1
|
Qin J, Wu F, Dou Y, Zhao D, Hélix-Nielsen C, Zhang W. Advanced Catalysts for the Chemical Recycling of Plastic Waste. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2418138. [PMID: 39748624 DOI: 10.1002/adma.202418138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/02/2024] [Indexed: 01/04/2025]
Abstract
Plastic products bring convenience to various aspects of the daily lives due to their lightweight, durability and versatility, but the massive accumulation of post-consumer plastic waste is posing significant environmental challenges. Catalytic methods can effectively convert plastic waste into value-added feedstocks, with catalysts playing an important role in regulating the yield and selectivity of products. This review explores the latest advancements in advanced catalysts applied in thermal catalysis, microwave-assisted catalysis, photocatalysis, electrocatalysis, and enzymatic catalysis reaction systems for the chemical recycling of plastic waste into valuable feedstocks. Specifically, the pathways and mechanisms involved in the plastics recycling process are analyzed and presented, and the strengths and weaknesses of various catalysts employed across different reaction systems are described. In addition, the structure-function relationship of these catalysts is discussed. Herein, it is provided insights into the design of novel catalysts applied for the chemical recycling of plastic waste and outline challenges and future opportunities in terms of developing advanced catalysts to tackle the "white pollution" crisis.
Collapse
Affiliation(s)
- Jibo Qin
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
- Industrial Catalysis Center, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Feiyan Wu
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Yibo Dou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang Province, 324000, P. R. China
| | - Dan Zhao
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Claus Hélix-Nielsen
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Wenjing Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
2
|
Huang QS, Chen SQ, Zhao XM, Song LJ, Deng YM, Xu KW, Yan ZF, Wu J. Enhanced degradation of polyethylene terephthalate (PET) microplastics by an engineered Stenotrophomonas pavanii in the presence of biofilm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177129. [PMID: 39461526 DOI: 10.1016/j.scitotenv.2024.177129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/28/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
Polyethylene terephthalate (PET) microplastics pose significant environmental and human health risks due to their resistance to degradation and accumulation in ecosystems. In this study, we engineered Stenotrophomonas pavanii JWG-G1, a robust biofilm-forming bacterium, to overexpress the PET hydrolase (DuraPETase) for PET microplastics degradation at ambient temperature. Nine endogenous PET hydrolases were identified through genome sequencing of S. pavanii, and were successfully expressed in Escherichia coli BL21(DE3). Among them, hydrolase Est_B achieved 100% degradation of bis(2-hydroxyethyl) terephthalate (BHET) at an initial concentration of 0.23 mg/mL at 30 °C within 4 h, identifying it as a novel BHETase. However, the PET degradation performance of all endogenous PET hydrolases was inferior to that of DuraPETase. The engineered strain overexpressing DuraPETase demonstrated a significant enhancement in PET degradation, achieving a 38.04 μM total product release of high-crystallinity PET microplastics after 30 days at 30 °C. The degradation extent was greater than that of low biofilm-forming engineered strains, attributing to the aggregation of DuraPETase on the PET surface in the presence of biofilm. Additionally, this engineered strain also maintained PET degradation activity across various water environments and demonstrated effectiveness in degrading other polyester plastics. This is the first report demonstrating that an engineered strain of Stenotrophomonas species is capable of simultaneously secreting exogenous hydrolase and degrading polyester microplastics, representing a novel approach in the development of engineered bacteria with potential applications in bioreactor systems and environmental remediation.
Collapse
Affiliation(s)
- Qing-Song Huang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Si-Qi Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Xiao-Min Zhao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li-Jun Song
- National Center of Technology Innovation for Dairy, Hohhot 010100, China; Inner Mongolia Dairy Industry Technology Research Institute Limited Liability Company, Hohhot 010100, China
| | - Yu-Ming Deng
- National Center of Technology Innovation for Dairy, Hohhot 010100, China; Inner Mongolia Dairy Industry Technology Research Institute Limited Liability Company, Hohhot 010100, China
| | - Ke-Wei Xu
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China
| | - Zheng-Fei Yan
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Jing Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
3
|
Liu W, Li C, Li B, Zhu L, Ming D, Jiang L. Structure-guided discovery and rational design of a new poly(ethylene terephthalate) hydrolase from AlphaFold protein structure database. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136389. [PMID: 39500192 DOI: 10.1016/j.jhazmat.2024.136389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 12/01/2024]
Abstract
Enzymatic degradation offers a promising eco-friendly solution to plastic pollution, especially for polyethylene terephthalate (PET). Current efforts have focused on screening PET-degrading enzymes from microbial and metagenomic sources and obtaining superior candidates with a limited set of templates. More efficient PET hydrolases are required for PET-waste biorefinery. Here, using a structure-guided bioinformatic workflow, we identified a novel PET hydrolase, LSPET4, from Micromonospora sp. HM5-17, by screening the AlphaFold protein structure database. LSPET4 features a unique carbohydrate-binding module (CBM) and a distinctive linear substrate binding conformation. The intrinsic CBM in LSPET4 exhibited superior binding ability on PET surfaces and enhanced PET hydrolysis performance compared to the previously reported most effective CBM3. Through rational protein engineering focused on stabilizing and modifying the linear substrate binding conformation, we developed LSPET4M6 (D130P, N127F, Y96F, Q209E, A238K, D241S), a variant that achieved a 38.79-fold improvement in activity compared to the wild type, and was comparable to the reported most effective PET hydrolase derived from IsPETase, FAST-PETase at 45 ℃. This variant also demonstrated effectiveness in degrading various commercial PET materials, including PET food sealing films, PET strawberry boxes, and PET tomato boxes used in the food industry. This study not only provides a new template for protein engineering endeavors to create efficient biocatalysts for PET recycling but also offers an effective enzyme discovery approach to uncover enzymes of interest from the AlphaFold protein structure database.
Collapse
Affiliation(s)
- Wei Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Chuang Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Bin Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Dengming Ming
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211816, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| |
Collapse
|
4
|
Miao R, Xu G, Ding Y, Ding Z, Woodard J, Tu T, Luo H, Wu N, Yao B, Guan F, Tian J. Engineering dual-functional and thermophilic BMHETase for efficient degradation of polyethylene terephthalate. BIORESOURCE TECHNOLOGY 2024; 414:131556. [PMID: 39357610 DOI: 10.1016/j.biortech.2024.131556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Polyethylene terephthalate (PET) biodegradation is hindered by the intermediates bis (2-hydroxyethyl) terephthalate (BHET) and mono (2-hydroxyethyl) terephthalate (MHET). BMHETase, a thermophilic hydrolase identified from the UniParc database, exhibits degradation activity towards both BHET and MHET. BMHETase showed higher activity on BHET than LCCICCG and FASTPETase at temperatures ranging from 50 to 70℃. To enhance its activity in degrading MHET, BMHETase was engineered to mimic Ideonella sakaiensis MHETase. The resulting 6-point mutant's activities on MHET and BHET were 8 and 2 times those of the WT, with both optimal temperatures increased by 5℃. This enhancement may be attributed to the BMHETase6M's intensified binding ability with MHET and enlarged binding pocket. When combined with LCCICCG, BMHETase6M achieved complete degradation of MHET in PET films to terephthalic acid, indicating broad application potential. These findings suggest that BMHETase6M holds promise as a candidate for enhancing PET biodegradation efficiency and plastic waste management.
Collapse
Affiliation(s)
- Ruiju Miao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guoshun Xu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yekun Ding
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zundan Ding
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jaie Woodard
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Tao Tu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ningfeng Wu
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Feifei Guan
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jian Tian
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
5
|
Zhou Y, Zhang J, You S, Lin W, Zhang B, Wang M, Su R, Qi W. High terephthalic acid purity: Effective polyethylene terephthalate degradation process based on pH regulation with dual-function hydrolase. BIORESOURCE TECHNOLOGY 2024; 413:131461. [PMID: 39255945 DOI: 10.1016/j.biortech.2024.131461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Eco-friendly enzymatic-recycling has been widely utilized in tackling plastic pollution. However, the limited activity on the polyethylene terephthalate (PET) degradation product mono-hydroxyethyl terephthalate (MHET) leads to the formation of heterogeneous hydrolysis products, resulting in PET downcycling. Herein, by applying a dual-function PET hydrolase IsPETasePA with balanced PET and MHET degradation efficiency, an effective PET hydrolysis process was developed to enhance the terephthalic acid (TPA) product purity. Firstly, the impact of pH on the catalytic activity of IsPETasePA revealed that the pH reduction caused by TPA generation hindered the complete conversion of MHET to TPA. Further investigation of the catalytic mechanism showed that the pH-induced protonation of His208 in the catalytic triad destabilized the interaction between IsPETasePA and MHET. Thus, by introducing pH regulation strategy on the bifunctional IsPETasePA, the single-enzyme process could achieve high-purity TPA recovery (>99 %). Overall, this work ensured the high-quality PET enzymatic-recycling for effectively addressing plastic pollution.
Collapse
Affiliation(s)
- Yu Zhou
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jiaxing Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Shengping You
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Beijing Meihao Biotechnology Co., Ltd, PR China
| | - Wei Lin
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Baoyu Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Mengfan Wang
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Yuantian Biotechnology (Tianjin) Co., Ltd, PR China
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
6
|
Chen Y, Mao L, Wang W, Yuan H, Yang C, Zhang R, Zhou Y, Zhang G. An efficient strategy to tailor PET hydrolase: Simple preparation with high yield and enhanced hydrolysis to micro-nano plastics. Int J Biol Macromol 2024; 281:136479. [PMID: 39393729 DOI: 10.1016/j.ijbiomac.2024.136479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/15/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Polyethylene terephthalate (PET) nano/microplastics (PET-NMPs) are regarded as an emergent hazardous waste for the environment. Enzymatic treatment of PET-NMPs is one of the most promising methods. However, strategies for mining or engineering of PET hydrolases with better characteristics and the simple and cost-effective preparation of them are the bottlenecks currently. Herein, we proposed a gene fusion strategy to tailor PET hydrolase (ICCG) with ferritin (namely F-C) towards micro-nano PET degradation. The purified F-C was obtained by an easy scalable low-speed centrifugation with 80.8 % activity recovery and 82.9 % protein recovery compared to the crude protein extraction, with the final high yield of 2.17 g/L. Encouragingly, unlike only hydrolyzing amorphous PET (crystallinity lower than 10 %), the resulted F-C showed 84.53 mgTPA/h/mgEnzyme specific activity at 70 °C for 5 h towards micro-PET with relatively high crystallinity (20.54 %) at the optimized enzyme/PET ratio of 1:100 (Wt), without producing intermediates. The supreme activity of F-C was closely related to its enhanced affinity towards substrate, increased substrate's ester bond tensions and binding pocket volume. More interestingly, F-C exhibited promising stability not only in storage or high temperature, but also in simulated seawater (hypersaline environment), with the half-lives of 128.4 days at 30 °C. Thus, the all-in-one strategy will offer a green and alternative solution to assist the PET-NMPs waste treatments such as recycling in the high-temperature reactor or degradation in seawater.
Collapse
Affiliation(s)
- Yaxin Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Lei Mao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Weijuan Wang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Hang Yuan
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Chun Yang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Ruifang Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Yanhong Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Guangya Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| |
Collapse
|
7
|
Fang T, Jiang W, Zheng T, Yao X, Zhu W. Catalyst- and Solvent-Free Upcycling of Poly(Ethylene Terephthalate) Waste to Biodegradable Plastics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403728. [PMID: 39097946 DOI: 10.1002/adma.202403728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/10/2024] [Indexed: 08/06/2024]
Abstract
Poly(ethylene terephthalate) (PET) is an important polymer with annual output second only to polyethylene. Due to its low biodegradability, a large amount of PET is recycled for sustainable development. However, current strategies for PET recycling are limited by low added value or small product scale. It is urgent to make a breakthrough on the principle of PET macromolecular reaction and efficiently prepare products with high added value and wide applications. Here, the catalyst- and solvent-free synthesis of biodegradable plastics are reported through novel carboxyl-ester transesterification between PET waste and bio-based hydrogenated dimer acid (HDA), which can directly substitute some terephthalic acid (TPA) units in PET chain by HDA unit. This macromolecular reaction can be facilely carried out on current equipment in the polyester industry without any additional catalyst and solvent, thus enabling low-cost and large-scale production. Furthermore, the product semi-bio-based copolyester shows excellent mechanical properties, regulable flexibility and good biodegradability, which is expected to substitute poly(butylene adipate-co-terephthalate) (PBAT) plastic as high value-added biodegradable materials. This work provides an environmental-friendly and economic strategy for the large-scale upcycling of PET waste.
Collapse
Affiliation(s)
- Tianxiang Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Weipo Jiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Tengfei Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xuxia Yao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Groseclose T, Kober EA, Clark M, Moore B, Banerjee S, Bemmer V, Beckham GT, Pickford AR, Dale TT, Nguyen HB. A High-Throughput Screening Platform for Engineering Poly(ethylene Terephthalate) Hydrolases. ACS Catal 2024; 14:14622-14638. [PMID: 39386920 PMCID: PMC11459431 DOI: 10.1021/acscatal.4c04321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024]
Abstract
The ability of enzymes to hydrolyze the ubiquitous polyester, poly(ethylene terephthalate) (PET), has enabled the potential for bioindustrial recycling of this waste plastic. To date, many of these PET hydrolases have been engineered for improved catalytic activity and stability, but current screening methods have limitations in screening large libraries, including under high-temperature conditions. Here, we developed a platform that can simultaneously interrogate PET hydrolase libraries of 104-105 variants (per round) for protein solubility, thermostability, and activity via paired, plate-based split green fluorescent protein and model substrate screens. We then applied this platform to improve the performance of a benchmark PET hydrolase, leaf-branch compost cutinase, by directed evolution. Our engineered enzyme exhibited higher catalytic activity relative to the benchmark, LCC-ICCG, on amorphous PET film coupon substrates (∼9.4% crystallinity) in pH-controlled bioreactors at both 65 °C (8.5% higher conversion at 48 h and 38% higher maximum rate, at 2.9% substrate loading) and 68 °C (11.2% higher conversion at 48 h and 43% higher maximum rate, at 16.5% substrate loading), up to 48 h, highlighting the potential of this screening platform to accelerate enzyme development for PET recycling.
Collapse
Affiliation(s)
- Thomas
M. Groseclose
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- BOTTLE
Consortium, Golden, Colorado 80401, United States
| | - Erin A. Kober
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- BOTTLE
Consortium, Golden, Colorado 80401, United States
| | - Matilda Clark
- BOTTLE
Consortium, Golden, Colorado 80401, United States
- Centre
for Enzyme Innovation, School of the Environmental and Life Sciences, University of Portsmouth, Portsmouth, PO1 2DT, U.K.
| | - Benjamin Moore
- BOTTLE
Consortium, Golden, Colorado 80401, United States
- Centre
for Enzyme Innovation, School of the Environmental and Life Sciences, University of Portsmouth, Portsmouth, PO1 2DT, U.K.
| | - Shounak Banerjee
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- BOTTLE
Consortium, Golden, Colorado 80401, United States
| | - Victoria Bemmer
- BOTTLE
Consortium, Golden, Colorado 80401, United States
- Centre
for Enzyme Innovation, School of the Environmental and Life Sciences, University of Portsmouth, Portsmouth, PO1 2DT, U.K.
| | - Gregg T. Beckham
- BOTTLE
Consortium, Golden, Colorado 80401, United States
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Andrew R. Pickford
- BOTTLE
Consortium, Golden, Colorado 80401, United States
- Centre
for Enzyme Innovation, School of the Environmental and Life Sciences, University of Portsmouth, Portsmouth, PO1 2DT, U.K.
| | - Taraka T. Dale
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- BOTTLE
Consortium, Golden, Colorado 80401, United States
| | - Hau B. Nguyen
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- BOTTLE
Consortium, Golden, Colorado 80401, United States
| |
Collapse
|
9
|
Li C, Zheng Q, Liu W, Zhao Q, Jiang L. Enhancement of the degradation capacity of IsPETase by acidic amino acids insertion and carbohydrate-binding module fusion. 3 Biotech 2024; 14:195. [PMID: 39131175 PMCID: PMC11306670 DOI: 10.1007/s13205-024-04041-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/31/2024] [Indexed: 08/13/2024] Open
Abstract
The biocatalytic degradation of poly(ethylene terephthalate) (PET) through enzymatic methods has garnered considerable attention due to its environmentally friendly and non-polluting nature, as well as its high specificity. While previous efforts in enhancing IsPETase performance have focused on amino acid substitutions in protein engineering, we introduced an amino acid insertion strategy in this work. By inserting a negatively charged acidic amino acid, Glu, at the right-angle bend of IsPETase, the binding capability between the enzyme's active pocket and PET was improved. The resulted mutant IsPETase9394insE exhibited enhanced hydrolytic activity towards PET at various temperatures ranging from 30 to 45 ℃ compared with the wild-type IsPETase. Notably, a 10.04-fold increase was observed at 45 ℃. To further enhance PET hydrolysis, different carbohydrate-binding modules (CBMs) were incorporated at the C-terminus of IsPETase9394insE. Among these, the fusion of CBM from Verrucosispora sioxanthis exhibited the highest enhancement, resulting in a 1.82-fold increase in PET hydrolytic activity at 37 ℃ compared with the IsPETase9394insE. Finally, the engineered variant was successfully employed for the degradation of polyester filter cloth, demonstrating its promising hydrolytic capacity. In conclusion, this research presents an alternative enzyme engineering strategy for modifying PETases and enriches the pool of potential candidates for industrial PET degradation.
Collapse
Affiliation(s)
- Chuang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Qingqing Zheng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| | - Wei Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| | - Quanyu Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Ling Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816 China
| |
Collapse
|
10
|
Yang S, Li Y, Nie M, Liu X, Wang Q, Chen N, Zhang C. Lifecycle Management for Sustainable Plastics: Recent Progress from Synthesis, Processing to Upcycling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404115. [PMID: 38869422 DOI: 10.1002/adma.202404115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Plastics, renowned for their outstanding properties and extensive applications, assume an indispensable and irreplaceable role in modern society. However, the ubiquitous consumption of plastic items has led to a growing accumulation of plastic waste. Unreasonable practices in the production, utilization, and recycling of plastics have led to substantial energy resource depletion and environmental pollution. Herein, the state-of-the-art advancements in the lifecycle management of plastics are timely reviewed. Unlike typical reviews focused on plastic recycling, this work presents an in-depth analysis of the entire lifecycle of plastics, covering the whole process from synthesis, processing, to ultimate disposal. The primary emphasis lies on selecting judicious strategies and methodologies at each lifecycle stage to mitigate the adverse environmental impact of waste plastics. Specifically, the article delineates the rationale, methods, and advancements realized in various lifecycle stages through both physical and chemical recycling pathways. The focal point is the attainment of optimal recycling rates for waste plastics, thereby alleviating the ecological burden of plastic pollution. By scrutinizing the entire lifecycle of plastics, the article aims to furnish comprehensive solutions for reducing plastic pollution and fostering sustainability across all facets of plastic production, utilization, and disposal.
Collapse
Affiliation(s)
- Shuangqiao Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Yijun Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Min Nie
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
| | - Xingang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
| | - Qi Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Ning Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| |
Collapse
|
11
|
Li A, Wu L, Cui H, Song Y, Zhang X, Li X. Unlocking a Sustainable Future for Plastics: A Chemical-Enzymatic Pathway for Efficient Conversion of Mixed Waste to MHET and Energy-Saving PET Recycling. CHEMSUSCHEM 2024; 17:e202301612. [PMID: 38385577 DOI: 10.1002/cssc.202301612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
The heterogeneous monomers obtained from plastic waste degradation are unfavorable for PET recondensation and high-value derivative synthesis. Herein, we developed an efficient chemical-enzymatic approach to convert mixed plastic wastes into homogeneous mono-2-hydroxyethyl terephthalate (MHET) without downstream purification, benefiting from three discovered BHETases (KbEst, KbHyd, and BrevEst) in nature. Towards the mixed plastic waste, integrating the chemical K2CO3-driven glycolysis process with the BHETase depolymerization technique resulted in an MHET yield of up to 98.26 % in 40 h. Remarkably, BrevEst accomplished the highest BHET hydrolysis (~87 % efficiency in 12 h) for yielding analytical-grade MHET compared to seven state-of-the-art PET hydrolases (18 %-40 %). In an investigation combining quantum theoretical computations and experimental validations, we established a MHET-initiated PET repolymerization pathway. This shortcut approach with MHET promises to strengthen the valorization of mixed plastics, offering a substantially more efficient and energy-saving route for PET recycling.
Collapse
Affiliation(s)
- Anni Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Luxuan Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Haiyang Cui
- School of Life Sciences, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yibo Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
12
|
Wang C, Long R, Lin X, Liu W, Zhu L, Jiang L. Development and characterization of a bacterial enzyme cascade reaction system for efficient and stable PET degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134480. [PMID: 38703683 DOI: 10.1016/j.jhazmat.2024.134480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/15/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
The widespread use of polyethylene terephthalate (PET) in various industries has led to a surge in microplastics (MPs) pollution, posing a significant threat to ecosystems and human health. To address this, we have developed a bacterial enzyme cascade reaction system (BECRS) that focuses on the efficient degradation of PET. This system harnesses the Escherichia coli (E. coli) surface to display CsgA protein, which forms curli fibers, along with the carbohydrate-binding module 3 (CBM3) and PETases, to enhance the adsorption and degradation of PET. The study demonstrated that the BECRS achieved a notable PET film degradation rate of 3437 ± 148 μg/(d*cm²), with a degradation efficiency of 21.40% for crystalline PET MPs, and the degradation products were all converted to TPA. The stability of the system was evidenced by retaining over 80% of its original activity after multiple uses and during one month of storage. Molecular dynamics simulations confirmed that the presence of CsgA did not interfere with the enzymatic activity of PETases. This BECRS represents a significant step forward in the biodegradation of PET, particularly microplastics, offering a practical and sustainable solution for environmental pollution control.
Collapse
Affiliation(s)
- Chengyong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Rui Long
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiran Lin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wei Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Liying Zhu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
13
|
Galstyan V, D'Angelo P, Tarabella G, Vurro D, Djenizian T. High versatility of polyethylene terephthalate (PET) waste for the development of batteries, biosensing and gas sensing devices. CHEMOSPHERE 2024; 359:142314. [PMID: 38735489 DOI: 10.1016/j.chemosphere.2024.142314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/10/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Continuously growing adoption of electronic devices in energy storage, human health and environmental monitoring systems increases demand for cost-effective, lightweight, comfortable, and highly efficient functional structures. In this regard, the recycling and reuse of polyethylene terephthalate (PET) waste in the aforementioned fields due to its excellent mechanical properties and chemical resistance is an effective solution to reduce plastic waste. Herein, we review recent advances in synthesis procedures and research studies on the integration of PET into energy storage (Li-ion batteries) and the detection of gaseous and biological species. The operating principles of such systems are described and the role of recycled PET for various types of architectures is discussed. Modifying the composition, crystallinity, surface porosity, and polar surface functional groups of PET are important factors for tuning its features as the active or substrate material in biological and gas sensors. The findings indicate that conceptually new pathways to the study are opened up for the effective application of recycled PET in the design of Li-ion batteries, as well as biochemical and catalytic detection systems. The current challenges in these fields are also presented with perspectives on the opportunities that may enable a circular economy in PET use.
Collapse
Affiliation(s)
- Vardan Galstyan
- Institute of Materials for Electronics and Magnetism, National Research Council (IMEM-CNR), Parco Area delle Scienze, 37/A, 43124, Parma, (PR), Italy; Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via Vivarelli 10, 41125, Modena, Italy.
| | - Pasquale D'Angelo
- Institute of Materials for Electronics and Magnetism, National Research Council (IMEM-CNR), Parco Area delle Scienze, 37/A, 43124, Parma, (PR), Italy
| | - Giuseppe Tarabella
- Institute of Materials for Electronics and Magnetism, National Research Council (IMEM-CNR), Parco Area delle Scienze, 37/A, 43124, Parma, (PR), Italy
| | - Davide Vurro
- Institute of Materials for Electronics and Magnetism, National Research Council (IMEM-CNR), Parco Area delle Scienze, 37/A, 43124, Parma, (PR), Italy
| | - Thierry Djenizian
- Mines Saint-Etienne, Center of Microelectronics in Provence, Department of Flexible Electronics, F-13541, Gardanne, France; Al-Farabi Kazakh National University, Center of Physical-Chemical Methods of Research and Analysis, Tole bi str., 96A, Almaty, Kazakhstan
| |
Collapse
|
14
|
Yang J, Li Z, Xu Q, Liu W, Gao S, Qin P, Chen Z, Wang A. Towards carbon neutrality: Sustainable recycling and upcycling strategies and mechanisms for polyethylene terephthalate via biotic/abiotic pathways. ECO-ENVIRONMENT & HEALTH 2024; 3:117-130. [PMID: 38638172 PMCID: PMC11021832 DOI: 10.1016/j.eehl.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 04/20/2024]
Abstract
Polyethylene terephthalate (PET), one of the most ubiquitous engineering plastics, presents both environmental challenges and opportunities for carbon neutrality and a circular economy. This review comprehensively addressed the latest developments in biotic and abiotic approaches for PET recycling/upcycling. Biotically, microbial depolymerization of PET, along with the biosynthesis of reclaimed monomers [terephthalic acid (TPA), ethylene glycol (EG)] to value-added products, presents an alternative for managing PET waste and enables CO2 reduction. Abiotically, thermal treatments (i.e., hydrolysis, glycolysis, methanolysis, etc.) and photo/electrocatalysis, enabled by catalysis advances, can depolymerize or convert PET/PET monomers in a more flexible, simple, fast, and controllable manner. Tandem abiotic/biotic catalysis offers great potential for PET upcycling to generate commodity chemicals and alternative materials, ideally at lower energy inputs, greenhouse gas emissions, and costs, compared to virgin polymer fabrication. Remarkably, over 25 types of upgraded PET products (e.g., adipic acid, muconic acid, catechol, vanillin, and glycolic acid, etc.) have been identified, underscoring the potential of PET upcycling in diverse applications. Efforts can be made to develop chemo-catalytic depolymerization of PET, improve microbial depolymerization of PET (e.g., hydrolysis efficiency, enzymatic activity, thermal and pH level stability, etc.), as well as identify new microorganisms or hydrolases capable of degrading PET through computational and machine learning algorithms. Consequently, this review provides a roadmap for advancing PET recycling and upcycling technologies, which hold the potential to shape the future of PET waste management and contribute to the preservation of our ecosystems.
Collapse
Affiliation(s)
- Jiaqi Yang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qiongying Xu
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wenzong Liu
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shuhong Gao
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhenglin Chen
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Aijie Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
15
|
Feng S, Xue M, Xie F, Zhao H, Xue Y. Characterization of Thermotoga maritima Esterase Capable of Hydrolyzing Bis(2-hydroxyethyl) Terephthalate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12045-12056. [PMID: 38753963 DOI: 10.1021/acs.jafc.4c01973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The gene-encoding carboxylesterase (TM1022) from the hyperthermophilic bacterium Thermotoga maritima (T. maritima) was cloned and expressed in Escherichia coli Top10 and BL21 (DE3). Recombinant TM1022 showed the best activity at pH 8.0 and 85 °C and retained 57% activity after 8 h cultivation at 90 °C. TM1022 exhibited good stability at pH 6.0-9.0, maintaining 53% activity after incubation at pH 10.0 and 37 °C for 6 h. The esterase TM1022 exhibited the optimum thermo-alkali stability and kcat/Km (598.57 ± 19.97 s-1mM-1) for pN-C4. TM1022 hydrolyzed poly(ethylene terephthalate) (PET) degradation intermediates, such as bis(2-hydroxyethyl) terephthalate (BHET) and mono(2-hydroxyethyl) terephthalate (MHET). The Km, kcat, and kcat/Km values for BHET were 0.82 ± 0.01 mM, 2.20 ± 0.02 s-1, and 2.67 ± 0.02 mM-1 s-1, respectively; those for MHET were 2.43 ± 0.07 mM, 0.04 ± 0.001 s-1, and 0.02 ± 0.001 mM-1 s-1, respectively. When purified TM1022 was added to the cutinase BhrPETase, hydrolysis of PET from drinking water bottle tops produced pure terephthalic acids (TPA) with 166% higher yield than those obtained after 72 h of incubation with BhrPETase alone as control. The above findings demonstrate that the esterase TM1022 from T. maritima has substantial potential for depolymerizing PET into monomers for reuse.
Collapse
Affiliation(s)
- Sizhong Feng
- Department of Food Science and Nutrition, College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Mengke Xue
- Department of Food Science and Nutrition, College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Fang Xie
- Department of Food Science and Nutrition, College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Hongyang Zhao
- Department of Food Science and Nutrition, College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Yemin Xue
- Department of Food Science and Nutrition, College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
16
|
Zheng R, Chen Q, Yang Q, Gong T, Hu CY, Meng Y. Engineering a Carotenoid Cleavage Oxygenase for Coenzyme-Free Synthesis of Vanillin from Ferulic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12209-12218. [PMID: 38751167 DOI: 10.1021/acs.jafc.4c01688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
One-pot biosynthesis of vanillin from ferulic acid without providing energy and cofactors adds significant value to lignin waste streams. However, naturally evolved carotenoid cleavage oxygenase (CCO) with extreme catalytic conditions greatly limited the above pathway for vanillin bioproduction. Herein, CCO from Thermothelomyces thermophilus (TtCCO) was rationally engineered for achieving high catalytic activity under neutral pH conditions and was further utilized for constructing a one-pot synthesis system of vanillin with Bacillus pumilus ferulic acid decarboxylase. TtCCO with the K192N-V310G-A311T-R404N-D407F-N556A mutation (TtCCOM3) was gradually obtained using substrate access channel engineering, catalytic pocket engineering, and pocket charge engineering. Molecular dynamics simulations revealed that reducing the site-blocking effect in the substrate access channel, enhancing affinity for substrates in the catalytic pocket, and eliminating the pocket's alkaline charge contributed to the high catalytic activity of TtCCOM3 under neutral pH conditions. Finally, the one-pot synthesis of vanillin in our study could achieve a maximum rate of up to 6.89 ± 0.3 mM h-1. Therefore, our study paves the way for a one-pot biosynthetic process of transforming renewable lignin-related aromatics into valuable chemicals.
Collapse
Affiliation(s)
- Rong Zheng
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian 710119, Shaanxi, P. R. China
| | - Qihang Chen
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian 710119, Shaanxi, P. R. China
| | - Qingbo Yang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian 710119, Shaanxi, P. R. China
| | - Tian Gong
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian 710119, Shaanxi, P. R. China
| | - Ching Yuan Hu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian 710119, Shaanxi, P. R. China
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, Hawaii 96822, United States
| | - Yonghong Meng
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian 710119, Shaanxi, P. R. China
| |
Collapse
|
17
|
Martín-González D, de la Fuente Tagarro C, De Lucas A, Bordel S, Santos-Beneit F. Genetic Modifications in Bacteria for the Degradation of Synthetic Polymers: A Review. Int J Mol Sci 2024; 25:5536. [PMID: 38791573 PMCID: PMC11121894 DOI: 10.3390/ijms25105536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Synthetic polymers, commonly known as plastics, are currently present in all aspects of our lives. Although they are useful, they present the problem of what to do with them after their lifespan. There are currently mechanical and chemical methods to treat plastics, but these are methods that, among other disadvantages, can be expensive in terms of energy or produce polluting gases. A more environmentally friendly alternative is recycling, although this practice is not widespread. Based on the practice of the so-called circular economy, many studies are focused on the biodegradation of these polymers by enzymes. Using enzymes is a harmless method that can also generate substances with high added value. Novel and enhanced plastic-degrading enzymes have been obtained by modifying the amino acid sequence of existing ones, especially on their active site, using a wide variety of genetic approaches. Currently, many studies focus on the common aim of achieving strains with greater hydrolytic activity toward a different range of plastic polymers. Although in most cases the depolymerization rate is improved, more research is required to develop effective biodegradation strategies for plastic recycling or upcycling. This review focuses on a compilation and discussion of the most important research outcomes carried out on microbial biotechnology to degrade and recycle plastics.
Collapse
Affiliation(s)
- Diego Martín-González
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; (D.M.-G.); (A.D.L.); (S.B.)
| | - Carlos de la Fuente Tagarro
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; (D.M.-G.); (A.D.L.); (S.B.)
| | - Andrea De Lucas
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; (D.M.-G.); (A.D.L.); (S.B.)
| | - Sergio Bordel
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Fernando Santos-Beneit
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain
| |
Collapse
|
18
|
Olazabal I, Luna Barrios EJ, De Meester S, Jehanno C, Sardon H. Overcoming the Limitations of Organocatalyzed Glycolysis of Poly(ethylene terephthalate) to Facilitate the Recycling of Complex Waste Under Mild Conditions. ACS APPLIED POLYMER MATERIALS 2024; 6:4226-4232. [PMID: 38633816 PMCID: PMC11019730 DOI: 10.1021/acsapm.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 04/19/2024]
Abstract
Although multiple methods have been reported in the literature for the chemical recycling of poly(ethylene terephthalate) (PET), large-scale depolymerization is not yet widely employed. The main reasons for the limited adoption of chemical recycling of PET are the harsh conditions required and the lack of selectivity. In this study, the organocatalytic glycolysis of PET mediated by organic bases at low temperatures is studied, and routes to avoid the deactivation of the catalyst are explored. It is shown that the formation of terephthalic acid by uncontrolled hydrolysis leads to issues which can be resolved using potassium tert-butoxide as a cocatalyst. Finally, complex PET waste obtained from a mechanical recycling plant was depolymerized under optimized conditions, obtaining bis(2-hydroxyethyl) terephthalate yields >90% in less than 15 min at only 100 °C. These results open the way to efficient recycling of PET-enriched waste streams under milder conditions.
Collapse
Affiliation(s)
- Ion Olazabal
- POLYMAT,
University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Emelin J. Luna Barrios
- POLYMAT,
University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Department
of Green Chemistry and Technology, Ghent
University, Graaf Karel
De Goedelaan 5, Kortrijk 8500, Belgium
| | - Steven De Meester
- Department
of Green Chemistry and Technology, Ghent
University, Graaf Karel
De Goedelaan 5, Kortrijk 8500, Belgium
| | - Coralie Jehanno
- POLYMAT,
University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
- POLYKEY, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Haritz Sardon
- POLYMAT,
University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
19
|
Choi J, Kim H, Ahn YR, Kim M, Yu S, Kim N, Lim SY, Park JA, Ha SJ, Lim KS, Kim HO. Recent advances in microbial and enzymatic engineering for the biodegradation of micro- and nanoplastics. RSC Adv 2024; 14:9943-9966. [PMID: 38528920 PMCID: PMC10961967 DOI: 10.1039/d4ra00844h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024] Open
Abstract
This review examines the escalating issue of plastic pollution, specifically highlighting the detrimental effects on the environment and human health caused by microplastics and nanoplastics. The extensive use of synthetic polymers such as polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS) has raised significant environmental concerns because of their long-lasting and non-degradable characteristics. This review delves into the role of enzymatic and microbial strategies in breaking down these polymers, showcasing recent advancements in the field. The intricacies of enzymatic degradation are thoroughly examined, including the effectiveness of enzymes such as PETase and MHETase, as well as the contribution of microbial pathways in breaking down resilient polymers into more benign substances. The paper also discusses the impact of chemical composition on plastic degradation kinetics and emphasizes the need for an approach to managing the environmental impact of synthetic polymers. The review highlights the significance of comprehending the physical characteristics and long-term impacts of micro- and nanoplastics in different ecosystems. Furthermore, it points out the environmental and health consequences of these contaminants, such as their ability to cause cancer and interfere with the endocrine system. The paper emphasizes the need for advanced analytical methods and effective strategies for enzymatic degradation, as well as continued research and development in this area. This review highlights the crucial role of enzymatic and microbial strategies in addressing plastic pollution and proposes methods to create effective and environmentally friendly solutions.
Collapse
Affiliation(s)
- Jaewon Choi
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Hongbin Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Yu-Rim Ahn
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Minse Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Seona Yu
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Nanhyeon Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Su Yeon Lim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Jeong-Ann Park
- Department of Environmental Engineering, Kangwon National University Chuncheon 24341 Republic of Korea
| | - Suk-Jin Ha
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Kwang Suk Lim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| |
Collapse
|
20
|
Wang X, Li A, Li X, Cui H. Empowering Protein Engineering through Recombination of Beneficial Substitutions. Chemistry 2024; 30:e202303889. [PMID: 38288640 DOI: 10.1002/chem.202303889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Indexed: 02/24/2024]
Abstract
Directed evolution stands as a seminal technology for generating novel protein functionalities, a cornerstone in biocatalysis, metabolic engineering, and synthetic biology. Today, with the development of various mutagenesis methods and advanced analytical machines, the challenge of diversity generation and high-throughput screening platforms is largely solved, and one of the remaining challenges is: how to empower the potential of single beneficial substitutions with recombination to achieve the epistatic effect. This review overviews experimental and computer-assisted recombination methods in protein engineering campaigns. In addition, integrated and machine learning-guided strategies were highlighted to discuss how these recombination approaches contribute to generating the screening library with better diversity, coverage, and size. A decision tree was finally summarized to guide the further selection of proper recombination strategies in practice, which was beneficial for accelerating protein engineering.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Anni Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Haiyang Cui
- School of Life Sciences, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| |
Collapse
|
21
|
Cui Y, Chen Y, Sun J, Zhu T, Pang H, Li C, Geng WC, Wu B. Computational redesign of a hydrolase for nearly complete PET depolymerization at industrially relevant high-solids loading. Nat Commun 2024; 15:1417. [PMID: 38360963 PMCID: PMC10869840 DOI: 10.1038/s41467-024-45662-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Biotechnological plastic recycling has emerged as a suitable option for addressing the pollution crisis. A major breakthrough in the biodegradation of poly(ethylene terephthalate) (PET) is achieved by using a LCC variant, which permits 90% conversion at an industrial level. Despite the achievements, its applications have been hampered by the remaining 10% of nonbiodegradable PET. Herein, we address current challenges by employing a computational strategy to engineer a hydrolase from the bacterium HR29. The redesigned variant, TurboPETase, outperforms other well-known PET hydrolases. Nearly complete depolymerization is accomplished in 8 h at a solids loading of 200 g kg-1. Kinetic and structural analysis suggest that the improved performance may be attributed to a more flexible PET-binding groove that facilitates the targeting of more specific attack sites. Collectively, our results constitute a significant advance in understanding and engineering of industrially applicable polyester hydrolases, and provide guidance for further efforts on other polymer types.
Collapse
Affiliation(s)
- Yinglu Cui
- AIM Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Yanchun Chen
- AIM Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinyuan Sun
- AIM Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tong Zhu
- AIM Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hua Pang
- AIM Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chunli Li
- AIM Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wen-Chao Geng
- AIM Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Chemistry, Nankai University, Tianjin, China
| | - Bian Wu
- AIM Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
22
|
Zhou X, Zhou X, Xu Z, Zhang M, Zhu H. Characterization and engineering of plastic-degrading polyesterases jmPE13 and jmPE14 from Pseudomonas bacterium. Front Bioeng Biotechnol 2024; 12:1349010. [PMID: 38425995 PMCID: PMC10904013 DOI: 10.3389/fbioe.2024.1349010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Polyester plastics are widely used in daily life, but also cause a large amount of waste. Degradation by microbial enzymes is the most promising way for the biobased upcycling of the wastes. However, there is still a shortage of high-performance enzymes, and more efficient polyester hydrolases need to be developed. Here we identified two polyester hydrolases, jmPE13 and jmPE14, from a previously isolated strain Pseudomonas sp. JM16B3. The proteins were recombinantly expressed and purified in E. coli, and their enzymatic properties were characterized. JmPE13 and jmPE14 showed hydrolytic activity towards polyethylene terephthalate (PET) and Poly (butylene adipate-co-terephthalate) (PBAT) at medium temperatures. The enzyme activity and stability of jmPE13 were further improved to 3- and 1.5-fold, respectively, by rational design. The results of our research can be helpful for further engineering of more efficient polyester plastic hydrolases and their industrial applications.
Collapse
Affiliation(s)
| | | | | | | | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
23
|
Park SU, Seo HJ, Seo YH, Park JY, Kim H, Cho WY, Lee PC, Lee BY. Ductile Copolyesters Prepared Using Succinic Acid, 1,4-Butanediol, and Bis(2-hydroxyethyl) Terephthalate with Minimizing Generation of Tetrahydrofuran. Polymers (Basel) 2024; 16:519. [PMID: 38399897 PMCID: PMC10891720 DOI: 10.3390/polym16040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Poly(1,4-butylene succinate) (PBS) is a promising sustainable and biodegradable synthetic polyester. In this study, we synthesized PBS-based copolyesters by incorporating 5-20 mol% of -O2CC6H4CO2- and -OCH2CH2O- units through the polycondensation of succinic acid (SA) with 1,4-butanediol (BD) and bis(2-hydroxyethyl) terephthalate (BHET). Two different catalysts, H3PO4 and the conventional catalyst (nBuO)4Ti, were used comparatively in the synthesis process. The copolyesters produced using the former were treated with M(2-ethylhexanoate)2 (M = Mg, Zn, Mn) to connect the chains through ionic interactions between M2+ ions and either -CH2OP(O)(OH)O- or (-CH2O)2P(O)O- groups. By incorporating BHET units (i.e., -O2CC6H4CO2- and -OCH2CH2O-), the resulting copolyesters exhibited improved ductile properties with enhanced elongation at break, albeit with reduced tensile strength. The copolyesters prepared with H3PO4/M(2-ethylhexanoate)2 displayed a less random distribution of -O2CC6H4CO2- and -OCH2CH2O- units, leading to a faster crystallization rate, higher Tm value, and higher yield strength compared to those prepared with (nBuO)4Ti using the same amount of BHET. Furthermore, they displayed substantial shear-thinning behavior in their rheological properties due to the presence of long-chain branches of (-CH2O)3P=O units. Unfortunately, the copolyesters prepared with H3PO4/M(2-ethylhexanoate)2, and hence containing M2+, -CH2OP(O)(OH)O-, (-CH2O)2P(O)O- groups, did not exhibit enhanced biodegradability under ambient soil conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bun Yeoul Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (S.U.P.); (H.J.S.); (Y.H.S.); (J.Y.P.); (H.K.); (W.Y.C.); (P.C.L.)
| |
Collapse
|
24
|
Joho Y, Vongsouthi V, Gomez C, Larsen JS, Ardevol A, Jackson CJ. Improving plastic degrading enzymes via directed evolution. Protein Eng Des Sel 2024; 37:gzae009. [PMID: 38713696 PMCID: PMC11091475 DOI: 10.1093/protein/gzae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/09/2024] Open
Abstract
Plastic degrading enzymes have immense potential for use in industrial applications. Protein engineering efforts over the last decade have resulted in considerable enhancement of many properties of these enzymes. Directed evolution, a protein engineering approach that mimics the natural process of evolution in a laboratory, has been particularly useful in overcoming some of the challenges of structure-based protein engineering. For example, directed evolution has been used to improve the catalytic activity and thermostability of polyethylene terephthalate (PET)-degrading enzymes, although its use for the improvement of other desirable properties, such as solvent tolerance, has been less studied. In this review, we aim to identify some of the knowledge gaps and current challenges, and highlight recent studies related to the directed evolution of plastic-degrading enzymes.
Collapse
Affiliation(s)
- Yvonne Joho
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Research Way, Clayton, Victoria 3168, Australia
- Research School of Chemistry, Australian National University, Sullivans Creek Rd, Canberra, ACT 2601, Australia
- CSIRO Advanced Engineering Biology Future Science Platform, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Vanessa Vongsouthi
- Research School of Chemistry, Australian National University, Sullivans Creek Rd, Canberra, ACT 2601, Australia
| | - Chloe Gomez
- Research School of Chemistry, Australian National University, Sullivans Creek Rd, Canberra, ACT 2601, Australia
| | - Joachim S Larsen
- Research School of Chemistry, Australian National University, Sullivans Creek Rd, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Synthetic Biology, Research School of Chemistry, Australian National University, Sullivans Creek Rd, Canberra, ACT 2601, Australia
| | - Albert Ardevol
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Research Way, Clayton, Victoria 3168, Australia
- CSIRO Advanced Engineering Biology Future Science Platform, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Sullivans Creek Rd, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Synthetic Biology, Research School of Chemistry, Australian National University, Sullivans Creek Rd, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Sullivans Creek Rd, Canberra, ACT 2601, Australia
| |
Collapse
|
25
|
Yu Y, Shen G, Xu TJ, Wen R, Qiao YC, Cheng RC, Huo Y. Ti-Si composite glycol salts: depolymerization and repolymerization studies of PET. RSC Adv 2023; 13:36337-36345. [PMID: 38093730 PMCID: PMC10716681 DOI: 10.1039/d3ra07376a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/29/2023] [Indexed: 11/22/2024] Open
Abstract
In this study, a Ti-Si-ethylene glycol salt (Ti/Si-EG) was synthesized and used as a catalyst for the depolymerization of PET-ethylene glycol to produce bis(hydroxyethyl)terephthalate (BHET), and the optimum conditions for the depolymerization were determined by response surface analysis: w(EG) : w(PET) was 4 : 1, the catalyst mass dosage was 0.56% (in terms of the mass of PET), the depolymerization temperature was 203 °C, the depolymerization time was 3.8 h, and the highest yield of the product (BHET) was 90.10%. Furthermore, the depolymerization product BHET was used as the raw material and Ti/Si-EG was used as the catalyst for the polycondensation reaction to synthesize PET, and the amount of the catalyst added was 0.015% by mass (in terms of BHET). The performance of the synthesized PET was tested to be the same as that of PET synthesized by the PTA method under the same conditions, thus achieving the resourceful treatment and high-value recycling of waste PET. The introduction of Si in the catalyst reduced the catalytic activity of Ti and avoided the problem of yellowing of polyester products, and the use of the glycol salt as a catalyst in the depolymerization and polycondensation reaction process did not introduce impurity groups.
Collapse
Affiliation(s)
- Yang Yu
- Shenyang University of Technology Liaoyang City Liaoning Province China
| | - Guoliang Shen
- Shenyang University of Technology Liaoyang City Liaoning Province China
| | - Tie Jun Xu
- Shenyang University of Technology Liaoyang City Liaoning Province China
| | - Ruiyang Wen
- Shenyang University of Technology Liaoyang City Liaoning Province China
| | - Yun Chang Qiao
- Shenyang University of Technology Liaoyang City Liaoning Province China
| | - Ru Chao Cheng
- Shenyang University of Technology Liaoyang City Liaoning Province China
| | - Yue Huo
- Shenyang University of Technology Liaoyang City Liaoning Province China
| |
Collapse
|
26
|
Zhou Y, Shen B, You S, Yin Q, Wang M, Jiang N, Su R, Qi W. Development of a novel "4E" polyethylene terephthalate bio-recycling process with the potential for industrial application: Efficient, economical, energy-saving, and eco-friendly. BIORESOURCE TECHNOLOGY 2023; 391:129913. [PMID: 39492534 DOI: 10.1016/j.biortech.2023.129913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2024]
Abstract
Recently, clean PET biodegradation has gained widespread attention in tackling white pollution. Nonetheless, the development of industrial biotechnology is still impeded by its contamination susceptibility, high energy input, and consumption of substantial freshwater resources. Thus, a novel PET biodegradation process was developed based on host screening and by-product circulation to address the aforementioned issues. The fast-growth host halophilic Vibrio natriegens (V. natriegens) was used and exhibited an increased protein expression level of 87.3% compared to E. coli. Meanwhile, the new process utilized a seawater-based medium for fermentation under non-sterile conditions, leading to energy-saving (energy reduced by 4.92-fold) and cost-reduction (cost reduced by 47.9%). Moreover, the large amount of saline wastewater from terephthalic acid purification was ingeniously reused for the cultivation of V. natriegens, thereby avoiding resource wastage and secondary pollution. Therefore, an efficient, economical, energy-saving, and eco-friendly process was designed, potentially addressing the industrial bottleneck in PET bio-recycling.
Collapse
Affiliation(s)
- Yu Zhou
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bowen Shen
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shengping You
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Beijing Meihao Biotechnology Co., Ltd., China
| | - Qingdian Yin
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Mengfan Wang
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China; Yuantian Biotechnology (Tianjin) Co., Ltd., China
| | - Nan Jiang
- Tianjin Fire Science and Technology Research Institute of MEM, Tianjin 300381, China
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
27
|
Lee GH, Kim DW, Jin YH, Kim SM, Lim ES, Cha MJ, Ko JK, Gong G, Lee SM, Um Y, Han SO, Ahn JH. Biotechnological Plastic Degradation and Valorization Using Systems Metabolic Engineering. Int J Mol Sci 2023; 24:15181. [PMID: 37894861 PMCID: PMC10607142 DOI: 10.3390/ijms242015181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Various kinds of plastics have been developed over the past century, vastly improving the quality of life. However, the indiscriminate production and irresponsible management of plastics have led to the accumulation of plastic waste, emerging as a pressing environmental concern. To establish a clean and sustainable plastic economy, plastic recycling becomes imperative to mitigate resource depletion and replace non-eco-friendly processes, such as incineration. Although chemical and mechanical recycling technologies exist, the prevalence of composite plastics in product manufacturing complicates recycling efforts. In recent years, the biodegradation of plastics using enzymes and microorganisms has been reported, opening a new possibility for biotechnological plastic degradation and bio-upcycling. This review provides an overview of microbial strains capable of degrading various plastics, highlighting key enzymes and their role. In addition, recent advances in plastic waste valorization technology based on systems metabolic engineering are explored in detail. Finally, future perspectives on systems metabolic engineering strategies to develop a circular plastic bioeconomy are discussed.
Collapse
Affiliation(s)
- Ga Hyun Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Do-Wook Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yun Hui Jin
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sang Min Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Eui Seok Lim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Min Ji Cha
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jung Ho Ahn
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
28
|
Perez-Garcia P, Chow J, Costanzi E, Gurschke M, Dittrich J, Dierkes RF, Molitor R, Applegate V, Feuerriegel G, Tete P, Danso D, Thies S, Schumacher J, Pfleger C, Jaeger KE, Gohlke H, Smits SHJ, Schmitz RA, Streit WR. An archaeal lid-containing feruloyl esterase degrades polyethylene terephthalate. Commun Chem 2023; 6:193. [PMID: 37697032 PMCID: PMC10495362 DOI: 10.1038/s42004-023-00998-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
Polyethylene terephthalate (PET) is a commodity polymer known to globally contaminate marine and terrestrial environments. Today, around 80 bacterial and fungal PET-active enzymes (PETases) are known, originating from four bacterial and two fungal phyla. In contrast, no archaeal enzyme had been identified to degrade PET. Here we report on the structural and biochemical characterization of PET46 (RLI42440.1), an archaeal promiscuous feruloyl esterase exhibiting degradation activity on semi-crystalline PET powder comparable to IsPETase and LCC (wildtypes), and higher activity on bis-, and mono-(2-hydroxyethyl) terephthalate (BHET and MHET). The enzyme, found by a sequence-based metagenome search, is derived from a non-cultivated, deep-sea Candidatus Bathyarchaeota archaeon. Biochemical characterization demonstrated that PET46 is a promiscuous, heat-adapted hydrolase. Its crystal structure was solved at a resolution of 1.71 Å. It shares the core alpha/beta-hydrolase fold with bacterial PETases, but contains a unique lid common in feruloyl esterases, which is involved in substrate binding. Thus, our study widens the currently known diversity of PET-hydrolyzing enzymes, by demonstrating PET depolymerization by a plant cell wall-degrading esterase.
Collapse
Affiliation(s)
- Pablo Perez-Garcia
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Jennifer Chow
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Elisa Costanzi
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marno Gurschke
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Jonas Dittrich
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Robert F Dierkes
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Rebecka Molitor
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, Jülich, Germany
| | - Violetta Applegate
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Golo Feuerriegel
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Prince Tete
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Dominik Danso
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, Jülich, Germany
| | - Julia Schumacher
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christopher Pfleger
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich, Jülich, Germany
| | - Sander H J Smits
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ruth A Schmitz
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|