
With the increasing need for reliable storage systems, the conversion-type chemistry typified by bromine cathodes attracts considerable attention due to sizeable theoretical capacity, cost efficiency, and high redox potential. However, the severe loss of active species during operation remains a problem, leading researchers to resort to concentrated halide-containing electrolytes. Here, profiting from the intrinsic halide exchange in perovskite lattices, a novel low-dimensional halide hybrid perovskite cathode, TmdpPb2[IBr]6, which serves not only as a halogen reservoir for reversible three-electron conversions but also as an effective halogen absorbent by surface Pb dangling bonds, C─H…Br hydrogen bonds, and Pb─I…Br halogen bonds, is proposed. As such, the Zn||TmdpPb2[IBr]6 battery delivers three remarkable discharge voltage plateaus at 1.21 V (I0/I-), 1.47 V (I+/I0), and 1.74 V (Br0/Br-) in a typical halide-free electrolyte; meanwhile, realizing a high capacity of over 336 mAh g-1 at 0.4 A g-1 and high capacity retentions of 88% and 92% after 1000 cycles at 1.2 A g-1 and 4000 cycles at 3.2 A g-1, respectively, accompanied by a high coulombic efficiency of ≈99%. The work highlights the promising conversion-type cathodes based on metal-halide perovskite materials.
Collapse
Affiliation(s)
- Shixun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., 999077, P. R. China
| | - Yiqiao Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., 999077, P. R. China
| | - Zhiquan Wei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., 999077, P. R. China
| | - Jiaxiong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., 999077, P. R. China
| | - Ze Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., 999077, P. R. China
| | - Hu Hong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., 999077, P. R. China
| | - Qi Xiong
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong S.A.R., 999077, P. R. China
| | - Dechao Zhang
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong S.A.R., 999077, P. R. China
| | - Shimei Li
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong S.A.R., 999077, P. R. China
| | - Shengnan Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., 999077, P. R. China
| | - Yan Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., 999077, P. R. China
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., 999077, P. R. China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong S.A.R., 999077, P. R. China
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong S.A.R., 999077, P. R. China
| |
Collapse
|
38
|
Dou H, Wu X, Xu M, Feng R, Ma Q, Luo D, Zong K, Wang X, Chen Z. Steric-hindrance Effect Tuned Ion Solvation Enabling High Performance Aqueous Zinc Ion Batteries. Angew Chem Int Ed Engl 2024; 63:e202401974. [PMID: 38470070 DOI: 10.1002/anie.202401974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/13/2024]
Abstract
Despite many additives have been reported for aqueous zinc ion batteries, steric-hindrance effect of additives and its correlation with Zn2+ solvation structure have been rarely reported. Herein, large-sized sucrose biomolecule is selected as a paradigm additive, and steric-hindrance electrolytes (STEs) are developed to investigate the steric-hindrance effect for solvation structure regulation. Sucrose molecules do not participate in Zn2+ solvation shell, but significantly homogenize the distribution of solvated Zn2+ and enlarge Zn2+ solvation shell with weakened Zn2+-H2O interaction due to the steric-hindrance effect. More importantly, STEs afford the water-shielding electric double layer and in situ construct the organic and inorganic hybrid solid electrolyte interface, which effectively boost Zn anode reversibility. Remarkably, Zn//NVO battery presents high capacity of 3.9 mAh ⋅ cm-2 with long cycling stability for over 650 cycles at lean electrolyte of 4.5 μL ⋅ mg-1 and low N/P ratio of 1.5, and the stable operation at wide temperature (-20 °C~+40 °C).
Collapse
Affiliation(s)
- Haozhen Dou
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, Canada, N2L 3G1
| | - Xinru Wu
- South China Academy of Advanced Optoelectronics, International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou, 510006, China
| | - Mi Xu
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, Canada, N2L 3G1
| | - Renwu Feng
- South China Academy of Advanced Optoelectronics, International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou, 510006, China
| | - Qianyi Ma
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, Canada, N2L 3G1
| | - Dan Luo
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, Canada, N2L 3G1
| | - Kai Zong
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, China
| | - Xin Wang
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, China
- South China Academy of Advanced Optoelectronics, International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou, 510006, China
| | - Zhongwei Chen
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, Canada, N2L 3G1
| |
Collapse
|
39
|
Tang L, Peng H, Kang J, Chen H, Zhang M, Liu Y, Kim DH, Liu Y, Lin Z. Zn-based batteries for sustainable energy storage: strategies and mechanisms. Chem Soc Rev 2024; 53:4877-4925. [PMID: 38595056 DOI: 10.1039/d3cs00295k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Batteries play a pivotal role in various electrochemical energy storage systems, functioning as essential components to enhance energy utilization efficiency and expedite the realization of energy and environmental sustainability. Zn-based batteries have attracted increasing attention as a promising alternative to lithium-ion batteries owing to their cost effectiveness, enhanced intrinsic safety, and favorable electrochemical performance. In this context, substantial endeavors have been dedicated to crafting and advancing high-performance Zn-based batteries. However, some challenges, including limited discharging capacity, low operating voltage, low energy density, short cycle life, and complicated energy storage mechanism, need to be addressed in order to render large-scale practical applications. In this review, we comprehensively present recent advances in designing high-performance Zn-based batteries and in elucidating energy storage mechanisms. First, various redox mechanisms in Zn-based batteries are systematically summarized, including insertion-type, conversion-type, coordination-type, and catalysis-type mechanisms. Subsequently, the design strategies aiming at enhancing the electrochemical performance of Zn-based batteries are underscored, focusing on several aspects, including output voltage, capacity, energy density, and cycle life. Finally, challenges and future prospects of Zn-based batteries are discussed.
Collapse
Affiliation(s)
- Lei Tang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Haojia Peng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Jiarui Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Han Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Mingyue Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Yan Liu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Dong Ha Kim
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | - Yijiang Liu
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, P. R. China.
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
40
|
Zhou K, Liu G, Yu X, Li Z, Wang Y. Carbonate Ester-Based Electrolyte Enabling Rechargeable Zn Battery to Achieve High Voltage and High Zn Utilization. J Am Chem Soc 2024; 146:9455-9464. [PMID: 38512342 DOI: 10.1021/jacs.4c02150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Owing to the high H2O activity, the aqueous electrolyte in the Zn battery exhibits a narrow electrochemical window and inevitable hydrogen evolution reaction, limiting the anode utilization ratio and performance at high voltage. Carbonate ester, the well-developed electrolyte solvent in Li-ion batteries, exhibits aprotic properties and high anodic stability. However, its use in Zn metal batteries is limited due to the low solubility of Zn salts in carbonate esters. Herein, we propose a carbonate ester-based electrolyte (EC:DMC:EMC = 1:1:1 wt %), which contains a new Zn salt (Zn(BHFip)2) characterized by low cost, easy synthesis, and excellent aprotic solvent solubility. The BHFip- anion assists in forming Zn2+ conductive SEI on the anode and decomposes at high voltage to generate a protective CEI layer on the cathode. The Zn//Zn symmetric cell using such electrolyte achieves a remarkable Zn utilization ratio of 91% for 125 h, which has rarely been reported before. Furthermore, the Zn//LiMn2O4 full cell with an average operation voltage of 1.7 V demonstrates reliable cycling for 135 cycles with an N/P ratio of 1:1. In addition, the Zn//LiNi0.5Mn1.5O4 full cell exhibits a high discharge median voltage exceeding 2.2 V for 280 cycles, with the high voltage plateau (above 2 V) constituting 82% of the total capacity.
Collapse
Affiliation(s)
- Kang Zhou
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Gaopan Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Xiaomeng Yu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Zhi Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| |
Collapse
|
41
|
Li C, Li Q, Wu Z, Wang Y, Zhang R, Cui H, Hou Y, Liu J, Huang Z, Zhi C. Completely Activated and Phase-Transformed KFeMnHCF for Zn/K Hybrid Batteries with 14 500 Cycles by an OH-Rich Hydrogel Electrolyte. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304878. [PMID: 37401112 DOI: 10.1002/adma.202304878] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Metal hexacyanoferrates are recognized as superior cathode materials for zinc and zinc hybrid batteries, particularly the Prussian blue analog (PBA). However, PBA development is hindered by several limitations, including small capacities (<70 mAh g-1) and short lifespans (<1000 cycles). These limitations generally arise due to incomplete activation of redox sites and structure collapse during intercalation/deintercalation of metal ions in PBAs. According to this study, the adoption of a hydroxyl-rich (OH-rich) hydrogel electrolyte with extended electrochemical stability windows (ESWs) can effectively activate the redox site of low-spin Fe of the KxFeyMn1-y[Fe(CN)6]w·zH2O (KFeMnHCF) cathode while tuning its structure. Additionally, the strong adhesion of the hydrogel electrolyte inhibits KFeMnHCF particles from falling off the cathode and dissolving. The easy desolvation of metal ions in the developed OH-rich hydrogel electrolytes can lead to a fast and reversible intercalation/deintercalation of metal ions in the PBA cathode. As a result, the Zn||KFeMnHCF hybrid batteries achieve the unprecedented characteristics of 14 500 cycles, a 1.7 V discharge plateau, and a 100 mAh g-1 discharge capacity. The results of this study provide a new understanding of the development of zinc hybrid batteries with PBA cathode materials and present a promising new electrolyte material for this application.
Collapse
Affiliation(s)
- Chuan Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, China
| | - Qing Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, China
| | - Zhuoxi Wu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, China
| | - Yiqiao Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, China
| | - Rong Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, China
| | - Huilin Cui
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, China
| | - Yue Hou
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, China
| | - Jiahua Liu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, China
| | - Zhaodong Huang
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, 999077, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Advanced Study, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
42
|
Wang S, Chen S, Ying Y, Li G, Wang H, Cheung KKK, Meng Q, Huang H, Ma L, Zapien JA. Fast Reaction Kinetics and Commendable Low-Temperature Adaptability of Zinc Batteries Enabled by Aprotic Water-Acetamide Symbiotic Solvation Sheath. Angew Chem Int Ed Engl 2024; 63:e202316841. [PMID: 38091256 DOI: 10.1002/anie.202316841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Indexed: 01/16/2024]
Abstract
Although rechargeable aqueous zinc batteries are cost effectiveness, intrinsicly safe, and high activity, they are also known for bringing rampant hydrogen evolution reaction and corrosion. While eutectic electrolytes can effectively eliminate these issues, its high viscosity severely reduces the mobility of Zn2+ ions and exhibits poor temperature adaptability. Here, we infuse acetamide molecules with Lewis base and hydrogen bond donors into a solvated shell of Zn[(H2 O)6 ]2+ to create Zn(H2 O)3 (ace)(BF4 )2 . The viscosity of 1ace-1H2 O is 0.032 Pa s, significantly lower than that of 1ace-0H2 O (995.6 Pa s), which improves ionic conductivity (9.56 mS cm-1 ) and shows lower freezing point of -45 °C, as opposed to 1ace-0H2 O of 4.04 mS cm-1 and 12 °C, respectively. The acidity of 1ace-1H2 O is ≈2.8, higher than 0ace-1H2 O at ≈0.76, making side reactions less likely. Furthermore, benefiting from the ZnCO3 /ZnF2 -rich organic/inorganic solid electrolyte interface, the Zn || Zn cells cycle more than 1300 hours at 1 mA cm-2 , and the Zn || Cu operated over 1800 cycles with an average Coulomb efficiency of ≈99.8 %. The Zn || PANI cell cycled over 8500 cycles, with a specific capacity of 99.8 mAh g-1 at 5 A g-1 at room temperature, and operated at -40 °C with a capacity of 66.8 mAh g-1 .
Collapse
Affiliation(s)
- Shuyun Wang
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, P. R. China
- Department of Materials and Science Engineering, City University of Hong Kong, Hong Kong, P. R. China
| | - Shengmei Chen
- Department of Materials and Science Engineering, City University of Hong Kong, Hong Kong, P. R. China
| | - Yiran Ying
- Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, P. R. China
| | - Gang Li
- Frontiers Science center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Haipeng Wang
- College of Nuclear Equipment and Nuclear Engineering, Yantai University, No. 30 Qingquan Road, Shandong, 264005, China
| | - Ka Kiu Keith Cheung
- Department of Materials and Science Engineering, City University of Hong Kong, Hong Kong, P. R. China
| | - Qingjun Meng
- Shaanxi University of Science and Technology, Weiyang University Campus, Xi'an, 710021, China
| | - Haitao Huang
- Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, P. R. China
| | - Longtao Ma
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Juan Antonio Zapien
- Department of Materials and Science Engineering, City University of Hong Kong, Hong Kong, P. R. China
| |
Collapse
|
43
|
Xie W, Zhu K, Yang H, Yang W. Advancements in Achieving High Reversibility of Zinc Anode for Alkaline Zinc-Based Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306154. [PMID: 37562369 DOI: 10.1002/adma.202306154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Rechargeable alkaline zinc-based batteries (ZBBs) have attracted extensive research attention due to their advantages of low cost, high specific energy, and high safety. Although the investigation of cathodes for alkaline secondary ZBBs has reached a relatively advanced stage, the exploration of zinc anodes is still in its infancy. Zinc anodes in alkaline electrolytes encounter challenges such as dendrite formation, passivation, corrosion during periods of cell inactivity, and hydrogen evolution during cycling, thereby limiting their rechargeability and storability. Drawing upon the latest research on zinc anodes, six fundamental strategies that encompass a wide range of aspects are identified and categorized, from electrode modifications and electrolytes to charge protocols. Specifically, these strategies include 3D structures, coatings, alloying, additives, separators, and charge protocols. They serve as an insight summary of the current research progress on zinc anodes. Additionally, the complementary nature of these strategies allows for flexible combinations, enabling further enhancement of the overall performance of zinc anodes. Finally, several future directions for the advancement of practical alkaline Zn anode are proposed. This comprehensive review not only consolidates the existing knowledge but also paves the way for broader research opportunities in the pursuit of high-performance alkaline zinc anodes.
Collapse
Affiliation(s)
- Weili Xie
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaiyue Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanmiao Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weishen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
44
|
Zheng Z, Zhong X, Zhang Q, Zhang M, Dai L, Xiao X, Xu J, Jiao M, Wang B, Li H, Jia Y, Mao R, Zhou G. An extended substrate screening strategy enabling a low lattice mismatch for highly reversible zinc anodes. Nat Commun 2024; 15:753. [PMID: 38272872 PMCID: PMC10810881 DOI: 10.1038/s41467-024-44893-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
Aqueous zinc batteries possess intrinsic safety and cost-effectiveness, but dendrite growth and side reactions of zinc anodes hinder their practical application. Here, we propose the extended substrate screening strategy for stabilizing zinc anodes and verify its availability (dsubstrate: dZn(002) = 1: 1→dsubstrate: dZn(002)=n:1, n = 1, 2). From a series of calculated phyllosilicates satisfying dsubstrate ≈ 2dZn(002), we select vermiculite, which has the lowest lattice mismatch (0.38%) reported so far, as the model to confirm the effectiveness of "2dZn(002)" substrates for zinc anodes protection. Then, we develop a monolayer porous vermiculite through a large-scale and green preparation as a functional coating for zinc electrodes. Unique "planting Zn(002) seeds" mechanism for "2dZn(002)" substrates is revealed to induce the oriented growth of zinc deposits. Additionally, the coating effectively inhibits side reactions and promotes zinc ion transport. Consequently, the modified symmetric cells operate stably for over 300 h at a high current density of 50 mA cm-2. This work extends the substrate screening strategy and advances the understanding of zinc nucleation mechanism, paving the way for realizing high-rate and stable zinc-metal batteries.
Collapse
Affiliation(s)
- Zhiyang Zheng
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiongwei Zhong
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Qi Zhang
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Mengtian Zhang
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Lixin Dai
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiao Xiao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jiahe Xu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Miaolun Jiao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Boran Wang
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hong Li
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yeyang Jia
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Rui Mao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
45
|
Zhang X, Zhang L, Jia X, Song W, Liu Y. Design Strategies for Aqueous Zinc Metal Batteries with High Zinc Utilization: From Metal Anodes to Anode-Free Structures. NANO-MICRO LETTERS 2024; 16:75. [PMID: 38175454 PMCID: PMC10766912 DOI: 10.1007/s40820-023-01304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024]
Abstract
Aqueous zinc metal batteries (AZMBs) are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low redox potential of zinc (Zn) metal. However, several issues such as dendrite formation, hydrogen evolution, corrosion, and passivation of Zn metal anodes cause irreversible loss of the active materials. To solve these issues, researchers often use large amounts of excess Zn to ensure a continuous supply of active materials for Zn anodes. This leads to the ultralow utilization of Zn anodes and squanders the high energy density of AZMBs. Herein, the design strategies for AZMBs with high Zn utilization are discussed in depth, from utilizing thinner Zn foils to constructing anode-free structures with theoretical Zn utilization of 100%, which provides comprehensive guidelines for further research. Representative methods for calculating the depth of discharge of Zn anodes with different structures are first summarized. The reasonable modification strategies of Zn foil anodes, current collectors with pre-deposited Zn, and anode-free aqueous Zn metal batteries (AF-AZMBs) to improve Zn utilization are then detailed. In particular, the working mechanism of AF-AZMBs is systematically introduced. Finally, the challenges and perspectives for constructing high-utilization Zn anodes are presented.
Collapse
Affiliation(s)
- Xianfu Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, 30 College Road, Beijing, 100083, People's Republic of China
| | - Long Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, 30 College Road, Beijing, 100083, People's Republic of China.
| | - Xinyuan Jia
- School of Materials Science and Engineering, University of Science and Technology Beijing, 30 College Road, Beijing, 100083, People's Republic of China
| | - Wen Song
- School of Materials Science and Engineering, University of Science and Technology Beijing, 30 College Road, Beijing, 100083, People's Republic of China
| | - Yongchang Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, 30 College Road, Beijing, 100083, People's Republic of China.
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| |
Collapse
|
46
|
Yang W, Wu G, Zhu R, Choe YK, Sun J, Yang Y, Yang H, Yoo E. Synergistic Cation Solvation Reorganization and Fluorinated Interphase for High Reversibility and Utilization of Zinc Metal Anode. ACS NANO 2023; 17:25335-25347. [PMID: 38054998 DOI: 10.1021/acsnano.3c08749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Batteries based on zinc (Zn) chemistry offer a great opportunity for large-scale applications owing to their safety, cost-effectiveness, and environmental friendliness. However, the poor Zn reversibility and inhomogeneous electrodeposition have greatly impeded their practical implementation, stemming from water-related passivation/corrosion. Here, we present a multifunctional electrolyte comprising gamma-butyrolactone (GBL) and Zn(BF4)2·xH2O to resolve these intrinsic challenges. The systematic results confirm that water reactivity toward a Zn anode is minimized by forcing GBL solvents into the Zn2+ solvation shell and constructing a fluorinated interphase on the Zn anode surface via anion decomposition. Furthermore, NMR was selected as an auxiliary testing protocol to elevate and understand the role of electrolyte composition in building the interphase. The combined factors in synergy guarantee high Zn reversibility (average Coulombic efficiency is 99.74%), high areal capacity (55 mAh/cm2), and high Zn utilization (∼91%). Ultimately, these merits enable the Zn battery utilizing a VO2 cathode to operate smoothly over 5000 cycles with a low-capacity decay rate of ∼0.0083% per cycle and a 0.23 Ah VO2/Zn pouch cell to operate over 400 cycles with a capacity retention of 77.3%.
Collapse
Affiliation(s)
- Wuhai Yang
- Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan
- Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba 305-8573, Japan
| | - Gang Wu
- Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan
- Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba 305-8573, Japan
| | - Ruijie Zhu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Yoong-Kee Choe
- Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan
| | - Jianming Sun
- Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan
- Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba 305-8573, Japan
| | - Yang Yang
- Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan
- Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba 305-8573, Japan
| | - Huijun Yang
- Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba 305-8573, Japan
| | - Eunjoo Yoo
- Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan
- Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba 305-8573, Japan
| |
Collapse
|
47
|
Hu Z, Wang X, Du W, Zhang Z, Tang Y, Ye M, Zhang Y, Liu X, Wen Z, Li CC. Crowding Effect-Induced Zinc-Enriched/Water-Lean Polymer Interfacial Layer Toward Practical Zn-Iodine Batteries. ACS NANO 2023; 17:23207-23219. [PMID: 37963092 DOI: 10.1021/acsnano.3c10081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Although the meticulous design of functional diversity within the polymer interfacial layer holds paramount significance in mitigating the challenges associated with hydrogen evolution reactions and dendrite growth in zinc anodes, this pursuit remains a formidable task. Here, a large-scale producible zinc-enriched/water-lean polymer interfacial layer, derived from carboxymethyl chitosan (CCS), is constructed on zinc anodes by integration of electrodeposition and a targeted complexation strategy for highly reversible Zn plating/stripping chemistry. Zinc ions-induced crowding effect between CCS skeleton creates a strong hydrogen bonding environment and squeezes the moving space for water/anion counterparts, therefore greatly reducing the number of active water molecules and alleviating cathodic I3- attack. Moreover, the as-constructed Zn2+-enriched layer substantially facilitate rapid Zn2+ migration through the NH2-Zn2+-NH2 binding/dissociation mode of CCS molecule chain. Consequently, the large-format Zn symmetry cell (9 cm2) with a Zn-CCS electrode demonstrates excellent cycling stability over 1100 h without bulging. When coupled with an I2 cathode, the assembled Zn-I2 multilayer pouch cell displays an exceptionally high capacity of 140 mAh and superior long-term cycle performance of 400 cycles. This work provides a universal strategy to prepare large-scale production and high-performance polymer crowding layer for metal anode-based battery, analogous outcomes were veritably observed on other metals (Al, Cu, Sn).
Collapse
Affiliation(s)
- Zuyang Hu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Xiangwen Wang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, United Kingdom
| | - Wencheng Du
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Zicheng Zhang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Yongchao Tang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Minghui Ye
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Yufei Zhang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Xiaoqing Liu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Zhipeng Wen
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Cheng Chao Li
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
48
|
Yuan W, Nie X, Wang Y, Li X, Ma G, Wang Y, Shen S, Zhang N. Orientational Electrodeposition of Highly (002)-Textured Zinc Metal Anodes Enabled by Iodide Ions for Stable Aqueous Zinc Batteries. ACS NANO 2023. [PMID: 37967020 DOI: 10.1021/acsnano.3c08095] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Regulating the crystallographic texture of the zinc (Zn) metal anode is promising to promote Zn reversibility in aqueous electrolytes, but the direct fabrication of specific textured Zn still remains challenging. Herein, we report a facile iodide ion (I-)-assisted electrodeposition strategy that can scalably fabricate highly (002) crystal plane-textured Zn metal anode (H-(002)-Zn). Theoretical and experimental characterizations demonstrate that the presence of I- additives can significantly elevate the growth rate of the Zn (100) plane, homogenize the Zn nucleation, and promote the plating kinetics, thus enabling the uniform H-(002)-Zn electrodeposition. Taking the electrolytic cell with the conventional ZnSO4-based electrolyte and commercial Cu substrate as a model system, the Zn texture gradually transforms from (101) to (002) as the increase of NaI additive concentration. In the optimized 1 M ZnSO4 + 0.8 M NaI electrolyte, the as-prepared H-(002)-Zn features a compact structure and an ultrahigh intensity ratio of (002) to (101) signal without containing the (100) signal. The free-standing H-(002)-Zn electrode manifests stronger resistance to interfacial side reactions than the conventional (101)-textured Zn electrode, thus delivering a high efficiency of 99.88% over 400 cycles and ultralong cycling lifespan over 6700 h (>9 months at 1 mA cm-2) and assuring the stable operation of full Zn batteries. This work will enlighten the efficient electrosynthesis of high-performance Zn anodes for practical aqueous Zn batteries.
Collapse
Affiliation(s)
- Wentao Yuan
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Xueyu Nie
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yuanyuan Wang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Xiaotong Li
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Guoqiang Ma
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yue Wang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Shigang Shen
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Ning Zhang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
49
|
Shi Z, Yang M, Ren Y, Wang Y, Guo J, Yin J, Lai F, Zhang W, Chen S, Alshareef HN, Liu T. Highly Reversible Zn Anodes Achieved by Enhancing Ion-Transport Kinetics and Modulating Zn (002) Deposition. ACS NANO 2023; 17:21893-21904. [PMID: 37897736 DOI: 10.1021/acsnano.3c08197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Uncontrolled dendrite growth and water-related side reactions in mild electrolytes are the main causes of poor cycling stability of zinc anodes, resulting in the deterioration of aqueous zinc-based batteries. Herein, a multifunctional fluorapatite (Ca5(PO4)3F) aerogel (FAG) interface layer is proposed to realize highly stable zinc anodes via the integrated regulation of Zn2+ migration kinetics and Zn (002) orientation deposition. Owing to the well-defined aerogel nanochannels and the rich Zn2+ adsorption sites resulting from the ion exchange between Ca2+ and Zn2+, the FAG interface layer could significantly accelerate the Zn2+ migration and effectively homogenize the Zn2+ flux and nucleation sites, thus promoting rapid and uniform Zn2+ migration at the electrode/electrolyte interface. Additionally, during the cycling process, the F atoms from FAG promote the in situ generation of ZnF2, which facilitates the manipulation of the preferred Zn (002) orientation deposition, thus efficiently suppressing dendrite growth and side reactions by combining with the above synergistic effects. Consequently, the FAG-modified Zn anode displays a stable cycle life of over 4000 h at 1 mA cm-2 and exhibits highly reversible Zn plating/stripping behavior. Meanwhile, the Zn||MnO2 full cells exhibit improved cycle stability over 2000 cycles compared with that of the bare Zn, highlighting the virtues of the FAG protective layer for highly reversible Zn anodes. Our work brings the insight in to stabilize Zn anodes and power the commercial applications of aqueous zinc-based batteries.
Collapse
Affiliation(s)
- Zhenhai Shi
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Meng Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yufeng Ren
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yizhou Wang
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Junhong Guo
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jian Yin
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Feili Lai
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge 02138, Massachusetts, United States
| | - Wenli Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Suli Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Tianxi Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
50
|
Feng D, Jiao Y, Wu P. Guiding Zn Uniform Deposition with Polymer Additives for Long-lasting and Highly Utilized Zn Metal Anodes. Angew Chem Int Ed Engl 2023:e202314456. [PMID: 37929923 DOI: 10.1002/anie.202314456] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/07/2023]
Abstract
The parasitic side reaction on Zn anode is the key issue which hinders the development of aqueous Zn-based energy storage systems on power-grid applications. Here, a polymer additive (PMCNA) engineered by copolymerizing 2-methacryloyloxyethyl phosphorylcholine (MPC) and N-acryloyl glycinamide (NAGA) was employed to regulate the Zn deposition environment for satisfying side reaction inhibition performance during long-term cycling with high Zn utilization. The PMCNA can preferentially adsorb on Zn metal surface to form a uniform protective layer for effective water molecule repelling and side reaction resistance. In addition, the PMCNA can guide Zn nucleation and deposition along 002 plane for further side reaction and dendrite suppression. Consequently, the PMCNA additive can enable the Zn//Zn battery with an ultrahigh depth of discharge (DOD) of 90.0 % for over 420 h, the Zn//active carbon (AC) capacitor with long cycling lifespan, and the Zn//PANI battery with Zn utilization of 51.3 % at low N/P ratio of 2.6.
Collapse
Affiliation(s)
- Doudou Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Yucong Jiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|