1
|
Zhou Y, Zhang J, You S, Lin W, Zhang B, Wang M, Su R, Qi W. High terephthalic acid purity: Effective polyethylene terephthalate degradation process based on pH regulation with dual-function hydrolase. BIORESOURCE TECHNOLOGY 2024; 413:131461. [PMID: 39255945 DOI: 10.1016/j.biortech.2024.131461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Eco-friendly enzymatic-recycling has been widely utilized in tackling plastic pollution. However, the limited activity on the polyethylene terephthalate (PET) degradation product mono-hydroxyethyl terephthalate (MHET) leads to the formation of heterogeneous hydrolysis products, resulting in PET downcycling. Herein, by applying a dual-function PET hydrolase IsPETasePA with balanced PET and MHET degradation efficiency, an effective PET hydrolysis process was developed to enhance the terephthalic acid (TPA) product purity. Firstly, the impact of pH on the catalytic activity of IsPETasePA revealed that the pH reduction caused by TPA generation hindered the complete conversion of MHET to TPA. Further investigation of the catalytic mechanism showed that the pH-induced protonation of His208 in the catalytic triad destabilized the interaction between IsPETasePA and MHET. Thus, by introducing pH regulation strategy on the bifunctional IsPETasePA, the single-enzyme process could achieve high-purity TPA recovery (>99 %). Overall, this work ensured the high-quality PET enzymatic-recycling for effectively addressing plastic pollution.
Collapse
Affiliation(s)
- Yu Zhou
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jiaxing Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Shengping You
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Beijing Meihao Biotechnology Co., Ltd, PR China
| | - Wei Lin
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Baoyu Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Mengfan Wang
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Yuantian Biotechnology (Tianjin) Co., Ltd, PR China
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
2
|
Heinks T, Hofmann K, Last S, Gamm I, Blach L, Wei R, Bornscheuer UT, Hamel C, von Langermann J. Selective Modification of the Product Profile of Biocatalytic Hydrolyzed PET via Product-Specific Medium Engineering. CHEMSUSCHEM 2024:e202401759. [PMID: 39504305 DOI: 10.1002/cssc.202401759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/14/2024] [Accepted: 11/05/2024] [Indexed: 11/08/2024]
Abstract
Over the past years, enzymatic depolymerization of PET, one of the most widely used plastics worldwide, has become very efficient leading to the end products terephthalic acid (TPA) and ethylene glycol (EG) used for PET re-synthesis. Potent alternatives to these monomers are the intermediates BHET and MHET, the mono- and di-esters of TPA and EG which avoid total hydrolysis and can serve as single starting materials for direct re-polymerization. This study therefore aimed to selectively prepare those intermediates through reaction medium engineering during the biocatalytic hydrolysis of PET. After a comparative pre-screening of 12 PET-hydrolyzing enzymes, two of them (LCCICCG, IsPETasewt) were chosen for detailed investigations. Depending on the reaction conditions, MHET and BHET are predominantly obtainable: (i) MHET was produced in a better ratio and high concentrations at the beginning of the reaction when IsPETasewt and 10 % EG was used; (ii) BHET was produced as predominant product when LCCICCG and 25 % EG was used. TPA itself was nearly the single product at pH 9.0 after 24 h due to the self-hydrolysis of MHET and BHET under basic conditions. Using medium engineering in biocatalytic PET-hydrolysis, the product profile can be adjusted so that TPA, MHET or BHET is predominantly produced.
Collapse
Affiliation(s)
- Tobias Heinks
- Faculty of Process and Systems Engineering, Institute of Chemistry, Biocatalytic Synthesis, Otto von Guericke University of Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Katrin Hofmann
- Department of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, 06366, Koethen, Germany
| | - Simon Last
- Faculty of Process and Systems Engineering, Institute of Chemistry, Biocatalytic Synthesis, Otto von Guericke University of Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Igor Gamm
- Faculty of Process and Systems Engineering, Institute of Process Engineering, Chemical Process Engineering, Otto von Guericke University of Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Luise Blach
- Faculty of Process and Systems Engineering, Institute of Process Engineering, Chemical Process Engineering, Otto von Guericke University of Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Ren Wei
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str.4, 17487, Greifswald, Germany
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str.4, 17487, Greifswald, Germany
| | - Christof Hamel
- Department of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, 06366, Koethen, Germany
- Faculty of Process and Systems Engineering, Institute of Process Engineering, Chemical Process Engineering, Otto von Guericke University of Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Jan von Langermann
- Faculty of Process and Systems Engineering, Institute of Chemistry, Biocatalytic Synthesis, Otto von Guericke University of Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
3
|
Fang T, Jiang W, Zheng T, Yao X, Zhu W. Catalyst- and Solvent-Free Upcycling of Poly(Ethylene Terephthalate) Waste to Biodegradable Plastics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403728. [PMID: 39097946 DOI: 10.1002/adma.202403728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/10/2024] [Indexed: 08/06/2024]
Abstract
Poly(ethylene terephthalate) (PET) is an important polymer with annual output second only to polyethylene. Due to its low biodegradability, a large amount of PET is recycled for sustainable development. However, current strategies for PET recycling are limited by low added value or small product scale. It is urgent to make a breakthrough on the principle of PET macromolecular reaction and efficiently prepare products with high added value and wide applications. Here, the catalyst- and solvent-free synthesis of biodegradable plastics are reported through novel carboxyl-ester transesterification between PET waste and bio-based hydrogenated dimer acid (HDA), which can directly substitute some terephthalic acid (TPA) units in PET chain by HDA unit. This macromolecular reaction can be facilely carried out on current equipment in the polyester industry without any additional catalyst and solvent, thus enabling low-cost and large-scale production. Furthermore, the product semi-bio-based copolyester shows excellent mechanical properties, regulable flexibility and good biodegradability, which is expected to substitute poly(butylene adipate-co-terephthalate) (PBAT) plastic as high value-added biodegradable materials. This work provides an environmental-friendly and economic strategy for the large-scale upcycling of PET waste.
Collapse
Affiliation(s)
- Tianxiang Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Weipo Jiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Tengfei Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xuxia Yao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Wilkes R, Zhou N, Carroll AL, Aryal O, Teitel KP, Wilson RS, Zhang L, Kapoor A, Castaneda E, Guss AM, Waldbauer JR, Aristilde L. Mechanisms of Polyethylene Terephthalate Pellet Fragmentation into Nanoplastics and Assimilable Carbons by Wastewater Comamonas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19338-19352. [PMID: 39360733 PMCID: PMC11526368 DOI: 10.1021/acs.est.4c06645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/30/2024]
Abstract
Comamonadaceae bacteria are enriched on poly(ethylene terephthalate) (PET) microplastics in wastewaters and urban rivers, but the PET-degrading mechanisms remain unclear. Here, we investigated these mechanisms with Comamonas testosteroniKF-1, a wastewater isolate, by combining microscopy, spectroscopy, proteomics, protein modeling, and genetic engineering. Compared to minor dents on PET films, scanning electron microscopy revealed significant fragmentation of PET pellets, resulting in a 3.5-fold increase in the abundance of small nanoparticles (<100 nm) during 30-day cultivation. Infrared spectroscopy captured primarily hydrolytic cleavage in the fragmented pellet particles. Solution analysis further demonstrated double hydrolysis of a PET oligomer, bis(2-hydroxyethyl) terephthalate, to the bioavailable monomer terephthalate. Supplementation with acetate, a common wastewater co-substrate, promoted cell growth and PET fragmentation. Of the multiple hydrolases encoded in the genome, intracellular proteomics detected only one, which was found in both acetate-only and PET-only conditions. Homology modeling of this hydrolase structure illustrated substrate binding analogous to reported PET hydrolases, despite dissimilar sequences. Mutants lacking this hydrolase gene were incapable of PET oligomer hydrolysis and had a 21% decrease in PET fragmentation; re-insertion of the gene restored both functions. Thus, we have identified constitutive production of a key PET-degrading hydrolase in wastewater Comamonas, which could be exploited for plastic bioconversion.
Collapse
Affiliation(s)
- Rebecca
A. Wilkes
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Nanqing Zhou
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Austin L. Carroll
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ojaswi Aryal
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Kelly P. Teitel
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Rebecca S. Wilson
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Lichun Zhang
- Department
of the Geophysical Sciences, University
of Chicago, Chicago, Illinois 60637, United States
| | - Arushi Kapoor
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Edgar Castaneda
- Northwestern
Center for Synthetic Biology, Northwestern
University, Evanston, Illinois 60208, United States
| | - Adam M. Guss
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jacob R. Waldbauer
- Department
of the Geophysical Sciences, University
of Chicago, Chicago, Illinois 60637, United States
| | - Ludmilla Aristilde
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
- Northwestern
Center for Synthetic Biology, Northwestern
University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Jäckering A, van der Kamp M, Strodel B, Zinovjev K. Influence of Wobbling Tryptophan and Mutations on PET Degradation Explored by QM/MM Free Energy Calculations. J Chem Inf Model 2024; 64:7544-7554. [PMID: 39344272 PMCID: PMC11480989 DOI: 10.1021/acs.jcim.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/23/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Plastic-degrading enzymes, particularly poly(ethylene terephthalate) (PET) hydrolases, have garnered significant attention in recent years as potential eco-friendly solutions for recycling plastic waste. However, understanding of their PET-degrading activity and influencing factors remains incomplete, impeding the development of uniform approaches for enhancing PET hydrolases for industrial applications. A key aspect of PET hydrolase engineering is optimizing the PET-hydrolysis reaction by lowering the associated free energy barrier. However, inconsistent findings have complicated these efforts. Therefore, our goal is to elucidate various aspects of enzymatic PET degradation by means of quantum mechanics/molecular mechanics (QM/MM) reaction simulations and analysis, focusing on the initial reaction step, acylation, in two thermophilic PET hydrolases, LCC and PES-H1, along with their highly active variants, LCCIG and PES-H1FY. Our findings highlight the impact of semiempirical QM methods on proton transfer energies, affecting the distinction between a two-step reaction involving a metastable tetrahedral intermediate and a one-step reaction. Moreover, we uncovered a concerted conformational change involving the orientation of the PET benzene ring, altering its interaction with the side-chain of the "wobbling" tryptophan from T-stacking to parallel π-π interactions, a phenomenon overlooked in prior research. Our study thus enhances the understanding of the acylation mechanism of PET hydrolases, in particular by characterizing it for the first time for the promising PES-H1FY using QM/MM simulations. It also provides insights into selecting a suitable QM method and a reaction coordinate, valuable for future studies on PET degradation processes.
Collapse
Affiliation(s)
- Anna Jäckering
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute
of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Marc van der Kamp
- School
of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Birgit Strodel
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute
of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Kirill Zinovjev
- School
of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
- Departament
de Química Física, Universitat
de València, 46100 Burjassot, Spain
| |
Collapse
|
6
|
Świderek K, Martí S, Arafet K, Moliner V. Computational study of the mechanism of a polyurethane esterase A (PueA) from Pseudomonas chlororaphis. Faraday Discuss 2024; 252:323-340. [PMID: 38836643 DOI: 10.1039/d4fd00022f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The effective management of plastic waste has become a global imperative, given our reliance on a linear model in which plastics are manufactured, used once, and then discarded. This has led to the pervasive accumulation of plastic debris in landfills and environmental contamination. Recognizing this issue, numerous initiatives are underway to address the environmental repercussions associated with plastic disposal. In this study, we investigate the possible molecular mechanism of polyurethane esterase A (PueA), which has been previously identified as responsible for the degradation of a polyester polyurethane (PU) sample in Pseudomonas chlororaphis, as an effort to develop enzymatic biodegradation solutions. After generating the unsolved 3D structure of the protein by AlphaFold2 from its known genome, the enzymatic hydrolysis of the same model PU compound previously used in experiments has been explored employing QM/MM molecular dynamics simulations. This required a preliminary analysis of the 3D structure of the apo-enzyme, identifying the putative active site, and the search for the optimal protein-substrate binding site. Finally, the resulting free energy landscape indicates that wild-type PueA can degrade PU chains, although with low-level activity. The reaction takes place by a characteristic four-step path of the serine hydrolases, involving an acylation followed by a diacylation step. Energetics and structural analysis of the evolution of the active site along the reaction suggests that PueA can be considered a promising protein scaffold for further development to achieve efficient biodegradation of PU.
Collapse
Affiliation(s)
- Katarzyna Świderek
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain.
| | - Sergio Martí
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain.
| | - Kemel Arafet
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain.
| | - Vicent Moliner
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain.
| |
Collapse
|
7
|
Lopez-Lorenzo X, Hueting D, Bosshard E, Syrén PO. Degradation of PET microplastic particles to monomers in human serum by PETase. Faraday Discuss 2024; 252:387-402. [PMID: 38864456 DOI: 10.1039/d4fd00014e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
More than 8 billion tons of plastic waste has been generated, posing severe environmental consequences and health risks. Due to prolonged exposure, microplastic particles are found in human blood and other bodily fluids. Despite a lack of toxicity studies regarding microplastics, harmful effects for humans seem plausible and cannot be excluded. As small plastic particles readily translocate from the gut to body fluids, enzyme-based treatment of serum could constitute a promising future avenue to clear synthetic polymers and their corresponding oligomers via their degradation into monomers of lower toxicity than the material they originate from. Still, whereas it is known that the enzymatic depolymerization rate of synthetic polymers varies by orders of magnitude depending on the buffer and media composition, the activity of plastic-degrading enzymes in serum was unknown. Here, we report how an engineered PETase, which we show to be generally trans-selective via induced fit docking, can depolymerize two different microplastic-like substrates of the commodity polymer polyethylene terephthalate (PET) into its non-toxic monomer terephthalic acid (TPA) alongside mono(2-hydroxyethyl)terephthalate (MHET) in human serum at 37 °C. We show that the application of PETase does not influence cell viability in vitro. Our work highlights the potential of applying biocatalysis in biomedicine and represents a first step towards finding a future solution to the problem that microplastics in the bloodstream may pose.
Collapse
Affiliation(s)
- Ximena Lopez-Lorenzo
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - David Hueting
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Eliott Bosshard
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Per-Olof Syrén
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
8
|
Anh Nguyen TK, Trần-Phú T, Daiyan R, Minh Chau Ta X, Amal R, Tricoli A. From Plastic Waste to Green Hydrogen and Valuable Chemicals Using Sunlight and Water. Angew Chem Int Ed Engl 2024; 63:e202401746. [PMID: 38757221 DOI: 10.1002/anie.202401746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
Over 79 % of 6.3 billion tonnes of plastics produced from 1950 to 2015 have been disposed in landfills or found their way to the oceans, where they will reside for up to hundreds of years before being decomposed bringing upon significant dangers to our health and ecosystems. Plastic photoreforming offers an appealing alternative by using solar energy and water to transform plastic waste into value-added chemical commodities, while simultaneously producing green hydrogen via the hydrogen evolution reaction. This review aims to provide an overview of the underlying principles of emerging plastic photoreforming technologies, highlight the challenges associated with experimental protocols and performance assessments, discuss recent global breakthroughs on the photoreforming of plastics, and propose perspectives for future research. A critical assessment of current plastic photoreforming studies shows a lack of standardised conditions, hindering comparison amongst photocatalyst performance. Guidelines to establish a more accurate evaluation of materials and systems are proposed, with the aim to facilitate the translation of promising fundamental discovery in photocatalysts design.
Collapse
Affiliation(s)
- Thi Kim Anh Nguyen
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Thành Trần-Phú
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia
- Present address: Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Rahman Daiyan
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Xuan Minh Chau Ta
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Rose Amal
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Antonio Tricoli
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
Satta A, Ghiotto G, Santinello D, Giangeri G, Bergantino E, Modesti M, Raga R, Treu L, Campanaro S, Zampieri G. Synergistic functional activity of a landfill microbial consortium in a microplastic-enriched environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174696. [PMID: 38997032 DOI: 10.1016/j.scitotenv.2024.174696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Plastic pollution of the soil is a global issue of increasing concern, with far-reaching impact on the environment and human health. To fully understand the medium- and long-term impact of plastic dispersal in the environment, it is necessary to define its interaction with the residing microbial communities and the biochemical routes of its degradation and metabolization. However, despite recent attention on this problem, research has largely focussed on microbial functional potential, failing to clearly identify collective adaptation strategies of these communities. Our study combines genome-centric metagenomics and metatranscriptomics to characterise soil microbial communities adapting to high polyethylene and polyethylene terephthalate concentration. The microbiota were sampled from a landfill subject to decades-old plastic contamination and enriched through prolonged cultivation using these microplastics as the only carbon source. This approach aimed to select the microorganisms that best adapt to these specific substrates. As a result, we obtained simplified communities where multiple plastic metabolization pathways are widespread across abundant and rare microbial taxa. Major differences were found in terms of expression, which on average was higher in planktonic microbes than those firmly adhered to plastic, indicating complementary metabolic roles in potential microplastic assimilation. Moreover, metatranscriptomic patterns indicate a high transcriptional level of numerous genes in emerging taxa characterised by a marked accumulation of genomic variants, supporting the hypothesis that plastic metabolization requires an extensive rewiring in energy metabolism and thus provides a strong selective pressure. Altogether, our results provide an improved characterisation of the impact of microplastics derived from common plastics types on terrestrial microbial communities and suggest biotic responses investing contaminated sites as well as potential biotechnological targets for cooperative plastic upcycling.
Collapse
Affiliation(s)
- Alessandro Satta
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Gabriele Ghiotto
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Davide Santinello
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Ginevra Giangeri
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, 227, 220, 2800 Kgs. Lyngby, Denmark
| | | | - Michele Modesti
- Department of Industrial Engineering, University of Padua, Via Gradenigo, 6/a, 35131 Padova, Italy
| | - Roberto Raga
- Department of Civil, Environmental and Architectural Engineering, University of Padua, via Marzolo 9, 35131 Padova, Italy
| | - Laura Treu
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy.
| | - Stefano Campanaro
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Guido Zampieri
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| |
Collapse
|
10
|
Li A, Wu L, Cui H, Song Y, Zhang X, Li X. Unlocking a Sustainable Future for Plastics: A Chemical-Enzymatic Pathway for Efficient Conversion of Mixed Waste to MHET and Energy-Saving PET Recycling. CHEMSUSCHEM 2024; 17:e202301612. [PMID: 38385577 DOI: 10.1002/cssc.202301612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
The heterogeneous monomers obtained from plastic waste degradation are unfavorable for PET recondensation and high-value derivative synthesis. Herein, we developed an efficient chemical-enzymatic approach to convert mixed plastic wastes into homogeneous mono-2-hydroxyethyl terephthalate (MHET) without downstream purification, benefiting from three discovered BHETases (KbEst, KbHyd, and BrevEst) in nature. Towards the mixed plastic waste, integrating the chemical K2CO3-driven glycolysis process with the BHETase depolymerization technique resulted in an MHET yield of up to 98.26 % in 40 h. Remarkably, BrevEst accomplished the highest BHET hydrolysis (~87 % efficiency in 12 h) for yielding analytical-grade MHET compared to seven state-of-the-art PET hydrolases (18 %-40 %). In an investigation combining quantum theoretical computations and experimental validations, we established a MHET-initiated PET repolymerization pathway. This shortcut approach with MHET promises to strengthen the valorization of mixed plastics, offering a substantially more efficient and energy-saving route for PET recycling.
Collapse
Affiliation(s)
- Anni Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Luxuan Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Haiyang Cui
- School of Life Sciences, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yibo Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
11
|
Williams TL, Taily IM, Hatton L, Berezin AA, Wu Y, Moliner V, Świderek K, Tsai Y, Luk LYP. Secondary Amine Catalysis in Enzyme Design: Broadening Protein Template Diversity through Genetic Code Expansion. Angew Chem Int Ed Engl 2024; 63:e202403098. [PMID: 38545954 PMCID: PMC11497281 DOI: 10.1002/anie.202403098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 04/20/2024]
Abstract
Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N-terminal prolines, impose significant limitations on template selection. In this study, genetic code expansion was used to break this boundary, enabling secondary amines to be incorporated into alternative proteins and positions of choice. Pyrrolysine analogues carrying different secondary amines could be incorporated into superfolder green fluorescent protein (sfGFP), multidrug-binding LmrR and nucleotide-binding dihydrofolate reductase (DHFR). Notably, the analogue containing a D-proline moiety demonstrated both proteolytic stability and catalytic activity, conferring LmrR and DHFR with the desired transfer hydrogenation activity. While the LmrR variants were confined to the biomimetic 1-benzyl-1,4-dihydronicotinamide (BNAH) as the hydride source, the optimal DHFR variant favorably used the pro-R hydride from NADPH for stereoselective reactions (e.r. up to 92 : 8), highlighting that a switch of protein template could broaden the nucleophile option for catalysis. Owing to the cofactor compatibility, the DHFR-based secondary amine catalysis could be integrated into an enzymatic recycling scheme. This established method shows substantial potential in enzyme design, applicable from studies on enzyme evolution to the development of new biocatalysts.
Collapse
Affiliation(s)
- Thomas L. Williams
- School of Chemistry and Cardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUnited Kingdom
| | - Irshad M. Taily
- School of Chemistry and Cardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUnited Kingdom
| | - Lewis Hatton
- School of Chemistry and Cardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUnited Kingdom
| | - Andrey A Berezin
- School of Chemistry and Cardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUnited Kingdom
| | - Yi‐Lin Wu
- School of Chemistry and Cardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUnited Kingdom
| | - Vicent Moliner
- BioComp Group, Institute of Advanced Materials (INAM)Universitat Jaume I12071CastellóSpain
| | - Katarzyna Świderek
- BioComp Group, Institute of Advanced Materials (INAM)Universitat Jaume I12071CastellóSpain
| | - Yu‐Hsuan Tsai
- Institute of Molecular PhysiologyShenzhen Bay LaboratoryGaoke International Innovation CenterGuangming District518132Shenzhen, GuangdongChina
| | - Louis Y. P. Luk
- School of Chemistry and Cardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUnited Kingdom
| |
Collapse
|
12
|
Wu Y, Hu Q, Che Y, Niu Z. Opportunities and challenges for plastic depolymerization by biomimetic catalysis. Chem Sci 2024; 15:6200-6217. [PMID: 38699266 PMCID: PMC11062090 DOI: 10.1039/d4sc00070f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
Plastic waste has imposed significant burdens on the environment. Chemical recycling allows for repeated regeneration of plastics without deterioration in quality, but often requires harsh reaction conditions, thus being environmentally unfriendly. Enzymatic catalysis offers a promising solution for recycling under mild conditions, but it faces inherent limitations such as poor stability, high cost, and narrow substrate applicability. Biomimetic catalysis may provide a new avenue by combining high enzyme-like activity with the stability of inorganic materials. Biomimetic catalysis has demonstrated great potential in biomass conversion and has recently shown promising progress in plastic degradation. This perspective discusses biomimetic catalysis for plastic degradation from two perspectives: the imitation of the active centers and the imitation of the substrate-binding clefts. Given the chemical similarity between biomass and plastics, relevant work is also included in the discussion to draw inspiration. We conclude this perspective by highlighting the challenges and opportunities in achieving sustainable plastic recycling via a biomimetic approach.
Collapse
Affiliation(s)
- Yanfen Wu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Qikun Hu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yizhen Che
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Zhiqiang Niu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| |
Collapse
|
13
|
Olazabal I, Luna Barrios EJ, De Meester S, Jehanno C, Sardon H. Overcoming the Limitations of Organocatalyzed Glycolysis of Poly(ethylene terephthalate) to Facilitate the Recycling of Complex Waste Under Mild Conditions. ACS APPLIED POLYMER MATERIALS 2024; 6:4226-4232. [PMID: 38633816 PMCID: PMC11019730 DOI: 10.1021/acsapm.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 04/19/2024]
Abstract
Although multiple methods have been reported in the literature for the chemical recycling of poly(ethylene terephthalate) (PET), large-scale depolymerization is not yet widely employed. The main reasons for the limited adoption of chemical recycling of PET are the harsh conditions required and the lack of selectivity. In this study, the organocatalytic glycolysis of PET mediated by organic bases at low temperatures is studied, and routes to avoid the deactivation of the catalyst are explored. It is shown that the formation of terephthalic acid by uncontrolled hydrolysis leads to issues which can be resolved using potassium tert-butoxide as a cocatalyst. Finally, complex PET waste obtained from a mechanical recycling plant was depolymerized under optimized conditions, obtaining bis(2-hydroxyethyl) terephthalate yields >90% in less than 15 min at only 100 °C. These results open the way to efficient recycling of PET-enriched waste streams under milder conditions.
Collapse
Affiliation(s)
- Ion Olazabal
- POLYMAT,
University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Emelin J. Luna Barrios
- POLYMAT,
University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Department
of Green Chemistry and Technology, Ghent
University, Graaf Karel
De Goedelaan 5, Kortrijk 8500, Belgium
| | - Steven De Meester
- Department
of Green Chemistry and Technology, Ghent
University, Graaf Karel
De Goedelaan 5, Kortrijk 8500, Belgium
| | - Coralie Jehanno
- POLYMAT,
University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
- POLYKEY, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Haritz Sardon
- POLYMAT,
University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
14
|
Gabirondo E, Świderek K, Marin E, Maiz-Iginitz A, Larranaga A, Moliner V, Etxeberria A, Sardon H. A Single Amino Acid Able to Promote High-Temperature Ring-Opening Polymerization by Dual Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308956. [PMID: 38348541 DOI: 10.1002/advs.202308956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Indexed: 04/25/2024]
Abstract
Amino acids are indispensable compounds in the body, performing several biological processes that enable proper functioning. In this work, it is demonstrated that a single amino acid, taurine, is also able to promote the ring-opening polymerization (ROP) of several cyclic monomers under industrially relevant conditions. It is shown that the unique zwitterionic structure of taurine, where the negatively charged sulfonic acid group and the protonated amine group are separated by two methylene groups, not only provides high thermal stability but also leads to a dual activation mechanism, which is corroborated by quantum mechanical calculations. This unique mechanism allows for the synthesis of polylactide of up to 50 kDa in bulk at 180 °C with good end-group fidelity using a highly abundant catalyst. Furthermore, cytotoxicity tests confirm that PLLA synthesized with taurine is non-toxic. Moreover, it is demonstrated that the presence of taurine does not have any detrimental effect on the thermal stability of polylactide, and therefore polymers can be used directly without any post-polymerization purification. It is believed that the demonstration that a simple structure composed of a single amino acid can promote polymerization can bring a paradigm shift in the preparation of polymers.
Collapse
Affiliation(s)
- Elena Gabirondo
- POLYMAT, Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Manuel de Lardizabal 3 Pasealekua, Donostia, 20018, Spain
| | - Katarzyna Świderek
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, Castelló, 12071, Spain
| | - Edurne Marin
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, Bilbao, 48013, Spain
| | - Ainhoa Maiz-Iginitz
- POLYMAT, Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Manuel de Lardizabal 3 Pasealekua, Donostia, 20018, Spain
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, San Sebastián, Spain
| | - Aitor Larranaga
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, Bilbao, 48013, Spain
| | - Vicent Moliner
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, Castelló, 12071, Spain
| | - Agustin Etxeberria
- POLYMAT, Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Manuel de Lardizabal 3 Pasealekua, Donostia, 20018, Spain
| | - Haritz Sardon
- POLYMAT, Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Manuel de Lardizabal 3 Pasealekua, Donostia, 20018, Spain
| |
Collapse
|
15
|
Barati F, Hosseini F, Vafaee R, Sabouri Z, Ghadam P, Arab SS, Shadfar N, Piroozmand F. In silico approaches to investigate enzyme immobilization: a comprehensive systematic review. Phys Chem Chem Phys 2024; 26:5744-5761. [PMID: 38294035 DOI: 10.1039/d3cp03989g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Enzymes are popular catalysts with many applications, especially in industry. Biocatalyst usage on a large scale is facing some limitations, such as low operational stability, low recyclability, and high enzyme cost. Enzyme immobilization is a beneficial strategy to solve these problems. Bioinformatics tools can often correctly predict immobilization outcomes, resulting in a cost-effective experimental phase with the least time consumed. This study provides an overview of in silico methods predicting immobilization processes via a comprehensive systematic review of published articles till 11 December 2022. It also mentions the strengths and weaknesses of the processes and explains the computational analyses in each method that are required for immobilization assessment. In this regard, Web of Science and Scopus databases were screened to gain relevant publications. After screening the gathered documents (n = 3873), 60 articles were selected for the review. The selected papers have applied in silico procedures including only molecular dynamics (MD) simulations (n = 20), parallel tempering Monte Carlo (PTMC) and MD simulations (n = 3), MD and docking (n = 1), density functional theory (DFT) and MD (n = 1), only docking (n = 11), metal ion binding site prediction (MIB) server and docking (n = 2), docking and DFT (n = 1), docking and analysis of enzyme surfaces (n = 1), only DFT (n = 1), only MIB server (n = 2), analysis of an enzyme structure and surface (n = 12), rational design of immobilized derivatives (RDID) software (n = 3), and dissipative particle dynamics (DPD; n = 2). In most included studies (n = 51), enzyme immobilization was investigated experimentally in addition to in silico evaluation.
Collapse
Affiliation(s)
- Farzaneh Barati
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Fakhrisadat Hosseini
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Rayeheh Vafaee
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Sabouri
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Parinaz Ghadam
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Najmeh Shadfar
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Firoozeh Piroozmand
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
16
|
Liu F, Wang T, Yang W, Zhang Y, Gong Y, Fan X, Wang G, Lu Z, Wang J. Current advances in the structural biology and molecular engineering of PETase. Front Bioeng Biotechnol 2023; 11:1263996. [PMID: 37795175 PMCID: PMC10546322 DOI: 10.3389/fbioe.2023.1263996] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023] Open
Abstract
Poly(ethylene terephthalate) (PET) is a highly useful synthetic polyester plastic that is widely used in daily life. However, the increase in postconsumer PET as plastic waste that is recalcitrant to biodegradation in landfills and the natural environment has raised worldwide concern. Currently, traditional PET recycling processes with thermomechanical or chemical methods also result in the deterioration of the mechanical properties of PET. Therefore, it is urgent to develop more efficient and green strategies to address this problem. Recently, a novel mesophilic PET-degrading enzyme (IsPETase) from Ideonella sakaiensis was found to streamline PET biodegradation at 30°C, albeit with a lower PET-degrading activity than chitinase or chitinase-like PET-degrading enzymes. Consequently, the molecular engineering of more efficient PETases is still required for further industrial applications. This review details current knowledge on IsPETase, MHETase, and IsPETase-like hydrolases, including the structures, ligand‒protein interactions, and rational protein engineering for improved PET-degrading performance. In particular, applications of the engineered catalysts are highlighted, including metabolic engineering of the cell factories, enzyme immobilization or cell surface display. The information is expected to provide novel insights for the biodegradation of complex polymers.
Collapse
Affiliation(s)
- Fei Liu
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Tao Wang
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Wentao Yang
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Yingkang Zhang
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Yuming Gong
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Xinxin Fan
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Guocheng Wang
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Zhenhua Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Wang
- School of Pharmacy, Jining Medical University, Rizhao, China
| |
Collapse
|