1
|
Jarząb A, Dąbrowska A, Naporowski P, Krasna K, Szmyt A, Świat M, Pawlik K, Witkowska D, Ziomek E, Gamian A. Outer membrane protein C is a protective and unique vaccine antigen against Shigella flexneri 3a. Sci Rep 2024; 14:25398. [PMID: 39455688 PMCID: PMC11511853 DOI: 10.1038/s41598-024-76745-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The anti-Shigella vaccine is one of the WHO's top priorities. Every year the disease kills more than 200,000 people worldwide and poses a serious threat to children under 5 years of age and the elderly. Increasing antibiotic resistance and limitations in diagnostics emphasize the need to develop an effective vaccine. Recent research and clinical trials report multiple approaches used in Shigella-vaccine development. However, despite the efforts of researchers, pharmaceutical companies and health care organizations, there is no licensed vaccine against shigellosis available to the community. Here, we expressed, broadly characterized and demonstrated the protective properties of outer membrane protein C as an effective molecule serving as a universal antigen for Shigella vaccine. Most of the current approaches to the development of Shigella vaccine are based on the polysaccharide antigens, which are serotype specific and have always been challenging in terms of their high specificity, targeting the most exposed surface antigens identified for certain Shigella serotypes. Here, we confirm immunogenic and protective properties of the recombinant OmpC protein, which protects mice against a lethal dose of a virulent strain 2 weeks after active immunization.
Collapse
Affiliation(s)
- Anna Jarząb
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla Str. 12, 53-114, Wroclaw, Poland.
| | - Anna Dąbrowska
- Department of Animal Products Technology and Quality Management, Wroclaw University of Environmental and Life Sciences, Chelmonskiego Str. 37/41, 51-630, Wroclaw, Poland
| | - Piotr Naporowski
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla Str. 12, 53-114, Wroclaw, Poland
| | - Karina Krasna
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla Str. 12, 53-114, Wroclaw, Poland
| | - Agnieszka Szmyt
- Department of Animal Products Technology and Quality Management, Wroclaw University of Environmental and Life Sciences, Chelmonskiego Str. 37/41, 51-630, Wroclaw, Poland
| | - Michał Świat
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla Str. 12, 53-114, Wroclaw, Poland
| | - Krzysztof Pawlik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla Str. 12, 53-114, Wroclaw, Poland
| | - Danuta Witkowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla Str. 12, 53-114, Wroclaw, Poland
| | - Edmund Ziomek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla Str. 12, 53-114, Wroclaw, Poland
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla Str. 12, 53-114, Wroclaw, Poland
| |
Collapse
|
2
|
Charles H, Sinka K, Simms I, Baker KS, Godbole G, Jenkins C. Trends in shigellosis notifications in England, January 2016 to March 2023. Epidemiol Infect 2024; 152:e115. [PMID: 39363593 PMCID: PMC11450503 DOI: 10.1017/s0950268824001006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/13/2024] [Indexed: 10/05/2024] Open
Abstract
We reviewed all diagnoses of Shigella species notified to the UK Health Security Agency from January 2016 to March 2023. An overall increase in notifications of shigellosis was seen between 2016 (n = 415/quarter) and 2023 (n = 1 029/quarter). However, notifications dramatically declined between March 2020 and September 2021 during the COVID-19 pandemic (n = 208/quarter) highlighting the impact of travel and social distancing restrictions on transmission. S. sonnei diagnoses were more affected by lockdown restrictions than S. flexneri, most likely due to a combination of species-specific characteristics and host attributes. Azithromycin resistance continued to be associated with epidemics of sexually transmissible S. flexneri (adult males = 45.6% vs. adult females = 8.7%) and S. sonnei (adult males = 59.5% vs. adult females = 14.6%). We detected resistance to ciprofloxacin in S. sonnei from adult male cases not reporting travel at a higher frequency (79.4%) than in travel-associated cases (61.7%). Extensively drug-resistant Shigella species associated with sexual transmission among men almost exclusively had ESBL encoded by blaCTX-M-27, whereas those associated with returning travellers had blaCTX-M-15. Given the increasing incidence of infections and AMR, we recommend that enhanced surveillance is used to better understand the impact of travel and sexual transmission on the acquisition and spread of MDR and XDR Shigella species.
Collapse
Affiliation(s)
| | | | - Ian Simms
- UK Health Security Agency, London, UK
| | - Kate S. Baker
- Department of Genetics, University of Cambridge, Cambridge, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | | | - Claire Jenkins
- UK Health Security Agency, London, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Baumgart S, Phan T, McKew G. Epidemiology and antimicrobial resistance rates for Shigella species in a resource-rich setting. Pathology 2024:S0031-3025(24)00236-8. [PMID: 39455321 DOI: 10.1016/j.pathol.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 10/28/2024]
Abstract
Shigellosis is an acute, often dysenteric, diarrhoeal illness that is responsible for much morbidity and mortality worldwide. Increasing rates of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Shigella species have been detected worldwide and a regular review of local epidemiological and resistance rates is necessary to help guide empirical antibiotic choice. This retrospective laboratory study of faecal isolates between 2013 and 2023 demonstrates increasing rates of resistance to third-generation cephalosporins, azithromycin and ciprofloxacin, alongside an overall increase in MDR and XDR isolates.
Collapse
Affiliation(s)
- Samuel Baumgart
- Department of Microbiology and Infectious Diseases, Concord Repatriation General Hospital, NSW Health, Concord, NSW, Australia
| | - Thuy Phan
- Department of Microbiology and Infectious Diseases, Concord Microbiology, NSW Health Pathology, Concord, NSW, Australia
| | - Genevieve McKew
- Department of Microbiology and Infectious Diseases, Concord Repatriation General Hospital, NSW Health, Concord, NSW, Australia; Department of Microbiology and Infectious Diseases, Concord Microbiology, NSW Health Pathology, Concord, NSW, Australia; Concord Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Sydney Infectious Diseases Institute, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
4
|
Mohanty A, Lakra N, Mandal J. Trends and antibiotic susceptibility patterns of diarrhoeal pathogens - experience over 14 years in southern India. Access Microbiol 2024; 6:000818.v3. [PMID: 39314748 PMCID: PMC11418920 DOI: 10.1099/acmi.0.000818.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction. Enteric pathogens contribute significantly to morbidity in a developing country such as India. Early and prompt diagnosis of diarrhoeal diseases can reduce the mortality rate, particularly in children. The pattern of sensitivity to antimicrobials for the common pathogens can vary from time to time. The present study was conducted to study the pathogen distribution and antimicrobial susceptibility pattern during the study period (January 2010 to December 2023). Hypothesis/gap statement. Studying the changing trend in the antimicrobial sensitivity pattern of diarrhoeal pathogens over a decade can help to plan future treatment options. Aim. This study was undertaken to provide insights into the changing pattern of pathogen distribution and antimicrobial susceptibility for enteric pathogens over 14 years. Methods. A retrospective observational cohort analysis was conducted on all the stool pathogens isolated from the samples received in the microbiology department of a tertiary care hospital from 2010 to 2023. The demographic details, stool microscopy, culture reports, and antimicrobial susceptibility patterns were noted. Results. A total of 18 336 stool specimens were received in the microbiology laboratory between January 2010 and December 2023, of which 1354 specimens had diarrhoeal pathogens grown in culture. Out of these 1354 specimens, 591 (44%) had Salmonella, 471 (35%) Shigella, 181 (13%) Vibrio cholerae, and 80 (6%) Aeromonas species. Among these pathogens, susceptibility to ceftriaxone was seen in 93% (552 isolates) of Salmonella species, 89% (420 isolates) of Shigella species, and 95% (171 isolates) of Vibrio cholerae; 91% (73 isolates) of Aeromonas species were susceptible to chloramphenicol. Some major parasites were also observed on microscopy. Conclusion. Timely diagnosis of diarrhoeal pathogens can be life-saving for patients at the extremes of age, i.e. in children and the elderly. Pathogens can exhibit a changing susceptibility pattern to antibiotics, which should be regularly observed to plan future therapy.
Collapse
Affiliation(s)
- Ankita Mohanty
- Department of Microbiology, JIPMER, Puducherry, 605006, India
| | - Nayannika Lakra
- Department of Microbiology, JIPMER, Puducherry, 605006, India
| | - Jharna Mandal
- Department of Microbiology, JIPMER, Puducherry, 605006, India
| |
Collapse
|
5
|
Barker SA, Bernard AR, Morales Y, Johnson SJ, Dickenson NE. Structural and functional characterization of the IpaD π-helix reveals critical roles in DOC interaction, T3SS apparatus maturation, and Shigella virulence. J Biol Chem 2024; 300:107613. [PMID: 39079629 PMCID: PMC11400957 DOI: 10.1016/j.jbc.2024.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/09/2024] [Accepted: 07/21/2024] [Indexed: 08/29/2024] Open
Abstract
Shigella spp. are highly pathogenic members of the Enterobacteriaceae family, causing ∼269 million cases of bacillary dysentery and >200,000 deaths each year. Like many Gram-negative pathogens, Shigella rely on their type three secretion system (T3SS) to inject effector proteins into eukaryotic host cells, driving both cellular invasion and evasion of host immune responses. Exposure to the bile salt deoxycholate (DOC) significantly enhances Shigella virulence and is proposed to serve as a critical environmental signal present in the small intestine that prepares Shigella's T3SS for efficient infection of the colonic epithelium. Here, we uncover critical mechanistic details of the Shigella-specific DOC signaling process by describing the role of a π-helix secondary structure element within the T3SS tip protein invasion plasmid antigen D (IpaD). Biophysical characterization and high-resolution structures of IpaD mutants lacking the π-helix show that it is not required for global protein structure, but that it defines the native DOC binding site and prevents off target interactions. Additionally, Shigella strains expressing the π-helix deletion mutants illustrate the pathogenic importance of its role in guiding DOC interaction as flow cytometry and gentamycin protection assays show that the IpaD π-helix is essential for DOC-mediated apparatus maturation and enhanced invasion of eukaryotic cells. Together, these findings add to our understanding of the complex Shigella pathogenesis pathway and its evolution to respond to environmental bile salts by identifying the π-helix in IpaD as a critical structural element required for translating DOC exposure to virulence enhancement.
Collapse
Affiliation(s)
- Samuel A Barker
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Abram R Bernard
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Yalemi Morales
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Sean J Johnson
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Nicholas E Dickenson
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA.
| |
Collapse
|
6
|
Miles SL, Holt KE, Mostowy S. Recent advances in modelling Shigella infection. Trends Microbiol 2024; 32:917-924. [PMID: 38423917 DOI: 10.1016/j.tim.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Shigella is an important human-adapted pathogen which contributes to a large global burden of diarrhoeal disease. Together with the increasing threat of antimicrobial resistance and lack of an effective vaccine, there is great urgency to identify novel therapeutics and preventatives to combat Shigella infection. In this review, we discuss the development of innovative technologies and animal models to study mechanisms underlying Shigella infection of humans. We examine recent literature introducing (i) the organ-on-chip model, and its substantial contribution towards understanding the biomechanics of Shigella infection, (ii) the zebrafish infection model, which has delivered transformative insights into the epidemiological success of clinical isolates and the innate immune response to Shigella, (iii) a pioneering oral mouse model of shigellosis, which has helped to discover new inflammasome biology and protective mechanisms against shigellosis, and (iv) the controlled human infection model, which has been effective in translating basic research into human health impact and assessing suitability of novel vaccine candidates. We consider the recent contributions of each model and discuss where the future of modelling Shigella infection lies.
Collapse
Affiliation(s)
- Sydney L Miles
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Kathryn E Holt
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| |
Collapse
|
7
|
Mason LCE, Charles H, Thorley K, Chong CE, De Silva PM, Jenkins C, Baker KS. The re-emergence of sexually transmissible multidrug resistant Shigella flexneri 3a, England, United Kingdom. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:20. [PMID: 39100870 PMCID: PMC11296952 DOI: 10.1038/s44259-024-00038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/30/2024] [Indexed: 08/06/2024]
Abstract
Shigellosis is an enteric infection that transmits through the faecal-oral route, which can occur during sex between men who have sex with men (MSM). Between 2009 and 2014, an epidemic of sexually transmissible Shigella flexneri 3a occurred in England that subsequently declined. However, from 2019 to 2021, despite SARS-CoV-2 restrictions, S. flexneri 3a continued to re-emerge. We explored possible drivers of re-emergence by comparing host demography and pathogen genomics. Cases were primarily among 35-64 year old men in London. Genomic analyses of 502 bacterial isolates showed that the majority (58%) of re-emerging MSM strains were a clonal replacement of the original, with reduced antimicrobial resistance, conservation of plasmid col156_1, and two SNPs with 19 predicted effects. The absence of major changes in the pathogen or host demographics suggest that other factors may have driven the re-emergence of S. flexneri 3a and highlight the need for further work in the area.
Collapse
Affiliation(s)
- Lewis C. E. Mason
- NIHR HPRU in Gastrointestinal Infections at University of Liverpool, Liverpool, UK
- Department of Clinical Infection, Microbiology, and Immunology; Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | | | | | - Charlotte E. Chong
- Department of Clinical Infection, Microbiology, and Immunology; Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - P. Malaka De Silva
- Department of Clinical Infection, Microbiology, and Immunology; Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Claire Jenkins
- NIHR HPRU in Gastrointestinal Infections at University of Liverpool, Liverpool, UK
- UK Health Security Agency (UKHSA), London, UK
| | - Kate S. Baker
- NIHR HPRU in Gastrointestinal Infections at University of Liverpool, Liverpool, UK
- Department of Clinical Infection, Microbiology, and Immunology; Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH UK
| |
Collapse
|
8
|
Gonabadi NSA, Menbari S, Farsiani H, Sedaghat H, Motallebi M. Antimicrobial susceptibility and virulence gene analysis of Shigella species causing dysentery in Iranian children: Implications for fluroquinolone resistance. Heliyon 2024; 10:e34384. [PMID: 39130411 PMCID: PMC11315073 DOI: 10.1016/j.heliyon.2024.e34384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Shigella species significantly impact global health due to their role in diarrheal diseases. A 2019-2022 cross-sectional study on 432 stool samples from pediatric patients in Mashhad, Iran, identified Shigella spp. and tested their susceptibility to 12 antimicrobials by the disk diffusion method. The presence of virulence factors, namely ipaH, virA, stx1, and stx2, as well as plasmid-mediated quinolone resistance (PMQR) genes, including qnrA, qnrB, qnrC, qnrD, and qnrS, were ascertained through the utilization of polymerase chain reaction techniques. Sequencing of 15 isolates detected mutations within quinolone resistance-determining regions (QRDRs) at the gyrA and parC genes, indicating fluoroquinolone (FQ) resistance. 19.2 % (83/432) of stool samples contained Shigella, primarily S. sonnei (77.1 %), followed by S. flexneri (21.6 %) and S. boydii (1.2 %). Most isolates were from children under five (55.4 %). All strains had the ipaH gene, lacked stx1 and stx2, and 86.7 % had virA. High resistance was noted for ampicillin and tetracycline (84.3 % each), trimethoprim-sulfamethoxazole (81.9 %), and azithromycin (60.2 %). 87.1 % of isolates were multidrug-resistant (MDR). The most common PMQR genes were qnrA and qnrS (41 % each). The qnrD gene, prevalent in 36.1 % of cases, is reported in Iran for the first time. The most common PMQR profile was qnrADS (15.7 %). Resistance to nalidixic acid and ciprofloxacin was 45.8 % and 12 %, respectively. The Shigella isolates exhibited mutations in the gyrA (at codons 83, 87, and 211) and parC (at codons 80, 84, 93, 126, 128, 129, and 132) genes. The D87Y mutation in the gyrA gene was the most common in Shigella isolates, occurring in 73 % of cases. The F93S and L132T mutations in the parC gene were unique to this study. Empirical FQ therapy in patients infected with MDR Shigella, possessing PMQR determinants and/or mutations in the QRDRs of gyrA and parC, may escalate the risks of secondary diseases, extended treatment duration, therapeutic failure, and resistance spread. Consequently, the necessity for continuous surveillance and genetic testing to detect FQ-resistant Shigella strains is of paramount importance.
Collapse
Affiliation(s)
- Nafise Sadat Alavi Gonabadi
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Shaho Menbari
- Department of Medical Laboratory Sciences, Faculty of Paramedical Sciences, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Bacteriology and Virology, Mashhad University of Medical Sciences, Faculty of Medicine, Mashhad, Iran
| | - Hadi Farsiani
- Department of Bacteriology and Virology, Mashhad University of Medical Sciences, Faculty of Medicine, Mashhad, Iran
| | - Hosein Sedaghat
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mitra Motallebi
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
9
|
Hasso-Agopsowicz M, Sparrow E, Cameron AM, Sati H, Srikantiah P, Gottlieb S, Bentsi-Enchill A, Le Doare K, Hamel M, Giersing BK, Hausdorff WP. The role of vaccines in reducing antimicrobial resistance: A review of potential impact of vaccines on AMR and insights across 16 vaccines and pathogens. Vaccine 2024; 42:S1-S8. [PMID: 38876836 DOI: 10.1016/j.vaccine.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/01/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
In 2019, an estimated 4.95 million deaths were linked to antimicrobial resistance (AMR). Vaccines can prevent many of these deaths by averting both drug-sensitive and resistant infections, reducing antibiotic usage, and lowering the likelihood of developing resistance genes. However, their role in mitigating AMR is currently underutilized. This article builds upon previous research that utilizes Vaccine Value Profiles-tools that assess the health, socioeconomic, and societal impact of pathogens-to inform vaccine development. We analyze the effects of 16 pathogens, covered by Vaccine Value Profiles, on AMR, and explore how vaccines could reduce AMR. The article also provides insights into vaccine development and usage. Vaccines are crucial in lessening the impact of infectious diseases and curbing the development of AMR. To fully realize their potential, vaccines must be more prominently featured in the overall strategy to combat AMR. This requires ongoing investment in research and development of new vaccines and the implementation of additional prevention and control measures to address this global threat effectively.
Collapse
Affiliation(s)
- Mateusz Hasso-Agopsowicz
- Vaccine Product & Delivery Research, Department of Immunization, Vaccines & Biologicals, World Health Organization, Geneva, Switzerland.
| | - Erin Sparrow
- Vaccine Product & Delivery Research, Department of Immunization, Vaccines & Biologicals, World Health Organization, Geneva, Switzerland
| | - Alexandra Meagan Cameron
- Global Coordination and Partnership (GCP), Antimicrobial Resistance Division, World Health Organization, Geneva, Switzerland
| | - Hatim Sati
- Global Coordination and Partnership (GCP), Antimicrobial Resistance Division, World Health Organization, Geneva, Switzerland
| | | | - Sami Gottlieb
- Department of Sexual and Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Adwoa Bentsi-Enchill
- Vaccine Product & Delivery Research, Department of Immunization, Vaccines & Biologicals, World Health Organization, Geneva, Switzerland
| | | | - Mary Hamel
- Vaccine Product & Delivery Research, Department of Immunization, Vaccines & Biologicals, World Health Organization, Geneva, Switzerland
| | - Birgitte K Giersing
- Vaccine Product & Delivery Research, Department of Immunization, Vaccines & Biologicals, World Health Organization, Geneva, Switzerland
| | - William P Hausdorff
- Center for Vaccine Access and Innovation, PATH, WA DC, USA; Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
10
|
Horne B, Badji H, Bhuiyan MTR, Romaina Cachique L, Cornick J, Hotwani A, Juma J, Ochieng JB, Abdou M, Apondi E, Atlas HE, Awuor AO, Baker KS, Ceesay BE, Charles M, Cunliffe NA, Feutz E, Galagan SR, Guindo I, Hossain MJ, Iqbal J, Jallow F, Keita NY, Khanam F, Kotloff KL, Maiden V, Manzanares Villanueva K, Mito O, Mosharraf MP, Nkeze J, Ikumapayi UN, Paredes Olortegui M, Pavlinac PB, Pinedo Vasquez T, Qadri F, Qamar FN, Qureshi S, Rahman N, Sangare A, Sen S, Peñataro Yori P, Yousafzai MT, Ahmed D, Jere KC, Kosek MN, Omore R, Permala-Booth J, Secka O, Tennant SM. Microbiological Methods Used in the Enterics for Global Health Shigella Surveillance Study. Open Forum Infect Dis 2024; 11:S25-S33. [PMID: 38532949 PMCID: PMC10962722 DOI: 10.1093/ofid/ofad576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Background Shigella is a major cause of diarrhea in young children worldwide. Multiple vaccines targeting Shigella are in development, and phase 3 clinical trials are imminent to determine efficacy against shigellosis. Methods The Enterics for Global Health (EFGH) Shigella surveillance study is designed to determine the incidence of medically attended shigellosis in 6- to 35-month-old children in 7 resource-limited settings. Here, we describe the microbiological methods used to isolate and identify Shigella. We developed a standardized laboratory protocol for isolation and identification of Shigella by culture. This protocol was implemented across all 7 sites, ensuring consistency and comparability of results. Secondary objectives of the study are to determine the antibiotic resistance profiles of Shigella, compare isolation of Shigella from rectal swabs versus whole stool, and compare isolation of Shigella following transport of rectal swabs in Cary-Blair versus a modified buffered glycerol saline transport medium. Conclusions Data generated from EFGH using culture methods described herein can potentially be used for microbiological endpoints in future phase 3 clinical trials to evaluate vaccines against shigellosis and for other clinical and public health studies focused on these organisms.
Collapse
Affiliation(s)
- Bri’Anna Horne
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Henry Badji
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | | | | | - Jennifer Cornick
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | - Aneeta Hotwani
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Jane Juma
- Centre pour le Développement des Vaccins du Mali, Bamako, Mali
| | | | - Mahamadou Abdou
- Centre pour le Développement des Vaccins du Mali, Bamako, Mali
| | - Evans Apondi
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Hannah E Atlas
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Alex O Awuor
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Kate S Baker
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Bubacarr E Ceesay
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Mary Charles
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | - Nigel A Cunliffe
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Erika Feutz
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Sean R Galagan
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Ibrehima Guindo
- Centre pour le Développement des Vaccins du Mali, Bamako, Mali
| | - M Jahangir Hossain
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Junaid Iqbal
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Fatima Jallow
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | | | - Farhana Khanam
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Karen L Kotloff
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Victor Maiden
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | | | - Oscar Mito
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Md Parvej Mosharraf
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Joseph Nkeze
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Usman N Ikumapayi
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | | | - Patricia B Pavlinac
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | | | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Farah Naz Qamar
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Sonia Qureshi
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Nazia Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Aminata Sangare
- Centre pour le Développement des Vaccins du Mali, Bamako, Mali
| | - Sunil Sen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Pablo Peñataro Yori
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | | | - Dilruba Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Khuzwayo C Jere
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
- Department of Medical Laboratory Sciences, School of Life Sciences and Health Professions, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Margaret N Kosek
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Richard Omore
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Jasnehta Permala-Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Ousman Secka
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Sharon M Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| |
Collapse
|
11
|
Peng J, Cai K, Chen G, Liu L, Peng L. Genetic evidence strengthens the bidirectional connection between gut microbiota and Shigella infection: insights from a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1361927. [PMID: 38495509 PMCID: PMC10941758 DOI: 10.3389/fmicb.2024.1361927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Background In recent investigations, substantial strides have been made in the precise modulation of the gut microbiota to prevent and treat a myriad of diseases. Simultaneously, the pressing issue of widespread antibiotic resistance and multidrug resistance resulting from Shigella infections demands urgent attention. Several studies suggest that the antagonistic influence of the gut microbiota could serve as a novel avenue for impeding the colonization of pathogenic microorganisms or treating Shigella infections. However, conventional research methodologies encounter inherent challenges in identifying antagonistic microbial agents against Shigella, necessitating a comprehensive and in-depth analysis of the causal relationship between Shigella infections and the gut microbiota. Materials and methods Utilizing the aggregated summary statistics from Genome-Wide Association Studies (GWAS), we conducted Mendelian Randomization (MR) analyses encompassing 18,340 participants to explore the interplay between the gut microbiota and Shigella infections. This investigation also involved 83 cases of Shigella infection patients and 336,396 control subjects. In the positive strand of our findings, we initially performed a preliminary analysis using the Inverse Variance Weighting (IVW) method. Subsequently, we undertook sensitivity analyses to assess the robustness of the results, addressing confounding factors' influence. This involved employing the Leave-One-Out method and scrutinizing funnel plots to ensure the reliability of the MR analysis outcomes. Conclusively, a reverse MR analysis was carried out, employing the Wald ratio method due to the exposure of individual Single Nucleotide Polymorphisms (SNPs). This was undertaken to explore the plausible associations between Shigella infections and genetically predicted compositions of the gut microbiota. Results In this study, we employed 2,818 SNPs associated with 211 species of gut microbiota as instrumental variables (IVs). Through IVW analysis, our positive MR findings revealed a significant negative correlation between the occurrence of Shigella infections and the phylum Tenericutes (OR: 0.18, 95% CI: 0.04-0.74, p = 0.02), class Mollicutes (OR: 0.18, 95% CI: 0.04-0.74, p = 0.02), genus Intestinimonas (OR: 0.16, 95% CI: 0.04-0.63, p = 0.01), genus Gordonibacter (OR: 0.39, 95% CI: 0.16-0.93, p = 0.03), and genus Butyrivibrio (OR: 0.44, 95% CI: 0.23-0.87, p = 0.02). Conversely, a positive correlation was observed between the occurrence of Shigella infections and genus Sutterella (OR: 10.16, 95% CI: 1.87-55.13, p = 0.01) and genus Alistipes (OR: 12.24, 95% CI: 1.71-87.34, p = 0.01). In sensitivity analyses, utilizing MR-Egger regression analysis and MR Pleiotropy Residual Sum and Outlier (MR-PRESSO) detection, all outcomes demonstrated robust stability. Simultaneously, in the reverse MR analysis, Shigella infections resulted in an upregulation of four bacterial genera and a downregulation of three bacterial genera. Conclusion In summation, the MR analysis outcomes corroborate the presence of bidirectional causal relationships between the gut microbiota and Shigella infections. This study not only unveils novel perspectives for the prevention and treatment of Shigella infections but also furnishes fresh insights into the mechanistic underpinnings of how the gut microbiota contributes to the pathogenesis of Shigella infections. Consequently, the established dual causal association holds promise for advancing our understanding and addressing the complexities inherent in the interplay between the gut microbiota and Shigella infections, thereby paving the way for innovative therapeutic interventions and preventive strategies in the realm of Shigella-related diseases.
Collapse
Affiliation(s)
- Jingyi Peng
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Kun Cai
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Guanglei Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Linxiao Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Lili Peng
- The First People’s Hospital of Hangzhou Lin’an District, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Matanza XM, Clements A. Pathogenicity and virulence of Shigella sonnei: A highly drug-resistant pathogen of increasing prevalence. Virulence 2023; 14:2280838. [PMID: 37994877 PMCID: PMC10732612 DOI: 10.1080/21505594.2023.2280838] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023] Open
Abstract
Shigella spp. are the causative agent of shigellosis (or bacillary dysentery), a diarrhoeal disease characterized for the bacterial invasion of gut epithelial cells. Among the 4 species included in the genus, Shigella flexneri is principally responsible for the disease in the developing world while Shigella sonnei is the main causative agent in high-income countries. Remarkably, as more countries improve their socioeconomic conditions, we observe an increase in the relative prevalence of S. sonnei. To date, the reasons behind this change in aetiology depending on economic growth are not understood. S. flexneri has been widely used as a model to study the pathogenesis of the genus, but as more research data are collected, important discrepancies with S. sonnei have come to light. In comparison to S. flexneri, S. sonnei can be differentiated in numerous aspects; it presents a characteristic O-antigen identical to that of one serogroup of the environmental bacterium Plesiomonas shigelloides, a group 4 capsule, antibacterial mechanisms to outcompete and displace gut commensal bacteria, and a poorer adaptation to an intracellular lifestyle. In addition, the World Health Organization (WHO) have recognized the significant threat posed by antibiotic-resistant strains of S. sonnei, demanding new approaches. This review gathers knowledge on what is known about S. sonnei within the context of other Shigella spp. and aims to open the door for future research on understanding the increasing spread of this pathogen.
Collapse
Affiliation(s)
- Xosé M. Matanza
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, UK
| | - Abigail Clements
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
13
|
Mitjà O, Padovese V, Folch C, Rossoni I, Marks M, Rodríguez i Arias MA, Telenti A, Ciuffi A, Blondeel K, Mårdh O, Casabona J. Epidemiology and determinants of reemerging bacterial sexually transmitted infections (STIs) and emerging STIs in Europe. THE LANCET REGIONAL HEALTH. EUROPE 2023; 34:100742. [PMID: 37927427 PMCID: PMC10625005 DOI: 10.1016/j.lanepe.2023.100742] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023]
Abstract
In this scoping review, we offer a comprehensive understanding of the current and recent epidemiology, challenges, and emerging issues related to bacterial sexually transmitted infections (STIs) in the WHO European Region. We endeavour in collating data from both EU/EEA and non- EU/EEA countries, thereby giving a complete picture of the region which highlights the higher notification rates in Northern and Western countries than other regions, likely due to differences in testing, access to testing, and surveillance capacity. We provide an up-to-date review on the current knowledge of determinants and persistent inequities in key populations as well as the use of molecular epidemiology for identifying transmission networks in gonorrhoea and syphilis, and detecting chlamydia mutations that evade molecular diagnosis. Finally, we explore the emerging STIs in the region and the evolving transmission routes of food and waterborne diseases into sexual transmission. Our findings call for harmonized STI surveillance systems, proactive strategies, and policies to address social factors, and staying vigilant for emerging STIs.
Collapse
Affiliation(s)
- Oriol Mitjà
- Skin Neglected Tropical Diseases and Sexually Transmitted Infections Section, Hospital Universitari Germans Trías i Pujol, Badalona, Spain
- Fight Infectious Diseases Foundation, Badalona, Spain
- School of Medicine and Health Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
| | - Valeska Padovese
- Genitourinary Clinic, Department of Dermatology and Venereology, Mater Dei Hospital, Msida, Malta
| | - Cinta Folch
- Centre of Epidemiological Studies of HIV/AIDS and STI of Catalonia (CEEISCAT), Health Department, Generalitat de Catalunya, Badalona, Spain
- Germans Trias I Pujol Research Institute (IGTP), Campus Can Ruti, Badalona, Spain
- CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | - Isotta Rossoni
- Van Vollenhoven Institute for Law, Governance and Society, Leiden University, Netherland
| | - Michael Marks
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, United Kingdom
- Division of Infection and Immunology, University College London, London, UK
- Hospital for Tropical Diseases, University College London Hospital, London, UK
| | - Miquel Angel Rodríguez i Arias
- Skin Neglected Tropical Diseases and Sexually Transmitted Infections Section, Hospital Universitari Germans Trías i Pujol, Badalona, Spain
- Fight Infectious Diseases Foundation, Badalona, Spain
| | | | - Angela Ciuffi
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Karel Blondeel
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Otilia Mårdh
- STI, Blood Borne Viruses and TB Section, Disease Programmes Unit, European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Jordi Casabona
- Centre of Epidemiological Studies of HIV/AIDS and STI of Catalonia (CEEISCAT), Health Department, Generalitat de Catalunya, Badalona, Spain
- Germans Trias I Pujol Research Institute (IGTP), Campus Can Ruti, Badalona, Spain
- CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
14
|
Yang C, Xiang Y, Qiu S. Resistance in Enteric Shigella and nontyphoidal Salmonella : emerging concepts. Curr Opin Infect Dis 2023; 36:360-365. [PMID: 37594001 PMCID: PMC10487366 DOI: 10.1097/qco.0000000000000960] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
PURPOSE OF REVIEW The emergence of globally resistant enteric Shigella and nontyphoidal Salmonella strains (NTS) has limited the selection of effective drugs, which has become a major challenge for the treatment of infections. The purpose of this review is to provide the current opinion on the antimicrobial-resistant enteric Shigella and nontyphoidal Salmonella . RECENT FINDINGS Enteric Shigella and NTS are resistant to almost all classes of antimicrobials in recent years. Those with co-resistance to ciprofloxacin, azithromycin and ceftriaxone, the first-line antibiotics for the treatment of infectious diarrhoea have emerged worldwide. Some of them have caused interregional and international spread by travel, trade, MSM, and polluted water sources. Several strains have even developed resistance to colistin, the last-resort antibiotic used for treatment of multidrug-resistant Gram-negative bacteria infections. SUMMARY The drug resistance of enteric Shigella and NTS is largely driven by the use of antibiotics and horizontal gene transfer of mobile genetic elements. These two species show various drug resistance patterns in different regions and serotypes. Hence treatment decisions for Shigella and Salmonella infections need to take into consideration prevalent antimicrobial drug resistance patterns. It is worth noting that the resistance genes such as blaCTX,mph, ermB , qnr and mcr , which can cause resistance to ciprofloxacin, cephalosporin, azithromycin and colistin are widespread because of transmission by IncFII, IncI1, IncI2 and IncB/O/K/Z plasmids. Therefore, continuous global monitoring of resistance in Shigella and Salmonella is imperative.
Collapse
Affiliation(s)
- Chaojie Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | | | | |
Collapse
|
15
|
Haidar-Ahmad N, Manigat FO, Silué N, Pontier SM, Campbell-Valois FX. A Tale about Shigella: Evolution, Plasmid, and Virulence. Microorganisms 2023; 11:1709. [PMID: 37512882 PMCID: PMC10383432 DOI: 10.3390/microorganisms11071709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Shigella spp. cause hundreds of millions of intestinal infections each year. They target the mucosa of the human colon and are an important model of intracellular bacterial pathogenesis. Shigella is a pathovar of Escherichia coli that is characterized by the presence of a large invasion plasmid, pINV, which encodes the characteristic type III secretion system and icsA used for cytosol invasion and cell-to-cell spread, respectively. First, we review recent advances in the genetic aspects of Shigella, shedding light on its evolutionary history within the E. coli lineage and its relationship to the acquisition of pINV. We then discuss recent insights into the processes that allow for the maintenance of pINV. Finally, we describe the role of the transcription activators VirF, VirB, and MxiE in the major virulence gene regulatory cascades that control the expression of the type III secretion system and icsA. This provides an opportunity to examine the interplay between these pINV-encoded transcriptional activators and numerous chromosome-encoded factors that modulate their activity. Finally, we discuss novel chromosomal genes icaR, icaT, and yccE that are regulated by MxiE. This review emphasizes the notion that Shigella and E. coli have walked the fine line between commensalism and pathogenesis for much of their history.
Collapse
Affiliation(s)
- Nathaline Haidar-Ahmad
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - France Ourida Manigat
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Navoun Silué
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Stéphanie M Pontier
- Centre de Recherche Santé Environnementale et Biodiversité de l'Outaouais (SEBO), CEGEP de l'Outaouais, Gatineau, QC J8Y 6M4, Canada
| | - François-Xavier Campbell-Valois
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Centre for Infection, Immunity and Inflammation, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
16
|
Baker S, Scott TA. Antimicrobial-resistant Shigella: where do we go next? Nat Rev Microbiol 2023:10.1038/s41579-023-00906-1. [PMID: 37188805 PMCID: PMC10184058 DOI: 10.1038/s41579-023-00906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Stephen Baker
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK.
- International AIDS Vaccine Initiative, Chelsea and Westminster Hospital, London, UK.
| | - Timothy A Scott
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|