1
|
Dalal R, Sadhu S, Batra A, Goswami S, Dandotiya J, K V V, Yadav R, Singh V, Chaturvedi K, Kannan R, Kumar S, Kumar Y, Rathore DK, Salunke DB, Ahuja V, Awasthi A. Gut commensals-derived succinate impels colonic inflammation in ulcerative colitis. NPJ Biofilms Microbiomes 2025; 11:44. [PMID: 40082467 PMCID: PMC11906746 DOI: 10.1038/s41522-025-00672-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
Gut microbiota-derived metabolites play a crucial role in modulating the inflammatory response in inflammatory bowel disease (IBD). In this study, we identify gut microbiota-derived succinate as a driver of inflammation in ulcerative colitis (UC) by activating succinate-responsive, colitogenic helper T (Th) cells that secrete interleukin (IL)-9. We demonstrate that colitis is associated with an increase in succinate-producing gut bacteria and decrease in succinate-metabolizing gut bacteria. Similarly, UC patients exhibit elevated levels of succinate-producing gut bacteria and luminal succinate. Intestinal colonization by succinate-producing gut bacteria or increased succinate availability, exacerbates colonic inflammation by activating colitogenic Th9 cells. In contrast, intestinal colonization by succinate-metabolizing gut bacteria, blocking succinate receptor signaling with an antagonist, or neutralizing IL-9 with an anti-IL-9 antibody alleviates inflammation by reducing colitogenic Th9 cells. Our findings underscore the role of gut microbiota-derived succinate in driving colitogenic Th9 cells and suggesting its potential as a therapeutic target for treating IBD.
Collapse
Affiliation(s)
- Rajdeep Dalal
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Jawaharlal Nehru University, New Delhi, India
| | - Srikanth Sadhu
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Aashima Batra
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Sandeep Goswami
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Jyotsna Dandotiya
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Vinayakadas K V
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Rahul Yadav
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Virendra Singh
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Kartikey Chaturvedi
- Non-communicable disease centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Rahul Kannan
- Non-communicable disease centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Shakti Kumar
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, India
| | - Yashwant Kumar
- Non-communicable disease centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Deepak Kumar Rathore
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Deepak B Salunke
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Sciences, Ansari Nagar East, New Delhi, India
| | - Amit Awasthi
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3 rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India.
- Immunology Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India.
| |
Collapse
|
2
|
Dandotiya J, Adhikari N, Tripathy MR, Jakhar K, Sonar S, Pati DR, Kanchan V, Prasad VS, Kumar J, Senapati NK, Bharmoria A, Rani N, Lakhanpal M, Patil CS, Singh N, Khan L, Jambu L, Jain NK, Ali SK, Priyadarsiny P, Panda AK, Jain R, Mani S, Samal S, Awasthi A, Rizvi ZA. CoviWall, a whole-virion-inactivated B.1.617.2 vaccine candidate, induces potent humoral and Th1 cell response in mice and protects against B.1.617.2 strain challenge in Syrian hamsters. Front Immunol 2025; 15:1447962. [PMID: 39911577 PMCID: PMC11794485 DOI: 10.3389/fimmu.2024.1447962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/16/2024] [Indexed: 02/07/2025] Open
Abstract
Rapid development of coronavirus disease 2019 (COVID-19) vaccines and antiviral drugs have significantly reduced morbidity and mortality worldwide. Although most of the vaccines were developed initially with the ancestral Wuhan antigen, here, we report the development and immunological efficacy of a whole-virion-inactivated vaccine candidate (CoviWall) to combat the deadly B.1.617.2 (Delta strain) infection. In the current study, we demonstrate a consistent manufacturing process under Good Manufacturing Practice for the development of CoviWall and its characterization using various analytical methods as per regulatory compliance. In addition, we provide pre-clinical immunogenicity and protective efficacy data of the CoviWall vaccine. All the three test doses (i.e., low dose, mid dose, and high dose) immunized in C57BL/6 mice elicited a high titer of anti-receptor-binding domain antibody and neutralizing antibody response against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) after second booster dose. In addition, CoviWall immunization also produced a significant T-cell response in the immunized animals. Our B.1.617.2 strain challenge data in Syrian hamsters indicate that immunized hamsters show attenuated clinical manifestations of COVID-19 with reduced lung viral load. Moreover, assessment of pulmonary histopathology revealed lower cellular injury, inflammation, and pneumonia in the vaccinated hamsters as compared to the unvaccinated animals. Such promising results augur well for the clinical phase I trial of the CoviWall vaccine and further development against contagious SARS-CoV-2 strains in the future.
Collapse
Affiliation(s)
- Jyotsna Dandotiya
- Immuno-biology Lab, Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, Near Capital Region (NCR)-Biotech Science Cluster, Faridabad, Haryana, India
| | - Neeta Adhikari
- Immuno-biology Lab, Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, Near Capital Region (NCR)-Biotech Science Cluster, Faridabad, Haryana, India
| | - Manas Ranjan Tripathy
- Immuno-biology Lab, Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, Near Capital Region (NCR)-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Near Capital Region (NCR)-Biotech Science Cluster, Faridabad, Haryana, India
| | - Kamini Jakhar
- OneStream Research Centre, Panacea Biotec Limited, New Delhi, India
| | - Sudipta Sonar
- OneStream Research Centre, Panacea Biotec Limited, New Delhi, India
| | - Dibya Ranjan Pati
- Translational Health Science & Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Vibhu Kanchan
- Translational Health Science & Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Varsha S. Prasad
- Translational Health Science & Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Jitendra Kumar
- Translational Health Science & Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Nitesh K. Senapati
- Translational Health Science & Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Arti Bharmoria
- Translational Health Science & Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Neeraj Rani
- Translational Health Science & Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Monika Lakhanpal
- Translational Health Science & Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - CS. Patil
- Translational Health Science & Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Nishan Singh
- Translational Health Science & Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Lovely Khan
- Translational Health Science & Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Lavit Jambu
- Translational Health Science & Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Naveen K. Jain
- Translational Health Science & Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Syed Khalid Ali
- Translational Health Science & Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Priyanka Priyadarsiny
- Translational Health Science & Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Amulya K. Panda
- Translational Health Science & Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Rajesh Jain
- Translational Health Science & Technology Institute (THSTI), NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Shailendra Mani
- OneStream Research Centre, Panacea Biotec Limited, New Delhi, India
| | - Sweety Samal
- OneStream Research Centre, Panacea Biotec Limited, New Delhi, India
| | - Amit Awasthi
- Immuno-biology Lab, Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, Near Capital Region (NCR)-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Near Capital Region (NCR)-Biotech Science Cluster, Faridabad, Haryana, India
| | - Zaigham Abbas Rizvi
- Immuno-biology Lab, Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, Near Capital Region (NCR)-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Near Capital Region (NCR)-Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
3
|
Sadhu S, Goswami S, Khatri R, Lohiya B, Singh V, Yadav R, Das V, Tripathy MR, Dwivedi P, Srivastava M, Mani S, Asthana S, Samal S, Awasthi A. Berbamine prevents SARS-CoV-2 entry and transmission. iScience 2024; 27:111347. [PMID: 39640591 PMCID: PMC11618033 DOI: 10.1016/j.isci.2024.111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/17/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Effective antiviral drugs are essential to combat COVID-19 and future pandemics. Although many compounds show antiviral in vitro activity, only a few retain effectiveness in vivo against SARS-CoV-2. Here, we show that berbamine (Berb) is effective against SARS-CoV, MER-CoV, SARS-CoV-2 and its variants, including the XBB.1.16 variant. In hACE2.Tg mice, Berb suppresses SARS-CoV-2 replication through two distinct mechanisms: inhibiting spike-mediated viral entry and enhancing antiviral gene expression during infection. The administration of Berb, in combination with remdesivir (RDV), clofazimine (Clof) and fangchinoline (Fcn), nearly eliminated viral load and promoted recovery from acute SARS-CoV-2 infection and its variants. Co-housed mice in direct contact with either pre-treated or untreated infected mice exhibited negligible viral loads, reduced lung pathology, and decreased viral shedding, suggesting that Berb may effectively hinder virus transmission. This broad-spectrum activity positions Berb as a promising preventive or therapeutic option against betacoronaviruses.
Collapse
Affiliation(s)
- Srikanth Sadhu
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sandeep Goswami
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Ritika Khatri
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Bharat Lohiya
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Virendra Singh
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Rahul Yadav
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Vinayaka Das
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Manas Ranjan Tripathy
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Prabhanjan Dwivedi
- Small Animal Facility, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Mitul Srivastava
- Non-communicable Disease Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shailendra Mani
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shailendra Asthana
- Non-communicable Disease Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sweety Samal
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Amit Awasthi
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| |
Collapse
|
4
|
Kirk NM, Liang Y, Ly H. Pathogenesis and virulence of coronavirus disease: Comparative pathology of animal models for COVID-19. Virulence 2024; 15:2316438. [PMID: 38362881 PMCID: PMC10878030 DOI: 10.1080/21505594.2024.2316438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024] Open
Abstract
Animal models that can replicate clinical and pathologic features of severe human coronavirus infections have been instrumental in the development of novel vaccines and therapeutics. The goal of this review is to summarize our current understanding of the pathogenesis of coronavirus disease 2019 (COVID-19) and the pathologic features that can be observed in several currently available animal models. Knowledge gained from studying these animal models of SARS-CoV-2 infection can help inform appropriate model selection for disease modelling as well as for vaccine and therapeutic developments.
Collapse
Affiliation(s)
- Natalie M. Kirk
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| | - Yuying Liang
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| |
Collapse
|
5
|
Chandwaskar R, Dalal R, Gupta S, Sharma A, Parashar D, Kashyap VK, Sohal JS, Tripathi SK. Dysregulation of T cell response in the pathogenesis of inflammatory bowel disease. Scand J Immunol 2024; 100:e13412. [PMID: 39394898 DOI: 10.1111/sji.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
Inflammatory bowel disease (IBD), comprised of Crohn's disease (CD) and ulcerative colitis (UC), are gut inflammatory diseases that were earlier prevalent in the Western Hemisphere but now are on the rise in the East, with India standing second highest in the incidence rate in the world. Inflammation in IBD is a cause of dysregulated immune response, wherein helper T (Th) cell subsets and their cytokines play a major role in the pathogenesis of IBD. In addition, gut microbiota, environmental factors such as dietary factors and host genetics influence the outcome and severity of IBD. Dysregulation between effector and regulatory T cells drives gut inflammation, as effector T cells like Th1, Th17 and Th9 subsets Th cell lineages were found to be increased in IBD patients. In this review, we attempted to discuss the role of different Th cell subsets together with other T cells like CD8+ T cells, NKT and γδT cells in the outcome of gut inflammation in IBD. We also highlighted the potential therapeutic candidates for IBD.
Collapse
Affiliation(s)
- Rucha Chandwaskar
- Amity Institute of Microbial Technology (AIMT), Amity University Jaipur, Rajasthan, India
| | - Rajdeep Dalal
- Infection and Immunology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Saurabh Gupta
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aishwarya Sharma
- Sri Siddhartha Medical College and Research Center, Tumkur, Karnataka, India
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| | - Jagdip Singh Sohal
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Subhash K Tripathi
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
6
|
Carolin A, Yan K, Bishop CR, Tang B, Nguyen W, Rawle DJ, Suhrbier A. Tracking inflammation resolution signatures in lungs after SARS-CoV-2 omicron BA.1 infection of K18-hACE2 mice. PLoS One 2024; 19:e0302344. [PMID: 39531435 PMCID: PMC11556745 DOI: 10.1371/journal.pone.0302344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 2019 (COVID-19), which can result in severe disease, often characterised by a 'cytokine storm' and the associated acute respiratory distress syndrome. However, many infections with SARS-CoV-2 are mild or asymptomatic throughout the course of infection. Although blood biomarkers of severe disease are well studied, less well understood are the inflammatory signatures in lung tissues associated with mild disease or silent infections, wherein infection and inflammation are rapidly resolved leading to sequelae-free recovery. Herein we described RNA-Seq and histological analyses of lungs over time in an omicron BA.1/K18-hACE2 mouse infection model, which displays these latter features. Although robust infection was evident at 2 days post infection (dpi), viral RNA was largely cleared by 10 dpi. Acute inflammatory signatures showed a slightly different pattern of cytokine signatures compared with severe infection models, and where much diminished 30 dpi and absent by 66 dpi. Cellular deconvolution identified significantly increased abundance scores for a number of anti-inflammatory pro-resolution cell types at 5/10 dpi. These included type II innate lymphoid cells, T regulatory cells, and interstitial macrophages. Genes whose expression trended downwards over 2-66 dpi included biomarkers of severe disease and were associated with 'cytokine storm' pathways. Genes whose expression trended upward during this period were associated with recovery of ciliated cells, AT2 to AT1 transition, reticular fibroblasts and innate lymphoid cells, indicating a return to homeostasis. Very few differentially expressed host genes were identified at 66 dpi, suggesting near complete recovery. The parallels between mild or subclinical infections in humans and those observed in this BA.1/K18-hACE2 mouse model are discussed with reference to the concept of "protective inflammation".
Collapse
Affiliation(s)
- Agnes Carolin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Cameron R. Bishop
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Wilson Nguyen
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Daniel J. Rawle
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Cao Z, Wang J, Liu X, Liu Y, Li F, Liu M, Chiu S, Jin X. Helminth alleviates COVID-19-related cytokine storm in an IL-9-dependent way. mBio 2024; 15:e0090524. [PMID: 38727220 PMCID: PMC11237724 DOI: 10.1128/mbio.00905-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024] Open
Abstract
Hyperactivation of pro-inflammatory type 1 cytokines (e.g., tumor necrosis factor alpha [TNF-α] and interferon gamma [IFN-γ]) mirrors the inflammation of coronavirus disease 2019. Helminths could alleviate excessive immune responses. Here, helminth Trichinella spiralis (Ts) infection was shown to protect against TNF-α- and IFN-γ-induced shock. Mechanistically, Ts-induced protection was interleukin-9 (IL-9) dependent but not IL-4Rα. Recombinant IL-9 treatment not only improved the survival of wild-type mice with TNF-α- and IFN-γ-induced shock but also that of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected K18-human angiotensin-converting enzyme 2 (hACE2) mice, emphasizing the significance of IL-9 in alleviating cytokine storm syndromes during SARS-CoV-2 infection. Interestingly, Ts excretory/secretory (TsES)-induced protection was also observed in SARS-CoV-2 infection, indicating that identifying anti-inflammatory molecules from TsES could be a novel way to mitigate adverse pathological inflammation during pathogen infection.IMPORTANCESevere coronavirus disease 2019 (COVID-19) is linked to cytokine storm triggered by type 1 pro-inflammatory immune responses. TNF-α and IFN-γ shock mirrors cytokine storm syndromes, including COVID-19. Helminths (e.g., Trichinella spiralis, Ts) can potently activate anti-inflammatory type 2 immune response. Here, we found that helminth Ts-induced protection against TNF-α and IFN-γ shock was IL-9 dependent. Treatment with recombinant IL-9 could protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in K18-hACE2 mice. Helminth Ts excretory/secretory (TsES) products also ameliorated SARS-CoV-2 infection-related cytokine storm. In conclusion, our study emphasizes the significance of IL-9 in protecting from cytokine storm syndromes associated with SARS-CoV-2 infection. Anti-inflammatory molecules from TsES could be a new source to mitigate adverse pathological inflammation associated with infections, including COVID-19.
Collapse
Affiliation(s)
- Zengguo Cao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jiaqi Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaolei Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yang Liu
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fangxu Li
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Mingyuan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuemin Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
8
|
Khokhar M, Purohit P. The emerging role of T helper 9 (Th9) cells in immunopathophysiology: A comprehensive review of their effects and responsiveness in various disease states. Int Rev Immunol 2024; 43:341-360. [PMID: 38864109 DOI: 10.1080/08830185.2024.2364586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Th9 cells, a subset of T-helper cells producing interleukin-9 (IL-9), play a vital role in the adaptive immune response and have diverse effects in different diseases. Regulated by transcription factors like PU.1 and IRF4, and cytokines such as IL-4 and TGF-β, Th9 cells drive tissue inflammation. This review focuses on their emerging role in immunopathophysiology. Th9 cells exhibit immune-mediated cancer cell destruction, showing promise in glioma and cervical cancer treatment. However, their role in breast and lung cancer is intricate, requiring a deeper understanding of pro- and anti-tumor aspects. Th9 cells, along with IL-9, foster T cell and immune cell proliferation, contributing to autoimmune disorders. They are implicated in psoriasis, atopic dermatitis, and infections. In allergic reactions and asthma, Th9 cells fuel pro-inflammatory responses. Targeting Foxo1 may regulate innate and adaptive immune responses, alleviating disease symptoms. This comprehensive review outlines Th9 cells' evolving immunopathophysiological role, emphasizing the necessity for further research to grasp their effects and potential therapeutic applications across diseases.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| |
Collapse
|
9
|
Huang C, Hu X, Wang D, Gong R, Wang Q, Ren F, Wu Y, Chen J, Xiong X, Li H, Wang Q, Long G, Zhang D, Han Y. Multi-cohort study on cytokine and chemokine profiles in the progression of COVID-19. Sci Rep 2024; 14:10324. [PMID: 38710800 DOI: 10.1038/s41598-024-61133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
Various substances in the blood plasma serve as prognostic indicators of the progression of COVID-19. Consequently, multi-omics studies, such as proteomic and metabolomics, are ongoing to identify accurate biomarkers. Cytokines and chemokines, which are crucial components of immune and inflammatory responses, play pivotal roles in the transition from mild to severe illness. To determine the relationship between plasma cytokines and the progression of COVID-19, we used four study cohorts to perform a systematic study of cytokine levels in patients with different disease stages. We observed differential cytokine expression between patients with persistent-mild disease and patients with mild-to-severe transformation. For instance, IL-4 and IL-17 levels significantly increased in patients with mild-to-severe transformation, indicating differences within the mild disease group. Subsequently, we analysed the changes in cytokine and chemokine expression in the plasma of patients undergoing two opposing processes: the transition from mild to severe illness and the transition from severe to mild illness. We identified several factors, such as reduced expression of IL-16 and IL-18 during the severe phase of the disease and up-regulated expression of IL-10, IP-10, and SCGF-β during the same period, indicative of the deterioration or improvement of patients' conditions. These factors obtained from fine-tuned research cohorts could provide auxiliary indications for changes in the condition of COVID-19 patients.
Collapse
Affiliation(s)
- Chaolin Huang
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Wuhan, 430023, Hubei, China
| | - Xujuan Hu
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Delong Wang
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, USTC, Hefei, 230001, Anhui, China
| | - Rui Gong
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, USTC, Hefei, 230001, Anhui, China
| | - Qiongya Wang
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Fuli Ren
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Wuhan, 430023, Hubei, China
| | - Yuanjun Wu
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Juan Chen
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Xianglian Xiong
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Huadong Li
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Qian Wang
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Gangyu Long
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Dingyu Zhang
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China.
- Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, USTC, Hefei, 230001, Anhui, China.
| | - Yang Han
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Wuhan, 430023, Hubei, China.
| |
Collapse
|
10
|
Wu Z, Geng N, Liu Z, Pan W, Zhu Y, Shan J, Shi H, Han Y, Ma Y, Liu B. Presepsin as a prognostic biomarker in COVID-19 patients: combining clinical scoring systems and laboratory inflammatory markers for outcome prediction. Virol J 2024; 21:96. [PMID: 38671532 PMCID: PMC11046891 DOI: 10.1186/s12985-024-02367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND There is still limited research on the prognostic value of Presepsin as a biomarker for predicting the outcome of COVID-19 patients. Additionally, research on the combined predictive value of Presepsin with clinical scoring systems and inflammation markers for disease prognosis is lacking. METHODS A total of 226 COVID-19 patients admitted to Beijing Youan Hospital's emergency department from May to November 2022 were screened. Demographic information, laboratory measurements, and blood samples for Presepsin levels were collected upon admission. The predictive value of Presepsin, clinical scoring systems, and inflammation markers for 28-day mortality was analyzed. RESULTS A total of 190 patients were analyzed, 83 (43.7%) were mild, 61 (32.1%) were moderate, and 46 (24.2%) were severe/critically ill. 23 (12.1%) patients died within 28 days. The Presepsin levels in severe/critical patients were significantly higher compared to moderate and mild patients (p < 0.001). Presepsin showed significant predictive value for 28-day mortality in COVID-19 patients, with an area under the ROC curve of 0.828 (95% CI: 0.737-0.920). Clinical scoring systems and inflammation markers also played a significant role in predicting 28-day outcomes. After Cox regression adjustment, Presepsin, qSOFA, NEWS2, PSI, CURB-65, CRP, NLR, CAR, and LCR were identified as independent predictors of 28-day mortality in COVID-19 patients (all p-values < 0.05). Combining Presepsin with clinical scoring systems and inflammation markers further enhanced the predictive value for patient prognosis. CONCLUSION Presepsin is a favorable indicator for the prognosis of COVID-19 patients, and its combination with clinical scoring systems and inflammation markers improved prognostic assessment.
Collapse
Affiliation(s)
- Zhipeng Wu
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, No. 8, Xi Tou Tiao, Youanmenwai Street, Fengtai District, Beijing City, 100069, People's Republic of China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Research Center for Respiratory Infectious Diseases, Beijing, People's Republic of China
| | - Nan Geng
- Department of Emergency Medicine, Beijing Youan Hospital, Capital Medical University, Beijing City, 100069, People's Republic of China
| | - Zhao Liu
- Department of Emergency Medicine, Beijing Youan Hospital, Capital Medical University, Beijing City, 100069, People's Republic of China
| | - Wen Pan
- Department of Emergency Medicine, Beijing Youan Hospital, Capital Medical University, Beijing City, 100069, People's Republic of China
| | - Yueke Zhu
- Department of Emergency Medicine, Beijing Youan Hospital, Capital Medical University, Beijing City, 100069, People's Republic of China
| | - Jing Shan
- Department of Emergency Medicine, Beijing Youan Hospital, Capital Medical University, Beijing City, 100069, People's Republic of China
| | - Hongbo Shi
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Ying Han
- Department of Gastroenterology and Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yingmin Ma
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, No. 8, Xi Tou Tiao, Youanmenwai Street, Fengtai District, Beijing City, 100069, People's Republic of China.
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Research Center for Respiratory Infectious Diseases, Beijing, People's Republic of China.
| | - Bo Liu
- Department of Emergency Medicine, Beijing Youan Hospital, Capital Medical University, Beijing City, 100069, People's Republic of China.
| |
Collapse
|
11
|
Tyagi S, Sadhu S, Sharma T, Paul A, Pandey M, Nain VK, Rathore DK, Chatterjee S, Awasthi A, Pandey AK. VapC12 ribonuclease toxin modulates host immune response during Mycobacterium tuberculosis infection. Front Immunol 2024; 15:1302163. [PMID: 38515752 PMCID: PMC10955575 DOI: 10.3389/fimmu.2024.1302163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/01/2024] [Indexed: 03/23/2024] Open
Abstract
Mechanistic understanding of antibiotic persistence is a prerequisite in controlling the emergence of MDR cases in Tuberculosis (TB). We have reported that the cholesterol-induced activation of VapC12 ribonuclease is critical for disease persistence in TB. In this study, we observed that relative to the wild type, mice infected with ΔvapC12 induced a pro-inflammatory response, had a higher pathogen load, and responded better to the anti-TB treatment. In a high-dose infection model, all the mice infected with ΔvapC12 succumbed early to the disease. Finally, we reported that the above phenotype of ΔvapC12 was dependent on the presence of the TLR4 receptor. Overall, the data suggests that failure of a timely resolution of the early inflammation by the ΔvapC12 infected mice led to hyperinflammation, altered T-cell response and high bacterial load. In conclusion, our findings suggest the role of the VapC12 toxin in modulating the innate immune response of the host in ways that favor the long-term survival of the pathogen inside the host.
Collapse
Affiliation(s)
- Shaifali Tyagi
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Srikanth Sadhu
- Immunobiology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Taruna Sharma
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Abhijit Paul
- Complex Analysis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Manitosh Pandey
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Vaibhav Kumar Nain
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Deepak Kumar Rathore
- Immunobiology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Samrat Chatterjee
- Complex Analysis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amit Awasthi
- Immunobiology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amit Kumar Pandey
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
12
|
Hora S, Pahwa P, Siddiqui H, Saxena A, Kashyap M, Sevak JK, Singh R, Javed M, Yadav P, Kale P, Ramakrishna G, Bajpai M, Rathore A, Maras JS, Tyagi S, Sarin SK, Trehanpati N. Metabolic alterations unravel the maternofetal immune responses with disease severity in pregnant women infected with SARS-CoV-2. J Med Virol 2023; 95:e29257. [PMID: 38054548 DOI: 10.1002/jmv.29257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
Pregnancy being an immune compromised state, coronavirus disease of 2019 (COVID-19) disease poses high risk of premature delivery and threat to fetus. Plasma metabolome regulates immune cellular responses, therefore we aimed to analyze the change in plasma secretome, metabolome, and immune cells with disease severity in COVID-19 positive pregnant females and their cord blood. COVID-19 reverse transcriptase-polymerase chain reaction positive pregnant females (n = 112) with asymptomatic (Asy) (n = 82), mild (n = 21), or moderate (n = 9) disease, healthy pregnant (n = 18), COVID-19 positive nonpregnant females (n = 7) were included. Eighty-two cord blood from COVID-19 positive and seven healthy cord blood were also analyzed. Mother's peripheral blood and cord blood were analyzed for untargeted metabolome profiling and cytokines by using high-resolution mass spectrometry and cytokine bead array. Immune scan was performed only in mothers' blood by flow cytometry. In Asy severe acute respiratory syndrome coronavirus 2 infection, the amino acid metabolic pathways such as glycine, serine, l-lactate, and threonine metabolism were upregulated with downregulation of riboflavin and tyrosine metabolism. However, with mild-to-moderate disease, the pyruvate and nicotinamide adenine dinucleotide (NAD+ ) metabolism were mostly altered. Cord blood mimicked the mother's metabolomic profiles by showing altered valine, leucine, isoleucine, glycine, serine, threonine in Asy and NAD+ , riboflavin metabolism in mild and moderate. Additionally, with disease severity tumor necrosis factor-α, interferon (IFN)-α, IFN-γ, interleukin (IL)-6 cytokine storm, IL-9 was raised in both mothers and neonates. Pyruvate, NAD metabolism and increase in IL-9 and IFN-γ had an impact on nonclassical monocytes, exhausted T and B cells. Our results demonstrated that immune-metabolic interplay in mother and fetus is influenced with increase in IL-9 and IFN-γ regulated pyruvate, lactate tricarboxylic acid, and riboflavin metabolism with context to disease severity.
Collapse
Affiliation(s)
- Sandhya Hora
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Prabhjyoti Pahwa
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Hamda Siddiqui
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Anoushka Saxena
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Minal Kashyap
- Department of Gynecology and Obstetrics, Lok Nayak Jai Prakash Hospital, New Delhi, India
| | - Jayesh K Sevak
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Ravinder Singh
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Maryam Javed
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Pushpa Yadav
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Pratibha Kale
- Department of Microbiology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Meenu Bajpai
- Department of Transfusion Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Asmita Rathore
- Department of Gynecology and Obstetrics, Lok Nayak Jai Prakash Hospital, New Delhi, India
| | - Jaswinder S Maras
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shakun Tyagi
- Department of Gynecology and Obstetrics, Lok Nayak Jai Prakash Hospital, New Delhi, India
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nirupama Trehanpati
- Department of Molecular and Cellular Medicine, Laboratory of Molecular Immunology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
13
|
Sadhu S, Dandotiya J, Dalal R, Khatri R, Mykytyn AZ, Batra A, Kaur M, Chandwaskar R, Singh V, Kamboj A, Srivastava M, Mani S, Asthana S, Samal S, Rizvi ZA, Salunke DB, Haagmans BL, Awasthi A. Fangchinoline inhibits SARS-CoV-2 and MERS-CoV entry. Antiviral Res 2023; 220:105743. [PMID: 37949319 DOI: 10.1016/j.antiviral.2023.105743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2, lead to mild to severe respiratory illness and resulted in 6.9 million deaths worldwide. Although vaccines are effective in preventing COVID-19, they may not be sufficient to protect immunocompromised individuals from this respiratory illness. Moreover, novel emerging variants of SARS-CoV-2 pose a risk of new COVID-19 waves. Therefore, identification of effective antivirals is critical in controlling SARS and other coronaviruses, such as MERS-CoV. We show that Fangchinoline (Fcn), a bisbenzylisoquinoline alkaloid, inhibits replication of SARS-CoV, SARS-CoV-2, and MERS-CoV in a range of in vitro assays, by blocking entry. Therapeutic use of Fcn inhibited viral loads in the lungs, and suppressed associated airway inflammation in hACE2. Tg mice and Syrian hamster infected with SARS-CoV-2. Combination of Fcn with remdesivir (RDV) or an anti-leprosy drug, Clofazimine, exhibited synergistic antiviral activity. Compared to Fcn, its synthetic derivative, MK-04-003, more effectively inhibited SARS-CoV-2 and its variants B.1.617.2 and BA.5 in mice. Taken together these data demonstrate that Fcn is a pan beta coronavirus inhibitor, which possibly can be used to combat novel emerging coronavirus diseases.
Collapse
Affiliation(s)
- Srikanth Sadhu
- Center for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India; Immunology-Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Jyotsna Dandotiya
- Center for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Rajdeep Dalal
- Center for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Ritika Khatri
- Infection and Immunology Center, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Anna Z Mykytyn
- Viroscience Department, Erasmus University Medical Center, Netherlands; Department of Pediatric Surgery, Erasmus University Medical Center, Sophia Children's Hospital, Netherlands
| | - Aashima Batra
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | - Manpreet Kaur
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | | | - Virendra Singh
- Center for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Aarzoo Kamboj
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | - Mitul Srivastava
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Shailendra Mani
- Infection and Immunology Center, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Shailendra Asthana
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Sweety Samal
- Infection and Immunology Center, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Zaigham Abbas Rizvi
- Center for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India; Immunology-Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Deepak B Salunke
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | - Bart L Haagmans
- Viroscience Department, Erasmus University Medical Center, Netherlands
| | - Amit Awasthi
- Center for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India; Immunology-Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| |
Collapse
|
14
|
Thiruvengadam R, Rizvi ZA, Raghavan S, Murugesan DR, Gosain M, Dandotiya J, Ayushi, Samal S, Pandey AK, Wadhwa N, Bhatnagar S, Awasthi A, Garg PK. Clinical and experimental evidence suggest omicron variant of SARS-CoV-2 is inherently less pathogenic than delta variant independent of previous immunity. Eur J Med Res 2023; 28:421. [PMID: 37821945 PMCID: PMC10566023 DOI: 10.1186/s40001-023-01373-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVES To study clinical disease outcomes in both human and animal models to understand the pathogenicity of omicron compared to the delta variant. METHODS In this cross-sectional observational study, clinical outcomes of adults who tested positive at 2 testing centres in Delhi National Capital Region between January 2022 and March 2022 (omicron-infected; N = 2998) were compared to a similar geographical cohort (delta-infected; N = 3292). In addition, disease course and outcomes were studied in SARS-CoV-2-infected golden Syrian hamsters and K-18 humanized ACE2 transgenic mice. RESULTS Omicron variant infection was associated with a milder clinical course [83% (95% CI 61, 94) reduced risk of severity compared against delta] adjusting for vaccination, age, sex, prior infection and occupational risk. This correlated with lower disease index and vir comparing omicron with other variants in animal models. CONCLUSIONS Infections caused by the omicron variant were milder compared to those caused by the delta variant independent of previous immunity.
Collapse
Affiliation(s)
| | - Zaigham Abbas Rizvi
- Translational Health Science and Technology Institute, Faridabad, Delhi, India
| | - Sreevatsan Raghavan
- Translational Health Science and Technology Institute, Faridabad, Delhi, India
| | | | - Mudita Gosain
- Translational Health Science and Technology Institute, Faridabad, Delhi, India
| | - Jyotsna Dandotiya
- Translational Health Science and Technology Institute, Faridabad, Delhi, India
| | - Ayushi
- Translational Health Science and Technology Institute, Faridabad, Delhi, India
| | - Sweety Samal
- Translational Health Science and Technology Institute, Faridabad, Delhi, India
| | | | - Nitya Wadhwa
- Translational Health Science and Technology Institute, Faridabad, Delhi, India
| | - Shinjini Bhatnagar
- Translational Health Science and Technology Institute, Faridabad, Delhi, India
| | - Amit Awasthi
- Translational Health Science and Technology Institute, Faridabad, Delhi, India.
| | - Pramod Kumar Garg
- Translational Health Science and Technology Institute, Faridabad, Delhi, India.
| |
Collapse
|
15
|
Ghanbari Naeini L, Abbasi L, Karimi F, Kokabian P, Abdi Abyaneh F, Naderi D. The Important Role of Interleukin-2 in COVID-19. J Immunol Res 2023; 2023:7097329. [PMID: 37649897 PMCID: PMC10465260 DOI: 10.1155/2023/7097329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/04/2023] [Accepted: 07/13/2023] [Indexed: 09/01/2023] Open
Abstract
There is controversial literature about the effects of the interleukin-2 (IL-2) cytokine family in COVID-19 pathogenesis and immunity. So we aimed to identify the potential in the role of the IL-2 family in COVID-19. A narrative review search was done through online databases, including PubMed, Scopus, and Web of Science. The search deadline was up to December 2022. We applied no time limits for the searching strategy. After retrieving articles from the databases, the authors summarized the data into two data extraction tables. The first data extraction table described the changes in the IL-2 cytokine family in COVID-19 and the second table described the therapeutic interventions targeting IL-2 family cytokines. The results of the literature on the role of the IL-2 cytokine family do not show a singular rule. IL-2 cytokine family can change during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Some studies suggest that IL-2 cytokine family rise during the infection and cause severe inflammatory response and cytokine storm. These cytokines are shown to be increased in immunocompromised patients and worsen their prognosis. In individuals without underlying disease, the upregulation of the IL-2 family shows the clinical outcome of the disease and rises with disease severity. However, some other studies show that these cytokines do not significantly change. IL-2 cytokine family is mostly upregulated in healthy individuals who had vaccination, but immunocompromised patients did not show significant changes after a single dose of vaccines, which shows that these patients need booster doses for efficient immunity. IL-2 cytokine family can also be used as immunotherapy agents in COVID-19.
Collapse
Affiliation(s)
| | - Laleh Abbasi
- Guilan University of Medical Sciences, Rasht, Iran
| | | | - Pajman Kokabian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Delaram Naderi
- Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|